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Abstract. We consider non-strictly hyperbolic systems of conservation laws
in triangular form, which turn up in applications like three-phase flows in
porous media flow. We device finite volume schemes of Godunov type for
these systems that exploit the triangular structure. We prove that the finite
volume schemes converge to weak solutions as the discretization parameters
tend to zero. Some numerical examples are presented, one of which is related
to flows in porous media.
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1. Introduction

We study 2 × 2 systems of conservation laws of the form

(1.1)







ut + f(u)x = 0, (x, t) ∈ R × R
+,

vt + g(u, v)x = 0, (x, t) ∈ R × R
+,

(u, v)(x, 0) = (u0(x), v0(x)), x ∈ R,

where u, v are the unknowns, whereas the initial values u0, v0 and the flux functions
f, g are presribed. Triangular systems of conservation laws occur in a variety of
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models in physics and engineering. As a specific example, we shall discuss a system
describing three-phase flow in porous media, see Sections 2 and 6.

System (1.1) is a special case of the followig more general system:







(u1)t + (f1(u1))x = 0,

(u2)t + (f2(u1, u2))x = 0,
...

...

(un)t + (fn(u1, u2, . . . , un))x = 0.

This system is called triangular due to its special structure where evolution of ui

does not depend on the succeeding unknowns (ui+1, . . . , un).
Using vector notation, (1.1) reads

(1.2) Ut + F (U)x = 0 (x, t) ∈ R × R
+,

with U = (u, v) and F (U) = (f, g). The Jacobian matrix for (1.1) reads

A = ∂F =

(
fu 0
gu gv

)

.

The eigenvalues of the above matrix are λ1 = fu and λ2 = gv. From this it follows
that the system (1.1) is hyperbolic but may not be strictly hyperbolic as the wave
speeds can coincide. Thus, the key difficulty in analyzing a triangular system like
(1.1) is due to this non-strict hyperbolicity or resonance.

Although 2 × 2 systems are well studied and several rigorous results have been
obtained for them, see [19] and the references therein, none of these results can be
directly applied to the system (1.1) on the account of its resonant wave structure.
Hence, a different approach exploiting the triangular structure of (1.1) is required in
order to analyse the system. This paper in an attempt in this direction. Indeed, our
aim is to design numerical schemes of finite volume type for computing approximate
solutions of (1.1), and to show that these schemes converge to a weak solution of
(1.1), thereby proving existence of weak solutions as well.

If we write (1.1) as a system of equations, we can group different (first order
accurate) numerical methods into three main categories: (1) Central type schemes
like the Lax-Friedrichs or the Local Lax-Friedrichs (Rusanov) schemes, which do
not rely on Riemann solvers. (2) Upwind type schemes like the Godunov and Roe
schemes, which are based on (approximate) Riemann solvers. (3) Front tracking
schemes, which are based on exact Riemann solvers. Exact Riemann solvers may be
difficult to design on the account of a complicated wave structure in the solutions
of (1.1). If f ≡ 0, then front tracking schemes are viable, see, e.g., [24]. For the
triangular system (with degenerate diffusion), see [20] for numerical results with a
front tracking based operator splitting method. For a comparison of central and
upwind type schemes, see [12].

Numerical schemes based on exact or approximate Riemann solvers are difficult
to design and analyze due to the complicated structure of the solutions to (1.1),
which is a manifestation of the non-strictly hyperbolic (resonance) feature of the
system. Because of this, we propose to use a class of ”simple” upwind schemes that
exploit the triangular structure of the system (1.1). These schemes are based on
the close relationship between (1.1) and scalar conservation laws with discontinuous
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coefficients, i.e., equations of the form

(1.3)

{

wt + h(k(x, t), w)x = 0, (x, t) ∈ R × R
+,

w(x, 0) = w0(x), x ∈ R,

where w is the conserved variable and the coefficient k is allowed to be discontinuous
along curves in the (x, t) plane. Indeed, one can see that since the evolution of u
is independent of v in (1.1), we can evolve u and treat it is a coefficient in the
evolution equation for v, thus reducing (1.1) to an equation of the form (1.3). In
this paper, we are going to exploit this close relationship.

Conservation laws with discontinuous coefficients occur in a wide variety of mod-
els, such as in two phase flows in heterogeneous porous media (see, e.g., [17]), in
models for sedimentation of suspensions in a clarifier-thickener unit (see, e.g., [8]),
and in models for traffic flow (see, e.g., [5]). These equations have been studied
in several papers. An incomplete list includes [1, 2, 3, 6, 13, 17, 24, 21, 22, 23,
28, 26, 27, 29, 32, 33] (see the references therein for a more complete picture). A
key difficulty of the analysis is the nonlinear resonant behavior, which means that
one cannot expect to bound the total variation of the conserved quantities directly
but only when measured under a certain singular mapping. The singular mapping
method, used in most of the literature on these problems, is however difficult to
apply if the coefficient k in (1.3) is discontinuous both in space and time and ad-
ditionally is merely BV regular, i.e., not necessarily piecewise smooth. Herein we
will therefore take a different approach avoiding the singular mapping altogether.

The schemes we shall analyze are proposed in Section 4 and we shall refer to
them as Semi-Godunov schemes. These schemes are very easy to implement as they
do not rely on the full wave structure of the 2× 2 system. Their numerical dissipa-
tion is much smaller than that of the Lax-Friedrichs scheme, and their numerical
performance is comparable with front tracking schemes. Additionally, we show that
these schemes converge to a weak solution of (1.1). For the convergence analysis,
since BV estimates are not available and the singular mapping approach seems
difficult to implement for our system, we employ the Murat-Tartar compensated
compactness method [30, 31]. Parts this analysis rely heavily on the particular
structure of our system (1.1).

The remainder of this paper is organised this paper as follows: In Section 2 we
describe a reduced three-phase flow model where (1.1) arises. The mathematical
framework and detailed assumptions on the initial data and the fluxes are described
in Section 3. In Section 4 we describe the numerical schemes for (1.1). Convergence
analyses of (some of) the numerical schemes are carried out in Section 5. Some
numerical results are presented in section 6.

2. A triangular three-phase flow model

Simulation of a variety of oil recovery processes involve models of three-phase
flow in porous media. Often the three-phases of interest are oil, gas, and water. As a
model we consider incompressible, immiscible three-phase flow in a one-dimensional
homogeneous and isotropic reservoir (see, e.g., [9]). The oil, water, and gas satura-
tions are given by So, Sw, Sg respectively.

The mass conservation equation for phase l =, w, o, g reads

(2.1) φ(Sl)t + (Ul)x = 0,
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where φ is the porosity of the medium and Ul is the Darcy velocity or flow rate
corresponding to each phase l. By Darcy’s law, the flow rate is given by

Ul = −kλl

(
∂Pl

∂x
− G

)

l = w, o, g,

where k denotes the absolute permeability of the medium, λl is the mobility (relative
permeability divided by viscosity) of phase l, Pl is the pressure of phase l, and G
is the gravity term. We assume that the flow is incompressible i.e., the total flow
rate q =

∑

l=w,o,g Ul is a constant. For the sake of simplicity, we assume that
the capillary pressures between the phases are zero. This assumption is reasonable
when the total flow rate is high (the flow is convection dominated).

By adding the mass conservation equations (2.1) and using the above assump-
tions, we arrive at the following 2 × 2 system of conservation laws:

(2.2)







(Sg)t + (Fg(Sg, Sw, So))x = 0,

(Sw)t + (Fw(Sg, Sw, So))x = 0,

Sg + Sw + So = 1,

where the fluxes are given by,

Fg(Sg, Sw, So) =
qλg

λt
+

k

λt
λwλg(gw − gg) +

k

λt
λoλg(go − gg),

Fw(Sg, Sw, So) =
qλw

λt
+

k

λt
λwλg(gg − gw) +

k

λt
λoλw(go − gw),

where λt = λo + λg + λw is the total mobility.
It is well known that (2.2) can be a mixed type system, i.e., contain elliptic

regions and thus fail to be hyperbolic. It is outside the scope of this paper to
discuss this feature here. Instead we refer to [7] (and the references therein) for
a review some of the current views that exist today regarding mathematical and
numerical theory for mixed type systems.

In many situations the mobility of the gas phase is much larger than that of the
other phases. This means that the flux of gas is largely independent of whether the
other phase is oil or water. As a consequence

Fg(Sg, Sw, So) = F̃ (Sg, 1 − Sg) = F̂ (Sg).

Assuming this relationship, system (2.2) reduces to the following system

(2.3)
(Sg)t + (F̂g(Sg))x = 0

(Sw)t + (Fw(Sg, Sw))x = 0.

The above equation is a special case of (1.1). We refer to [20] for the model when
capillary forces are included.

It is to be emphasized that that although the assumption of independence of
the gas phase is not valid for all fractional flow functions, there exists a large class
of fractional flow functions for which this assumption appears to be reasonable.
In view of the fact that this assumption makes the model simpler and much more
tractable, we can use this “reduced” model in several situations. A careful numerical
study of this model (2.3) as an approximation to the full three-phase flow model
needs to be carried out. An essential ingredient for this program is the development
of efficient numerical schemes for (1.1).
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We remark that a one dimensional model like the one that we are using is a
good starting point for developing numerical schemes for the full three dimensional
model where one can use the one dimensional numerical fluxes in directions normal
to volume interfaces or along streamlines.

3. Mathematical Framework

We start by stating precise conditions on the flux functions f, g. Fix real numbers
s, S, α, β such that s ≤ S and α ≤ β. Then we assume that f and g satisfy

[label=A.0] f ∈ Lip([α, β]), g(u1, s) = g(u2, s), g(u1, S) = g(u2, S)
for all u1, u2 ∈ [α, β], u 7→ g(u, v) ∈ C1([α, β]) for each v ∈ [s, S],
v 7→ g(u, v) ∈ C2([s, S]) for each u ∈ [α, β], v 7→ g(u, v) is genuinely
nonlinear, for each u ∈ [α, β], that is,

gvv(u, v) 6= 0 for a.e. v ∈ [s, S], for each u ∈ [α, β].

Conditions 1, 4, and 5) are usual smoothness assumptions on the fluxes. Con-
dition 2 is a sufficient condition to obtain L∞ bounds on v and can be relaxed in
several ways. We have chosen to use this form since it holds for the three-phase flow
model (2.3). Condition 5 is required to achieve strong convergence of the approx-
imate solutions with the compensated compactness method. All the assumptions
are quite general. In particular we require no further assumptions on the shape of
the flux functions.

Regarding the initial data we assume the following conditions:
[label=A.0,resume] u0 ∈ L∞(R) with α ≤ u0 ≤ β for a.e x ∈ R,

u0 ∈ BV (R), s ≤ v0(x) ≤ S for all x ∈ R.

A weak solution to (1.2) is a pair of function U = (u, v) such that
∫

R+

∫

R

(Uϕt + F (U)ϕx)dxdt +

∫

R

U(x, 0)ϕ(x, 0) dx = 0, ∀ϕ ∈ C∞
c (R × R

+).

It is well known that the weak solutions of conservation laws are not unique, and
therefore the solution concept has to be supplemented with additional admissibility
criteria, so called entropy conditions. We refer to [19] for an introduction to entropy
conditions and the general theory of conservation laws.

As mentioned in the introduction, one of our aims is to show that weak solutions
of (1.1) exist by showing that proposed numerical schemes converge. Our chief
tool is the compensated compactness method [30, 31, 14, 10, 11, 25]. As mentioned
earlier, We are going to exploit the close local relationship between the system (1.1)
and conservation laws with discontinuous coefficients (1.3). For conservation laws
with discontinuous coefficients, the compensated compactness method was used as a
convergence tool for the Lax-Friedrichs scheme in [23]. We will follow the approach
used in [23]. This approach is based on the use of scalar entropy-entropy flux pairs.

A pair of functions (η(u, v), Q(u, v)), where u is considered as a fixed parameter
in [α, β], is called a scalar entropy/entropy flux pair for the equation vt+g(u, v)x = 0
if v 7→ η(u, v) is C2 regular and

Qv(u, v) = ηv(u, v)gv(u, v), for all v ∈ [s, S].

Suitably modified for our purposes, the compensated compactness lemma used in
[23] reads as follows:
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Lemma 3.1. Let u be the unique entropy solution u of the single conservation law

ut + f(u)x = 0, u(x, 0) = u0(x) ∈ L∞(R) ∩ BV (R),

and let {vε}ε>0 be a sequence of functions on R × R
+ such that for all ε > 0

(i) s ≤ vε ≤ S, and
(ii) the sequences

{η1(v
ε)t + Q1(u, vε)x}ε>0 , {η2(u, vε)t + Q2(u, vε)x}ε>0

belong to a compact subset of W−1,2
loc (R × R

+), where for all u, v

η1(v) = v − c, Q1(u, v) = g(u, v) − g(u, c)

η2(u, v) = g(u, v) − g(u, c), Q2(u, v) =

∫ v

c

(gv(u, ξ))2 dξ,

for all c ∈ R.

Then there exists a function subsequence of {vε}ε>0 that converges in Lp
loc(R×R

+)
∀p < ∞ and a.e. to a bounded function v.

We also need the following technical result (see, e.g., [10, 25]):

Lemma 3.2. Let Ω ⊂ R
d be a bounded open set and let q, p, r be such that 1 < q ≤

p < r < ∞, then

(compact set of W−1,q(Ω)) ∩ (bounded set of W−1,r(Ω))

⊂ (compact set of W−1,p(Ω)).

4. Description of numerical schemes

In this section we describe the Semi-Godunov type finite volume schemes for
(1.1). We start however with the unpacking of some needed notation.

Let ∆t, and ∆x be the time step and mesh size respectively. For simplicity we
use a uniform mesh in both space and time although variable step sizes can be
handled in the same manner. We assume that the time step and the mesh size
satisfy the following CFL condition:

λM ≤ 1

2
, λ =

∆t

∆x
, M = max

{

max
u∈[α,β]

|fu|, max
u∈[α,β],v∈[s,S]

|gv|
}

,

Let tn = n∆t, and xj = j∆x for integers n = 0, 1, 2, . . . and j = . . . ,−3/2,−1,
−1/2, 0, 1/2, 1, 3/2, 2, . . .. Let Ij and In denote the intervals

Ij = [xj−1/2, xj+1/2), In = [tn, tn+1).

Set

χn
j (x, t) = χIj (x)χIn(t),

where χΩ denotes the characteristic function of a set Ω.
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4.1. Staggered Semi-Godunov (SSG) scheme. For this scheme, we are going
to stagger the discretization of the two unknowns u and v.

Define U0
j = (u0

j+1/2, v
0
j ) as

u0
j+1/2 =

1

∆x

∫ xj+1

xj

u0(x) dx, v0
j =

1

∆x

∫ xj+1/2

xj−1/2

v0(x) dx.

Given given Un
j = (un

j+1/2, v
n
j ), we shall determine Un+1

j = (un+1
j+1/2, v

n+1
j ). We

start by updating un
j+1/2. This is straightforward as the evolution of u does not

depend on the unknown v. We use the standard Godunov scheme, see [18]:

(4.1) un+1
j+1/2 = un

j+1/2 − λ(fG(un
j+1/2, u

n
j+3/2) − fG(un

j−1/2, u
n
j+1/2)),

where fG is the standard scalar Godunov numerical flux:

(4.2) fG(a, b) =







min
θ∈[a,b]

f(θ), if a ≤ b,

max
θ∈[b,a]

f(θ), otherwise.

We define an approximate solution u∆x on R × R
+ by

(4.3) u∆x(x, t) =
∑

n,j+1/2

χn
j+1/2(x, t)un

j+1/2.

Next, we are going to use the function u∆ to define a Riemann solver for v. At
any time level tn, we will substitute u∆x(x, tn) instead of u in the conservation law
for v. To this end, for (x, t) ∈ Ij+1/2 × In we define v∆x to be the solution of the

following conservation law with the discontinuous coefficient u∆x:

(4.4) v∆x
t + g

(

un
j+1/2, v

∆x
)

x
= 0, v∆x(x, tn) =

{

vn
j , x < xj+1/2

vn
j+1, x > xj+1/2.

Since waves from different Riemann problems at tn do not interact by the CFL-
condition, we can use a Godunov scheme to determine vn+1

j . We evolve the solution

of the Riemann problem until t = tn+1. At time t = tn+1, we define vn+1
j by

averaging over grid cells Ij :

(4.5) vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v∆x(x, tn+1−) dx.

This gives the formula,

vn+1
j = vn

j − λ
(

gG
(

un
j+1/2, v

n
j , vn

j+1

)

− gG
(

un
j−1/2, v

n
j−1, v

n
j

))

,

where gG(u, a, b) is the standard Godunov flux (4.2) corresponding to the flux
function v 7→ g(u, v). Collecting the updates for u and v, we get the following finite
volume scheme:

(4.6)
un+1

j+1/2 = un
j+1/2 − λ

(

fG
(

un
j+1/2, u

n
j+3/2

)

− fG
(

wn
j−1/2, u

n
j+1/2

))

,

vn+1
j = vn

j − λ
(

gG
(

un
j+1/2, v

n
j , vn

j+1

)

− gG
(

un
j−1/2, v

n
j−1, v

n
j

))

We coin (4.6) the Staggered Semi-Godunov (SSG) scheme due to the staggered
discretizations of the coefficient and the unknown. This scheme is similar in spirit
to the schemes in [32, 33, 21] for conservation laws with discontinuous coefficients.
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For the purpose of analysis, we define an approximate solution U∆x = (u∆x, v∆x)
on R × R

+ by (4.3) and (4.4), (4.5).

4.2. Aligned Semi-Godunov (ASG) scheme. Unlike the SSG-scheme (4.6),
for the ASG-scheme we align the discretizations of both the unknowns. As a result
the ASG-scheme becomes more complicated to implement and analyze than the
SSG-scheme, but we have found that it gives somewhat better results.

Define U0
j = (u0

j , v
0
j ) by

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx, v0
j =

1

∆x

∫ xj+1/2

xj−1/2

v0(x) dx.

As in the SSG-scheme, we first update for u using the standard Godunov scheme:

un+1
j = un

j − λ(fG(un
j , un

j+1) − fG(un
j−1, u

n
j )),

where the numerical flux fG is defined in (4.2). Equipped with (4.1), we define an
approximate solution u∆x on R × R

+ by

(4.7) u∆x(x, t) =
∑

n,j

χn
j (x, t)un

j .

As in the SSG-scheme, we use u∆x(x, t) and define the evolution of v by the
solution of the conservation law (4.4) with u∆x defined by (4.7). Hence, at the time
level tn, we solve the following local Riemann problem at each interface xj+1/2:

v∆x
t + g

(
un

j , v∆x
)

x
= 0, if x < xj+1/2,

v∆x
t + g

(
un

j+1, v
∆x

)

x
= 0, if x > xj+1/2,

v∆x(x, tn) =

{

vn
j , x < xj+1/2,

vn
j+1, x > xj+1/2.

(4.8)

As we have aligned the discretization of both the unknowns, we end up with a
Riemann problem corresponding to a single conservation law with a discontinuous
coefficient. The Riemann problem (4.8) can be solved (see, e.g., [13, 16, 17]), and
an explicit formula for the (Godunov type) numerical flux has been obtained in
[3, 4, 27] for a large class of flux functions.

We define vn+1
j by averaging, cf. (4.5), and obtain

(4.9) vn+1
j = vn

j − λ
(
gR
A

(
(un

j , un
j+1), (v

n
j , vn

j+1)
)
− gR

A

(
(un

j−1, u
n
j ), (vn

j−1, v
n
j )

))
,

where gR
A(k, l)(a, b) is the Godunov numerical flux corresponding to the Riemann

problem with left flux function g(k, .), right flux function g(l, .) and Riemann data
a (left) and b (right). As mentioned above, explicit formulas for gR

A can be given in
many cases. For example, if v 7→ g(u, v) has at most one minimum and no maxima
for every u, then the explicit formula is

gR
A((k, l), (a, b)) = max {g(k, max(a, θk)), g(l, min(θl, b)} ,

where θk, θl are the minimum points of g(k, ·) and g(l, ·) respectively. Explicit
formulas in other (non-convex) cases are given in [4],[27].

Finally, we define an approximate solution U∆x = (u∆x, v∆x) on R × R
+ via

formulas (4.7) and (4.8).
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5. Convergence Analysis

In this section we prove that the approximate solutions generated by the SSG-
scheme (4.6) and the ASG-scheme (4.9) converge to weak solutions of (1.1). We
start by analyzing the SSG-scheme (4.6) and then detail the differences for the
ASG-scheme . In what follows and without loss of generality we will assume that
the approximate solutions (and their initial data) have compact support, that is,
there exist constants X, T > 0 independent of ∆x such that

(5.1) supp (u∆x), supp (v∆x) ⊂ [−X, X ]× [0, T ].

5.1. The SSG-scheme. We will carry out the above steps for the SSG-scheme
(4.6). Using standard theory for scalar conservation laws, it is straightforward to
establish the following facts:

Lemma 5.1. Let un
j+1/2, u∆x be defined by (4.1) and (4.3). Then

α ≤ un
j+1/2 ≤ β, for j ∈ Z, n = 0, 1, 2, . . .,

∑

j

∣
∣
∣un+1

j+1/2 − un
j+1/2

∣
∣
∣ ≤

∑

j

∣
∣
∣un

j+1/2 − un−1
j+1/2

∣
∣
∣ , n ≥ 1,

∑

j

∣
∣
∣un

j+1/2 − un
j−1/2

∣
∣
∣ ≤

∑

j

∣
∣
∣un−1

j+1/2 − un−1
j−1/2

∣
∣
∣ , n ≥ 1.

Furthermore, the sequence
{
u∆x

}

∆x>0
converges to the unique entropy solution

u ∈ L∞(R × R
+) ∩ BV (R × R

+) of the first equation in (1.1). The convergence
takes place in Lp

loc(R × R
+)) ∀p < ∞ and a.e. in R × R

+.

The boundedness of v∆x is a standard result, and follows from Assumption 2
and the monotonicity properties of gG, see [21]. We state the result in a lemma.

Lemma 5.2. Let vn
j be generated by the SSG-scheme (cf. Subsection 4.1), and

suppose s ≤ v0
j ≤ S for all j. Then

s ≤ vn
j ≤ S for all j and n ≥ 0.

We remark that our particular L∞ bound holds under Assumption 2, but one
can show L∞ bounds under more general conditions, see [33].

The next step in the convergence analysis is to provide an entropy dissipation es-
timate for the SSG-scheme (4.6). A entropy estimate for the Lax-Friedrichs scheme
for (1.3) was proved in [23]. On the other hand, the approach of [23] is based on
cell entropy inequalities and does not extend to three point schemes like the Go-
dunov scheme based on Riemann solvers, i.e., the ASG-scheme . Therefore we will
employ the original framework of DiPerna [14], of viewing finite volume schemes as
layered integral average methods. For other applications based on this approach,
see [15, 11] and the references therein.

Here and in what follows, we make use of the notation

[[A]](x, t) = lim
h→0

A(x + h, t) − A(x − h, t),

for any quantity A = A(x, t).
Let (η, Q) be a scalar entropy/entropy flux pair. Pick a test function ϕ hav-

ing compact support in R × [0, T ] with T = N∆t for some integer N . By the
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Gauss-Green formula and the local structure of the approximations v∆x (v∆x is the
solution of a Riemann problem at each interface xj+1/2),

∫∫

R×R+

η
(
u∆x, v∆x

)
ϕt + Q

(
u∆x, v∆x

)
ϕx dxdt

= I1(ϕ) + I2(ϕ) + I3(ϕ) + I4(ϕ),

(5.2)

where

I1(ϕ) =

∫

R

η
(
u∆x(x, t), v∆x(x, t)

)
ϕ(x, t)

∣
∣
t=T

t=0
dx,

I2(ϕ) =
∑

n

∫

R

[

η
(
u∆x(x, tn−), v∆x(x, tn−)

)
(5.3)

− η
(
u∆x(x, tn+), v∆x(x, tn+)

)]

ϕ(x, tn) dx,

I3(ϕ) =
∑

n,j

∑

σ

∫ tn+1

tn

[

(σ[[S]] − [[Q]])ϕ
]

(xj+1/2 + σt, t) dt,(5.4)

I4(ϕ) =
∑

n,j

∫ tn+1

tn

[

Q
(

un
j−1/2, v

n
j

)

− Q
(

un
j+1/2, v

n
j

)]

ϕ(xj , t) dt,(5.5)

where the summation over σ extends to all shocks with speed σ in the solution of
the Riemann problem at the interface xj+1/2.

Lemma 5.3. Let vn
j , v∆x be generated by the SSG-scheme (cf. Subsection 4.1).

We have

(5.6)
∑

j,n

∫ xj+1/2

xj−1/2

∣
∣vn

j − v∆x(x, tn−)
∣
∣
2
dx ≤ C,

where C = C(X, T ) is constant independent of ∆x and X, T are defined in (5.1).
Additionally,

(5.7)
∑

n,j

∑

σ

∫ tn+1

tn

[

σ[[S]] − [[Q]]
]

(xj+1/2 + σt, t) dt ≤ C.

Proof. In this proof we use the convex entropy/entropy flux pair (η, Q) defined by
η(u, v) = S(v) = 1

2v2, Qv(u, v) = vgv(u, v).
Since the approximate solutions (and their initial data) have compact support,

we can take ϕ ≡ 1 in (5.2). Hence

(5.8) I2(1) + I3(1) ≤
∫

R

(v∆x(x, 0))2

2
dx − I4(1) ≤ C − I4(1),

for a constant C independent of ∆x (but dependent on X, T ).
Let us estimate I2. Here and elsewhere, we write vn

± for v∆x(·, tn±). Equipped
with this notation, we find

I2(ϕ) =
1

2

∑

n,j

∫ xj+1/2

xj−1/2

(
vn
−

)2 −
(
vn

j

)2
dx

=
1

2

∑

n,j

∫ xj+1/2

xj−1/2

(
vn
− − vn

j

)2
dx −

∑

n,j

∫ xj+1/2

xj−1/2

vn
j

(
vn
− − vn

j

)
dx
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=
1

2

∑

n,j

∫ xj+1/2

xj−1/2

(
vn
− − vn

j

)2
dx,

where the last equality is a consequence of (4.5).
Regarding the term I3(ϕ), we have that v∆x is locally the exact solution of a

scalar Riemann problem with a ”constant coefficient”. Thus

σ
[[
η

(
v∆x, u∆x

)]]
−

[[
Q

(
v∆x, u∆x

)]]
≥ 0,

and consequently I3(ϕ) ≥ 0.
It remains to estimate I4, which is done using Lemma 5.1 as follows:

|I4(ϕ)| ≤ ∆t
∑

n,j

∣
∣
∣Q

(

un
j−1/2, v

n
j

)

− Q
(

un
j+1/2, v

n
j

)∣
∣
∣ ≤ C |u0|BV T.

Collecting the above bounds the estimates (5.6) and (5.7) follow from (5.8). �

Lemma 5.3 gives a bound on the variation of the approximate solution across the
discrete time levels. This estimate can be converted to an estimate on the spatial
variation as in [15] (we omit the details).

Lemma 5.4. Let vn
j be defined by the SSG-scheme (cf. Subsection 4.1). There

exists a constant C = C(X, T ) independent of ∆x such that

∆x
∑

n,j

∣
∣vn

j+1 − vn
j

∣
∣
2 ≤ C.

We carry on by proving the W−1,2
loc compactness required by Lemma 3.1.

Lemma 5.5. Let v∆x be generated by the SSG-scheme (cf. Subsection 4.1). Let
u be the unique entropy solution to the first equation in (1.1). Equipped with any
scalar entropy/entropy flux pair (η, Q), form the distribution

µ∆x := η(u, v∆x)t + Q(u, v∆x)x.

Then
{
µ∆x

}

∆x>0
belongs to a compact subset of W−1,2

loc (R × R
+).

Proof. In what follows we fix a bounded open set Ω ⊂ R×R
+, which we can assume

is of the form (−X, X)× (0, T ) with X > 0 and T = N∆t for some integer N . We
break apart µ∆x as µ∆x

1 + µ∆x
2 , where

µ∆x
1 :=

[
η

(
u, v∆x

)
− η

(
u∆x, v∆x

)]

t
+

[
Q

(
u, v∆x

)
− Q

(
u∆x, v∆x

)]

x
,

µ∆x
2 := η

(
u∆x, v∆x

)

t
+ Q

(
u∆x, v∆x

)

x
.

In view of Lemma 5.1, fixing any q1 ∈ (1, 2], the sequence
{
µ∆x

1

}
is clearly compact

in W−1,q1(Ω). It remains to estimate µ∆x
2 .

Let φ ∈ Cc(Ω). Proceeding as in the proof of Lemma 5.3 we find
∣
∣
∣
∣

∫∫

Ω

µ∆x
2 ϕdx

∣
∣
∣
∣
≤ |I2(ϕ)| + |I3(ϕ)| + |I4(ϕ)| ,

where I2, I3, I4 are defined in (5.3), (5.4), (5.5) respectively.
Thanks to (5.7) and the spatial BV regularity part of Lemma 5.1,

|I3(ϕ)| , |I4(ϕ)| ≤ C ‖ϕ‖L∞(Ω) , for some constant C independent of ∆x,

and hence I3, I4 are bounded (independently of ∆x) in the space M(Ω) of bounded
Radon measures on Ω. Recalling that M(Ω) is compactly embedded in W−1,p(Ω)
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for any p ∈ [1, 2), we conclude that by a fixing any q2 ∈ (1, 2) the sequences
{I2}∆x>0, {I4}∆x>0 are compact in W−1,q2(Ω) .

It remains to estimate the term I2, which we decompose as

I2(ϕ) = I2,1(ϕ) + I2,2(ϕ) + I2,3(ϕ) + I2,4(ϕ),

where (we still utilize vn
− as short-hand notation for v∆x(·, tn−))

I2,1(ϕ) =
∑

n,j

∫ xj

xj−1/2

(

η
(

un−1
j−1/2, v

n
−

)

− η
(

un
j−1/2, v

n
−

))

ϕ(x, tn) dx

I2,2(ϕ) =
∑

n,j

∫ xj+1/2

xj

(

η
(

un−1
j+1/2, v

n
−

)

− η
(

un
j+1/2, v

n
−

))

ϕ(x, tn) dx

I2,3(ϕ) =
∑

n,j

∫ xj+1/2

xj−1/2

(

η
(

un
j+1/2, v

n
−

)

− η
(

un
j+1/2, v

n
j

))

ϕ(x, tn) dx

I2,4(ϕ) =
∑

n,j

∫ xj

xj−1/2

[
(

η
(

un
j+1/2, v

n
j

)

− η
(

un
j−1/2, v

n
j

))

−
(

η
(

un
j+1/2, v

n
−

)

− η
(

un
j−1/2, v

n
−

))
]

ϕ(x, tn) dx,

By Lemmas 5.1 and 5.2 and

|I2,1(ϕ)| , |I2,2(ϕ)| , |I2,4(ϕ)| ≤ C ‖ϕ‖L∞(Ω) ,

and accordingly {I2,1}∆x>0, {I2,2}∆x>0, {I2,4}∆x>0 are compact sequences in W−1,q2(Ω),
where q2 ∈ [1, 2) has been fixed before.

To continue we write

I2,3(ϕ) = I2,3,1(ϕ) + I2,3,2(ϕ),

where

I2,3,1(ϕ) =
∑

n,j

∫ xj+1/2

xj−1/2

(

η
(

un
j+1/2, v

n
−

)

− η
(

un
j+1/2, v

n
j

))

ϕn
j dx, ϕn

j = ϕ(xj , t
n),

I2,3,2(ϕ) =
∑

n,j

∫ xj+1/2

xj−1/2

(

η
(

un
j+1/2, v

n
−

)

− η
(

un
j+1/2, v

n
j

)) (
ϕ(x, tn) − ϕn

j

)
dx.

Next

η
(

un
j+1/2, v

n
−

)

− η
(

un
j+1/2, v

n
j

)

= ηv

(

un
j+1/2, v

n
j

) (
vn
− − vn

j

)
+

1

2
ηvv

(

un
j+1/2, θ

n
j

) (
vn
− − vn

j

)2
,

for some intermediate value θn
j (x). Taking into account the definition of vn

j , see

(4.5), and Lemma 5.3 we obtain therefore

|I2,3,1(ϕ)| =

∣
∣
∣
∣
∣
∣

∑

n,j

ϕn
j

∫ xj+1/2

xj−1/2

1

2
ηvv

(

un
j+1/2, θ

n
j

) (
vn
− − vn

j

)2
dx

∣
∣
∣
∣
∣
∣

≤ C ‖ϕ‖L∞(Ω) ,

where C is independent of ∆x, and so {I2,3,1}∆x>0 is compact in W−1,q2(Ω).
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To proceed we assume additionally that ϕ is Hölder continuous with some expo-
nent α ∈ (1/2, 1). Applying Hölder’s inequality and Lemma 5.3 yield

|I2,3,2(ϕ)| ≤







∑

n,j

∫ xj+1/2

xj−1/2

(

η
(

un
j+1/2, v

n
−

)

− η
(

un
j+1/2, v

n
j

))2

dx







1
2

×







∑

n,j

∫ xj+1/2

xj−1/2

(
ϕ(x, tn) − ϕn

j

)2
dx







1
2

≤ C ‖φ‖C0,α(Ω) (∆x)α− 1
2 ≤ C̃ ‖φ‖W 1,p(Ω) (∆x)α− 1

2 ,

for some constants C, C̃ that are independent of ∆x. To derive the last inequality
we used that W 1,p(Ω) ⊂ C0,α(Ω) for p = 2/(1 − α), where our α lies in (1, 1/2).
Hence ‖I2,3,2‖W−1,q3

, with q3 = 2/(1+α) and α ∈ (1/2, 1), tends to zero as ∆x → 0.

Let us now summarize our findings. We have proved that
{
µ∆x

}

∆x>0
is compact

in W−1,q(Ω) for q = min(q1, q2, q3) < 2/(1+α) < 2. Additonally, by the L∞ bounds
on u, u∆x, v∆x the sequence

{
µ∆x

}

∆x>0
is bounded in W−1,r(Ω) for any r ∈ (2,∞].

That being the case, an application of Lemma 3.2 concludes the proof. �

In view of the compensated compactness theory (Lemma 3.1), the foregoing
lemma allows us to prove convergence of the SSG-scheme.

Theorem 5.1. Let u∆x, v∆x be generated by the SSG-scheme (cf. Subsection 4.1).
Then there exist limit functions u ∈ L∞(R×R

+)∩BV (R×R
+) and v ∈ L∞(R×R

+)
such that, along a subsequence as ∆x → 0

u∆x → u, v∆x → v in Lp
loc(R × R

+) ∀p < ∞ and a.e. in R × R
+,

The limit pair (u, v) constitutes a weak solution of (1.1).

Proof. We refer to Lemma 5.1 for the convergence of u∆x. The Lp
loc convergence of

v∆x is a direct consequence of Lemmas 5.5 and 3.1.
It remains to show that the limit pair (u, v) is a weak solution. To this end, let

ṽ∆x be the piecewise constant function defined as

ṽ∆x(x, t) =
∑

n,j

vn
j χn

j (x, t).

We claim that

(5.9) lim
∆x→0

∥
∥ṽ∆x − v

∥
∥

L2
loc

(R×R+)
= 0.

For (x, t) ∈ [xj−1/2, xj ] × In we have
∣
∣ṽ∆x − v∆x

∣
∣ =

∣
∣vn

j − v∆x
∣
∣ ≤

∣
∣vn

j − vn
j−1

∣
∣ ,

since v∆x is the solution of a scalar Riemann problem with left state vn
j−1 and right

state vn
j . Therefore

∥
∥ṽ∆x − v∆x

∥
∥

2

L2loc(R×R+)
=

∑

n,j

∫∫

In
j−1/2

(
ṽ∆x − v∆x

)2
dxdt

≤ 2∆x∆t
∑

n,j

(
vn

j − vn
j−1

)2 ≤ C∆t,
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by Lemma 5.4. Hence (5.9) follows.
Pick a test fuction ϕ having compact support in R × [0, T ) with N∆t = T for

some integer N . Multiplying the scheme (4.6) by ϕn
j = ϕ(xj , t

n) and doing partial
summations, we get

0 = ∆x
∑

j

(
vNϕN−1

j − v0
j ϕ0

j

)

︸ ︷︷ ︸

I1

−∆x∆t
∑

n,j

vn
j

ϕn
j − ϕn−1

j

∆t
︸ ︷︷ ︸

I2

− ∆x∆t
∑

n,j

gG
(

un
j−1/2, v

n
j−1, v

n
j

) ϕn
j − ϕn

j−1

∆x
︸ ︷︷ ︸

I3

.

It is straightforward to show that

lim
∆x→0

I1 = −
∫

R

v0ϕ(x, 0) dx, lim
∆x→0

I2 =

∫∫

R×R+

vϕt dxdt.

Next we study the term I3, which we rewrite as follows:

I3 =
∆x∆t

2

∑

n,j

gG
(

un
j−1/2, v

n
j−1, v

n
j

) ϕn
j − ϕn

j−1

∆x

+
∆x∆t

2

∑

n,j

gG
(

un
j+1/2, v

n
j , vn

j+1

) ϕn
j+1 − ϕn

j

∆x

=
∆x∆t

2

∑

n,j

g
(

un
j−1/2, v

n
j

) ϕn
j − ϕn

j−1

∆x

+
∆x∆t

2

∑

n,j

g
(

un
j+1/2, v

n
j

) ϕn
j+1 − ϕn

j

∆x
+ E∆x

1 + E∆x
2

=

∫∫

R×R+

g
(
u∆x, ṽ∆x

)
ϕx dxdt + O(∆x) + E∆x

1 + E∆x
2 ,

where

E∆x
1 =

∆x∆t

2

∑

n,j

[

gG
(

un
j−1/2, v

n
j−1, v

n
j

)

− g
(

un
j−1/2, v

n
j

)] ϕn
j − ϕn

j−1

∆x
,

E∆x
2 =

∆x∆t

2

∑

n,j

[

gG
(

un
j+1/2, v

n
j , vn

j+1

)

− g
(

un
j+1/2, v

n
j

)] ϕn
j+1 − ϕn

j

∆x

By consistency/Lipschitz properties of the Godunov flux, Hölder’s inequality, and
Lemma 5.4,

∣
∣E∆x

1

∣
∣ ,

∣
∣E∆x

2

∣
∣ ≤ Cϕ

√
∆x,

where Cϕ depends on ϕ but not ∆x. Hence

lim
∆x→0

I3 =

∫∫

R×R+

g(u, v)ϕx dxdt.

Therefore v is a weak solution of (1.1). �



FINITE VOLUME SCHEMES FOR TRIANGULAR SYSTEMS 15

5.2. The ASG-scheme. We begin by pointing out that Lemmas 5.1 and 5.2 for
the SSG-scheme continue to hold for the ASG-scheme (with the notation porperly
adjusted).

To carry out the convergence analysis for the ASG-scheme we make a digression
and present some general results on entropy estimates for conservation laws with
discontinuous coefficients. To this end, consider the Riemann problem [13, 16, 17]

{

vt + g (ul, v)x = 0, v(x, 0) = vl x < 0,

vt + g (ur, v)x = 0, v(x, 0) = vr x > 0,

where ul,r and vl,r are constants. The Rankine-Hugoniot condition states that the
values

v′l,r = lim
x→0−,+

v(x, t),

are such that

g0 := g (ul, v
′
l) = g (ur, v

′
r) .

In general, this does not determine v′l,r uniquely, and we need additional conditions.
We choose to use the so called minimal jump entropy condition which states that
among the possible choices, we select v′l and v′r such that |v′l − v′r| is minimal. This
implies the following

v′l ≤ v′r =⇒







g (ul, v) ≥ g (ul, v
′
l) , for all v ∈ [v′l, v

′
r], or

g (ur, v) ≥ g (ur, v
′
r) , for all v ∈ [v′l, v

′
r],

(5.10)

v′r ≤ v′l =⇒







g (ul, v) ≤ g (ul, v
′
l) , for all v ∈ [v′r, v

′
l], or

g (ur, v) ≤ g (ur, v
′
r) , for all v ∈ [v′r, v

′
l].

(5.11)

Lemma 5.6. If the values v′l and v′r are chosen according to the minimal jump
entropy condition, then, for any constant c ∈ [s, S],

(5.12) Qr (v′r, c) − Ql (v
′
l, c) ≤ |g (ur, c) − g (ul, c)| ,

where Ql and Qr are the Kružkov entropy fluxes,

Ql(v, c) = sign (v − c) (g (ul, v) − g (ul, c)) ,

Qr(v, c) = sign (v − c) (g (ur, v) − g (ur, c)) .

Proof. If sign (v′l − c) = sign (v′r − c) then the right-hand side of (5.12) equals

sign (v′l − c)
(
g (ur, v

′
r) − g (ur, c)−g (ul, v

′
l) + g (ul, c)

)

= sign (v′l − c) (g (ul, c) − g (ur, c)) ,

and the inequality clearly holds. If v′l ≤ v′r then (5.12) reads

2g0 − g (ul, c) − g (ur, c) ≤ |g (ur, c) − g (ul, c)|
or

2g0 − max {g (ul, c) , g (ur, c)} − min {g (ul, c) , g (ur, c)}
≤ max {g (ul, c) , g (ur, c)} − min {g (ul, c) , g (ur, c)} .

In other words (5.12) is the same as

g0 ≤ max {g (ul, c) , g (ur, c)} ,
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and it is immediate that (5.10) implies this. If v′r ≤ v′l then (5.12) reads

g0 ≥ min {g (ul, c) , g (ur, c)} ,

which is implied by (5.11). �

Let un
j , vn

j , v∆x(x, t) be defined by the ASG-scheme (cf. Subsection 4.2), and set

(5.13) vn,±
j+1/2 = lim

x→xj+1/2±
v∆x(x, t), t ∈ In.

With Qc(u, v) = sign (v − c) (g(u, v)−g(u, c)), Lemma 5.6 implies that the quantity

Q
(

un
j+1, v

n,+
j+1/2

)

− Q
(

un
j , vn,−

j+1/2

)

is upper bounded by
∣
∣un

j+1 − un
j

∣
∣. To establish

the W−1,2
loc compactness for the ASG-scheme we need a similar upper bound for any

smooth scalar entropy/entropy flux pair (η(u, v), Q(u, v)).

Lemma 5.7. Let η(u, v) be a smooth function defined on the rectangle [α, β]× [s, S]
and define Q : [α, β]×[s, S] → R by Qv(u, v) = ηv(u, v)gv(u, v). If ηvvv is uniformly
bounded, then for all j and n

(5.14) Q
(

un
j+1, v

n,+
j+1/2

)

− Q
(

un
j , vn,−

j+1/2

)

≤ C
∣
∣un

j+1 − un
j

∣
∣ ,

for some constant C independent of ∆x (but dependent on the smoothness of η).

Proof. Set h = (S − s)/M for some positive integer M , and let

ci = s + ih, i = 0, . . . , M.

For u ∈ [α, β] and v ∈ [s, S], define the function

ηM (u, v) =
∑

i=1

ki(u) |v − ci| + η(u, s) +
η(u, S) − η(u, s)

S − s
(v − s),

where

ki(u) =
1

2h
(g (u, ci+1) − 2g (u, ci) + g (u, ci−1)) =

1

2
hηvv (u, θj) ≥ 0,

for some θj in (ci−1, ci+1). Since v 7→ ηM (u, v) is the piecewise linear interpolation
to v 7→ η(u, v) between the points ci, we have that Ch ≥

∣
∣ηM (u, v) − η(u, v)

∣
∣ for

(u, v) ∈ [α, β] × [s, S] and some non negative constant C. Next define the function

QM (u, v) =

M∑

i

ki(u)Qi(u, v), Qi(u, v) = sign (v − ci) (g(u, v) − g(u, ci)) .

Now

ηM
v (u, v) =

∑

i

ki(u)sign (v − ci) and

QM
v (u, v) =

∑

i

ki(u)sign (v − ci) gv(u, v),

so that QM
v (u, v) = ηM

v (u, v)gv(u, v).
Now we can use Lemma 5.6 to show that

ki

(
un

j+1

)
Qi

(

un
j+1, v

n,+
j+1/2

)

− ki

(
un

j

)
Qi

(

un
j , vn,−

j+1/2

)

≤
∣
∣ki

(
un

j+1

)∣
∣

∣
∣
∣Qi

(

un
j+1, v

n,+
j+1/2

)

− Qi

(

un
j , vn,−

j+1/2

)∣
∣
∣

+
∣
∣
∣Qi

(

un
j , vn,−

j+1/2

)∣
∣
∣

∣
∣ki

(
un

j+1

)
− ki

(
un

j

)∣
∣
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≤ C1h
∣
∣ηvv

(
un

j+1, θi

)∣
∣
∣
∣un

j+1 − un
j−1

∣
∣

+ C2h
∣
∣
∣ηvvu

(

ωn
j+1/2, θi

)∣
∣
∣

∣
∣un

j+1 − un
j

∣
∣

≤ Ch
∣
∣un

j+1 − un
j

∣
∣ ,

where ωn
j+1/2 is between un

j and un
j+1. From this it follows that

QM
(

un
j+1, v

n,+
j+1/2

)

− QM
(

un
j , vn,−

j+1/2

)

≤ C(S − s)
∣
∣un

j+1 − un
j

∣
∣ .

Now we can let M → ∞ and conclude that (5.14) holds. �

Now that the preliminaries are out of the way, we set out to prove convergence
of the ASG-scheme, following the route laid out for the SSG-scheme.

Lemma 5.8. Let v∆x be defined by the ASG-scheme (cf. Subsection 4.2). There
exists a constant C = C(X, T ) independent of ∆x such that

∑

j,n

xj+1/2∫

xj−1/2

∣
∣v∆x (x, tn−) − vn

j

∣
∣
2

dx ≤ C.

Additionally,

(5.15) ∆x
∑

n,j

∣
∣vn

j+1 − vn
j

∣
∣
2 ≤ C.

Proof. The proof of this lemma is virtually identical to the proof of Lemma 5.4 (see
also Lemma 5.4). Indeed for ASG-scheme we still have the decomposition (5.2)
except that the term I4(ϕ) now reads

(5.16) I4(ϕ) =
∑

n,j

∫

In

[

Q
(

un
j , vn,−

j+1/2

)

− Q
(

un
j+1, v

n,+
j+1/2

)]

ϕ(xj+1/2, t) dt,

where vn,−
j+1/2, v

n,+
j+1/2 are defined in (5.13). Proceeding as before we choose S = v2/2

and ϕ = 1, by that means obtaining (5.8). The only new ingredient compared to
the SSG-scheme lies in the treatment of I4(ϕ), which can now only be bounded
from below. As it happens, Lemma 5.7 yields

I4(ϕ) ≥ −C |u0|BV (R) ,

for some constant C independent of ∆x. This concludes the proof. �

The upcoming lemma is a version of Lemma 5.5 for the ASG-scheme. We remark
that here the W−1,2

loc compactness are not proved for all scalar entropy-entropy flux
pairs but merely for the pairs defined in Lemma 3.1. It appears to be essential for
the analysis of the ASG-scheme that we can restrict the W 1,2

loc compactness analysis
to merely two entropy/entropy flux pairs. This is a crucial difference with the
compactness proof for the SSG-scheme.

Lemma 5.9. Let v∆x be generated by the ASG-scheme (cf. Subsection 4.2). Let
u be the unique entropy solution to the first equation in (1.1). Equipped with any
of the specific scalar entropy/entropy flux pairs (ηi, Qi), i = 1, 2, introduced in
Lemma 3.1, form the distribution

µ∆x := ηi(u, v∆x)t + Qi(u, v∆x)x.

Then
{
µ∆x

}

∆x>0
belongs to a compact subset of W−1,2

loc (R × R
+).
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Proof. Since the proof is similar to the proof of Lemma 5.5, we shall only outline
the maindifferences. We using the notation of that proof and additionally write un

±

instead of u∆x(·, tn±).
For any scalar entropy-entropy flux pair (η, Q) we decompose the term I2 as

I2(ϕ) :=
∑

n

∫

R

(
η

(
un
−, vn

−

)
− η

(
un

+, vn
+

))
ϕ(x, tn) dx

=
∑

n

∫

R

(
η

(
un
−, vn

−

)
− η

(
un

+, vn
−

))
ϕ(x, tn) dx

︸ ︷︷ ︸

I2,1(ϕ)

+
∑

n

∫

R

(
η

(
un

+, vn
−

)
− η

(
un

+, vn
+

))
ϕ(x, tn) dx

︸ ︷︷ ︸

I2,2(ϕ)

.

Now

|I2,1(ϕ)| ≤ C ‖ϕ‖L∞(Ω) .

We continue by splitting up I2,2 as follows:

I2,2(ϕ) =
∑

n,j

∫ xj+1/2

xj−1/2

(
η

(
un

j , vn
−

)
− η

(
un

j , vn
j

))
ϕn

j dx

︸ ︷︷ ︸

I2,2,1(ϕ)

+
∑

n,j

∫ xj+1/2

xj−1/2

(
η

(
un

j , vn
−

)
− η

(
un

j , vn
j

)) (
ϕ(x, tn) − ϕn

j

)
dx

︸ ︷︷ ︸

I2,2,2(ϕ)

,

where ϕn
j = ϕ(xj , t

n).
As before we write I2,2,1 as

I2,2,1(ϕ) =
1

2

∑

n,j

ϕn
j

∫ xj+1/2

xj−1/2

ηvv

(
un

j , θn
j

) (
vn
− − vn

j

)
dx,

where θn
j (x) is some value between vn

j and vn
−. By Lemma 5.8

|I2,2,1(ϕ)| ≤ C ‖ϕ‖L∞(Ω) .

Arguing as before we deduce

|I2,2,2(ϕ)| ≤ C ‖ϕ‖C0,α(Ω) (∆x)α−1/2, α ∈ (1/2, 1).

Compared to the proof of Lemma 5.5, the key difference lies in the handling of
the term I4(ϕ) (defined in (5.16)). As alluded to earlier we are going to estimate
this term for the specific scalar entropy-entropy flux pairs (η1, Q2) and (η1, Q2) set
forth in Lemma 3.1. It is only in the estimation of I4(ϕ) where we need the special
properties of these entropy-entropy flux pairs.

In what follows we utilize the following notation (vn,±
j+1/2 are defined in (5.13)):

[[Q]]nj+1/2 = Q
(

un
j , vn,−

j+1/2

)

− Q
(

un
j+1, v

n,+
j+1/2

)

.

The remaining part of the proof is divided into two cases.
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Case 1 - (η1, Q1). Considering the entropy flux Q1(u, v) = g(u, v) − g(u, c) and
using the Rankine-Hugoniot condition at the interface x = xj+1/2, which ensures

g
(

un
j , vn,−

j+1/2

)

= g
(

un
j+1, v

n,+
j+1/2

)

, we obtain

[[Q1]]
n
j+1/2 = g

(

un
j , vn,−

j+1/2

)

− g
(

un
j+1, v

n,+
j+1/2

)

+ g
(
un

j+1, c
)
− g

(
un

j , c
)

= g
(
un

j+1, c
)
− g

(
un

j , c
)
.

Consequently,
∣
∣
∣[[Q1]]

n
j+1/2

∣
∣
∣ ≤ C

∣
∣un

j+1 − un
j

∣
∣ ,

Hence, summing over j, n and exploiting the BV regularity of un
j , we can deliver

the desired estimate

|I4(ϕ)| ≤ ∆t
∑

j,n

∣
∣
∣[[Q1]]

n
j+1/2

∣
∣
∣ ≤ C ‖ϕ‖L∞(Ω) .

Case 2 - (η2, Q2). Next we consider the entropy flux pair Q2(u, v) =
∫ v

c
(gv(u, ξ))2 dξ.

We have

[[Q2]]
n
j+1/2 =

∫ vn,−
j+1/2

c

(
gv

(
un

j , ξ
))2

dξ −
∫ vn,+

j+1/2

c

(gv(u
n
j+1, ξ))

2 dξ

=

∫ vn,−
j+1/2

c

(
gv

(
un

j , ξ
))2 −

(
gv

(
un

j+1, ξ
))2

dξ

︸ ︷︷ ︸

[[Q2,1]]
n

j+1/2

+

∫ vn,−
j+1/2

vn,+
j+1/2

(
gv

(
un

j+1, ξ
))2

dξ

︸ ︷︷ ︸

[[Q2,2]]
n

j+1/2

Clearly, since the numerical solutions are bounded, we can produce a constant C,
independent of ∆x, such that

∣
∣
∣[[Q2,1]]

n
j+1/2

∣
∣
∣ ≤ C

∣
∣un

j − un
j+1

∣
∣

and

∣
∣
∣[[Q2,2]]

n
j+1/2

∣
∣
∣ ≤ C[[Q2,3]]

n
j+1/2, [[Q2,3]]

n
j+1/2 :=

∫ vn,−
j+1/2

vn,+
j+1/2

|gv(u
n
j+1, ξ)| dξ.

To estimate [[Q2,3]]
n
j+1/2, we are going to make a simplifying assumption, namely

that g(u, ·) is a function having at most one local minimum (respectively maxi-
mum) and no local maxima (respectively minima) in [s, S] for all u ∈ [α, β]. This
assumption is quite general as it includes the fluxes for the triangular three-phase
flow model in Section 2. Although the more general case of finitely many points of
extrema can also be handled, we will not do so here since it is (only) notationally
more cumbersome. In what follows we present the details only for the case of local
minima; The case of local maxima follows along the same lines.

For fixed n, j let θn
j and θn

j+1 be the local minima of the fluxes g(un
j , ·) and

g(un
j+1, ·) respectively. Without loss of generality assume that θn

j+1 ≤ θn
j and

g(un
j , θn

j ) ≤ g(un
j+1, θ

n
j+1). The solution of the Riemann problem (4.8) with data

(vn
j , vn

j+1) can be grouped into the four cases, each of which will be detailed below.

Case 2.1 [gv(u
n
j , vn,−

j+1/2) ≥ 0 and gv(u
n
j+1, v

n,+
j+1/2) ≥ 0]. In this case we have

vn,−
j+1/2 ≥ θn

j ≥ θn
j+1 and vn,+

j+1/2 ≥ θn
j+1. As g(un

j , vn,−
j+1/2) = g(un

j+1, v
n,+
j+1/2) by the
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Rankine-Hugoniot condition at the interface xj+1/2, it follows that

[[Q2,3]]
n
j+1/2 = g

(

un
j+1, v

n,−
j+1/2

)

− g
(

un
j+1, v

n,+
j+1/2

)

= g
(

un
j+1, v

n,−
j+1/2

)

− g
(

un
j , vn,−

j+1/2

)

+ g
(

un
j , vn,−

j+1/2

)

− g
(

un
j+1, v

n,+
j+1/2

)

= g
(

un
j+1, v

n,−
j+1/2

)

− g
(

un
j , vn,−

j+1/2

)

,

from which we conclude there is a constant independent of ∆x such that

(5.17)
∣
∣
∣[[Q2,3]]

n
j+1/2

∣
∣
∣ ≤ C

∣
∣un

j − un
j+1

∣
∣ .

Case 2.2 [gv(u
n
j , vn,−

j+1/2) ≤ 0 and gv(u
n
j+1, v

n,+
j+1/2) ≤ 0]. Proceeding as in Case

2.1, we obtain again (5.17).

Case 2.3 [gv(u
n
j , vn,−

j+1/2) ≤ 0 and gv(u
n
j+1, v

n,+
j+1/2) ≥ 0]. This is the under-

compressive case. In this case, the minimal jump entropy condition [16] implies that

either vn,−
j+1/2 = vn,+

j+1/2 = αn
j,j+1 (if the adjacent fluxes intersect at a point αn

j,j+1

with gv(u
n
j , αn

j,j+1) < 0 and gv(u
n
j+1, α

n
j,j+1) > 0) or vn,+

j+1/2 = θn
j+1 (otherwise). In

either case, following exactly the proof of (5.17), we obtain
∣
∣
∣[[Q2,3]]

n
j+1/2

∣
∣
∣ ≤

∣
∣
∣g

(

un
j+1, v

n,−
j+1/2

)

− g
(

un
j+1, v

n,+
j+1/2

)∣
∣
∣ ≤ C

∣
∣un

j − un
j+1

∣
∣ .

Case 2.4 [gv(u
n
j , vn,−

j+1/2) ≥ 0 and gv(u
n
j+1, v

n,+
j+1/2) ≤ 0]. In this case the Riemann

solution is of the form vn,−
j+1/2 = vn

j and vn,+
j+1/2 = vn

j+1 (a steady shock is formed at

the interface xj+1/2). Additionally, there holds vn
j+1 ≤ θn

j+1 ≤ θn
j ≤ vn

j . Therefore

[[Q2,3]]
n
j+1/2 = g

(
un

j+1, v
n
j

)
− g

(
un

j+1, θ
n
j+1

)
+ g

(
un

j+1, v
n
j+1

)
− g

(
un

j+1, θ
n
j+1

)
.

Expanding in Taylor series up to second order around θn
j+1, keeping in mind that

gv(u
n
j+1, θ

n
j+1) = 0 and vn

j+1 ≤ θn
j+1 ≤ vn

j , we extract

∣
∣
∣[[Q2,3]]

n
j+1/2

∣
∣
∣ ≤ C

[(
vn

j − θn
j+1

)2 (
vn

j+1 − θn
j+1

)2
]

≤ C
(
vn

j − vn
j+1

)2
,

where the constant C is independent of ∆x.
Collecting our findings so far, there is a constant C independent of ∆x such that

∣
∣
∣[[Qi]]

n
j+1/2

∣
∣
∣ ≤ C

[∣
∣un

j − un
j+1

∣
∣ + (vn

j − vn
j+1)

2
]
, i = 1, 2.

Summing this bound over j, n yields

|I4(ϕ)| ≤ C∆t ‖ϕ‖L∞(Ω)

∑

j,n

∣
∣
∣[[Qi]]

n
j+1/2

∣
∣
∣ ≤ C ‖ϕ‖L∞(Ω) , i = 1, 2,

where we have exploited the BV regularity of un
j and (5.15) to produce a final

constant C that is independent of ∆x.
Now we can finish the proof as we did with Lemma 5.5. �

We are now in a position to prove convergence of the ASG-scheme.
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Theorem 5.2. Let u∆x, v∆x be generated by the ASG-scheme (cf. Subsection 4.2).
Then there exist limit functions u ∈ L∞(R×R

+)∩BV (R×R
+) and v ∈ L∞(R×R

+)
such that, along a subsequence as ∆x → 0

u∆x → u, v∆x → v in Lp
loc(R × R

+) ∀p < ∞ and a.e. in R × R
+,

The limit pair (u, v) constitutes a weak solution of (1.1).

Proof. The convergence statement for u∆x is clear, while the convergence of v∆x is
a direct consequence of Lemmas 5.9 and 3.1.

What remains to be shown is that v is a weak solution. Pick a test fuction ϕ
having compact support in R × [0, T ) with N∆t = T for some integer N , and set

ϕ∆x(x, t) =
∑

j

ϕ(xj , t)χIj (x), vn
±(x) = v∆x (x, tn±) .

Since v∆x is a weak solution in each strip R× In, cf. (4.8), we can work out the
details as follows:
∫∫

R×R+

v∆xϕt + g
(
u∆x, v∆x

)
ϕx dxdt +

∫

R

v∆x(x, 0)ϕ(x, 0) dx

=
∑

n

∫

R

(
vn
− − vn

+

)
ϕ(x, tn) dx

=
∑

n

∫

R

(
vn
− − vn

+

) (
ϕ(x, tn) − ϕ∆x(x, tn)

)
dx

≤




∑

n

∫

R

(
vn
− − vn

+

)2
dx





1/2 [
∑

n

∫

R

(
ϕ(x, tn) − ϕ∆x(x, tn)

)2
dx

]1/2

≤ C
√

∆x,

where we have used Hölder’s inequality and Lemma 5.8. Since C is independent of
∆x, sending ∆x → 0 shows that the limit pair (u, v) is a weak solution of (1.1). �

6. Numerical Experiments

We have tested the different schemes designed in this paper and described in
Section 4 on a wide variety of test problems and have found the results to be in
accordance with the theory. In particular, the SSG-scheme the ASG-scheme have
been tested extensively. We report two experiments here.

6.0.1. Example 1. We start with simple model problem in order to illustrate the
numerical schemes. We choose the following flux functions pair of fluxes

f(u) =
1

2
u2, and g(u, v) = 4uv(v − 1),

and Riemann initial data,

u(x, 0) =

{

0.75 x < 0

0.25 x ≥ 0
v(x, 0) = 0.5.

This has the exact solution given by

u(x, t) =

{

3/4 x < t/2,

1/4 x ≥ t/2,
v(x, t) =







1/2 x < −t,

5/6 −t ≤ x < t/2,

1/2 x ≥ t/2.
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In Figure 1 we show the approximations at t = 0.75 using the SSG- and the ASG-
scheme using ∆x = 1/20 in the interval [−1, 1]. From this it seems that the both
schemes perform equally well, and this impression is confirmed by other computa-
tions. Since we have a formula for the exact solution in this case, we have computed

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 x

 v
Exact
SSG
ASG

Figure 1. Example 1, the SSG- and the ASG-scheme with ∆x =
1/20 and t = 0.75.

the relative errors in the L1 norm for various ∆x. The relative errors are defined
as

e =

∑

j

∣
∣v∆x(xj , t) − vex(xj , t)

∣
∣

∑

j |vex(xj , t)|
,

where vex denotes the exact solution, and t = 0.75. These errors are reported in
Table 1. From this table it seems that both schemes are first order convergent.

n 3 4 5 6 7 8 9
SSG 8.6 5.1 2.8 1.4 0.7 0.4 0.018
ASG 7.6 3.7 2.1 1.1 0.6 0.3 0.015

Table 1. 100× Relative L1 error for the SSG- and ASG-scheme
s. We used ∆x = 2−n in the interval [−1, 1].

6.0.2. Example 2. In order to test the applicability of the triangular model as a
model of three-phase flow in porous media, we have compared the results obtained
by the triangular and the full model on a water flooding problem. We use the
relative permeabilities

λg,w,o =
1

νg,w,o
S2

g,w,o,

with Si denoting the saturation of phase i, and νi the viscosity. We have used the
following viscosities

νg = 1, νw = 80 and νo = 100.
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In addition we have set

ρg = 1/20, ρw = 1 and ρo = 9/10,

and have set the gravitational constant and the absolute permeability to unity. We
make no claim for these values to be realistic. This gives the flux functions

Fg (u, v) =
u2

u2 + v2/100 + (1 − v − u)2/80

(

1 − 17v2

200
− 19(1 − v − u)2

160

)

Fo (u, v) =
v2

100u2 + v2 + (5/4)(1 − v − u)2

(

1 +
v2

10
+

19(1 − v − u)2

20

)

,(6.1)

where we have set u = Sg and v = So. This is the “full” model, and we see that Fg

is not very dependent on v. In order to define a triangular method we set

v =
1 − u

2
and (1 − u − v) =

1 − u

2
,

which gives the flux function

(6.2) Fg(u) =
u2

u2 + (9/1600)(1− u2)

(

1 − 163

3200
(1 − u)2

)

.

We have used the initial values

(6.3) v(x, 0) =

{

0 x < 0,
1
2 + 1

4 sin(2πx) x ≥ 0,
u(x, 0) =

{

0 x < 0,

1 − v(x, 0) x > 0.

This is meant to model the situation where one has a mixture of oil and gas in the
reservoir, and one attempts to inject water in order to force out the oil and the gas.
We have used (6.2) and (6.1) as f and g and the ASG-scheme (which in this case
coincides with the upwind scheme) to calculate approximate solutions. In Figure 2
we show contour plots of the gas, oil, and water saturations in as functions of x
and t for −0.05 ≤ x ≤ 5 and 0 ≤ t ≤ 2. This looks very similar to results obtained
with the full model, although a more thorough justification for using the triangular
model is beyond the scope of this paper.
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