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Abstract. The Dafermos regularization of a system of n hyperbolic conservation
laws in one space dimension has, near a Riemann solution consisting of n Lax shock
waves, a self-similar solution u = uε(X/T ). In [19] it is shown that the linearized
Dafermos operator at such a solution may have two kinds of eigenvalues: fast eigen-
values of order 1/ε and slow eigenvalues of order one. The fast eigenvalues represent
motion in an initial time layer, where near the shock waves solutions quickly con-
verge to traveling-wave-like motion. The slow eigenvalues represent motion after
the initial time layer, where motion between the shock waves is dominant.

In this paper we use tools from dynamical systems and singular perturbation the-
ory to study the slow eigenvalues. We show how to construct asymptotic expansions
of eigenvalue-eigenfunction pairs to any order in ε. We also prove the existence of
true eigenvalue-eigenfunction pairs near the asymptotic expansions.

1. Introduction

The Dafermos regularization [6, 35, 36, 37]

(1.1) uT + f(u)X = εTuXX

is a diffusively perturbed system of conservation laws in one space dimension. It has
many similarity solutions of the form u = uε(X/T ). This property is shared by the
unperturbed system of conservation laws

(1.2) uT + f(u)X = 0,

but not by the usual viscous regularization

(1.3) uT + f(u)X = εuXX .

Using the change of variables

x = X/T, t = lnT,

the Dafermos regularization (1.1) becomes

(1.4) ut + (Df(u)− xI)ux = εuxx.
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The same change of variables brings the system of conservation laws (1.2) to

(1.5) ut + (Df(u)− xI)ux = 0.

In the new variables, the Dafermos regularization (1.4) appears to be a natural reg-
ularization of (1.5). It has been used to compute numerically one-parameter families
of Riemann solutions [29].

A Riemann problem is an initial value problem for (1.2) with piecewise constant
initial data

(1.6) u(X, 0) =

{

u` if X < 0,

ur if X > 0.

We consider a solution of the Riemann problem (Riemann solution) consisting of n
Lax shock waves with speeds s̄i, i = 1, . . . , n. Let s̄0 = −∞ and s̄n+1 =∞. Then

u(X,T ) = ūi if s̄i < X/T < s̄i+1.

The stability of solutions of (1.3) near such a Riemann solution, with small jumps in
ūi, is considered in [20].

We shall not assume that shock waves are weak; instead we shall assume that
the shock waves of the Riemann solution satisfy the viscous profile criterion. In
other words, corresponding to the ith shock wave there is a traveling wave solution
u(X,T ) = qi(ξ), ξ = (X − s̄iT )/ε, of (1.3). The function qi satisfies the traveling
wave ODE

(1.7) (Df(u)− sI)uξ = uξξ

with wave speed s = s̄i, and connects ūi−1 to ūi.
In xt-coordinates, the Riemann solution becomes a piecewise constant, stationary

solution u0(x) of (1.5):

(1.8) u0(x) = ūi for s̄i < x < s̄i+1.

Using geometric singular perturbation theory [12], Szmolyan proved that near a
structurally stable Riemann solution u0(x) of (1.5) that consists of n Lax shock
waves and rarefactions, not necessarily weak, there are, for sufficiently small ε >
0, stationary solutions uε(x) of (1.4) [34]. Szmolyan’s work has been extended to
other Riemann solutions [28, 22]. We will call stationary solutions of (1.4) Riemann-
Dafermos solutions.

For the Riemann solutions we consider, which have n Lax shock waves, the corre-
sponding Riemann-Dafermos solutions have n sharp internal layers near x = s̄i, i =
1, . . . , n. In fact, u0(x) is the zeroth order expansion of uε(x) in regular layers. Using
the stretched variable ξ = (x − s̄i)/ε, qi(ξ) is the zeroth order expansion of uε(x) in
the ith singular layer.

Because uε(x) is a stationary solution, we wish to determine its stability by studying
eigenvalues of the linearization of (1.4) at uε(x). It is known that:

(1) The initial value problem is well-posed for any initial data near uε(x) that
approaches constants exponentially as x→ ±∞ [19].

(2) In the space of functions of order e−α|x|, the essential spectrum of the lineariza-
tion lies to the left of the line Reλ ≤ −δ for some δ > 0 [19].
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(3) The linearization is sectorial in the space of functions of order e−α|x|2 [17]. Thus,
from the standard theory of analytic semigroups [8, 11, 24], in such spaces linearized
stability of the Riemann-Dafermos solution is determined by the eigenvalues of the
linearization.

(4) If the Riemann-Dafermos solution is linearly stable, nonlinear stability can be
proved by a contraction mapping argument as in [7, 11].

It is known that there are both fast eigenvalues, of order 1/ε, and slow eigenvalues,
of order one. This can be explained by considering a time-dependent solution uε(x, t)
near the Riemann-Dafermos solution uε(x). Suppose that uε(x, t) has n sharp layers
near the curves xi

ε(t). Using ξ = (x− xi
ε(t))/ε near the ith singular layer, we have

εut = uξξ − (Df(u)− xi
ε(t)−

d

dt
xi
ε(t)− εξ)uξ.

In the initial time layer 0 ≤ t ≤ ε, ut = O(1/ε) near xi
ε(t). We therefore expect to have

fast eigenvalues λ = O(1/ε), with the support of the corresponding eigenfunctions
near xi

ε(t). After the initial time layer, ut = O(1). The solution (if stable) will
look like traveling waves in singular layers, and convection in regular layer, where to
lowest order ut + (Df(u) − xI)ux = 0. We expect to have slow eigenvalues of O(1)
corresponding to this slow motion.

Fast eigenvalues can be expressed as λ(ε) =
∑∞

j=−1 ε
jλj with λ−1 6= 0, while slow

eigenvalues constitute the special case λ−1 = 0. In the ith singular layer, to lowest
order, an eigenvalue and corresponding eigenfunction satisfy

λ−1U + ((Df(u(ξ))− xi
0I)U)ξ = Uξξ.

If λ−1 is in the right half of the complex plane, the limiting systems in (U,Uξ)-space
at ξ = ±∞ have exponential dichotomies. If λ−1 = 0, however, the limiting systems
do not have exponential dichotomies. Instead there is an n-dimensional center space,
which makes the study of slow eigenvalues more difficult. For an introduction to
exponential dichotomies, see [5, 23, 26, 27]. A variant of exponential dichotomies
with exponential rate approaching infinity is used in Lemma 5.2.

In [19] conditions for expanding fast eigenvalues and eigenfunctions to any order
in ε were given. For slow eigenvalues, however, only the lowest-order terms of the
expansions were obtained. In this paper we will show how to successively construct
higher-order expansions of slow eigenvalues and eigenfunctions to any desired degree,
and we will prove the existence of exact eigenvalues and eigenfunctions near the as-
ymptotic expansions. For an alternate approach to existence of slow eigenvalues and
eigenfunctions via geometric singular perturbation theory, see [30]. The latter ap-
proach does not yield information about the asymptotic expansions, but does provide
geometric insight into the eigenvalue problem.

The assumptions used in [19] will be recalled in §2. For slow eigenvalues, these
assumptions are not sufficient to obtain higher-order expansions. To construct higher-
order expansions, we assume that to the lowest-order, the eigenvalue is simple. This
is equivalent to assuming that the SLEP function (Evans function) has a simple
zero. See §4 for details. The same condition will enable us in §5 to construct true
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slow eigenvalue-eigenfunction pairs corresponding to the asymptotic expansions. This
condition is also used in [30].

The stability of Riemann-Dafermos solutions is closely related to the stability of
Riemann solutions of conservation laws [18] and to the stability of nearby solutions of
the usual viscous regularization. At this time our understanding of these relations is
incomplete. In [19], it is explained that the fast eigenvalues correspond to eigenvalues
of individual viscous shock solutions (traveling waves) of the usual viscous regulariza-
tion, which have been studied in [1, 39, 38, 32] and elsewhere. The slow eigenvalues
are related to inviscid stability of multiple-shock-wave Riemann solutions of hyper-
bolic conservation laws, which have been studied in [2, 3, 14, 31] and elsewhere. For
a system of two equations, formulas for slow eigenvalues of Riemann-Dafermos solu-
tions near a Riemann solution consisting of two Lax shock waves were obtained in
[19]. In this case the condition that all slow eigenvalues have negative real part is
precisely the same as the condition for BV inviscid stability of the Riemann solution.
For a system of more than two equations, the relationship is more complicated, and
has recently been elucidated by Lewicka [15].

In a suitable coordinate system, the Dafermos regularization can be viewed as an
asymptotic approximation to the usual regularization

(1.9) uT + f(u)X = uXX

for large T . Using the change of variables x = X/T, t = lnT in (1.9), we obtain

(1.10) ut + (Df(u)− xI)ux = e−tuxx.

For large t, e−t is small. If we freeze t = t0 and let ε = e−t0 , then we have (1.4), which
is a good approximation in a time interval where e−t is close to e−t0 . Hence the study
of the stability of Riemann-Dafermos solutions may provide information about the
asymptotic behavior of solutions of (1.10).

The remainder of the paper is organized as follows.
In §2, we state the assumptions of this paper and recall results from [19].
In §3, we show that the slow eigenvalue problem can be reduced to a system of

equations on regular layers, coupled by jump conditions derived from the singular
layers between adjacent regular layers. This approach is similar to the SLEP method
(singular limit eigenvalue problem) introduced by Nishiura and Fujii [25] for reaction–
diffusion equations. The expansion of the eigenvalue problem to order ε was obtained
in [19]. However, the nature of the problem is more fully revealed at order ε2. We
derive expansions of the eigenvalue problem to all orders in ε.

In §4, the SLEP system is converted to a system of abstract eigenvalue problems.
Under the assumption that −(λ0 + 1) is a simple eigenvalue the abstract system,
where λ0 is the lowest-degree term in the expansion of the slow eigenvalue, we show
that formal asymptotic expansions of eigenvalues and eigenfunctions of any order can
be constructed recursively. For this purpose we show that the abstract operator is
Fredholm, and we characterize its kernel, range, and co-kernel. The SLEP matrix and
SLEP function are defined in this section. Our simplicity assumption on −(λ0 + 1)
is equivalent to assuming that λ0 is a simple zero of the SLEP function.
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A formal asymptotic expansion of eigenvalue (eigenfunction) satisfies the expansion
of eigenvalue equations. It becomes a true asymptotic expansion if there exists an
exact eigenvalue nearby. Notice that the exact eigenvalue can be constructed using
only the zeroth order singular eigenvalue. We discuss asymptotic expansions to any
order in this paper for their value in numerical approximation and for the completeness
in analysis.

In §5, under the same assumptions used in §4, we show that the formal asymp-
totic expansions obtained in §4 are true asymptotic expansions of eigenvalue and
eigenfunction. The proof is based on the idea of the shadowing lemma of dynami-
cal systems, plus reduction to a SLEP system similar to the one studied in §3 and
§4. An asymptotic approximation of the eigenfunction to some finite order can be
viewed as a pseudo-orbit with small residual and jump errors. Correction terms can
be constructed that cancel residual and jump errors to yield an exact eigenvalue-
eigenfunction pair. Because the linear variational equation about the approximation
looks like the recursive equation for computing higher-order expansions, key lemmas
obtained in §3 and §4 apply in this section also. Since the linear variational system
around the pseudo-orbit does not have an exponential dichotomy, one cannot use the
shadowing lemma from [4] directly. The part of the solution to which the shadowing
lemma does not apply is projected to a center space. The reduced system turns out
to be closely related to the SLEP system of §4.

An important by-product of the analytic approach is that properties of linear op-
erators studied in this paper will be useful in solving (1.4) for initial data near the
Riemann-Dafermos solution. After a Laplace transform, the linearized system in the
dual variable s is closely related to the eigenvalue problem studied in this paper.
When s is not an eigenvalue, the linear operator obtained from Laplace transform
is invertible. With some estimates on the transformed solution, the time dependent
solution and its stability can be obtained.

I am grateful to the referee for pointing out the work of Suzuki, Nishiura, and Ikeda
on a relation between the Evans function and the SLEP method [33].

2. Assumptions and previous results

We first define a so-called structurally stable Riemann solution of (1.2) that consists
of exactly n Lax shock waves with speeds s̄1 < s̄2 < · · · < s̄n. In the new variables
(x, t) = (X/T, lnT ), this is a piecewise constant function u0(x) having jumps at
x = s̄i, i = 1, . . . , n.

A Lax i-shock for (1.2) that satisfies the viscous profile criterion is a function

(2.1) u(x) =

{

u− for x < s,

u+ for x > s,

where x = X
T
, together with a solution q(ξ) of the traveling wave ODE

(2.2) u̇ = f(u)− f(u−)− s(u− u−),

such that:

(L1) f(u+)− f(u−)− s(u+ − u−) = 0.
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(L2) The eigenvalues ν−1 < . . . < ν−n of Df(u−) satisfy ν−i−1 < s < ν−i .
(L3) The eigenvalues ν+

1 < . . . < ν+
n of Df(u+) satisfy ν+

i < s < ν+
i+1.

(L4) q(ξ) approaches u− as ξ → −∞ and u+ as ξ →∞.

Notice that (L1), (L2), and (L3) imply that for (2.2), u± are hyperbolic equilibria,
the unstable manifold of u− has dimension n − i + 1, and the stable manifold of u+

has dimension i. Assumption (L4) says that these manifolds intersect. Generically
the intersection is a curve (see (S2) or (S2′) below).

A solution of the Riemann problem (1.2), (1.6), that consists of n Lax shock waves,
each satisfying the viscous profile criterion is a piecewise constant function

(2.3) u0(x) = ūi, for s̄i < x < s̄i+1, i = 0, . . . , n,

where x = X
T
, together with R

n-valued functions qi(ξ), i = 1, . . . , n, such that:

(R1) ū0 = u` and ūn = ur.
(R2) For each i = 1, . . . , n, the triple (ūi−1, s̄i, ūi), together with the function qi(ξ),

defines a Lax i-shock.

Define a mapping G : R
n2+2n → R

n2

by

G(u0, s1, u1, . . . , un−1, sn, un) =

(f(u1)− f(u0)− s1(u1 − u0), . . . , f(un)− f(un−1)− sn(un − un−1)).

Notice that

(2.4) G(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn) = 0.

The Riemann solution just defined is structurally stable provided

(S1) DG(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn), restricted to the n2-dimensional space of vec-
tors (U 0, S1, U 1, . . . , Un−1, Sn, Un) with U 0 = Un = 0, is invertible.

(S2) For each i = 1, . . . , n, the unstable manifold of ūi−1 and the stable manifold
of ūi for the traveling wave ODE u̇ = f(u) − f(ūi−1) − s̄i(u − ūi−1) meet
transversally along qi(ξ).

If (S1) and (S2) are satisfied, then for each set of Riemann data (u0, un) near
(ū0, ūn), there is a Riemann solution near the original one.

Condition (S1) can be restated as follows:

(S1′) If we set (U 0, Un) = (0, 0), then system of linear equations

(Df(ūi)− s̄iI)U i − (Df(ūi−1)− s̄iI)U i−1 − Si(ūi − ūi−1) = 0, i = 1, . . . , n,

has only the trivial solution

(S1, U 1, . . . , Un−1, Sn) = (0, 0, . . . , 0, 0).

A condition equivalent to (S2) is the following:

(S2′) For each i = 1, . . . , n, the linear differential equation

((Df(qi(ξ))− s̄iI)U)ξ = Uξξ

has, up to scalar multiplication, a unique solution that approaches zero expo-
nentially as ξ → ±∞. It is qiξ(ξ).
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Asymptotic expansions of Riemann-Dafermos solutions have been obtained under
these conditions. Let the location of the ith layer be xi(ε), let the solution in the
regular layer (that is, not near xi(ε)) be uR

ε (x), and let the solution in the ith singular
layer (that is, near xi(ε)) be ui

ε(ξ), where ξ = (x− xi(ε))/ε. Then

xi(ε) =
∑

εjxi
j, i = 1, . . . , n,

uR
ε (x) =

∑

εjuR
j (x),

ui
ε(ξ) =

∑

εjui
j(ξ).

At lowest order, xi
0 = s̄i, ui

0(ξ) = qi(ξ) and uR
0 (x) = ūi is just the piecewise constant

Riemann solution of the conservation law (1.5). Furthermore, to all orders of ε, uR
j (x)

is constant on each regular sublayer (xi
0, x

i+1
0 ), 0 ≤ i ≤ n, where x0

0 = −∞, xn+1
0 =∞.

As mentioned in the Introduction, asymptotic expansions of slow eigenvalues and
eigenfunctions to lowest order in ε were obtained in [19] and will be outlined below.

3. Reduction of the eigenvalue problem to a SLEP system

In this section, we derive formal expansions of the eigenvalue equations. We also
show that at each order εj, the eigenvalue problem can be reduced to a SLEP system.

Define the matrices in regular and singular layers respectively,

Df i := Df(ūi
0), x ∈ [xi

0, x
i+1
0 ], i = 0, . . . n,

Df i(ξ) := Df(qi(ξ)), ξ ∈ R, i = 1, . . . , n.

In the regular layer we will use Df for Df(uR
0 (x)) if no confusion should arise.

3.1. Some lemmas. We need to study nonhomogeneous equations as in Lemma 3.1
and Lemma 3.2. Proofs of the two lemmas are deferred to the end of the section. Let
Ek be the Banach space of continuous functions defined on R or R

± that areO(1+|ξ|k).
Let Eα,k be the Banach space of continuous functions that are O(e−α|ξ|(1 + |ξ|k) Let
the norms of F ∈ Ek and Eα,k be

‖F‖k = sup
ξ
(1 + |ξ|k)−1|F (ξ)|,

‖F‖α,k = sup
ξ
eα|ξ|(1 + |ξ|k)−1|F (ξ)|.

We assume that

0 < α < min{|σDf(ūi−1
0 )− xi

0|, |σDf(ū
i
0)− xi

0| : i = 1, . . . , n}.

Lemma 3.1. Consider the equation

(3.1) Uξ = (Df i(ξ)− xi
0I)U +G(ξ), ξ ∈ R.

If Gk ∈ Ek, then there exists a unique solution Uk ∈ Ek with U(0) ⊥ qiξ(0). Denote

the solution by Û i(ξ,G). Moreover,

(1) If there exists α > 0 such that G ∈ Eα,k for ξ > 0 or ξ < 0, then Û i(·, G) ∈ Eα,k

for ξ > 0 or ξ < 0.
(2) If G is a polynomial of order k, then as ξ → ±∞ respectively, Û i(ξ,G) approaches
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two polynomials of order k.
(3) If G(ξ) approaches two polynomial of order k as ξ → ±∞ respectively, then

Û i(ξ,G) approaches two polynomials of order k as ξ → ±∞. In particular, if β is a

constant vector, then as ξ → ±∞, Û i(ξ, β) approaches exponentially the limits

(3.2)
Û i(+∞, β) = −(Df i − xi

0I)
−1β,

Û i(−∞, β) = −(Df i−1 − xi
0I)

−1β.

Lemma 3.2. Consider

(3.3) Uξξ = ((Df i(ξ)− xi
0I)U)ξ + g(ξ), ξ ∈ R.

Assume that there exists a positive integer k such that g ∈ Ek. Then

U = Û i(·,

∫ ξ

0

g(s)ds),

is a particular solution for (3.3) in Ek+1 with ‖U‖k+1 ≤ C‖g‖k. The general solution
of (3.3) is

U = Û i(·,

∫ ξ

0

g(s)ds) + Û i(·, β) + cqiξ,

where the parameters β ∈ R
n, c ∈ R.

3.2. Formulation of slow eigenvalue problems. Recall that to lowest order, for
i = 1, . . . , n, xi

0 is the location of the ith singular layer, denoted by S i. With x0
0 =

−∞, xn+1
0 =∞, let Ri = (xi

0, x
i+1
0 ) be the ith regular sublayer. Figure 3.1 shows the

ordering of regular and singular layers.

R R RR R... ...
......

n0 1 i-1 i

S S S S
ni+1i-11

S
i

Figure 3.1. Ordering of regular and singular layers.

We look for slow eigenvalues and corresponding eigenfunctions of the form

(3.4) λ(ε) =
∞
∑

j=0

εjλj, UR(x, ε) =
∞
∑

j=0

εjUR
j (x), U i(ξ, ε) =

∞
∑

j=0

εjU i
j(ξ).

We use UR and U i to denote the function U in regular and singular layers respectively.
The stretched variable ξ = (x − xi(ε))/ε is used in the ith singular layer. Denote
UR(x, ε) and UR

j (x) on R
i by URi(x, ε) and URi

j (x) respectively.

Let Ck(γ), γ > 0 be the space of continuous functions on R with continuous deriv-
atives up to order k, for which the norm

‖U‖Ck(γ) = sup
x
{(|U(x)|+ |U ′(x)|+ · · ·+ |∂k

xU(x)|)e
γ|x|}.

is finite. Functions in Ck(γ), γ > 0 satisfy the decay property
(3.5)
|∂jU(x)| ≤ Ce−γ|x|, j ≤ k, in the sublayers R0 = (−∞, x1

0) and R
n = (xn

0 ,∞),
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for some constant C. In [19], it is shown that the initial value problem is well-posed
for initial data close to u(x, ε) in C2(γ). We also have the following result from [19].

Lemma 3.3. (a) To all orders in ε, eigenfunctions UR(x, ε) that satisfy (3.5) are
zero in the regular sublayers R0 = (−∞, x1

0) and R
n = (xn

0 ,∞). That is, URi
j = 0 for

all j ≥ 0 and i = 0, n.
(b) To lowest order, UR = 0 in the regular layer, i.e., URi

0 = 0 for 0 ≤ i ≤ n.

It is known that λ = −1 is an eigenvalue with eigenfunctions representing shifts in
layer positions [19]. Therefore in this paper we assume that λ0 + 1 6= 0.

Let xi(ε) =
∑

εjxi
j be the position of the ith singular layer and let ξ = (x−xi(ε))/ε

in Si. The linear variational equation of (1.4) around uε is

Ut + ((Df(uε)− xI)U)x + U = εUxx.

Hence the expansions of eigenvalues and eigenfunctions must formally satisfy

(λ+ 1)UR + ((Df(uε)− xI)UR)x = εUR
xx in the regular layer,(3.6)

ε(λ+ 1)U i + ((Df(uε)− xi(ε)− εξI)U i)ξ = U i
ξξ in the singular layer Si.(3.7)

The expansions of eigenfunctions in inner and outer layers satisfy the following
matching principle. Let the inner expansions of the two outer layers adjacent to xi(ε)
be

∞
∑

0

εjŨ i,−
j (ξ) =

∞
∑

0

εjUR,i−1
j (εξ + xi

0 + εxi
1 + ε2xi

2 + . . . ),

∞
∑

0

εjŨ i,+
j (ξ) =

∞
∑

0

εjUR,i
j (εξ + xi

0 + εxi
1 + ε2xi

2 + . . . ).

Note that U i,±
0 = 0 and U i,±

j , j ≥ 1, is a polynomial of degree j − 1.

Matching Principle: There exists α > 0 such that

(3.8) |U i
0(ξ)|+ |U

i
0,ξ(ξ)| ≤ Ce−α|ξ|.

Moreover, for j ≥ 1, we have

(3.9)
|U i

j(ξ)− Ũ i,−
j (ξ)| ≤ C(1 + |ξ|j−1)e−α|ξ|, ξ ≤ 0;

|U i
j(ξ)− Ũ i,+

j (ξ)| ≤ C(1 + |ξ|j−1)e−α|ξ|, ξ ≥ 0;

(3.10)
U i

j,ξ(ξ)− Ũ i,−
j,ξ (ξ)| ≤ C(1 + |ξ|j−1)e−α|ξ|, ξ ≤ 0;

|U i
j,ξ(ξ)− Ũ i,+

j,ξ (ξ)| ≤ C(1 + |ξ|j−1)e−α|ξ|, ξ ≥ 0.

If we assume that |U i
j(ξ) − Ũ i,±

j (ξ)| → 0 as ξ → ±∞, then the exponential decay
rate in (3.9) can be proved by induction. We give the rates explicitly for convenience.

We now prove that (3.10) is a consequence of (3.9).

Lemma 3.4. If the matching conditions (3.9) are satisfied, then the matching of
U i

j,ξ(ξ) with Ũ
i,±
j,ξ (ξ) for each j, as in (3.10), are satisfied also.
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Proof. (Ũ i,+(ξ, ε), Ṽ i,+(ξ, ε)) is a solution of the system

Ũξ = Ṽ , Ṽξ = ((Df(uε)− xi(ε)− εξ)Ũ)ξ + ε(λ+ 1)Ũ .

(U i(ξ, ε), V i(ξ, ε)) is a solution of the system

U i
ξ = V i, V i

ξ = ((Df(uε)− xi(ε)− εξ)U i)ξ + ε(λ+ 1)U i.

Expanding in powers of ε, we find that ∆Vj := V i
j − Ṽ i,+

j is a solution of

∆Vj,ξ = (Df i(ξ)− xi
0I)∆Vj +∆hi

j(ξ),

where by induction

|∆hi
j(ξ)| < C(1 + |ξ|j−1)e−α|ξ|, ξ ≥ 0.

The homogeneous part of the equation has an exponential dichotomy on R
+. We also

know that |∆Vj| ≤ C(1 + |ξ|j−1) for ξ ≥ 0. Therefore, from Lemma 3.1 below,

|∆Vj| ≤ C(1 + |ξ|j−1)e−α|ξ|, ξ ≥ 0.

A similar proof applies to ∆Vj := V i
j − Ṽ i,−

j ¤

More generally, one can prove the following result.

Lemma 3.5. Under the matching conditions (3.8), (3.9), for any integer k ≥ 0,

|
dk

dξk
(U i

j − Ũ i,±
j )| ≤ C(1 + |ξ|j−1)e−α|ξ|, ξ ∈ R

− or R
+.

The matching principle (3.9) requires that each U i
j(ξ) asymptotically approach a

limiting polynomial as ξ → ±∞. For any polynomial p(ξ) =
∑d

i=0 ciξ
i, c0 is called

the constant term and the ciξ
i, i = 1, . . . , d, are called the non-constant terms.

Definition 3.1. Assume that limξ→±∞ U
i
j(ξ) is two polynomials. If the constant

terms of the limiting polynomials agree with those of Ũ i,±
j , then we say that the

matching is satisfied on constant terms. If coefficients of the non-constant terms
agree, then we say the matching is satisfied on non-constant terms.

Using the Taylor expansion

(3.11) Ũ i,+
j (ξ) = UR,i

j (xi
0) +DUR,i

j−1(x
i
0)(x

i
1 + ξ) + . . . ,

we find that the only contribution of UR,i
j to Ũ i,+

j is a single term UR,i
j (xi

0). Similar

expressions hold for U i,−
j (ξ). Therefore

(3.12)
Ũ i,+

j (ξ)− UR,i
j (xi

0) = ` · o · t,

Ũ i,−
j (ξ)− UR,i−1

j (xi
0) = ` · o · t.

Throughout this paper, ` · o · t (lower order term) denotes terms that involve lower
indices and have been obtained in a recursive process (less than j here).

From UR
0 ≡ 0 for all x, we find that Ũ i,±

0 (ξ) ≡ 0. It can be shown by mathematical
induction that Ũ i,±

j (ξ) is a polynomial of degree j − 1.
We now expand (3.6) and (3.7) in powers of ε.
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At the lowest order ε0, we obtain

(λ0 + 1)UR
0 + ((Df i − xI)UR

0 )x = 0 in the sublayer Ri,(3.13)

((Df i(ξ)− xi
0I)U

i
0)ξ = U i

0ξξ in the singular layer Si.(3.14)

Expansion of eigenvalues and eigenfunctions up to order ε has been discussed in
[19]. In particular, using the conditions for structural stability, it is shown that at
order ε0,

UR
0 (x) ≡ 0, U i

0(ξ) = ci0q
i
ξ(ξ), i = 1, . . . , n.

At order ε1, we have

(λ0 + 1)U1 + ((Df i − xI)U1)x = 0 in Ri,(3.15)

(λ0 + 1)U i
0 + ((D2f(qi)ui

1 − (xi
1 + ξ)I)U i

0)ξ

+ ((Df i(ξ)− xi
0I)U

i
1)ξ = U i

1ξξ in Si.
(3.16)

The matching principle yields

U i
1(ξ)→

{

UR
1 (xi

0−) ξ → −∞

UR
1 (xi

0+) ξ →∞.

Let ∆i = ūi
0 − ūi−1

0 . Then
∫∞

−∞
qiξ dξ = ∆i. Integrating (3.16), we have the jump

condition of UR
1 at xi

0:

(3.17) (λ0 + 1)ci0∆
i + (Df i − xi

0I)U
R
1 (xi

0+)

− (Df i−1 − xi
0I)U

R
1 (xi

0−) = 0, i = 1, . . . , n.

It is shown in [19] that if we can find

(λ0, c
1
0, . . . , c

n
0 , U

R
1 (x))

satisfying (3.15), (3.17) with UR
1 (x) = 0 on R0∪Rn, then there exist U i

1(ξ), 1 ≤ i ≤ n,
that satisfy (3.16) and matching condition (3.9).

Although the expansion at order ε2 is a special case of εj, j ≥ 2, it is presented in
detail to help illustrate the idea.

At order ε2, we have

(λ0 + 1)UR
2 + λ1U

R
1 + ((Df i − xI)UR

2 )x + (D2f(ūi
0)ū

i
1U1)x = UR

1xx,(3.18)

(λ0 + 1)U i
1 + λ1U

i
0 + ((Df i(ξ)− xi

0I)U
i
2)ξ + ((D2f(qi)ui

1 − xi
1 − ξ)U i

1)ξ(3.19)

+ ((D3f(qi)(ui
1)

2/2 +D2f(qi)ui
2 − xi

2)U
i
0)ξ = U i

2ξξ.

At order εj, we have

(λ0 + 1)UR
j + λj−1U

R
1 + ((Df i − xI)UR

j )x =W i
j ,(3.20)

(λ0 + 1)U i
j−1 + λj−1U

i
0 + ((Df i(ξ)− xi

0I)U
i
j)ξ +H i

j(ξ) = U i
jξξ.(3.21)

W i
j and H i

j involve terms with indices lower than j only, and can be expressed as

Taylor polynomials of URi
k , U i

k, k ≤ j − 1.
We can think (UR

1 , U
i
0) as an eigenfunction for system (3.15), (3.16) corresponding

to the eigenvalue (λ0 + 1). In System (3.20), (3.21), we solve for (UR
j , U

i
j) with a
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undetermined parameter λj−1 that is multiplied to the eigenfunction (UR
1 , U

i
0). If this

system defines a Fredholm operator, then to construct higher order expansions, we
need conditions that ensure the eigenvalue λ0 + 1 is simple (or at least semi-simple).
However, we will not show that this linear system is Fredholm. Instead, we will show
in the next section that the system can be reduced to a lower dimensional system
(SLEP) and that the reduced system is Fredholm. The simpleness of λ0 + 1 will be
imposed on the reduced lower dimensional system.

3.3. Reduction of the eigenvalue problem to a SLEP system. As is done in
[19] at order ε, we first want to show that for any order εj, systems (3.20), (3.21) and
the matching condition (3.9) can be reduced to a system of equations in regular layers
and a set of jump conditions across singular layers. The reduced system is similar to
the SLEP system introduced by Nishiura and Fujii [25].

Observe that the non-homogeneous terms in (3.19) are O(1). Naturally, we look
for |U i

2(ξ)| = O(1+ |ξ|). Using Lemma 3.2 and induction, we can show that |U i
j(ξ)| =

O(1 + |ξ|j−1).
As ξ → ±∞, U i

2(ξ) must match with Ũ i,±
2 (ξ), which is a first-order polynomial on

each side of xi
0±. In Lemma 3.6 below, we show that the matching of coefficients of

the first-degree powers of ξ is automatically satisfied. Only the constants must be
matched at each recursive step.

At the expansion of order ε2, we assume that U i
1 = U i⊥

1 + ci1q
i
ξ, where U i⊥

1 has

been uniquely obtained with U i⊥
1 (0) ⊥ qiξ(0) while c

i
1 is undetermined. By integrating

(3.19) and matching the constant terms, we obtain the jump condition of UR
2 (x) at

x = xi
0:

(λ0 + 1)ci1∆
i + λ1c

i
0∆

i + (Df i − xi
0I)U

R
2 (xi

0+)− (Df i−1 − xi
0I)U

R
2 (xi

0−) = J i
2.

Here J i
2 involves U i

0, U
i⊥
1 and UR

1,x(x
i
0±) only and is a special case of (3.23).

As ξ → ±∞, U i
j(ξ) must match with Ũ i,±

j (ξ), which by induction is a polynomial of

order j− 1 on each side of xi
0. Meanwhile, since H i

j is a Taylor polynomial of U i
k, k ≤

j − 2 and U i⊥
j−1, by induction it can be shown that H i

j(ξ) approaches polynomials at

ξ = ±∞ respectively. By Lemma 3.2, U i
j(ξ) approaches polynomials as ξ → ±∞. In

Lemma 3.6, we will show that the matching of coefficients of the non-constant terms
is automatically satisfied. From Lemma 3.2, the solution of (3.21) can be expressed
as

(3.22) U i
j = Û i(·,

∫ ξ

0

((λ0 + 1)U i
j−1 + λj−1U

i
0 +H i

j)dξ) + Û i(·, βi
j) + cijq

i
ξ.

The parameters βi
j and cij are undetermined.

By the induction assumption, U i
j−1 and H i

j(ξ) approaches polynomials of degree
j − 2 as ξ → ±∞.

In this paper we often encounter functions that approach polynomials as ξ →
±∞, and we are interested in the constant terms of the limiting polynomials. For
convenience, we introduce the following notation. Let Qc be an operator that projects
a polynomial to its constant term, i.e.,

Qc(c0 + c1ξ + · · ·+ clξ
k) = c0.
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If g(ξ)→ P (ξ) = c0 + c1ξ + · · ·+ clξ
k as ξ → −∞ or ∞, then define

Qc(g(±∞)) := Qc(P ) = c0.

We now introduce a recursive procedure that reduces the coupled inner-outer sys-
tem to a system of equations in outer layers {Ri}n+1

0 coupled with a set of jump
conditions between two adjacent outer layers Ri−1, Ri, i = 1, . . . , n. The reduced
system is called the SLEP system following Fujii and Nishiura. We will derive the
equations in Ri and the jump conditions. We also will show inductively that if the
SLEP system can be solved, then we can find U i

` , i = 1, . . . , n, in the inner layers
so that the matching conditions (3.9), (3.10) are satisfied. To this end we need two
lemmas. The first shows that the matching of non-constant terms is always satisfied.
The second shows that the matching of constant terms can be achieved by choosing a
parameter in solving the inner systems for U i

` . In fact, we derive the jump conditions
across singular layers based on the matching of constant terms only. (Otherwise we
would have too many jump conditions, each for a particular power of ξ.)

Define J i
j as follows:

(3.23)

−J i
j : = Qc(

∫ ∞

0

H i
j(ξ)dξ)−Qc(

∫ −∞

0

H i
j(ξ)dξ)

+ (λ0 + 1)(Qc(U
i⊥
j−1(∞))−Qc(U

i⊥
j−1(−∞))

+ (Df i − xi
0I)Qc(Ũ

i,+
j (xi

0)− UR,i
j (xi

0))

− (Df i−1 − xi
0I)Qc(Ũ

i,−
j (xi

0)− UR,i−1
j (xi

0))

−Qc(Ũ
i,+
j,ξ (x

i
0)− Ũ i,−

j,ξ (x
i
0)).

By (3.12), Ũ i,+
j (xi

0) − UR,i
j (xi

0) and Ũ i,−
j (xi

0) − UR,i−1
j (xi

0) only involve lower-order

terms. Also by differentiating (3.11), we find that Ũ i,+
j,ξ (x

i
0) − Ũ i,−

j,ξ (x
i
0) only involves

UR
k,x for k ≤ j − 1. Thus J i

j can be calculated from terms with indices lower than j.

The jump condition on UR
j at xi

0 comes from the matching of constant terms:

(3.24) (λ0 + 1)cij−1∆
i + λj−1c

i
0∆

i

+ (Df i − xi
0I)U

R
j (x

i
0+)− (Df i−1 − xi

0I)U
R
j (x

i
0−) = J i

j .

Lemma 3.6. Assume that the expansion of eigenfunctions (UR
j , U

i⊥
j , cij, λj), j ≤ `−2,

and (UR
`−1, U

i⊥
`−1) have been computed such that they satisfy systems (3.20), (3.21) and

the matching principle (3.9), (3.10) up to j ≤ ` − 1. If (UR
` , λ`−1, c

i
`−1) have been

obtained that satisfy (3.20), (3.24) with any J i
j, and U

i
` is a solution of (3.21) as in

(3.22) with any βi
` and c

i
`, then the matching as in (3.9), (3.10) with j = ` is always

satisfied for non-constant terms. Moreover,

d

dξ
(U i

`(ξ)− Ũ i,±
` (ξ))→ 0, ξ → ±∞.

Proof. Except for the constant terms, we show that other higher-order terms in
U i

`(ξ) − Ũ i,±
` (ξ) are always matched, regardless the choice of β i

`. The proof here
is similar to [9, 16].
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Consider the formal expansion of Ũ(ξ, ε), the inner expansion of outer solutions.
We find that Ũ i,+

` satisfies an equation similar to that of U i
` :

(λ0 + 1)Ũ i
`−1 + λ`−1Ũ

i
0 + (Df i − xi

0I)Ũ
i
`)ξ + H̃ i

`(ξ) = Ũ i
`ξξ,

where H̃ i
` can be expressed as a Taylor polynomial of Ũ i

j , j ≤ ` − 1. Comparing the

above with (3.21), we find that the difference ∆U := U i
` − Ũ i

` satisfies

(3.25) ∆Uξξ = ((Df i(ξ)− xi
0I)∆U)ξ + (λ0 + 1)(U i

`−1 − Ũ i
`−1)

+ λ`−1(U
i
1 − Ũ i

1) +H i
`(ξ)− H̃ i

`(ξ) + ((Df i(ξ)−Df i)Ũ i
`(ξ))ξ.

By the induction assumption, the forcing term H i
`(ξ) approaches H̃ i

`(ξ) exponen-
tially as ξ →∞. Also observe that Df i(ξ)→ Df i as ξ →∞. From Lemmas 3.2 and
3.1,

∆U = U i
`(ξ)− Ũ i,+

` (ξ)→ constant as ξ →∞.

Similarly,

U i
`(ξ)− Ũ i,−

` (ξ)→ constant as ξ → −∞.

Therefore the matching of non-constant terms is satisfied for any β i
`.

Integrating (3.25), we find that ∆Uξ(ξ) approaches constants as |ξ| → ∞. The
constants must be zero, or ∆U(ξ) would not have constant limits as |ξ| → ∞. ¤

Lemma 3.7. Under the same hypotheses as Lemma 3.6, if (UR
` , λ`−1, c

i
`−1) is a so-

lution to the reduced system (3.20), (3.24) for j = `, with J i
` as in (3.23), then we

can choose βi
` so that the solution U

i
` of (3.21) as in (3.22) satisfies the matching

principle (3.9), (3.10) with j = `.

Proof. Assume that we have constructed (UR
j (x), U

i
j(ξ)), j ≤ `− 1, and λj, j ≤ `− 2,

that satisfy the formal equations and matching conditions, except for the term U i
`−1,

which has the form

U i
`−1 = U i⊥

`−1 + ci`−1q
i
ξ,

where U i⊥
`−1 satisfies U i⊥

`−1(0) ⊥ qiξ(0) and is determined but ci`−1 is still undetermined.

We look for (UR
` , U

i
` , λ`−1) that satisfies (3.20), (3.21) and the matching condition

(3.9) at j = `. At the same time we also determine ci`−1.
In the next section, we solve for UR

` (x), λ`−1 from (3.20) with j = ` and the jump
condition (3.24) with J i

` defined in (3.23). Here we assume that this is done and
we construct the inner expansion U i

` that satisfies (3.21) and the matching condition
(3.9) at j = `.

Substituting J i
` from (3.23) into (3.24) with j = `, and using

Qc(U
i
`−1(∞))−Qc(U

i
`−1(−∞)) = Qc(U

i⊥
`−1(∞))−Qc(U

i⊥
`−1(−∞)) + ci`−1∆

i,
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we have

(3.26)

Qc(

∫ ∞

0

H i
`(ξ)dξ)−Qc(

∫ −∞

0

H i
`(ξ)dξ)

+ (λ0 + 1)(Qc(U
i
`−1(∞))−Qc(U

i
`−1(−∞))

+ λ`−1(U
i
0(∞)− U i

0(−∞))

+ (Df i − xi
0I)Qc(Ũ

i,+
` (xi

0))

− (Df i−1 − xi
0I)Qc(Ũ

i,−
` (xi

0))

= Qc(Ũ
i,+
`,ξ (x

i
0)− Ũ i,−

`,ξ (x
i
0)).

Now solve (3.21) for U i
` . Using Lemma 3.2, the solution can be expressed as (3.22)

with j = `. The limits of ci`q
i
ξ(ξ), ξ → ±∞, are both zero and do not affect the

matching. Therefore the value of ci` cannot be determined from the expansion to
order ε`.

Plug U i
` as in (3.22) into (3.21) and apply the integral operator

∫ ξ

0
·dξ to (3.21).

Observing that all the terms approach polynomials as ξ → ±∞, and keeping only
the constants in the limit, we find the jump of constants between the two limits is:

(3.27)

Qc(

∫ ∞

0

H i
`(ξ)dξ)−Qc(

∫ −∞

0

H i
`(ξ)dξ)

+ (λ0 + 1)(Qc(U
i
`−1(∞))−Qc(U

i
`−1(−∞))

+ λ`−1(U
i
0(∞)− U i

0(−∞))

+ (Df i − xi
0I)Qc(U

i
`(∞))

− (Df i−1 − xi
0I)Qc(U

i
`(−∞))

= Qc(U
i
`,ξ(∞)− U i

`,ξ(−∞)).

Recall that from the last statement of Lemma 3.6,

QcU
i
`,ξ(∞) = QcŨ

i,+
`,ξ (x

i
0), QcU

i
`,ξ(−∞) = QcŨ

i,−
`,ξ (x

i
0).

Comparing (3.26) and (3.27), we have
(3.28)
(Df i−xi

0I)(Qc(U
i
`(∞))−Qc(Ũ

i,+
` (xi

0))) = (Df i−1−xi
0I)(Qc(U

i
`(−∞))−Qc(Ũ

i,−
` (xi

0))).

We choose βi
` so that the constant terms of U i

`(+∞) and Ũ i,+
` (ξ) are matched. To

this end, observe that from (3.22),

Qc(U
i
`(∞)) = Qc(Û

i(∞,

∫ ξ

0

((λ0 + 1)U i
`−1 + (λ`−1 + 1)U i

0 +H i
`)dξ)) + Û i(∞, βi

`).

The first term above is independent of βi
`, but the second term Û i(∞, βi

`) = −(Df
i−

xi
0I)

−1βi
`. There is a unique value of βi

` such that Qc(U
i
`(∞)) = Qc(Ũ

R,+
` ). Choosing

this βi
`, we have Qc(U

i
`(∞))−Qc(Ũ

i,+
` (xi

0)) = 0. From (3.28), we have Qc(U
i
`(−∞))−

Qc(Ũ
i,−
` (xi

0)) = 0. The matching of constant terms at both ends has been achieved.
¤
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We summarize the reduction to a SLEP system in Theorem 3.8. Note that the
original SLEP method of Fujii and Nishiura dealt with the lowest-order expansion of
eigenvalues and eigenfunctions, whereas we give a recursive procedure for expansions
to any desired order.

Theorem 3.8. Assume that the expansion of eigenfunctions (UR
j , U

i⊥
j , cij, λj), j ≤

` − 2, and (UR
`−1, U

i⊥
`−1) have been computed such that they satisfy systems (3.20),

(3.21) and the matching principle (3.9), (3.10) up to j ≤ `−1. If (UR
` , λ`−1, c

i
`−1) is a

solution to the reduced system (3.20), (3.24) at j = `, with J i
` as in (3.23), then there

exists a unique βi
` so that the solution U

i
` = U i⊥

` + ci`q
i
ξ of (3.21) as in (3.22) satisfies

the matching principle (3.9), (3.10) with j = `. The parameters ci`, i = 1, . . . , n
remain undetermined.

Remark 3.1. In [19] we defined V (x) = (Df(uR
0 (x)) − xI)UR

j (x). Then V (x) is

piecewise C1 and has a jump at each layer position xi
0. The singular layer simply

provides a delta function type forcing to the equation in the regular layer (3.20).
This was the point of view of Nishiura and Fujii, who introduced the SLEP system
[25]. The idea of SLEP is also used in [9, 16].

Proof of Lemma 3.1. Since the homogeneous part of the limiting systems of (3.1)

Uξ = (Df i − xi
0I)U, Uξ = (Df i−1 − xi

0I)U,

has real nonzero eigenvalues, the homogeneous part of (3.1) has exponential di-
chotomies on R

± respectively [5, 23]. Let the the principal matrix solution be de-
noted S(ξ, η) and the stable and unstable projections related to the dichotomies be
Ps(ξ) + Pu(ξ) = I. Solutions on R

± can be expressed as

U(ξ) = S(ξ, 0)φs(0) +

∫ ξ

0

S(ξ, η)Ps(η)G(η)dη + U+(ξ), ξ ≥ 0,

U(ξ) = S(ξ, 0)φu(0) +

∫ ξ

0

S(ξ, η)Pu(η)G(η)dη + U−(ξ), ξ ≤ 0,

where

U+(ξ) =

∫ ξ

∞

T i(ξ, η)Ps(η)G(η)dη,

U−(ξ) =

∫ ξ

−∞

T i(ξ, η)Pu(η)G(η)dη,

φs(0) = Ps(0)U(0), φu(0) = Pu(0)U(0).

The solution U(ξ), ξ ∈ R can be found by matching U± at ξ = 0 as follows.
To have U(0−) = U(0+), we need

U+(0) + φs(0) = U−(0) + φu(0).

Since that unstable subspace of the dichotomy on R
− and the stable subspace of the

dichotomy on R
+ intersect transversely, we can find φu and φs such that

φs(0)− φu(0) = U−(0)− U+(0).
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The choice of (φu, φs) is unique if we require that U+(0) + φs(0) ⊥ qiξ(0).
The proof of (1) is left to the reader.
To prove (2), assume that G is a polynomial of order k. Let Ũ+ be the polynomial

solution to the equation

(3.29) Uξ = (Df i − xi
0I)U +G.

Let ∆U = Û(·, G)− Ũ+. Then

(∆U)ξ = (Df i(ξ)− xi
0I)(∆U) + (Df i(ξ)−Df i)Ũ+.

Since for ξ ≥ 0 the forcing term for the equation of ∆U is

(Df i(ξ)−Df i)Ũ = O(e−α|ξ|(1 + |ξ|k),

we have |∆U | = O(e−α|ξ|(1 + |ξ|k), ξ ≥ 0.
Similarly, let Ũ− be the polynomial solution to

Uξ = (Df i−1 − xi
0I)U +G.

We have |Û i(ξ,G)− Ũ−| = O(e−α|ξ|(1 + |ξ|k), ξ ≤ 0.
The proof of (3) can be achieved by combining the results of (1) and (2). (3.2)

can be derived by observing that Df i(ξ) → Df i as ξ → ∞ and Df i(ξ) → Df i−1 as
ξ → −∞ in (3.1). ¤

Proof of Lemma 3.2. Let G(ξ) =
∫ ξ

0
g(s)ds. Then G(ξ) ≤ C(1 + |ξ|k+1). Integrating

(3.3), we have

Uξ = (Df i(ξ)− xi
0I)U +G(ξ) + β.

The general solution of (3.3) can be obtained from the superposition principle.
¤

4. Expansions of eigenvalue and eigenfunctions

The procedure of recursively computing UR
j , λj and cij−1 that satisfy (3.20) and

(3.24), with J i
j defined by (3.23), is equivalent to a system of eigenvalue problems of

abstract operators. In (H1) below, the simpleness of the eigenvalue will be imposed
on the abstract problem. Generalization to the case that the eigenvalue is semi-simple
is straitforward in the abstract setting and will not be discussed in this paper.

Let H be the linear space of sequences of n-vectors

H := {{hi}n1 |h
i ∈ R

n}.

Let H1 be a subspace of H defined as:

H1 := {{ci∆i}n1 |c
i ∈ R}.

Let E be the linear space of n + 1 continuous functions each defined on Ri =
[xi

0, x
i+1
0 ], i = 0, . . . , n:

E := {{U i}n0 |U
i(x) is continuous on Ri, U 0 ≡ 0, Un ≡ 0}.

Let E1 be a subspace of E defined as

E1 := {{U i}n0 ∈ E|U
i ∈ C1(Ri)}.
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Let L : (E1,H1)→ (E ,H) be a linear operator defined as follows:

If ({Ū i}n0 , {J̄
i}n1 ) = L({U

i}n0 , {c
i∆i}n1 ),

then Ū i(x) = ((Df i − xI)U i(x))x,

and J̄ i = (Df i − xi
0I)U

i(xi
0)− (Df i−1 − xi

0I)U
i−1(xi

0).

Let URi
` (x) = UR

` (x), x ∈ R
i. Then the eigenvalue problem can be recast into

(L+ (λ0 + 1)I)({URi
1 }

n
0 , {c

i
0∆

i}n1 ) = 0,(4.1)

(L+ (λ0 + 1)I)({URi
2 }

n
0 , {c

i
1∆

i}n1 ) + λ1({U
Ri
1 }

n
0 , {c

i
0∆

i}n1 ) = ({W i
2}

n
0 , {J

i
2}

n
1 ),(4.2)

(L+ (λ0 + 1)I)({URi
j }

n
0 , {c

i
j−1∆

i}n1 ) + λj−1({U
Ri
1 }

n
0 , {c

i
0∆

i}n1 )(4.3)

= ({W i
j}

n
0 , {J

i
j}

n
1 ).

Here ({W i
j}

n
0 , {J

i
j}

n
1 ) as in (3.20), (3.23) denotes terms that involve indices lower than

the jth order. We assume that

(H1) The operator L has a simple eigenvalue −(λ0 + 1) with ({URi
1 }

n
0 , {c

i
0∆

i}n1 ) as
an eigenvector.

We will show that from (H1) all the higher order expansions of the eigenvalue
equation can be solved successively and λj−1 can be uniquely determined in the εjth
expansion.

In the next subsection, we will show that L is Fredholm. We will introduce the
SLEP matrix M(λ) and the SLEP function p(λ) = detM(λ). We will show that
(H1) is equivalent to that p(λ) has a simple zero at λ0.

4.1. Preliminaries. We now discuss properties of L+ (λ0 + 1)I and show that it is
a Fredholm operator. Let Φi(y, x, λ0) be the principal matrix solution for the system
in Ri:

(4.4) (λ0 + 1)U + ((Df i − xI)U)x = 0, x ∈ Ri.

Let V = (Df i − xI)U , and Qi(y, x, λ0) be the principal matrix solution for the
associated system

(4.5) (λ0 + 1)(Df i − xI)−1V + Vx = 0.

Clearly, we have

Φi(y, x, λ0) = (Df i − yI)−1Qi(y, x, λ0)(Df
i − xI).

Let Ψi(x, y, λ0) be the principal matrix solution for the adjoint system to (4.4).

(4.6) (λ∗0 + 1)ψ − (Df i − xI)∗ψx = 0, x ∈ Ri.

It turns out that (4.6) is the adjoint system for both (4.4) and (4.5) in the sense that

d

dx
< (Df i − xI)U, ψ >=

d

dx
< V, ψ >= 0.

We have the following results:
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Lemma 4.1. For any ξ ∈ Ri and p ∈ C(Ri), the general solution for the nonhomo-
geneous equation in Ri

(λ0 + 1)U + ((Df i − xI)U)x = p(x)

can be expressed as

U(x) = Φi(x, ξ, λ0)U(ξ) +

∫ x

ξ

Φi(x, η, λ0)(Df
i − ηI)−1p(η)dη.

For x, y ∈ Ri, we have
Ψi(x, y, λ0) = Qi∗(y, x, λ0).

Moreover, Ψi can be expressed by Φi, vise-versa.

Ψi(x, y, λ0) = (Df i − xI)−1,∗Φi∗(y, x, λ0)(Df
i − yI)∗,

Φi(y, x, λ0) = (Df i − yI)−1Ψi∗(x, y, λ0)(Df
i − xI).

The proof of Lemma 4.1 shall be omitted.
We will extend the domain of Qi and Ψi to R× R. Define

Q(xi
0, x

j
0, λ0) = Qi−1(xi

0, x
i−1
0 ;λ0) . . . Q

j(xj+1
0 , xj

0, λ0), i > j.

For i < j, let Q(xi
0, x

j
0, λ0) = Q(xj

0, x
i
0, λ0)

−1. Finally let Q(xi
0, x

i
0, λ0) = I. For

xi
0 ≤ x ≤ xi+1

0 , xj
0 ≤ y ≤ xj+1

0 , let

Q(y, x.λ0) = Qj(y, xj
0, λ0)Q(xj

0, x
i+1
0 , λ0)Q

i(xi+1
0 , x.λ0).

Finally, let
Ψ(x, y, λ0) = Q∗(y, x, λ0).

Let ci ∈ R, i = 1, . . . , n and bi, gi ∈ R
n, i = 0, . . . , n. Motivated by (3.17), define

G : ({ci}n1 , {b
i}n−1

1 )→ {gi}n1 ,

gi = (λ0 + 1)ci∆i + (Df i − xi
0)b

i − (Df i−1 − xi
0)Φ

i−1(xi
0, x

i−1
0 , λ0)b

i−1.

For convenience, we assume that b0 = bn = 0. Since the domain and range of G are
both n2-dimensional, G is Fredholm with index 0.

We have the following obvious lemma:

Lemma 4.2. ({U i}n0 , {c
i∆i}n1 ) is an eigenfunction of L with respect to the eigenvalue

−(λ0 + 1) if and only if

({ci}n1 , {U
i(xi

0+)}n−1
1 ) ∈ ker(G).

Let
H2 := {G({0}n1 , {b

i}n−1
1 ), for all bi ∈ R

n}.

One can show that H2 consists of all the jumps coming from solutions of the homoge-
neous equation (4.4). The space H2 is n(n−1) dimensional, i.e., with ci ≡ 0, G maps
{bi}n−1

1 injectively into H. This can be shown by using Schecter’s condition on struc-
tural stability of Riemann solutions. (If the mapping from {bi}n−1

1 to the jumps were
not one-to-one, then there would be a Riemann solution with zero Rankine-Hugoniot
jump at each shock.) Observe that H1 = {G({ci}n1 , {0}

n−1
1 ) for all ci ∈ R}. It should

be clear that the dimension of ker(G) is the dimension of H1 ∩H2.
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We now introduce a matrix, similar to the SLEP matrix in Schecter & Lin [19] and
Nishiura & Fujii [25] that helps to determine the kernel and co-kernel of G.

Assume that G({ci}n1 , {b
i}n−1

1 ) = 0. Define

ki = (Df i − xi
0I)b

i, for i = 1, . . . , n− 1, k0 = kn = 0.

Then from

(Df i − xi
0I)b

i = (Df i−1 − xi
0)Φ

i−1(xi, xi−1
0 ;λ0)b

i−1 − (λ0 + 1)ci∆i,

we have

(4.7) ki = Qi−1(xi
0, x

i−1
0 ;λ0)k

i−1 − (λ0 + 1)ci∆i.

From (4.7),

ki = −(λ0 + 1)
i
∑

j=1

cjQ(xi
0, x

j
0, λ0)∆

j,

kn = −(λ0 + 1)
n
∑

j=1

cjQ(xn
0 , x

j
0, λ0)∆

j = 0.

Definition 4.1. (SLEP matrix and the SLEP function) The SLEP matrixM(λ0) is
the n×n matrix whose jth column is the vector Q(xn

0 , x
j
0, λ0)∆

j. The SLEP function
p(λ) = detM(λ).

Note that kn = 0 implies that {ci}n1 is a right eigenvector of M(λ0):

M(λ0){c
i}n1 = 0, with p(λ0) = 0.

Once {ci}n1 is determined, {bi}n−1
1 can be calculated through {ki}n−1

1 .
We now characterized the co-kernel ofG. Let {di}n1 ∈ H such that {di}n1 ⊥ range G.

n
∑

1

(λ0+1)ci < di,∆i > +
n
∑

1

< di, (Df i−xi
0)b

i−(Df i−1−xi
0)Φ

i−1(xi
0, x

i−1
0 ;λ0)b

i−1 >= 0.

The above is valid for all vectors ({ci}n1 , {b
i}n−1

1 ). Recall we assume that λ0 + 1 6= 0.
If we let bi ≡ 0 for all i, then we have < di,∆i >= 0, i = 1, . . . , n. Consequently,

n
∑

1

< di, (Df i − xi
0)b

i − (Df i−1 − xi
0)Φ

i−1(xi
0, x

i−1
0 , λ0)b

i−1 >= 0.

Therefore, {di}n1 is a vector in H determined by

{di}n1 ⊥ H1 +H2.

Notice that the above also implies that the dimension of the linear space of such {di}n1
is the dimension of H1 ∩H2 which is the dimension of kerG.

Using ki = (Df i − xi
0I)b

i, the conditions on {di}n1 can be expressed as

n
∑

1

< di, ki −Qi−1(xi
0, x

i−1
0 , λ0)k

i−1 > .
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Recall that Qi∗(x, y, λ0) = Ψi(y, x, λ0). Therefore,
n
∑

1

< di −Ψi(xi
0, x

i+1
0 , λ0)d

i+1, ki >= 0.

Since ki is arbitrary, we have the system that determines {di}n1 up to a scalar multiple:

< di,∆i >= 0, i = 1, . . . , n,

di −Ψi(xi
0, x

i+1
0 , λ0)d

i+1 = 0, i = 1, . . . , i− 1.

Then if dn is known, di, i ≤ n can be obtained from

(4.8) di = Ψ(xi
0, x

n
0 ;λ0)d

n.

Since < di,∆i >= 0, i = 1, . . . , n, we have

< dn, Q(xn
0 , x

i
0;λ0)∆

i >= 0, i = 1, . . . , n.

This means that dn is a left eigenvector of the matrixM(λ0). Once we have calculated
dn, the other vectors di, i = 1, . . . , n− 1 can be obtained by using (4.8).

We summarize the results in the following lemma.

Lemma 4.3. −(λ0 + 1) is an eigenvalue of L iff p(λ0) = 0. Then ({ci}n1 , {b
i}n−1

1 ) is
in the kernel of G iff

M(λ0){c
i}n1 = 0, with p(λ0) = 0,

bi = −(λ0 + 1)(Df i − xi
0I)

−1

i
∑

j=1

cjQ(xi
0, x

j
0, λ0)∆

j.

Furthermore, {di}n1 is orthogonal to the range of G iff

(dn)∗M(λ0) = 0,

di = Ψ(xi
0, x

n
0 ;λ0)d

n, i < n.

Lemma 4.4. Assume that p(λ0) = 0. Then ({zi(x)}n0 , {d
i}n1 ) is orthogonal to the

range of L+ (λ0 + 1)I if and only if

{di}n1 ⊥ Range(G),

and {zi}n0 satisfies the adjoint equation (4.6)

(λ∗0 + 1)zi − (Df i − xI)∗zix = 0 i = 1, . . . , n− 1,

with zi(xi+1) = di+1. Moreover, zi(xi
0+) = zi−1(xi

0−).

Proof. If < (L+(λ0+1)I)({U i}n0 , {c
i∆i}n1 ), ({z

i(x)}n0 , {d
i}n1 ) >= 0 for all ({U i}, {ci}),

then

0 =
n−1
∑

1

∫ xi+1

xi
< (λ0 + 1)U i + ((Df i − xI)U i)x, z

i > dx

+
n
∑

1

< (Df i − xiI)U i(xi)− (Df i−1 − xiI)U i−1(xi) + (λ0 + 1)ci∆i, di > .
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Let U i ≡ 0. Then since ci is arbitrarily, we have

< ∆i, di >= 0, i = 1, . . . , n.

Integrating by parts, we have

0 =
n−1
∑

1

< (Df i − xI)U i(x), zi(x) > |x
i+1

xi

−
n−1
∑

1

∫ xi+1

xi
< U i, (λ∗0 + 1)zi − (Df i − xI)∗zix > dx

+
n
∑

1

< (Df i − xiI)U i(xi)− (Df i−1 − xiI)U i−1(xi), di > .

If U i ∈ C∞c (xi, xi+1), i = 1, . . . , n− 1, then we find that zi must satisfies the adjoint
equation (4.6):

(λ∗0 + 1)zi − (Df i − xI)∗zix = 0 i = 1, . . . , n− 1.

The boundary terms satisfy

0 =
n−1
∑

1

(< (Df i − xi+1I)U i(xi+1), zi(xi+1) > − < (Df i − xiI)U i(xi), zi(xi) >)

+
n
∑

1

< (Df i − xiI)U i(xi)− (Df i−1 − xiI)U i−1(xi), di >

=
n
∑

1

< (Df i − xiI)U i(xi), (di − zi(xi)) >

−
n
∑

1

< (Df i−1 − xiI)U i−1(xi), (di − zi−1(xi)) > .

Since U i(xi) and U i−1(xi) can be arbitrary constants, we have

zi−1(xi) = zi(xi) = di, i = 1, . . . , n.

Define z(x) = zi(x) for x ∈ [xi, xi+1]. Then z is continuous on [x1
0, x

n
0 ].

(4.9) z(xi) = di = Ψ(xi, xn, λ0)d
n.

Using < ∆i, di >= 0 for all i, and Ψ∗ = Q, we have

< ∆i,Ψ(xi, xn, λ0)d
n >= 0,

< Q(xn, xi, λ0)∆
i, dn >= 0.

By the definition of M(λ0), we have

(4.10) dn∗ M(λ0) = 0.

That is, dn is a left eigenvector for the matrixM(λ0). Based on Lemma 4.3, it follows
from (4.10) and (4.9) that {di}n1 is orthogonal to the range of G. ¤
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Definition 4.2. Let K(λ0) be the linear space of continuous functions defined on
[x1

0, x
n
0 ] such that if z ∈ K(λ0) then

(1) z is piecewise continuously differentiable and satisfies the adjoint equation (4.6)
on Ri, i = 1, . . . , n− 1;

(2) {z(xi
0)}

n
1 is orthogonal to the range of G.

From the definition, it is clear that z ∈ K(λ0) if and only if

z∗(xn
0 )M(λ0) = 0,

z(x) = Ψ(x, xn
0 , λ0)z(x

n
0 ).

We can state the basic properties of L+ (λ0 + 1)I as follows:

Theorem 4.5. −(λ0 + 1) is an eigenvalue for the operator L iff p(λ0) = 0. Then
L + (λ0 + 1)I is Fredholm with the index zero. The condition for ({U i}n0 , {c

i∆i}n1 )
being an eigenvector is

M(λ0){c
i}n1 = 0,

U i(xi
0) = −(λ0 + 1)(Df i − xi

0I)
−1

i
∑

j=1

cjQ(xi
0, x

j
0, λ0)∆

j,

U i(x) = Φi(x, xi
0, λ0)U

i(xi
0), xi

0 ≤ x ≤ xi+1
0 .

Furthermore, ({W i}n0 , {J
i}n1 ) ∈ R(L+ (λ0 + 1)I) if and only if for all z ∈ K(λ0),

n
∑

1

< z(xi
0), J

i > +
n−1
∑

1

∫ xi+1

0

xi
0

< z(x),W i(x) > dx = 0.

Proof. The kernel part of the theorem follows from Lemma 4.2 and Lemma 4.3. If
({W i}n0 , {J

i}n1 ) ∈ R(L+ (λ0 + 1)I), then

(λ0 + 1)U i + ((Df i − xI)U i)x = W i,(4.11)

(λ0 + 1)ci∆i + (Df i − xi
0I)U

i(xi
0)− (Df i−1 − xi

0I)U
i−1(xi

0) = J i.(4.12)

Let bi = U i(xi
0). Then

U i(x) = Φi(x, xi
0)b

i +

∫ x

xi
0

Φi(x, η)(Df i − ηI)−1W i(η)dη.

Plug into (4.12), we have

(4.13) (λ0 + 1)ci∆i + (Df i − xi
0I)b

i − (Df i−1 − xi
0I)Φ

i−1(xi
0, x

i−1
0 )bi−1

= (Df i−1 − xi
0I)

∫ xi
0

xi−1

0

Φi−1(xi
0, η)(Df

i−1 − ηI)−1W i−1(η)dη + J i.
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The above has a solution iff the right hand side of (4.13) is in the range of G, i.e., for
each {di}n1 that is orthogonal to the range of G as in Lemma 4.3, we have

0 =
n
∑

1

< di, J i + (Df i−1 − xi
0I)

∫ xi
0

xi−1

0

Φi−1(xi
0, η)(Df

i−1 − ηI)−1W i−1(η)dη >

=
n
∑

1

< di, J i >

+
n
∑

1

∫ xi
0

xi−1

0

< (Df i−1 − ηI)−1,∗Φi−1,∗(xi
0, η, λ0)(Df

i−1 − xi
0I)

∗di,W i−1(η) > dη.

Define

zi(η) = (Df i − ηI)−1,∗Φi∗(xi+1
0 , η, λ0)(Df

i − xi+1
0 I)∗di+1, xi

0 ≤ η ≤ xi+1
0

= Ψi(η, xi+1, λ0)d
i+1.

Then

0 =
n
∑

1

< di, J i > +
n
∑

1

∫ xi
0

xi−1

0

< zi−1(η),W i−1(η) > dη

=
n
∑

1

< di, J i > +
n−1
∑

1

∫ xi+1

0

xi
0

< zi(η),W i(η) > dη.

The functions {zi}n−1
1 can be glued together to be a continuous function z defined

on [x1
0, x

n
0 ]. We clearly have z ∈ K(λ0).

¤

The following lemmas characterizes the condition that −(λ0 +1) is a simple eigen-
value of L.

Lemma 4.6. The eigenvalue −(λ0 + 1) of L is semisimple if and only if for any
eigenfunction ({URi

1 (x)}n0 , {c
i
0}

n
1 ), there exists at least one z ∈ K(λ0) such that

n−1
∑

1

∫ xi+1

0

xi
0

< z(x), URi
1 (x) > dx 6= 0.

Proof. If there exists one z ∈ K(λ0) such that

0 6=
n
∑

1

< z(xi
0), c

i
0∆

i > +
n−1
∑

1

∫ xi+1

0

xi
0

< z(x), URi
1 (x) > dx.

then ({URi
1 (x)}n0 , {c

i
0}

n
1 ) is not on the range of L+ (λ0 +1)I. Since < z(xi

0),∆
i >= 0

for all i, the desired result follows. ¤

Lemma 4.7. The condition that −(λ0 + 1) is a simple eigenvalue of L is equivalent
to that the SLEP function p(λ) = detM(λ) has a simple zero at λ = λ0.
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Proof. Let the ith column of M(λ) be Mi(λ).

M(λ) = (M1(λ),M2(λ), . . . ,Mn(λ)) .

Without loss of generality, let λ0 = 0. We assume that the geometric multiplicity of
λ = 0 for the matrix M(0) is one since this is the consequence of either p′(0) 6= 0 or
−(λ0 + 1) is a simple eigenvalue of L.

Let {ci}ni=1, {ej}
n
j=1 be the right and left eigenvectors ofM(0), unique up to scalar

multipliers. Without loss of generality, we assume that c1 = 1. Then Mj(0), j =
2, . . . , n are linearly independent and

{ej} ⊥ span{Mj(0)}
n
j=2.

We have the following decomposition

M(λ){ci} = α(λ){ej}+
n
∑

j=2

βj(λ)Mj(0).

Since the left hand side is O(λ) we have

α(λ) = O(λ), βj(λ) = O(λ), j = 2, . . . , n.

detM(λ) = det
(

M(λ){ci},M2(λ), . . . ,Mn(λ)
)

= det

(

α(λ){ej}+
n
∑

j=2

βj(λ)Mj(0),M2(λ), . . . ,Mn(λ)

)

.

Since the first column is of O(λ), if we replace Mj(λ) by Mj(0), we have:

p(λ) = O(λ2) + det

(

α(λ){ej}+
n
∑

j=2

βj(λ)Mj(0),M2(0), . . . ,Mn(0)

)

= O(λ2) + det (α(λ){ej},M2(0), . . . ,Mn(0))

= O(λ2) + α(λ) det ({ej},M2(0), . . . ,Mn(0)) .

d

dλ
p(0) = α

′

(0) det ({ej},M2(0), . . . ,Mn(0)) .

Assume that
∑

j |ej|
2 = 1. Then

α(λ) = {ej}
∗M(λ){ci}.

Differentiating and setting λ = 0, we have

(4.14)
d

dλ
α(0) = {ej}

∗ d

dλ
M(0){ci}.

Let V (x) = ∂λQ(x, xi
0, 0)∆

i. Then

V ′ + (λ0 + 1)(Df − xI)−1V + (Df − xI)−1Q(x, xi
0, 0)∆

i = 0,

with the initial condition V (xi
0) = 0. Thus

V (xn
0 ) = −

∫ xn
0

xi
0

Q(xn
0 , y, 0)(Df − yI)−1Q(y, xi

0, 0)∆
idy.
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From (4.14), and using Theorem 4.5 for URi
1 (x), we have

−
d

dλ
α(0) =

n
∑

i=1

< {ej},

∫ xn
0

xi
0

Q(xn
0 , y, 0)(Df − yI)−1Q(y, xi

0, 0)∆
ici > dy

=
n−1
∑

i=1

< Ψ(y, xn
0 , 0){ej},

∫ xn
0

xi
0

(Df − yI)−1Q(y, xi
0, 0)∆

ici > dy

=
n−1
∑

i=1

∫ xi+1

0

xi
0

< z(y),
i
∑

j=1

(Df − yI)−1Q(y, xj
0, 0)∆

jcj > dy

= −(λ0 + 1)−1

n−1
∑

1

∫ xi+1

0

xi
0

< z(x), URi
1 (x) > dx.

Here z ∈ K(0). The final result follows from Lemma 4.6. ¤

4.2. Solving the SLEP recursively. Assume that λ0 is a simple root for the SLEP
function p(λ). From Lemma 4.7, Hypothesis (H1) is satisfied. To solve (4.1), we let
{ci0}

n
1 be a right eigenvector of M(λ0). Then from Theorem 4.5,

URi
1 (xi

0) = −(λ0 + 1)(Df i − xi
0I)

−1

i
∑

j=1

cj0Q(xi
0, x

i
0, λ0)∆

j,

URi
1 (x) = Q(x, xi

0, λ0)U
Ri
1 (xi

0).

The kernel of M(λ0) is one-dimensional. Therefore, K(λ0) is also one-dimensional.
We then proceed by induction. If (4.3) has been solved for j ≤ k− 1, then to solve

(4.3) for j = k, we need to select λk−1 so that

λk−1({U
Ri
1 }

n
0 , {c

i
0∆

i}n1 )− ({W i
k−1}

n
0 , {J

i
k−1}

n
1 )

is in the range of L+(λ0+1). Let z be a nonzero vector in K(λ0). From Theorem 4.5,

(4.15) λk−1

∫ xn
0

x1
0

< z(x), UR
1 (x) > dx

−

n
∑

1

< z(xi
0), J

i
k−1 > −

n−1
∑

1

∫ xi+1

0

xi
0

< z(x),W i
k−1(x) > dx = 0.

Since −(λ0 + 1) is a simple eigenvalue, based on Lemma 4.6, we have
∫ xn

0

x1
0

< z(x), UR
1 (x) > dx 6= 0.

Thus, λk−1 can be solved from (4.15). With this λk−1, there exists a nonunique
({URi

k }
n
0 , {c

i
k−1∆

i}n1 ).
To uniquely determine ({URi

k }
n
0 , {c

i
k−1∆

i}n1 ), we assume that

n
∑

1

cik−1c
i
0 = 0.
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This is a unnatural restriction on eigenfunctions. Multiplying an arbitrary analytic
function α(ε) to the eigenfunction, we recover all the eigenfunctions associated to the
eigenvalue −(λ0 + 1).

5. Existence of true eigenvalue/eigenfunctions

Assume that we have the expansion of the slow eigenvalue up to εm−1, and the
associated eigenfunction up to εm,m ≥ 1. Let 0 < β < 1 be an arbitrary constant.
Define the inner layer I iε := {x|xi

0 − εβ ≤ x ≤ xi
0 + εβ} and the outer layer Oi

ε :=
{x|xi

0 + εβ ≤ x ≤ xi+1
0 − εβ}. For brevity, let ai = xi

0 + εβ, bi = xi+1
0 − εβ so

that Oi
ε = [ai, bi]. In the classical singular perturbation theory, εβ is so called an

intermediate variable [21, 10]. Note that in the x variable, the length of inner layers
goes to zero as ε→ 0, but in the stretched variable ξ = (x−xi

0)/ε, the length O(εβ−1)
goes to infinity as ε→ 0. Therefore, the dynamics in both inner and outer layers are
dominated by the exponential dichotomies using the variable ξ.

Define the approximation of eigenvalue/eigenfunctions by

λap =
m−1
∑

0

εjλj, m ≥ 1,

UR
ap =

m
∑

0

εjUR
j , for all x ∈ Oi

ε,

U i
ap =

m
∑

0

εjU i
j , −εβ−1 ≤ ξ ≤ εβ−1, xi

0 + εξ = x ∈ I iε.

Notice that U i
0 = qiξ(ξ), U

R
0 ≡ 0. In the expression U i

j = U i⊥
j + cijq

i
ξ, the terms

U i⊥
j , j ≤ m, and cij, j ≤ m − 1, are determined while cim is still undetermined.

Without loss of generality, let cim = 0.
Gluing the approximations in outer and inner layers together in the order of

O0
ε , I

1
ε , O

1
ε , I

2
ε , . . . , I

n
ε , O

n
ε ,

we have a so called pseudo orbit with small residual and jump errors:

(5.1)

(λap + 1)UR
ap + ((Df(uε)− xI)UR

ap)x − εUR
ap,xx = εhR, in Oi

ε,

ε(λap + 1)U i
ap + ((Df(uε)− xi(ε)− εξ)U i

ap)ξ − U i
ap,ξξ = εhi, in I iε,

U i
ap(−ε

β−1)− UR
ap(x

i
0 − εβ) = −δU i,−,

U i
ap,ξ(−ε

β−1)− εUR
ap,x(x

i
0 − εβ) = −δU i,−

ξ ,

UR
ap(x

i
0 + εβ)− U i

ap(ε
β−1) = −δU i,+,

εUR
ap,x(x

i
0 + εβ)− U i

ap,ξ(ε
β−1) = −δU i,+

ξ .

The residual and jump errors satisfy

εhR = O(εm+1), εhi = O(εm+1|ξ|m+1) = O(εβ(m+1)),

|δU i,±|+ |δU i,±
ξ | ≤ Ce−αεβ−1

(εβ−1)m.
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If m ≥ 1 and 1/2 < β < 1, then

hR = O(εm), hi = O(ε2β−1+β(m−1))→ 0, ε→ 0.

The exact eigenvalue/eigenfunctions satisfy

(λex + 1)UR
ex + ((Df(uε)− xI)UR

ex)x = εUR
ex,xx,

ε(λex + 1)U i
ex + ((Df(uε)− xi(ε)− εξ)U i

ex)ξ = U i
ex,ξξ.

Write the exact eigenvalue/eigenfunctions as approximations plus correction terms:

λex = λap + λ,

UR
ex = UR

ap + εUR, x ∈ Oi
ε,

U i
ex = U i

ap + εU i + εmciqiξ(ξ), x ∈ I iε.

We easily find that the equations for (λ, UR, U i) can be written as a linear varia-
tional system with forcing terms:

(λ0 + 1)UR + λUR
1 + (Df(uR

0 )− xI)UR)x − εUR
xx = −hR +NR(UR, λ, ε),(5.2)

(λ0 + 1)ciqiξ(ξ) + λU i
0 + [(D2f(qi)ui

1 − (xi
1 + ξ)I)ciqiξ]ξ

+ (Df(qi)− xi
0I)U

i)ξ − U i
ξξ = −h

i +N i(U i, λ, ci, ε).(5.3)

Equation (5.2) is valid in outer layers Oi
ε, 0 ≤ i ≤ n while (5.3) is valid in inner layers

I iε, 1 ≤ i ≤ n. The nonlinear terms NR, N i are small if (UR, U i, λ, ci, ε) are small.

NR(UR, λ, ε) = O(ε|UR|C1 + ε|λ|),

N i(U i, λ, ci, ε) = O(εβ|U i|C1 + ε|λ|+ ε|ci|+ |ci||λ|).

Jump conditions that cancel the jump errors of approximations between two adja-
cent inner and outer layers are prescribed:

(5.4)

U i(−εβ−1)− UR(xi
0 − εβ) = δU i,−,

U i
ξ(−ε

β−1)− εUR
x (x

i
0 − εβ) = δU i,−

ξ ,

UR(xi
0 + εβ)− U i(εβ−1) = δU i,+,

εUR
x (x

i
0 + εβ)− U i

ξ(ε
β−1) = δU i,+

ξ .

As before, boundary conditions for x→ ±∞ must be satisfied:

(5.5) (U,Ux) = O(e−γ|x|), x ∈ O0
ε ∪O

n
ε

In Theorem 5.7, the nonlinear system (5.2)–(5.5) will be solved by the contraction
mapping principle. To this end, we consider the following linear non-homogeneous
system with the same jump and boundary conditions (5.4) and (5.5):

(λ0 + 1)UR + λUR
1 + (Df(uR

0 )− xI)UR)x − εUR
xx = −hR(x),(5.6)

(λ0 + 1)ciqiξ(ξ) + λU i
0 + [(D2f(qi)ui

1 − (xi
1 + ξ)I)ciqiξ]ξ(5.7)

+ (Df(qi)− xi
0I)U

i)ξ − U i
ξξ = −h

i.

The usual way of writing (5.6) as first order systems, i.e.,

Ux = V, Vx = . . . ,
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does not work well in our case because the variables (U, V ) do not capture the fast–
slow behavior of the singularly perturbed problem. If a system is autonomous, fol-
lowing the general instruction of [13], §1.6, the slow variable should correspond to
eigenspaces of zero eigenvalues while the fast variable should correspond to eigenspaces
of nonzero eigenvalues. If we write our equation in outer layers using ξ = (x−x̄)/ε, x̄ ∈
Oi

ε, the homogeneous part of the equation becomes

(Df(uR
0 )− (x̄+ εξ)I)UR)ξ − UR

ξξ = 0.

We find that the system is slow varying and can be approximated by an autonomous
system. If we free x = x̄ in the coefficients by letting ε = 0, the above system has
n zero eigenvalues and n eigenvalues with nonzero real parts. If ε is small, the slow
varying equation also admits a splitting of center subspace of dimension n and and a
hyperbolic subspace of dimension n. This wonderful theorem in a more general form
can be found in [5] and can also be proved by geometric singular perturbation theory
after adding equations ẋ = ε, ε̇ = 0 to the system.

By calculating eigenvalues and eigenvectors for ε = 0. We find that the eigenspace
that corresponds to eigenvalues with nonzero real parts is spanned by (U,Uξ) =
(rj, νjrj), any (U,Uξ) in such space must satisfy εUx − (Df(uR

0 ) − xI)U = Uξ −
(Df(uR

0 )− xI)U = 0. We thus introduce a new variable

V R := εUR
x − (Df(uR

0 )− xI)UR = UR
ξ − (Df(uR

0 )− xI)UR, x ∈ Oi
ε.

For simplicity, the symbol Df or Df i represents Df(uR
0 ) (constant matrix) in

outer layers Oi
ε and Df(qi(ξ)) in inner layers I iε. When ε = 0, the eigenspace that

corresponds to zero eigenvalues is (U,Uξ) = (U, 0). If we make the change of variable

∆UR = UR + (Df − xI)−1V R = (Df − xI)−1Uξ,

then the eigenspaces corresponding to zero and non-zero eigenvalues are

{(∆UR, V R)|∆UR = 0} and {(∆UR, V R)|V R = 0}

respectively. Using (∆UR, V R), the system in Oi
ε becomes (5.23) and (5.24) (with

λ = 0) which captures the fast-slow behavior and exponential trichotomies of the
dynamics. This new coordinates will be used in proving Lemma 5.3.

In inner layers, define

V i := U i
ξ − (Df − xi

0I)U
i, x ∈ I iε.

The counter part of ∆UR is undefined in inner layers. Therefore, for the coupled
inner and outer system such as in Lemma 5.6, we will retain the variable U together
with the new variable V as state variables.

We need to derive the jump conditions for V R and V i, between outer and inner
layers. Let uε be the exact Dafermos viscous shock solution. At each x = xi

0 + εβ, by
(5.4), we have

εUR
x (x)− (Df(uε(x))− xI)UR(x)− [U i

ξ(ε
β−1)− (Df(uε(x)− xI)U i(εβ−1)]

=δU i,+
ξ − (Df(uε(x))− xI)δU i,+.
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Replacing Df(uε(x
i
0 + εβ) by Df(uR

0 (x
i
0 + εβ) in Oi

ε, and by Df(qi(εβ−1) in I iε, we
have

(5.8) V R(xi
0 + εβ)− V i(εβ−1) = δU i,+

ξ − (Df(uε(x))− xI)δU i,+ +N i,+(UR, U i),

where x = xi
0 + εβ, and the small term N i,+ is

N i,+ = [(Df(uR
0 )−Df(uε)]U

R + [Df(uε)−Df(qi)]U i = O(ε(|UR|+ |U i|)).

Similarly,

(5.9) V i(−εβ−1)− V R(xi
0 − εβ) = δU i,−

ξ − (Df(uε(x))− xI)δU i,− +N i,−(UR, U i),

where x = xi
0 − εβ, and the small term N i,− is

N i,− = [Df(uε)− (Df(uR
0 )]U

R + [Df(qi)−Df(uε)]U
i = O(ε(|UR|+ |U i|)).

Dropping N i,± in (5.8) and (5.9), we consider the following jump conditions for the
variables V R and V i:

V R(xi
0 + εβ)− V i(εβ−1) = δV i,+ := δU i,+

ξ − (Df(uε(x))− xI)δU i,+,(5.10)

V i(−εβ−1)− V R(xi
0 − εβ) = δV i,− := δU i,−

ξ − (Df(uε(x))− xI)δU i,−.(5.11)

For brevity, we denote W = (U, V ) and δW i,± = (δU i,±, δV i,±). See (5.4), and
(5.10), (5.11) for these jumps.

Proposition 5.1. Consider the first order non-homogeneous systems (5.12)–(5.15)
that is equivalent to (5.6) and (5.7). The coupled system in outer and inner layers is
augmented by the jump conditions (5.16), (5.17) and boundary conditions (5.18):

εUR
x = (Df − xI)UR + V R,(5.12)

V R
x = (λ0 + 1)UR + λUR

1 + hR(x),(5.13)

U i
ξ = (Df − xi

0I)U
i + V i,(5.14)

V i
ξ = [(λ0 + 1)ci + λci0]q

i
ξ + [(D2f(qi)ui

1 − (xi
1 + ξ)I)ciqiξ]ξ + hi(ξ),(5.15)

WR(xi
0 + εβ)−W i(εβ−1) = δW i,+,(5.16)

W i(−εβ−1)−WR(xi
0 − εβ) = δW i,−,(5.17)

(UR, V R) = O(e−γ|x|), for x ∈ R0, Rn.(5.18)

The unknown parameters λ and {ci} must also be solved from the system. Then
there exists a unique solution (UR, V R, {U i}, {V i}, λ, {ci}) that satisfies the system.
Moreover,

|UR|+ |V R|+ |{U i}|+ |{V i}|+ |UR,0|γ + |U
R,n|γ + |V

R,0|γ + |V
R,n|γ + |λ|+ |{c

i}|

≤ C(|{δW i,+}|+ |{δW i,−}|+ |hR|+ εβ−1|{hi}|).

The proof of Proposition 5.1 depends on several lemmas and shall be deferred to
the end of this section when all the lemmas are stated and proved. Among them,
Lemma 5.3 treats nonhomogeneous systems without the concern of prescribed jump-
ing conditions; Lemma 5.6 treats homogeneous systems with prescribed jumping con-
ditions and boundary conditions at R0, Rn. By adding results from the two lemmas,
the entire system is solved by the super-position principle.
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Let C(γ) be the space of continuous functions such that the norm

‖U‖γ = sup
x
{|U(x)|eγ|x|} <∞,

where the sup is taken over the domain O0
ε or On

ε . Let L1(γ) be the space of locally
integrable functions such that the norm

‖U‖L1(γ) =

∫

|U(x)|eγ|x|dx <∞,

where the integral is in the domain O0
ε or On

ε .

Lemma 5.2. (i) Let T (x, y) be the principal matrix solution for the following equation
in Oi

ε, 1 ≤ i ≤ n− 1:

(5.19) εUx − (Df − xI)U = h(x).

If ε > 0 is sufficiently small, then the system has exponential dichotomy on Oi
ε with

super exponential decay rate, i.e., there exist projections Pu(x) +Ps(x) = I, exponent
α/ε > 0 and a constant K that is independent of ε, such that

T (x, y)Ps(y) = Ps(x)T (x, y),

|T (x, y)Ps(y)| ≤ Ke−α(x−y)/ε, x ≥ y,

|T (x, y)Pu(y)| ≤ Ke−α(y−x)/ε, y ≥ x.

Moreover, in Oi
ε, the rank of Pu is n− i and the rank of Ps is i.

(ii) Consider the same equation (5.19) in O0
ε or O

n
ε . Then the solution is unstable

in O0
ε and stable in O

n
ε with super exponential decay rate:

|T (x, y)| ≤ Ke−α|x−y|/ε, for

{

x ≤ y ∈ O0
ε ,

x ≥ y ∈ On
ε .

(iii) For each λ0 ∈ C, let Φ(x, y) be the principal matrix solution for the following
equation in O0

ε and O
n
ε :

(5.20) Vx + (λ0 + 1)(Df − xI)−1V = h(x).

Then the homogeneous part of the system has very slow growth rate either forward or
backward in these layers. That is, for any δ > 0, there exists K(δ) > 0 such that

|Φ(x, y)| ≤ K(δ)eδ|x−y|, x, y ∈ O0
ε ∪O

n
ε .

Moreover, for h ∈ C(γ), or h ∈ L1(γ), δ < γ, there exists a unique solution V ∈ C(γ).
The following estimates hold

|V |γ ≤ C|h|γ, |V |γ ≤ C|h|L1(γ).

Proof. We prove Part (iii) only. There exist Θ > 0 such that for |x| ≥ Θ, we have
|(λ0 + 1)(Df − xI)−1| < δ. Thus, for x, y ≥ Θ or x, y < −Θ, we have |Φ(x, y)| ≤
K(δ)eδ|x−y|. The same estimates hold for x, y ∈ O0

ε ∪ O
n
ε with maybe a larger K(δ),

uniformly for 0 < ε < ε0. For clarity, consider O
n
ε . Let

V (x) =

∫ x

∞

Φ(x, y)h(y)dy.
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Assuming that δ < γ. Using the exponential estimate for |Φ(x, y)|, it is elementary
to verify that V ∈ C(γ) if h ∈ C(γ) or L1(γ) and the desired estimates hold. ¤

We say that a solution of (5.19) satisfies the standard boundary condition on Oi
ε =

[ai, bi] if

Ps(a
i)U(ai) = 0, Pu(b

i)U(bi) = 0.

Lemma 5.3. Let λ = 0. In outer layer, For each h ∈ C(Oi
ε), 1 ≤ i ≤ n − 1,

system (5.12),(5.13) has a unique solution (UR,i, V R,i) = FR,i(hR) if UR,i satisfies the
standard boundary condition on Oi

ε and V
R,i(ai) = 0. Moreover FR,i is a bounded

operator and the solutions satisfy

|UR|+ |V R| ≤ C(ε|hR|+ |hR|L1), |∆UR| ≤ Cε(|hR|+ |hR|L1).

In inner layers, assume λ = 0, ci = 0. For each hi ∈ C(I iε), system (5.14),(5.15) has a
unique solution (U i, V i) = FS,i(hi) that satisfies U i(0) ⊥ qi(0), V i(0) = 0. Moreover
FS,i is a bounded operator and the solution satisfies:

|U i|+ |V i| ≤ Cεβ−1|hi|.

Proof. The proof for system (5.14), (5.15) in inner layers shall be omitted.
In outer layers, if ξ = x/ε variable is used so that εUx = Uξ, then the length of the

outer layer is O(1/ε). If one uses variational of constant formula on (5.12) and (5.13)
to get a solution with forcing term, then the desired estimates on the solution will
not be satisfied. Exponential dichotomies must be used in the proof.

Consider the auxiliary equations

εUx − (Df − xI)U = h1(x)(5.21)

Vx + (λ0 + 1)(Df − xI)−1V = h2(x).(5.22)

Using the standard boundary condition and exponential dichotomy on the first equa-
tion and the variation of constants formula on the second equation, we have the
unique solutions

U = F1(h1), V = F2(h2),

F1 : C(Oi
ε)→ C(Oi

ε), F2 : L1(Oi
ε)→ C(Oi

ε),

|U | ≤ C|h1|, |V R| ≤ C|h2|L1 .

Using (∆UR, V R), (5.12), (5.13), with λ = 0, become

ε∆UR
x − (Df − xI)∆UR = ε[G(∆UR, V R) + (Df − xI)−1hR],(5.23)

V R
x + (λ0 + 1)(Df − xI)−1V R = (λ0 + 1)∆UR + hR.(5.24)

Here

G(∆UR, V R) = (λ0 + 1)(Df − xI)−1∆UR

+ [(Df − xI)−1
x − (λ0 + 1)(Df − xI)−1(Df − xI)−1]V R.
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System (5.23), (5.24) can be written as a fixed point problem

∆UR
1 = εF1(G(∆UR, V R) + (Df − xI)−1hR),

V R
1 = F2((λ0 + 1)∆UR

1 + hR).

The mapping defined by (∆UR, V R)→ (∆UR
1 , V

R
1 ) is a contraction if ε is sufficiently

small. Therefore, there is a unique fixed point (∆UR, V R) which is also a solution to
the coupled system (5.23),(5.24).

Since F1 is a bounded operator, we have |∆UR| ≤ Cε(|∆UR|+ |V R|+ |hR|). This
simplifies to

|∆UR| ≤ Cε(|V R|+ |hR|).

On the other hand since F2 is a bounded operator,

|V R| ≤ C1(|∆U
R|+ |hR|L1) ≤ C1(Cε(|V

R|+ |hR|) + |hR|L1).

Thus |V R| ≤ C(ε|hR| + |hR|L1). Plug back into the estimate for |∆UR|, we have
|∆UR| ≤ Cε(|hR|+ |hR|L1).

Finally |UR| ≤ C(|∆UR|+ |V R|) ≤ C(ε|hR|+ |hR|L1).
¤

Lemma 5.4. (i) In the semi-infinite outer layers R0 and Rn, let h1 ∈ C(γ) and
φ ∈ R

n. Then There exists a unique solutions U ∈ C(γ) for the boundary value
problem

(5.25) εUx = (Df − xI)U + h1,

{

U(x1
0) = φR,0

u , x ∈ R0,

U(xn
0 ) = φR,n

s , x ∈ Rn.

(ii) Let h2 ∈ C(γ) or L1(γ). Then there exists a unique solutions V ∈ C(γ) for the
single equation without boundary conditions

(5.26) Vx + (λ0 + 1)(Df − xI)−1V = h2.

(iii) For hR ∈ C(γ)∩L1(γ), consider the non-homogeneous boundary value problem

εUx = (Df − xI)U + V,

{

U(x1
0) = 0, x ∈ R0,

U(xn
0 ) = 0, x ∈ Rn.

(5.27)

Vx = (λ0 + 1)UR + hR,(5.28)

Then, there exists a unique solution (U, V ) ∈ C(γ) such that

|U |γ + |V |γ ≤ C(ε|hR|γ + |h
R|L1(γ)).

Moreover, let ∆UR = U + (Df − xI)−1V , then

|∆UR|γ ≤ Cε(|hR|γ + |h
R|L1(γ)).

Proof. We shall only prove the case x ∈ O0
ε only. The proof is a mimic of that of

Lemma 5.3.
For brevity, let a0 = −∞, b0 = x1

0 − εβ, O0
ε = (−∞, b0).

Proof of Part (i): The unique solution U ∈ C(γ) of (5.25) can be written as

UR,i(x) =

∫ x

b0
T (x, y)Pu(y)h1(y)dy + T (x, b0)φR,0

u .
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Using exponential dichotomy on O0
ε , we have

U = F1(h1, φ
R,0
u ), |U |γ ≤ C(|h1|γ + |φ

R,0
u |).

Proof of Part (ii): The unique solution V ∈ C(γ) of (5.26) can be written as

V R,i(x) =

∫ x

−∞

Φ(x, y)h2(y)dy.

Using exponential estimate in O0
ε we have

|V R|γ = F2(h2), |V R| ≤ C|h2|γ or C|h2|L1(γ).

Proof of Part (iii): Using (∆UR, V R), (5.27), (5.28), become

ε∆UR
x − (Df − xI)∆UR = ε[G(∆UR, V R) + (Df − xI)−1hR],(5.29)

V R
x + (λ0 + 1)(Df − xI)−1V R = (λ0 + 1)∆UR + hR.(5.30)

Here

G(∆UR, V R) = (λ0 + 1)(Df − xI)−1∆UR

+ [(Df − xI)−1
x − (λ0 + 1)(Df − xI)−1(Df − xI)−1]V R.

System (5.29), (5.30) can be written as a fixed point problem

∆UR
1 = εF1(G(∆UR, V R) + (Df − xI)−1hR, 0),

V R
1 = F2((λ0 + 1)∆UR

1 + hR).

The mapping defined by (∆UR, V R)→ (∆UR
1 , V

R
1 ) is a contraction if ε is sufficiently

small. Therefore, there is a unique fixed point (∆UR, V R) which is also a solution to
the coupled system (5.23),(5.24).

Since F1 is a bounded operator, we have |∆UR|γ ≤ Cε(|∆UR|γ + |V R|γ + |hR|γ).
This simplifies to

|∆UR|γ ≤ Cε(|V R|γ + |h
R|γ).

On the other hand since F2 is a bounded operator,

|V R|γ ≤ C1(|∆U
R|γ + |h

R|L1) ≤ C1(Cε(|V
R|γ + |h

R|γ) + |h
R|L1(γ)).

Thus |V R|γ ≤ C(ε|hR|γ + |h
R|L1(γ)). Plug back into the estimate for |∆UR|, we have

|∆UR|γ ≤ Cε(|hR|γ + |h
R|L1(γ)).

Finally |UR|γ ≤ C(|∆UR|γ + |V
R|γ) ≤ C(ε|hR|γ + |h

R|L1(γ)).
¤

Lemma 5.5. Consider the system of V -equations in Oi
ε, 0 ≤ i ≤ n and I iε, 1 ≤ i ≤ n,

with hR = 0 and hi = 0:

V R
x + (λ0 + 1)(Df − xI)−1V R = λUR

1 ,

V i
ξ = [(λ0 + 1)ci + λci0]q

i
ξ + [(D2f(qi)ui

1 − (xi
1 + ξ)I)ciqiξ]ξ,

V R(xi
0 + εβ)− V i(εβ−1) = δV i,+,

V i(−εβ−1)− V R(xi
0 − εβ) = δV i,−,

V R = O(e−γ|x|), for x ∈ R0, Rn.
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Then the above system has a unique solution (V R, {V i}, {ci}, λ). Moreover,

|V R|+ |{V i}|+ |{ci}|+ |λ| ≤ C(|{δV i,−}|+ |{δV i,+}|).

Proof. Let ∆i
ε := qi(εβ−1) − qi(−εβ−1). The second equation in I iε can be integrated

once to yield

V i(εβ−1)− V i(−εβ−1) = [(λ0 + 1)ci + λci0]∆
i
ε +O(e−αεβ−1

|ci|).

The small factor e−αεβ−1

comes from qiξ(ξ) for ξ = εβ−1. The small term can be handled
by contraction mapping principle and shall be omitted for convenience. Consider

(5.31) V i(εβ−1)− V i(−εβ−1) = [(λ0 + 1)ci + λci0]∆
i
ε.

Combining this with δV i,− and δV i,−, we find that

(5.32) V R(xi
0 + εβ)− V R(xi

0 − εβ) = [(λ0 + 1)ci + λci0]∆
i
ε + δZ i,

where

δZi := δV i,− + δV i,+.

In the spirit of SLEP method, the whole system reduces to a system in outer layers
coupled with jump conditions:

V R
x + (λ0 + 1)(Df − xI)−1V R = λUR

1 ,

V R(xi
0 + εβ)− V R(xi

0 − εβ) = [(λ0 + 1)ci + λci0]∆
i
ε + δZ i.

Let

ZR := (Df − xI)−1V R.

We have V R = (Df − xI)ZR. The system in outer layers can be written as

((Df − xI)ZR)x + (λ0 + 1)ZR = λUR
1 ,

(Df − xI)ZR(xi
0 + εβ)− (Df − xI)ZR(xi

0 − εβ)(5.33)

= [(λ0 + 1)ci + λci0]∆
i
ε + δZ i.

If we substitute ∆i
ε by ∆i + qi(εβ−1) − qi(∞) + qi(−∞) − qi(−εβ−1) and add the

following equations to (5.33)

(Df − xI)Z i(xi
0+)− (Df − xI)Z i(xi

0 + εβ)

=−

∫ xi
0
+εβ

xi
0

[λUR
1 + hR − (λ0 + 1)ZR(y)]dy,

(Df − xI)Z i(xi
0 − εβ)− (Df − xI)Z i(xi

0−)

=−

∫ xi
0
−

xi
0
−εβ

[λUR
1 + hR − (λ0 + 1)ZR(y)]dy,

we have

(Df − xI)Z i(xi
0+)− (Df − xI)Z i(xi

0−) = [(λ0 + 1)ci + λci0]∆
i + δZ i +N(λ, ci, ZR),
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where

N(λ, ci, ZR) = [(λ0 + 1)ci + λci0](q
i(εβ−1)− qi(∞) + qi(−∞)− qi(−εβ−1)

−

∫ xi
0
−

xi
0
−εβ

[λUR
1 − (λ0 + 1)ZR(y)]dy −

∫ xi
0
+εβ

xi
0

[λUR
1 − (λ0 + 1)ZR(y)]dy

is a small term.
Consider a simplified problem

((Df − xI)ZR)x + (λ0 + 1)ZR = λUR
1 ,

(Df − xI)Z i(xi
0+)− (Df − xI)Z i(xi

0−) = [(λ0 + 1)ci + λci0]∆
i + δZ i.

Note that from Lemma 5.4, Z0 and Zn can be solved first without the jump conditions.
Then to solve for Z i, 1 ≤ i ≤ n−1, replacing Z0, Zn by zeros, and consider the abstract
system

L({ZRi}n0 , {c
i∆i}n1 ) + (λ0 + 1)({ZRi}n0 , {c

i∆i}n1 )

+ λ({URi
1 }

n
0 , {c

i
0∆

i}n1 ) = ({W i}n0 , {J
i}n1 ),

where

J i = δZ i, 2 ≤ i ≤ n− 1,

J1 = δZ1 + ZR(x1
0 − εβ),

Jn = δZn − ZR(xn
0 + εβ).

By the result of section 4, the above system has a unique solution, denoted by

(ZR, λ, {ci}) = F({δZ i}).

Then the original system can be written as a fixed point problem:

(ZR, λ, {ci}) = F({δZ i}+N(λ, {ci}, ZR)).

By contraction mapping principle, the above has a unique solution. ¤

Lemma 5.6. Consider the linear homogeneous system

εUR
x = (Df − xI)UR + V R,(5.34)

V R
x = (λ0 + 1)UR + λUR

1 .(5.35)

U i
ξ = (Df − xi

0I)U
i + V i,(5.36)

V i
ξ = [(λ0 + 1)ci + λci0]q

i
ξ + [(D2f(qi)ui

1 − (xi
1 + ξ)I)ciqiξ]ξ.(5.37)

with jump conditions and boundary conditions:

WR(xi
0 + εβ)−W i(εβ−1) = δW i,+,(5.38)

W i(−εβ−1)−WR(xi
0 − εβ) = δW i,−,(5.39)

(UR, V R) = O(e−γ|x|), for x ∈ R0, Rn.(5.40)
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Then there exists a unique solution to the homogeneous system with the prescribed
boundary condition and jump conditions. Moreover,

|UR|+ |V R|+ |{U i}|+ |{V i}|+ |UR,0|γ + |U
R,n|γ + |V

R,0|γ + |V
R,n|γ

≤ C(|{δW i,−}|+ |{δW i,+}|).

Proof. As before, let ∆UR = UR + (Df − xI)−1V R. The second equation (5.35) of
the system is equivalent to

(5.41) V R
x + (λ0 + 1)(Df − xI)−1V R = (λ0 + 1)∆UR + λUR

1 .

The proof is divided into three steps:
STEP 1: Dropping (λ0 + 1)∆UR in (5.41), we have a simplified equation for V R.

This is coupled with (5.37) to be a system of V -equations, and will be solved with
jump and boundary conditions (5.38)-(5.40). We will determine approximate values
of λ and ci, 1 ≤ i ≤ n at this stage also. The result is stated in Lemma 5.5.

STEP 2: With (V R, V i) obtained from STEP 1, we solve a coupled system of
U -equations with jump and boundary conditions:

εUR
x = (Df − xI)UR + V R,

U i
ξ = (Df − xi

0I)U
i + V i,

UR(xi
0 + εβ)− U i(εβ−1) = δU i,+,

U i(−εβ−1)− UR(xi
0 − εβ) = δU i,−,

UR = O(e−γ|x|), for x ∈ R0, Rn.

For brevity, let ai = xi
0 + εβ, bi = xi+1

0 − εβ. Then Oi
ε = {a

i ≤ x ≤ bi}. See Figure
5.1 for the illustration of symbols used in this proof.

ss φφφφφ s

00 β−1β−1−ε ε
i−1i−1 ii ε

us
R,i−1 (r)S,i

uφ(r)(l)u
S,iφ S,i(l) R,iR,iS,i

u
R,i−1φ

εεε a  (  ) b  (  )b  (  )a  (  ) ε
i−1 rI  (  )lI  (  )

ii
εε

i
εOO

Figure 5.1. Notations for the initial data φR,i
u , etc. The solutions

passing through them decay exponentially in the direction indicated by
the arrows.

In Oi
ε using exponential dichotomies, we have

UR,i(x) =

∫ x

ai
T (x, y)Ps(y)V

R,i(y)dy +

∫ x

bi
T (x, y)Pu(y)V

R,i(y)dy

+ T (x, ai)φR,i
s + T (x, bi)φR,i

u .

Let I iε = I iε(`) ∪ I
i
ε(r) where

I iε(`) = (−εβ−1, 0), I iε(r) = (0, εβ−1).
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In each of the subintervals I iε(`) and I
i
ε(r), using exponential dichotomies, we have

U i(ξ) =

∫ ξ

−εβ−1

S(ξ, η)Ps(η)V
i(η)dη +

∫ ξ

0

S(ξ, η)Pu(η)V
i(η)dη

+ S(ξ,−εβ−1)φS,i
s (`) + S(ξ, 0)φS,i

u (`) ξ ∈ I iε(`),

U i(ξ) =

∫ ξ

0

S(ξ, η)Ps(η)V
i(η)dη +

∫ ξ

εβ−1

S(ξ, η)Pu(η)V
i(η)dη

+ S(ξ, εβ−1)φS,i
u (r) + S(ξ, 0)φS,i

u (r) ξ ∈ I iε(r).

To satisfy the jump conditions, we need

φR,i
s − φS,i

u (r) =

∫ εβ−1

0

S(εβ−1, η)Ps(η)V
i(η)dη −

∫ ai

bi
T (ai, y)Pu(y)V

R,idy

+ S(εβ−1, 0)φS,i
s (r)− T (ai, bi)φR,i

u + δU i,+,

φS,i
s (`)− φR,i−1

u =

∫ bi−1

ai−1

Ps(y)V
R,i−1(y)dy −

∫ −εβ−1

0

S(−εβ−1, η)Pu(η)V
i(η)dη

+ T (bi−1, ai−1)φR,i−1
s − S(−εβ−1, 0)φS,i

u (`) + δU i,−.

In the right hand sides, if (φS,i
s (r), φR,i

u ) of the first equation and (φR,i−1
s , φS,i

u (`)) of
the second equation are given, then using transverse intersections of stable and unsta-
ble subspaces, we can calculate terms in the left hand sides: (φR,i

s , φS,i
u (r)) of the first

equation, and (φS,i
s (`), φR,i−1

u ) of the second equation. Then from the lemmas, we have
(UR,i, US,i), from which the terms in the right hand sides: φS,i

s (r), φR,i
u , φR,i−1

s , φS,i
u (`)

can be calculated again. The above can be viewed as an fixed point problem:

(5.42)

(φR,i
s , φR,i

u , φS,i
u (`), φS,i

s (r))→ (φR,i
s , φR,i

u , φS,i
s (`), φS,i

u (r))

→ (UR,i, US,i)

→ (φR,i
s , φR,i

u , φS,i
u (`), φS,i

s (r)).

Owing to the exponential decay of

S(εβ−1, 0)φS,i
s (r), T (bi−1, ai−1)φR,i−1

s , T (ai), bi)φR,i
u , S(−εβ−1, 0)φS,i

u (`),

the process in (5.42) is also a contraction mapping. Therefore it has a unique fixed
point (φR,i

s , φR,i
u , φS,i

u (`), φS,i
s (r)), which can be used to determine (UR,i, US,i).

With (UR, U i, V R, V i, λ, ci) from STEP1 and STEP 2, (5.41) is satisfied without
the term (λ0 + 1)∆UR. Now using this UR and V R, define ∆UR = UR + (Df(uR

0 )−
xI)−1V R. We show that ∆UR is small in suitable norms. We can verify that

∆UR
ξ − (Df − xI)∆UR = εG(V R, λ).

Where

G(V R, λ) = [(Df − xI)−1
x − (λ0 +1)(Df − xI)−1(Df − xI)−1]V R +λ(Df − xI)−1UR

1 .
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Using the exponential dichotomy in Oi
ε, we have

(5.43)

∆UR(ξ) =

∫ x

ai
T (x, y)Ps(y)ε[G(V R, λ)](y)dy

+

∫ x

bi
T (x, y)Pu(y)ε[G(V R, λ)]dy

+ T (x, ai)Ps(a
i)∆UR(ai) + T (x, bi)Pu(b

i)∆UR(bi).

By definition,

|∆UR| ≤ |UR|+ |(Df − xI)−1||V R| ≤ C(|{δW i,−}|+ |{δW i,+}|).

If we observe that

|G(V R, λ)| ≤ C(|V R|+ |λ|) ≤ C(|{δW i,−}|+ |{δW i,+}|),

then the sup norms of the two integrals of (5.43) are bounded by Cε(|δW i,±|). There-
fore, their L1(x) norms are bounded by Cε(|δW i,±|). Due to the large negative expo-
nential rate −α/ε, the two boundary terms,

T (x, ai)Ps(a
i)∆UR(ai) + T (x, bi)Pu(b

i)∆UR(bi),

are bounded by ε|∆UR| ≤ Cε(|δW i,±|) in L1(x) norm.
In summary

|∆UR|∞ ≤ C(|{δW i,−}|+ |{δW i,+}|), |∆UR|L1(x) ≤ Cε(|{δW i,−}|+ |{δW i,+}|).

STEP 3: Consider the following system in Oi
ε:

εŪR
x = (Df − xI)ŪR + V̄ R,

V̄ R
x + (λ0 + 1)(Df − xI)−1V̄ R = (λ0 + 1)∆ŪR + (λ0 + 1)∆UR.

Using Lemma 5.3 with (λ0+1)∆UR as a forcing term, the above system has a solution
that satisfies

|ŪR|+ |V̄ R| ≤ C(ε|∆UR|+ |∆UR|L1) ≤ Cε(|{δW i,−}|+ |{δW i,+}|).

By adding (ŪR, V̄ R) to (UR, V R) obtained in STEP 1 and STEP 2, the new
(UR, V R) will satisfy (5.34) and (5.35). However, the jump conditions are not satisfied
and the error of which is bounded by

|(ŪR, V̄ R)| ≤ Cε(|{δW i,−}|+ |{δW i,+}|) ≤
1

2
(|{δW i,−}|+ |{δW i,+}|),

if ε is sufficiently small.
The process of calculating (UR, V R, U i, V i, λ, ci) from jump conditions, that is the

three steps as in the proof of this lemma, can be repeated infinitely many times, each
time reducing the jump error by at least 1/2. The limit of the iteration process is a
true solution of system of this lemma. ¤

Proof of Proposition 5.1. The proof can be obtained by combining the results of Lem-
mas 5.3 and 5.6. ¤
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Theorem 5.7. Assume that Hypothesis (H1) is satisfied, or equivalently, λ0 is a
simple root for the SLEP function p(λ) (Lemma 4.7), there exist unique eigenvalue
and eigenfunctions near the approximation (λap, U

R
ap, {U

i
ap}).

Proof. Let the solution mapping of Proposition 5.1 be

(UR, V R, {U i}, {V i}, λ, {ci}) = F({δW i,+}, {δW i,−}, hR, {hi}).

Then the eigenvalue problem (5.2), (5.3), (5.4), (5.5) can be expressed as

(5.44) (UR, V R, {U i}, {V i}, λ, {ci})

= F({δW i,+}, {δW i,−}, hR +NR(UR, λ, ε), {hi +N i(U i, λ, ci, ε)}).

Using the estimates on NR(UR, λ, ε), N i(U i, λ, ci, ε) and Proposition 5.1, we find if
1/2 < β < 1, then ε2β−1 << 1. Equation (5.44) can be solved by the contraction
mapping principle to obtain a unique solution.

Finally, it is easy to verify from the contraction mapping that

‖(UR, V R, {U i}, {V i}, λ, {ci})‖ ≤ C(‖{δW i,+}, {δW i,−}, hR, {hi})‖

≤ C(εm + εβ(m+1)−1 + e−αεβ−1

(εβ−1)m ≤ Cεβ(m+1)−1.

As ε → 0, (UR, V R, {U i}, {V i}, λ, {ci}) → 0. The exact eigenvalue and eigen-
functions are asymptotically O(εβ(m−1)+2β−1) near the approximations λap, U

R
ap and

{U i
ap}. ¤
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