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Abstract. The Generalized Riemann Problem (GRP) for nonlinear hyperbolic system
of m balance laws (or alternatively “quasi-conservative” laws) in one space dimension is
formulated as follows: Given initial-data which are analytic on two sides of a discontinuity,
determine the time evolution of the solution at the discontinuity. In particular, the GRP
numerical scheme (second-order high resolution) is based on an analytical evaluation of
the first time derivative. The analytical solution is readily obtained for a single equation
(m = 1) and, more generally, if the system is endowed with a complete (coordinate) set of
Riemann invariants. In this case it can be “diagonalized” and reduced to the scalar case.
However, most systems with m > 2 do not admit such a set of Riemann invariants. This
paper introduces a generalization of this concept: “Weakly Coupled Systems” (WCS). Such
systems have only “partial set” of Riemann invariants, but these sets are weakly coupled in a
way which enables a “diagonalized” treatment of the GRP. An important example of a WCS
is the Euler system of compressible, nonisentropic fluid flow (m = 3). The solution of the
GRP discussed here is based on a careful analysis of rarefaction waves. A “propagation of
singularities” argument is applied to appropriate Riemann invariants across the rarefaction
fan. It serves to “rotate” initial spatial slopes into “time derivative”. In particular, the case
of a “sonic point” is incorporated easily into the general treatment. A GRP scheme based
on this solution is derived, and several numerical examples are presented. Special attention
is given to the “acoustic approximation” of the analytical solution. It can be viewed as
a proper linearization (different from the approach of Roe) of the nonlinear system. The
resulting numerical scheme is the simplest (second-order, high-resolution) generalization of
the Godunov scheme.
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1. Introduction

In this paper we consider the generalized Rieman problem (GRP) for hyperbolic balance
laws

(1.1)
∂U

∂t
+
∂F (U)

∂x
= S(x, U),

where U = (u1, · · · , um)⊤ is an unknown function of x and t, F = (f1, · · · , fm)⊤ is the
associated flux, and S(x, U) is the source term resulting from geometrical and physical
effects. We develop the method of Riemann invariants in order to solve the generalized
Riemann problem and derive a GRP high resolution scheme for the system. Our starting
point in the present study is the associated Riemann problem, i.e., the Riemann problem
for the homogeneous counterpart of (1.1), which is assumed to be solvable theoretically
and numerically. We show that the Riemann invariants, which always exist for strictly
hyperbolic systems of two equations (i.e., m = 2), play a pivotal role in the GRP solution
for a large family of hyperbolic systems, including the system of shallow water equations,
the compressible fluid flow (both isentropic and non-isentropic) and so on.

The GRP scheme was originally designed for compressible fluid flows [1, 4]. As the ex-
tension of the Godunov scheme [9], the GRP scheme assumes piecewise initial data and
evolves the solution of (1.1) by analytically solving the generalized Riemann problem at
each cell interface with second order accuracy. Specifically, we denote by Cj = [xj−1/2, xj+1/2]
(∆x = xj+1/2 − xj−1/2) the computational cell numbered j, and by {tn}∞n=0 the sequence of
discretized time levels, ∆t = tn+1 − tn. Assume that the data at time t = tn is piecewise
linear with a slope σnj , i.e. on Cj we have

(1.2) U(x, tn) = Un
j + σnj (x− xj), x ∈ (xj−1/2, xj+1/2).
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Then a Godunov-type scheme of second order usually takes the form

(1.3) Un+1
j = Un

j − ∆t

∆x

(

F
n+1/2
j+1/2 − F

n+1/2
j−1/2

)

+
∆t

2

(

S
n+1/2
j+1/2 + S

n+1/2
j−1/2

)

,

where we use the notations

(1.4) F
n+1/2
j+1/2 = F (U

n+1/2
j+1/2 ), S

n+1/2
j+1/2 = S(xj+1/2, U

n+1/2
j+1/2 ),

and Un
j is the average of U(x, tn) over the cell Cj and U

n+1/2
j+1/2 is the mid-point value or the

average of U(xj+1/2, t) over the time interval [tn, tn+1]. The source term S(x, U) is currently
discretized with an interface method, which is the trapezoidal rule in space and the mid-

point rule in time [4, 11]. The central issue is how to obtain the mid-point value U
n+1/2
j+1/2 .

The GRP scheme formally approximates this value by the Taylor expansion (ignoring higher
order terms),

(1.5) U
n+1/2
j+1/2

∼= Un
j+1/2 +

∆t

2

(

∂U

∂t

)n

j+1/2

,

where

(1.6) Un
j+1/2 = lim

t→tn+0
U(xj+1/2, t),

(

∂U

∂t

)n

j+1/2

= lim
t→tn+0

∂U

∂t
(xj+1/2, t).

The value Un
j+1/2 is obtained by solving the associated Riemann problem for the homogeneous

hyperbolic conservation laws as used in the first order Godunov scheme [9]. We are left with
the calculation of (∂U/∂t)nj+1/2, which is the main ingredient in the GRP solution.

Let us take a look at a single equation case (U , F in (1.1) are scalar functions). At each
grid point (xj+1/2, tn), only a single wave emanates. Therefore we are able to use the equation
(1.1) to get

(1.7)

(

∂U

∂t

)n

j+1/2

= −F ′(Un
j+1/2) ·

(

∂U

∂x

)n

j+1/2

+ S(xj+1/2, U
n
j+1/2),

where (∂U/∂x)nj+1/2 is upwind taken from the initial data at time t = tn. That is, (∂U/∂x)nj+1/2

is taken from the left (resp. right) hand side of x = xj+1/2 if F ′(Un
j+1/2) > 0 (resp.

F ′(Un
j+1/2) < 0). It is clear that the limiting value (∂U/∂t)nj+1/2 does not vanish due to

the source term effect even if initially the slopes σnj in (1.2) are identically zero. Therefore
even in the first order Godunov scheme the time derivative (∂U/∂t)nj+1/2 should be properly
treated.

In general (1.7) is not valid when (1.1) is a system, because there exists more than one
nonlinear wave issuing from the singularity point (xj+1/2, tn) and the interface x = xj+1/2

is, generally speaking, located in an intermediate region. We are therefore looking for the
substitute of (1.7) in the system case. As a motivation for our treatment, consider the
following strictly linear hyperbolic system,

(1.8)
∂U

∂t
+ A

∂U

∂x
= 0,

where A is a constant matrix with m real distinct eigenvalues. Denote by Λ the diagonal
matrix whose entries are the eigenvalues of A, and by L the matrix whose row vectors are
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the left eigenvectors of A. Then the standard diagonalization process yields

(1.9)
∂W

∂t
+ Λ · ∂W

∂x
= 0, W = LU.

These equations are entirely decoupled, each component of W can be treated as in the scalar
case.

For the nonlinear case we have similar conclusions when the system (1.1) is endowed
with a coordinate system of Riemann invariants [8]. An important and direct consequence
is that (1.1) can be transformed into a weakly coupled form, analogous to the linear case
mentioned above. Moreover in the associated Riemann problem the Riemann invariants are
constant throughout the corresponding rarefaction wave, or in the linearly degenerate case
they are continuous across the corresponding contact discontinuity. These properties have
the following implications:

(i) Thinking of the initial data (1.2) with non-zero slopes as a perturbation of piecewise
constant Riemann initial data and the source term S(x, U) as a perturbation of the homo-
geneous system of equations, the solution of the generalized Riemann problem for (1.1) is
a perturbation of the solution of the associated Riemann problem mentioned above at least
in the neighborhood of the singularity point. Therefore the Riemann invariants are regu-
lar locally across the corresponding (curved) rarefaction wave (in the generalized Riemann
problem) although the derivatives of the solution of (1.1) usually explode there. Thus we
can take a usual calculus manipulation for the Riemann invariants.

(ii) Each Riemann invariant is transported with a single equation (see Theorem 4.3). The
transport equation enables us to resolve the rarefaction wave in a quite simple way, analogous
to the treatment of the scalar equation. Certainly we need to overcome the technical coupling
difficulty by using characteristic coordinates. In this paper, we use the Riemann invariants
to resolve the rarefaction waves in the generalized Riemann problem for (1.1) as a main
ingredient in our GRP solution.

(iii) The fact that the Riemann invariants are continuous across the corresponding contact
discontinuity simplifies the resolution of contact discontinuities.

(iv) The existence of Riemann invariants is independent of the Eulerian or Lagrangian
formulation of physical models. Therefore, the resulting schemes could be either Eulerian or
Lagrangian. We avoid the passage from the Lagrangian version to the Eulerian case, as was
done in [1].

(v) In each rarefaction wave, the behavior of the corresponding Riemann invariant is
determined by a suitable (scalar) transport equation. As a consequence, the sonic case, i.e.,
when the rarefaction wave spans the cell interface, is automatically resolved, see Subsections
6.1 and 7.2. Recall that the sonic case is the most delicate in the original GRP scheme [1]
or MUSCL-type schemes.

Therefore it is natural to use the Riemann invariants to solve the generalized Riemann
problem and derive the resulting GRP scheme. This idea has been used in the context of
shallow water equations and planar compressible fluid flows [13, 5]. As is well-known [8, Sec.
7.3], any strictly hyperbolic system of two equations is endowed with a coordinate system of
Riemann invariants. On the other hand, such a coordinate system does not generally exist
for systems of the form (1.1) when m ≥ 3. However, many physical systems are weakly
coupled (in a sense to be made precise later, see Definition 7.7) and can be reduced into a
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form that is amenable to the Riemann invariant approach. In particular, we can use this
approach to handle the system of compressible fluid duct flows in Section 9.

Next we point out the difference between our approach and the original GRP scheme [1].
The original GRP scheme was designed for the compressible fluid flows with two related
Lagrangian and Eulerian versions. The Eulerian version is always based on the Lagrangian
treatment. The transformation is quite delicate, particularly for sonic cases, because it
becomes singular at the sonic point. In contrast, our approach leads to a much simpler direct
Eulerian scheme. Another approach by the asymptotic analysis can be found in [15, 7]. We
mention here the paper [19] where the GRP is solved assuming the solution is given when
the initial data have a general analytic distribution on the two sides of cell interface. We
note, however, that our solution to the GRP uses only the limiting values of slopes at the
interface and thus it is amenable to any given distributions of flow variables adjacent to the
cell interface.

The resulting GRP scheme consists of only two steps: (i) the Riemann solver; (ii) the
calculation of (∂U/∂t)nj+1/2. The (exact or approximate) Riemann solver is standard for many

physical systems [18] and references therein. The limiting value (∂U/∂t)nj+1/2 is obtained just

by solving a linear algebraic system, very close to the linear case (1.8). This linear system
can be obtained either by the analytic GRP for (1.1), in which case we label the GRP method
as a G∞–scheme, or by using an acoustic approximation for the GRP, in which case we label
the GRP mathod as a G1-scheme. We note that the G1-scheme is, in principle, the simplest
second order extension of the Godunov scheme, it just adds about 2 − 5% computation.
We mention also that there are a number of intermediate schemes derived from the analytic
resolution. In particular, the G2-scheme is actually equivalent to the MUSCL-scheme, see
Appendix D in [1].

For the convenience of the reader, we have structured the paper as follows. Sections
4–6 treat in detail the case of the system consisting of two equations. This enables us
to illustrate clearly the role of Riemann invariants and characteristic coordinates. Then
in Section 7 we introduce the main topic of the present paper, i.e, the application of the
Riemann invariants to general weakly coupled systems (WCS). Section 8 is both theoretical
and practically important, it introduces an acoustic approximation as the linearized version
of nonlinear systems and show how to apply it in the numerical setting. As mentioned
above, it leads to a very simple second order extension of the Godunov scheme. Section 9
is devoted to the discussion of the GRP solution in terms of the abstract method developed
in the earlier sections. In particular, in Section 9.3 we discuss the system of compressible
(non-isentropic) duct flows in the framework of a “weakly coupled system”. In Section 10
we give some numerical examples.

2. The setup of GRP scheme

The GRP scheme for the numerical approximation of (1.1) assumes piecewise linear initial
data in computational cells and relies on analytical solutions of the generalized Riemann
problem at each cell interface. For convenience, we set the cell interface at x = 0 and the
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initial data as

(2.1) U(x, 0) =

{

UL + U ′

Lx, x < 0,

UR + U ′

Rx, x > 0,

where UL, UR, U ′

L and U ′

R are constant vectors. We denote by U(x, t) the solution of (1.1)
and (2.1). Correspondingly, the limiting values in (1.6) are denoted by

(2.2) U∗ = U(0, 0+),

(

∂U

∂t

)

∗

=
∂U

∂t
(0, 0+).

The initial structure of the solution U(x, t) of (1.1) and (2.1) is determined by the associated
Riemann problem for

(2.3)
∂U

∂t
+
∂F (U)

∂x
= 0, x ∈ R, t > 0,

subject to the Riemann initial data

(2.4) U(x, 0) =

{

UL, x < 0,

UR, x > 0.

We call the solution of (2.3) and (2.4) the associated Riemann solution of (1.1) and (2.1).
Our GRP scheme is of the Godunov-type and based on the solvability of (2.3) and (2.4).

Assumption: The Riemann problem (2.3) and (2.4) is uniquely solvable, thus enabling
the Godunov scheme.

The Riemann solution of (2.3) and (2.4) is self similar and denoted by RA(x/t;UL, UR).
Then we have the following proposition [15].

Proposition 2.1. Let U(x, t) be the solution to the generalized Riemann problem (1.1) and
(2.1) and let RA(x/t, UL, UR) be the solution of the associated Riemann problem (2.3) and
(2.4). Then for every fixed direction λ = x/t,

(2.5) lim
t→0+

U(λt, t) = RA(λ;UL, UR).

This implies that the wave configuration for the generalized Riemann problem (1.1) and
(2.1) is the same as that for the associated Riemann problem (2.3) and (2.4) near the origin
(x, t) = (0, 0).

We illustrate this proposition schematically in Figure 2.1. The limiting value U∗ in (2.2)
(correspondingly Un

j+1/2 in (1.6)) is just the Riemann solution along the line x = 0,

(2.6) U∗ = RA(0;UL, UR).

This is already known and used in the Godunov scheme [9]. They can be obtained with the
exact or approximate Riemann solver [18]. Therefore, in order to get the GRP scheme, the
main issue is only how to calculate (∂U/∂t)∗. Once the limiting value (∂U/∂t)∗ is obtained,
we implement the GRP scheme by the following four steps.

Step 1. Given piecewise linear initial data of the type

(2.7) Un(x) = Un
j + σnj (x− xj), x ∈ (xj−1/2, xj+1/2),
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0

x

t

β = βL

shock

rarefaction

U−

U+

U1

U2

contact

β = β∗

UL UR

U∗

(a) Wave pattern for the GRP

x

t

β = βL shock

rarefaction

UL UR

U1

U2

contact
β = β∗

U∗

0
(b) Wave pattern for the associated Riemann problem

Figure 2.1. The setup of the GRP scheme

we solve the Riemann problem for (2.3) to define the Riemann solution

(2.8) Un
j+1/2 = RA(0;Un

j +
∆x

2
σnj , U

n
j+1 −

∆x

2
σnj+1).

This is the same as the classical Godunov scheme [9].

Step 2. Determine (∂U/∂t)nj+1/2. This is the main theme in the present paper. It turns
out that this time derivative of solution vector is obtained by simply solving a linear algebraic
system of equations.

Step 3. Approximate numerically the solution of (1.1) by using (1.3) and (1.5).

Step 4. Update the slope by the following procedure. Define

(2.9)
Un+1,−
j+1/2 = Un

j+1/2 + ∆t

(

∂U

∂t

)n

j+1/2

,

σn+1,−
j =

1

∆x
(∆U)n+1,−

j =
1

∆x
(Un+1,−

j+1/2 − Un+1,−
j−1/2 ).

Then in order to suppress oscillations near discontinuities we modify σn+1,−
j by a mono-

tonicity algorithm to get σn+1
j , see [1, 12], in the sense of slope limiters. For the numerical
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examples in Section 10, we use the following limiter

(2.10) σn+1
j = minmod

(

α
Un+1
j − Un+1

j−1

∆x
, σn+1,−

j , α
Un+1
j+1 − Un+1

j

∆x

)

,

where the parameter α ∈ [0, 2).

Remark 2.2. In comparison with other (even first order) upwind schemes, we at most need to
solve a linear system of algebraic equations additionally. For the G1-scheme to be presented
in Section 8, we need to solve a linear system of algebraic equations exactly. Compared
with the Godunov scheme, just additional 2 ∼ 5% of computation time is required in most
practical cases.

3. Heuristic explanation from a linear system

In this section we use a familiar linear system to explain the necessity to introduce the
Riemann invariants in upwind (the Godunov-type) schemes. The linear example is

(3.1)
∂u

∂t
+ c

∂v

∂x
= 0,

∂v

∂t
+ c

∂u

∂x
= 0,

where c > 0 is constant. This model describes two linear waves: One propagates to the left
with velocity −c and the other to the right with velocity c.

For the given initial data of type (2.1), where U = (u, v)⊤, the solution is discontinuous
at the origin and the discontinuities propagate along characteristics. Therefore we are not
able to use (3.1) to simply get ∂u/∂t and ∂v/∂t, as in the single equation case. However, if
(3.1) is written in the following form

(3.2)
∂(u − v)

∂t
− c

∂(u− v)

∂x
= 0,

∂(u+ v)

∂t
+ c

∂(u+ v)

∂x
= 0,

we see that the function u+ v (resp. u− v) is smooth on the two sides of the characteristic
dx/dt = c (resp. dx/dt = −c). The functions u ± v correspond to the Riemann invariants
in nonlinear cases. Turning back to the system (3.1), we denote u′

∗
= lim

t→0+
(∂u/∂x)(0, t)

(similarly for v′
∗
). Then we can proceed, as in scalar cases, to get

(3.3)

u∗ + v∗ = uL + vL, u′
∗
+ v′

∗
= u′L + v′L,

u∗ − v∗ = uR − vR, u′
∗
− v′

∗
= u′R − v′R.

By using (3.2), we have

(3.4)

(

∂u

∂t

)

∗

+

(

∂v

∂t

)

∗

= −c(u′L + v′L),

(

∂u

∂t

)

∗

−
(

∂v

∂t

)

∗

= c(u′R − v′R).

In order to get (∂u/∂t)∗ and (∂v/∂t)∗, we need to solve (3.4) and get

(3.5)

(

∂u

∂t

)

∗

= −c(u
′

L + v′L)

2
+
c(u′R − v′R)

2
,

(

∂v

∂t

)

∗

= −c(u
′

L + v′L)

2
− c(u′R − v′R)

2
.

This is essentially the solution of GRP for (3.1).

We summarize the above process in the following two steps:
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(i) Find Riemann invariants and obtain their time derivatives. Thus the system of linear
equations (3.4) is derived.

(ii) Solve the resulting linear system of algebraic equations to yield the limiting values
(∂u/∂t)∗ and (∂v/∂t)∗.

In the nonlinear case of (1.1), we also perform these two steps. In particular, the concept
of Riemann invariants plays a pivotal role and corresponds to the quantities u+ v and u− v
here. They are used to analytically resolve the rarefaction waves in the generalized Riemann
problem (1.1) and (2.1), which constitutes the important feature of the resulting scheme. In
addition, they are useful in resolving contact discontinuities.

4. The resolution of rarefaction waves in the two-equation system

In this section we focus on the case of a strictly hyperbolic system of two equations. We
note that the physical models of isentropic (compressible) flows and shallow water equations
are examples of such systems. Furthermore, we shall later show that the main idea here
carries over to a broader class of general systems.

Thus, we assume that (1.1) consists of two equations and denote U = (u, v)⊤ and F =
(f(u, v), g(u, v))⊤. The Jacobian matrix DF (U) = ∂F/∂U has two distinct eigenvalues

(4.1) λ(u, v) < µ(u, v),

and further assume that λ is genuinely nonlinear, and thus its associated wave is either a
rarefaction wave or a shock [8]. As in [8, Sec. 7.3] the system is endowed with a coordinate
system of Riemann invariants which we shall denote by φ and ψ. In terms of these new
unknowns (1.1) is reduced into the form

(4.2)



















∂φ

∂t
+ λ(φ, ψ)

∂φ

∂x
= k1(x, φ, ψ),

∂ψ

∂t
+ µ(φ, ψ)

∂ψ

∂x
= k2(x, φ, ψ),

where k1 and k2 are two functions resulting from the source term of (1.1) and they are
expressed in terms of the Riemann invariants φ, ψ. For uniformity, we denote W = (φ, ψ)⊤,
K = (k1, k2)

⊤ and Λ = diag(λ, µ). Then (4.2) is rewritten as

(4.3)
∂W

∂t
+ Λ(W )

∂W

∂x
= K(x,W ).

As pointed out earlier, the main feature of the GRP scheme is the resolution of rarefaction
waves. In this context, it will turn out that the concept of characteristic coordinates is quite
useful.

4.1. Characteristic coordinates. The characteristic coordinates, as the integral curves of
characteristic equations, play an important role in the resolution of rarefaction waves and
simplify the calculation. Let Cλ : β(x, t) = const. be the integral curve of the differential
equation

(4.4)
dx

dt
= λ(φ, ψ),
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and Cµ : α(x, t) = const. be the integral curve of the differential equation

(4.5)
dx

dt
= µ(φ, ψ).

Consider a domain in the (x, t)-plane where the coordinates (x, t) can be obtained as func-
tions of α and β. This transformation is denoted by

(4.6) t = t(α, β), x = x(α, β).

In terms of the characteristic coordinates (α, β), the system (4.2) can be rewritten in the
form of the characteristic equations

(4.7)























∂x

∂α
= λ(φ, ψ)

∂t

∂α
,

∂φ

∂α
=

∂t

∂α
· k1(x(α, β), φ, ψ),

∂x

∂β
= µ(φ, ψ)

∂t

∂β
,

∂ψ

∂β
=
∂t

∂β
· k2(x(α, β), φ, ψ).

It follows, by differentiating the first pair of equations with respect to β, the second with
respect to α and subtracting, that t = t(α, β) satisfies,

(4.8) (λ− µ)
∂2t

∂α∂β
+
∂λ

∂β

∂t

∂α
− ∂µ

∂α

∂t

∂β
= 0.

We differentiate the ψ-equation in (4.7) with respect to α and incorporate (4.8) into the
resulting equation to get that ψ = ψ(α, β) satisfies

(4.9)

∂2ψ

∂α∂β
=

∂2t

∂α∂β
· k2(x(α, β), φ, ψ) +

∂t

∂β

∂k2

∂α

= − k2

λ− µ
· ∂λ
∂β

· ∂t
∂α

+
∂t

∂β

(

k2

λ− µ

∂µ

∂α
+
∂k2

∂α

)

.

Similarly, we have the second order equation for the Riemann invariant φ,

(4.10)
∂2φ

∂α∂β
= − k1

µ− λ
· ∂µ
∂α

· ∂t
∂β

+
∂t

∂α

(

k1

µ− λ

∂λ

∂β
+
∂k1

∂β

)

.

Next we turn to the detailed analysis of the rarefaction wave for the generalized Riemann
problem (1.1) and (2.1). In view of Proposition 2.1, when approaching the origin (x, t) =
(0, 0), the solution U(x, t) is determined by the associated Riemann solution RA(x/t;UL, UR).
We can therefore regard the former as a perturbation of the latter. When investigating the
(curved) centered rarefaction wave for the generalized Riemann problem, we will use the same
domain of characteristic coordinates as the one determined by the associated rarefaction
wave.
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Cλ
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(a) The curved rarefaction wave in the generalized Riemann prob-
lem

x

t

x = α1

Cλ
β∗

: β = β∗
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α1 : α = α1

Cλ
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: β = βL = λL

U∗

UL

Rarefaction wave

x = α2

C
µ
α2 : α = α2

(b) The rarefaction wave in the associated Riemann problem

Figure 4.1. Characteristic coordinates throughout a centered rarefaction wave

4.2. The resolution of rarefaction waves. We start with the associated rarefaction wave
for the Riemann problem (2.3) and (2.4). We assume the structure as in Figure (4.1)(b) and
the rarefaction wave is denoted by RA

λ . Further, the t−axis is located in the smooth domain
behind the rarefaction wave RA

λ .
Since ψ is constant across the rarefaction wave RA

λ , we express it by using

(4.11)

{

λ(φ, ψ) = x/t,

ψ = ψL,

where ψL is the value of ψ at the head characteristic of RA
λ , i.e. β = βL. This rarefaction

wave expands from βL up to β∗. We define the characteristic coordinate β = x/t. The
characteristic coordinate α is defined as follows. In view of (4.11), one has λ(φ, ψL) = β,
which can be inverted to yield,

(4.12) φ = φ(x/t;ψL) = φ(β;ψL).
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Then the characteristic curve Cµ
α0

: α(x, t) = α0 is defined to be the integral curve of the
equation

(4.13)
dx

dt
= µ(φ, ψ) = µ(φ(x/t;ψL), ψL),

where the constant α0 is chosen to be the x-coordinate of the intersection point of Cµ
α0

with

the leading λ-characteristic curve Cλ
βL

. This determines (x, t) as functions of (α, β).
Denote the corresponding characteristic map to the (x, t)-plane by

(4.14) t = tass(α, β), x = xass(α, β).

All other variables including the eigenvalues λ, µ and Riemann invariants can now be ex-
pressed as smooth functions of (α, β). We observe that the characteristic map is singular at
α = 0, where the segment between βL and β∗ is mapped to the origin (x, t) = (0, 0). We
note that tass(α, β) satisfies at α = 0, in view of (4.8) and the fact that (∂tass/∂β)(0, β) = 0,
that

(4.15) (λ− µ)
∂2tass
∂α∂β

(0, β) = −∂tass
∂α

(0, β) · ∂λ
∂β

(0, β).

Since (∂λ/∂β)(0, β) = 1, by the definition of β-coordinate, we get

(4.16)
∂tass
∂α

(0, β) =
∂tass
∂α

(0, βL) exp

(
∫ β

βL

1

(µ− λ)(0, ξ)
dξ

)

.

By our choice of the α-coordinate as the x-value of the intersection point of Cµ
α with the

leading characteristic Cλ
βL

, we obtain (∂xass/∂α)(0, βL) = 1. Then we use (4.7) to get

(4.17)
∂tass
∂α

(0, βL) =
1

βL

∂xass
∂α

(0, βL) =
1

βL
.

This together with (4.16) gives the explicit expressions for the derivatives of tass(α, β),
xass(α, β) at the singularity point (x, t) = (0, 0),

(4.18)

∂tass
∂α

(0, β) =
1

βL
exp

(
∫ β

βL

1

µ(0, ξ)− ξ
dξ

)

,

∂xass
∂α

(0, β) =
β

βL
exp

(
∫ β

βL

1

µ(0, ξ) − ξ
dξ

)

.

Remark 4.1. Inspecting (4.11), (4.12) and (4.16), we see that the ratio between (∂tass/∂α)(0, β)
and (∂tass/∂α)(0, βL) is function of β and is independent of the α-coordinate. Therefore,
we retain the degree of freedom in our choice of α, which will simplify some calculation, see
Section 9.

In the following we turn to deal with the generalized Riemann problem (1.1) and (2.1), and
consider the general (curved) rarefaction wave, see Figure 4.1(a). The characteristic curves
inside the curved rarefaction wave t = t(α, β), x = x(α, β) are second order approximations
of tass(α, β) and xass(α, β) as α→ 0. This fact is stated in the following proposition and the
proof is omitted in the present paper.
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Proposition 4.2. As α → 0, we have the following asymptotic expressions for t(α, β),
x(α, β),

(4.19) t(α, β) = tass(α, β) +O(α2), x(α, β) = xass(α, β) +O(α2),

where βL ≤ β ≤ β∗.

With this proposition, we have the following theorems about the resolution of the rarefac-
tion wave.

Theorem 4.3. Let ψα(0, β) = ∂ψ
∂α

(0, β). Then throughout the rarefaction wave associated
with λ, we have

(4.20) ψα(0, β) = ψα(0, βL) +

∫ β

βL

− k2

λ− µ
(0, ξ) · ∂tass

∂α
(0, ξ)dξ, βL ≤ β ≤ β∗.

The initial datum ψα(0, βL) is

(4.21) ψα(0, βL) = ψ′

L +
1

βL
(k2,L − µLψ

′

L),

where ψ′

L is determined by UL, U
′

L as in (2.1) and k2,L = k2(0, φL, ψL) (see the RHS of
(4.2)).

Proof. Recall that

(4.22)
∂t(0, β)

∂β
= 0,

∂x(0, β)

∂β
= 0.

The asymptotic behavior of solutions at the origin, see Proposition 4.2, shows

(4.23)
∂t

∂α
(0, β) =

∂tass
∂α

(0, β),
∂x

∂α
(0, β) =

∂xass
∂α

(0, β).

Therefore, setting α = 0 in (4.9), we obtain

(4.24)
∂

∂β
(ψα(0, β)) = − k2

λ− µ
(0, β) · ∂tass

∂α
(0, β), β ∈ (βL, β∗),

which yields (4.20) by integration.

The initial datum ψα(0, βL) comes from the characteristic form (4.7) by using the chain
rule,

(4.25)

∂ψ

∂α
(0, βL) =

∂ψ

∂x
(0, βL)

∂x

∂α
(0, βL) +

∂ψ

∂t
(0, βL)

∂t

∂α
(0, βL)

= ψ′

L +
∂ψ

∂t
(0, βL) ·

1

βL
,

where we use the fact that (∂x/∂α)(0, βL) = 1 and (∂t/∂α)(0, βL) = 1/βL. Then we use the
ψ-equation in (4.2) to get (4.21). �

Theorem 4.4. Consider the rarefaction wave Rλ associated with λ. Then we have

(4.26) aL

(

∂u

∂t

)

∗

+ bL

(

∂v

∂t

)

∗

= d∗L,
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where (aL, bL) = (∇Uψ)∗, ∇Uψ = (∂ψ/∂u, ∂ψ/∂v) and

(4.27) d∗L =
µ∗

µ∗ − λ∗
·
(

ψα(0, β∗) ·
(

∂tass
∂α

)−1

(0, β∗) −
λ∗
µ∗

· k2(0, φ∗, ψ∗)

)

.

Proof. We use the result of Theorem 4.3 at β = β∗ and express the directional derivative in
terms of (x, t) derivatives. Using the equations for ψ in (4.7) and (4.2), one obtains,

(4.28)

ψα(0, β∗) =
∂tass(0, β∗)

∂α
·
(

∂ψ

∂t
+ λ

∂ψ

∂x

)

(0, β∗)

=
∂tass(0, β∗)

∂α

[(

∂ψ

∂t

)

∗

+
λ∗
µ∗

(

−
(

∂ψ

∂t

)

∗

+ k2(0, φ∗, ψ∗)

)]

.

It follows that,

(4.29)

(

∂ψ

∂t

)

∗

=
µ∗

µ∗ − λ∗
·
[

ψα(0, β∗) ·
(

∂tass
∂α

)−1

(0, β∗) −
λ∗
µ∗

· k2(0, φ∗, ψ∗)

]

,

where λ∗ = β∗. We note that ψ is regular across the characteristic Cλ
β∗

. Hence the value of
ψα(0, β∗) can be evaluated using the values of ∂ψ/∂t, ∂ψ/∂x in the smooth domain behind
the rarefaction wave Rλ. We write ψ in terms of U and immediately arrive at (4.26). �

Remark 4.5. Note that the term ψα(0, β∗) ·
(

∂tass
∂α

)−1

(0, β∗) is clearly independent of the

choice of α, cf. Remark 4.1.

Remark 4.6. Since ψ is constant throughout RA
λ in the associated Riemann solution, ψ is

still regular even when the initial data has non-zero slopes and the source term is present in
the governing equation (4.2). This is the reason that we can resolve the rarefaction wave in
terms of ψ. Note that φα(0, β∗) = k1(0, φ∗, ψ∗) · (∂tass/∂α)(0, β∗). Hence we cannot use it to
get (∂φ/∂t)∗, and thus this relation cannot be used to obtain (∂U/∂t)∗.

5. The resolution of shocks for the two-equation system

In this section we continue the investigation of the two-equation system (as in Section
4) by discussing the resolution of shocks. We assume that the wave associated with the µ
family is a shock moving to the right and let the shock trajectory be x = x(t) with the speed
σ(t) = x′(t), separating two limiting states U , U . To fix the ideas, we assume that U is
the state ahead of the shock while U is the state behind it. This shock is described by the
Rankine-Hugoniot jump condition,

(5.1) F (U) − F (U) = σ(U − U).

Then we know [8, Section 8.2] that if a state U connects to U by the shock with speed σ,
(5.1) gives the Hugoniot locus of the form,

(5.2)

{

σ = σ(U,U),

U = U + τK(U,U),
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Figure 5.1. A typical wave pattern for the two-equation case

where τ > 0 is a parameter describing the strength of the shock. In fact, the system (5.2)
corresponds to one of the two shock curves associated with λ, µ (recall that λ, µ are two
genuinely nonlinear eigenvalues for the system of two equations in Section 4). Eliminating
the parameter τ from (5.2) yields a single equation connecting the state U = (u, v) to the
state U = (u, v), given by

(5.3) Ψ(U ;U) = 0.

This is indeed the equation for the Hugoniot curve in the state (u, v)-plane, and it holds
along the shock trajectory x = x(t) identically. Note that U , U are the limiting states on
both sides of x = x(t), U = U(x(t), t), U = U(x(t), t), where we are now using U and U also
for the full states behind and ahead of the shock, respectively.

In terms of Riemann invariants W (see (4.3) for the notation W ), we can rewrite (5.3) in
the form

(5.4) Φ(W ;W ) = 0.

We may therefore differentiate (5.4) in the direction of the shock x = x(t) and get

(5.5) ∇WΦ ·
(

∂W

∂t
+ σ

∂W

∂x

)

= −∇WΦ ·
(

∂W

∂t
+ σ

∂W

∂x

)

.

We want to solve (5.5) for ∂W/∂t. We are assuming that the t-axis is located in the inter-
mediate region so that λ < 0 and µ > 0 (see Figure 5.1). In the sonic case where the t-axis is
located in the rarefaction wave, we already have the full solution, see Subsection 6.1 below.
We use the diagonal form (4.3) to obtain,

(5.6)
∂W

∂x
= Λ(W )−1

(

−∂W
∂t

+K(x,W )

)

,
∂W

∂t
= −Λ(W )

∂W

∂x
+K(x,W ).

Note that the limiting values of σ, W , W , ∂W/∂t and ∂W/∂x (see Eqs. (2.1), (2.2) ) are
(5.7)

lim
t→0+

σ = σ0, lim
t→0+

W = W∗, lim
t→0+

∂W

∂t
=

(

∂W

∂t

)

∗

, lim
t→0+

W = WR, lim
t→0+

∂W

∂x
= W ′

R,
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where the limits in (5.7) correspond to our assumption that σ0 > 0, so that the shock moves
into the domain x > 0, leaving the t-axis in the smooth domain behind it. It is clear how to
change the limits when σ0 < 0. Then we use (5.6), (5.7) in (5.5) so as to obtain
(5.8)

∇WΦ(W∗;WR)(I − σ0Λ(W∗)
−1)

(

∂W

∂t

)

∗

= −σ0∇WΦ(W∗;WR)Λ(W∗)
−1K(0,W∗) −∇WΦ(W∗;WR) [(σ0I − Λ(WR))W ′

R +K(0,WR)] .

We express ∂W/∂t in terms of ∂U/∂t (as in the end of the proof of Theorem 4.4), in order
to obtain the following theorem.

Theorem 5.1. Consider the two equation system (1.1) , subject to the initial data (2.1).
Assume that the wave pattern is as in Figure 5.1, i.e., the wave associated with the µ family
is a shock moving to the right and that the t-axis is contained in the smooth region behind
it. Then the two components of (∂U/∂t)

∗
(see (2.2)) satisfy the following linear equation at

the singularity (x, t) = (0, 0),

(5.9) aR

(

∂u

∂t

)

∗

+ bR

(

∂v

∂t

)

∗

= dR,

where the coefficients aR, bR and dR are given explicitly as

(5.10)

(aR, bR) = ∇WΦ(W∗;WR)(I − σ0Λ(W∗)
−1)DW (U∗),

dR = −σ0∇WΦ(W∗;WR)Λ(W∗)
−1K(0,W∗)

−∇WΦ(W∗;WR) [(σ0I − Λ(UR))W ′

R +K(0,WR)] .

Remark 5.2. If the eigenvalue µ is linearly degenerate, the corresponding jump discontinuity
is a contact discontinuity. For this case, σ(W,W ) = µ(W ) = µ(W ) and in the limit

(5.11) I − σ0Λ(W∗)
−1 =

(

(λ∗ − µ∗)/λ∗ 0

0 0

)

, σ0I − Λ(WR) =

(

µR − λR 0

0 0

)

,

The first component of equation (5.8) gives a scalar equation
(5.12)

∂Φ(W∗;WR)

∂φ
· λ∗ − µ∗

λ∗
·
(

∂φ

∂t

)

∗

= −µ∗∇WΦ(W∗;WR)Λ(W∗)
−1K(0,W∗) −

∂Φ(W∗;WR)

∂φ
· (µR − λR) · (φ′

R + k1(0,WR)).

These arguments also apply to the acoustic case that will be discussed later on. The idea
will be used to consider weak shocks as characteristic curves, thus treating the weak shocks
as linearly degenerate discontinuities. Clearly we can also obtain a linear equation in the
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same form as (5.9) with coefficients
(5.13)

(aR, bR) =
∂Φ(W∗;WR)

∂φ
· λ∗ − µ∗

λ∗
· (∇Uφ)∗,

dR = −µ∗∇WΦ(W∗;WR)Λ(W∗)
−1K(0,W∗) −

∂Φ(W∗;WR)

∂φ
· (µR − λR) · (φ′

R + k1(0,WR)).

6. The time derivative of solutions at the singularity for the

two-equation system

In this section we summarize the results of Sections 4 and 5 in order to present the full
solution to the generalized Riemann problem for (1.1) in the two equation case, subject to the
initial condition (2.1) at the singularity. As has already been mentioned in the Introduction,
this case represents significant physical models. In addition, we shall see in the following
section how this solution can be readily extended to many important cases of larger systems
of conservation laws.

Theorem 6.1. Assume that the local wave pattern for the generalized Riemann problem (1.1)
is as depicted in Figure 5.1, and the t-axis is inside the intermediate (smooth) region. Then
the limiting value (∂U/∂t)∗ can be obtained by solving the following pair of linear algebraic
equations,

(6.1)



























aL

(

∂u

∂t

)

∗

+ bL

(

∂v

∂t

)

∗

= dL,

aR

(

∂u

∂t

)

∗

+ bR

(

∂v

∂t

)

∗

= dR,

where aL, bL and dL are given in Theorem 4.4 and aR, bR and dR are given in Theorem 5.1.

6.1. The sonic case. Special attention should be paid to the case where the t-axis (the cell
interface x = 0) is contained in the rarefaction wave, so that it is tangential to one of The
characteristic curves. We refer to this case as a sonic case. Then we have to modify the
above approach. Indeed, it becomes much simpler. We still use the notations in Section 4.
Consider the rarefaction wave associated with λ. We see that the equation (4.26) for ψ is
still valid, where β∗ is replaced by β0 = 0. In addition, let Cλ

β0
be the characteristic curve

tangent to the t-axis, βL < β0 = 0 < β∗, so that we have λ(φ0, ψ0) = 0. Then we obtain
from (4.7), with β∗ = β0,

(6.2) φα(0, β∗) = k1(0, φ∗, ψ∗) · (∂tass/∂α)(0, β∗)

That is,

(6.3) (∇Uφ)0

(

∂U

∂t

)

∗

= k1(0, φ0, ψ0).

We therefore obtain in this case the following theorem.

Theorem 6.2. (Sonic case). Assume that the t-axis is located inside the rarefaction wave
associated with λ. Then we can calculate the limiting values of the time derivatives (∂U/∂t)∗
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by solving the following system of two linear algebraic equations,

(6.4)

(∇Uψ)0

(

∂U

∂t

)

∗

= d0
L,

(∇Uφ)0

(

∂U

∂t

)

∗

= k1(0, φ0, ψ0),

where d0
L is defined in (4.27), d0

L = ψα(0, 0) · (∂tass/∂α)−1(0, 0) (see Eq. (4.18) with β = 0
for (∂tass/∂α)(0, β)).

7. The resolution of the generalized Riemann problem for weakly coupled

systems

In this section we extend the methodology in the previous sections in order to investigate
the general hyperbolic system with three or more equations (m ≥ 3). As is well-known,
the system (1.1) is in general not endowed with a coordinate system of Riemann invariants
and hence it cannot be reduced to a diagonal characteristic form analogous to (4.2) for
the system of two equations. However, for many physical systems that are called weakly
coupled systems(WCS) in the present paper, we are still able to use the concept of Riemann
invariants in order to resolve rarefaction waves in the generalized Riemann problem. Such
systems include the compressible fluid flows, the example of electrophoresis etc [8, Page 130].

Also we can extend the method of Section 5 in order to resolve jump discontinuities,
shocks and contact discontinuities. Note that the concept of Riemann invariants simplifies
the resolution of contact discontinuities.

We assume the Jacobian matrix DF = ∂F/∂U has a complete set of right eigenvectors
Υi(U)

(7.1) DF (U)Υi(U) = λiΥi(U),

where λi, i = 1, · · · , m, are the eigenvalues of DF and ordered as

(7.2) λ1 < λ2 < · · · < λm.

In this section, we assume that the rarefaction wave associated with λi moves to the left
and the jump discontinuity associated with λi moves to the right. We further suppose that
the limiting values (∂U/∂x)l of spatial derivatives on the left-hand side of the rarefaction
wave, and the limiting values (∂U/∂x)r on the right-hand side of the jump discontinuity,
respectively, are known. The modification needed in other cases will be obvious.

7.1. The resolution of rarefaction waves. Since the local structure of the solution of
(1.1) and (2.1) is determined by the associated Riemann solution of the corresponding ho-
mogeneous hyperbolic conservation laws, we first take a look at the homogeneous case (2.3).
An i-Riemann invariant of (2.3) is a smooth scalar function E such that

(7.3) DE(U)Υi(U) = 0, DE(U) =

(

∂E

∂u1
, · · · , ∂E

∂um

)

.

The system (2.3) is endowed with a coordinate system of Riemann invariants if there exist
functions w1, · · · , wm, such that for any i, j = 1, · · · , m with i 6= j, wj is an i-Riemann



Hyperbolic Balance Laws: Riemann Invariants, the generalized Riemann problem 19

invariant of (2.3), and for every 1 ≤ i ≤ m, Dwi(U)Υi(U) 6= 0. With these Riemann
invariants, (2.3) is reduced into a diagonal system

(7.4)
∂wi
∂t

+ λi(W )
∂wi
∂x

= 0, W = (w1, · · · , wm)⊤, i = 1, · · · , m.

We refer to [8, Section 7.3] for details.
Fix the index i and assume that λi is genuinely nonlinear,

(7.5) ∇λi · Υi = 1, i = 1, · · · , m.
Consider the corresponding rarefaction wave RA

i , which is a part of the solution of the
associated Riemann problem (2.3) subject to the initial data (2.4). We represent it by
UA(x, t) = V (x/t), i = 1, · · · , m, where

(7.6) λi(V (ξ)) = ξ,
dV

dξ
= Υi(V (ξ)), ξ = x/t.

Now we use the vector W of Riemann invariants as the state vector. In particular, the
functions depending on U can be expressed in terms of W without changing their notations.
The i-Riemann invariants, wj, j 6= i, are constant, wj ≡ Aj , across the rarefaction wave RA

i

so that this rarefaction wave is expressed by using

(7.7) λi(A1, · · · , Ai−1, wi, Ai+1, · · · , Am) = x/t, wj = Aj, j 6= i.

The genuine nonlinearity of λi implies that the equtions (7.7) can be inverted,

(7.8) wi(x, t) = wi(x/t) = λ−1
i (x/t;A1, · · · , Ai−1, Ai+1, · · · , Am).

All other eigenvalues λj can be found as explicit functions of x/t,

(7.9) λj = λj(A1, · · · , Ai−1, wi(x/t), Ai+1, · · · , Am), j = 1, · · · , m, j 6= i.

We see that these properties are exactly the same as those for the two-equation systems in
Section 4. Hence we are able to treat the resolution of centered rarefaction waves in the
same way, thus providing a full solution RA

i (x/t;UL, UR).
Next we turn to the solution of the rarefaction wave Ri in the generalized Riemann problem

for the nonhomogeneous system (1.1). With the Riemann invariants as the state vector, the
system (1.1) can be transformed as

(7.10)
∂wi
∂t

+ λi(W )
∂wi
∂x

= Hi(x,W ), i = 1, · · · , m,

where Hi(x,W ) = Dwi(U) · S(x, U) and U is expressed in terms of W . In order to resolve
the general rarefaction wave associated with λi, we fix the wi-equation and combine a wj-
equation to form a two-equation system,

(7.11)

∂wi
∂t

+ λi
∂wi
∂x

= Hi(x,W ),

∂wj
∂t

+ λj
∂wj
∂x

= Hj(x,W ),

for every j 6= i, λj 6= λi. This system is exactly the same as (4.2), wi (resp. wj) corresponds
to φ (resp. ψ). We can therefore define two families of characteristic curves C i : αi = const.
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and Cj : αj = const., respectively, by

(7.12)
dx

dt
= λi,

dx

dt
= λj,

where αi (resp. αj) corresponds to β (resp. α) in Section 4, see Figure 4.1. We use the
coordinate transforms Tij : (αi, αj) → (x, t) to represent the centered rarefaction wave Ri

and T assij : (αi, αj) → (xass, tass) to represent the associated rarefaction wave RA
i . In terms

of these characteristic coordinates, we have characteristic equations for (7.11),

(7.13)

∂x

∂αj
= λi

∂t

∂αj
,

∂wi
∂αj

=
∂t

∂αj
Hi(x,W ),

∂x

∂αi
= λj

∂t

∂αi
,

∂wj
∂αi

=
∂t

∂αi
Hj(x,W ).

We can then follow Theorem 4.3 and Eq. (4.18) in order to calculate (∂wj/∂αj)(αi, 0) and
(∂tass/∂αj)(αi, 0), as functions of αi at the singularity. In fact, the following theorem is the
key ingredient in our treatment of the GRP. As in the case of the linear ”geometrical optics”
(see Section 3) it determines the propagation of the transversal derivative of a Riemann
invariant along the ”degenerate” characteristic αj = 0 (at the origin).

Theorem 7.1. Throughout the rarefaction wave Ri associated with λi connecting the head
and tail values VL and VR, see Figure 7.1, we have

(7.14)

∂tass
∂αj

(αi, 0) =
1

αLi
exp

(

∫ αi

αL
i

1

λj(ξ, 0) − ξ
dξ

)

,

∂wj
∂αj

(αi, 0) =
∂wj
∂αj

(αLi , 0) +

∫ αi

αL
i

− Hj

λi − λj
(ξ, 0) · ∂tass

∂αj
(ξ, 0)dξ, j 6= i,

where αLi ≤ αi ≤ αRi , αLi and αRi are the speeds of the head and tail characteristics of RA
i .

The initial data is

(7.15)
∂wj
∂αj

(αLi , 0) = w′

j(α
L
i , 0) +

1

αLi
(Hj(0,W (αLi , 0)) − λj(α

L
i , 0)w′

j(α
L
i , 0)),

where w′

j = ∂wj/∂x.

Remark 7.2. Note that in (7.15) we have already made a choice for the characteristic coordi-
nate αj, the value αj is the x−coordinate of the intersection point of the characteristic curve
with the head characteristic of Ri. Of course, other convenient choices are also possible.

Following Theorem 7.1, we express

(7.16)

∂wj
∂αj

(αRi , 0) =

(

∂wj
∂t

(αRi , 0) + λRi
∂wj
∂x

(αRi , 0)

)

· ∂tass
∂αj

(αRi , 0)

=

(

λRj − λRi
λRj

· ∂wj
∂t

(αRi , 0) +
λRi
λRj

·Hj(0,W (αRi , 0))

)

· ∂tass
∂αj

(αRi , 0),
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where we have used (7.11) and the smoothness of wj. Translating the result of Theorem 7.1
to the (x, t)-coordinate at the tail characteristic αi = αRi , we obtain the following theorem.

Theorem 7.3. Assume that the rarefaction wave Ri associated with λi connects the states
VL and VR. Let αLi and αRi be the corresponding characteristic speeds at the head and tail of
RA
i , respectively. Let Dwj be as in (7.3) and denote by (∂U/∂t)R the value evaluated at the

tail characteristic αi = αRi from the smooth region behind Ri. Then one obtains,

(7.17) (Dwj)R

(

∂U

∂t

)

R

= djLR, j 6= i,

where the constant term djLR is expressed as

(7.18) djLR =
λRj

λRj − λRi

(

∂wj
∂αj

(αRi , 0)

(

∂tass
∂αj

)−1

(αRi , 0) − λRi
λRj
Hj(0,W (αRi , 0))

)

,

and λRj = λj(α
R
i , 0) and λRi = αRi .

Proof. Note that the limiting value of ∂wj/∂t is obtained by Eq. (7.16). Now we use the
chain rule for the values in the smooth region behind Ri to obtain (7.17). �

Remark 7.4. (Degenerate rarefaction wave or acoustic wave). Note that in the resolution
of GRP, all waves must be accounted for. In particular, the i−th wave can just be a
characteristic curve, which we regard as a degenerate rarefaction wave or an acoustic wave
αRi = αLi . All variables wj , j = 1, · · · , m, are continuous, but in this case ∂wi/∂t, ∂wi/∂x
may experience a jump.

We now proceed to the general derivation of the limiting values (1.6) for the generalized
Riemann problem (1.1) and (2.1). We first illustrate this by considering a special case.
Assume that the associated Riemann problem (2.3) and (2.4) has a solution of m rarefaction
waves which separate m+ 1 constant states, cf. Figure 7.1. Let the t-axis be located inside
the intermediate region between the i-rarefaction wave and the i+1-rarefaction wave. Then
we have the following proposition.

V0 = UL

Vi−1 = VL

Vi = VR

Vi+1

Vm = UR

R1

Ri
Ri+1

Rm

x

t

UL
UR

U∗

0

Figure 7.1. Wave configuration for the generalized Riemann problem
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Proposition 7.5. Assume that the Riemann solution of (1.1) and (2.1) only consists of m
rarefaction waves and that the t-axis is located inside the intermediate region between the i-th
rarefaction wave and the i+ 1-st rarefaction wave. Then (∂U/∂t)∗ can be obtained through
the following system of linear algebraic equations,

(7.19)

m
∑

k=1

ajk

(

∂uk
∂t

)

∗

= dj, j = 1, · · · , m,

where (aj1, · · · , ajm) = (Dwj)∗, and dj, j = 1, · · · , m, are constants only depending on the
initial data (2.1) and the Riemann solution RA(·;UL, UR).

Proof. We label by I0, I1, · · · , Im the regions corresponding to the constant state regions
in the associated Riemann problem from the left to the right, as in Figure 7.1. We start
from the first rarefaction wave associated with λ1. By Theorem7.3, we can obtain the
directional derivatives for wj, j = 2, · · · , m in the region I1 across this first rarefaction wave.
Successively, we can calculate the derivatives of wj, j = k+1, · · · , m across the λk-rarefaction
wave, k ≤ i, up to the λi-rarefaction wave. Consequently we obtain in the region Ii,

(7.20)

m
∑

k=1

ajk

(

∂uk
∂t

)

∗

= dj, j = i+ 1, · · · , m,

from the left-hand side.
Similarly, we start from the region Im for the λm-th rarefaction wave in the right hand

side to get the solution wj, j = 1, · · · , m− 1, in the region Im−1. Successively, we obtain in
the region Ii,

(7.21)

m
∑

k=1

ajk

(

∂uk
∂t

)

∗

= dj, j = 1, · · · , i.

We combine (7.20) and (7.21) to obtain (7.19). Note that (aj1, · · · , ajm) = (Dwj)∗. The
system (7.19) is uniquely solvable. �

Remark 7.6. The process of proof actually yields a constructive approach to the calculation
of the instantaneous values of time-derivatives along the t-axis.

As pointed out at the beginning of this section, the system (1.1) is in general not endowed
with a coordinate system of Riemann invariants. However, we can still use the concept of
the Riemann invariants, as a main ingredient, in the treatment of rarefaction waves for a
weakly coupled system, which we define next.

We denote by Li(U) the left eigenvector associated with λi and by L(U) the left eigen-
matrix whose i-th row vector is Li(U). Then we multiply (1.1) from the left by L(U) to
get

(7.22) L(U)
∂U

∂t
+ Λ(U)L(U) · ∂U

∂x
= L(U)S(x, U),

where Λ(U) is a diagonal matrix with diagonal entries λi. Set

(7.23) W = L(U)U.
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Then (7.22) can be written as

(7.24)
∂W

∂t
+ Λ(U)

∂W

∂x
= Π

(

∂U

∂t
,
∂U

∂x

)

+ S(x, U),

where

(7.25) Π

(

∂U

∂t
,
∂U

∂x

)

=

[

∂L(U)

∂t
+ Λ(U)

∂L(U)

∂x

]

U, S(U) = L(U) · S(x, U).

In general, Π does not vanish. However, suppose that we can split the vector of unknowns
W into two parts, W = (W a,W b)⊤, so that the system (7.24) can be decoupled into two
subsystems

(7.26)

(Sa) :
∂W a

∂t
+ Λa(U)

∂W a

∂x
= Πa

(

∂U

∂t
,
∂U

∂x

)

+ S
a
(x, U),

(Sb) :
∂W b

∂t
+ Λb(U)

∂W b

∂x
= Πb

(

∂U

∂t
,
∂U

∂x

)

+ S
b
(x, U),

which satisfy

(i) Πb = 0.
(ii) Πa does not depend on the derivatives of W a.
(iii) Λa(U) and Λb(U) are diagonal matrices, and

(7.27) Λ(U) =

(

Λa(U) 0

0 Λb(U)

)

.

Thus we can first resolve the rarefaction waves corresponding to the subsystem (Sb) for
W b and then resolve the system (Sa) for W a, using the same methodology as in the last
subsection. This is the family of weakly coupled systems we define below.

Definition 7.7. We say that the system (1.1) is weakly coupled if there is a coordinate system
of quasi-Riemann invariants W (U) = (W a(U),W b(U))⊤ such that (1.1) can be reduced to
the quasi-diagonal form,

(7.28)























∂W a

∂t
+ Λa(W )

∂W a

∂x
= Πa

(

W,
∂W b

∂x

)

+Ka(x,W ),

∂W b

∂t
+ Λb(W )

∂W b

∂x
= Kb(x,W ),

where Λa and Λb are diagonal matrices and their entries are the eigenvalues of DF .

For convenience, we denote

(7.29) Λ(W ) =

(

Λa(W ) 0

0 Λb(W )

)

, Π =

(

Πa

0

)

, K =

(

Ka

Kb

)

,
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and (7.28) is written as

(7.30)
∂W

∂t
+ Λ(W )

∂W

∂x
= Π

(

W,
∂W b

∂x

)

+K(x,W ).

As we shall show later the system of compressible fluid flow is an important example of a
weakly coupled system. Also, all systems that can be transformed into a form involving upper
triangular coefficient matrix are weakly coupled. Indeed, in this case the above splitting is
into m scalar equations, where the solution procedure resembles the Gaussian elimination.
As a result, our problem boils down to solving the diagonal system (7.10).

7.2. Remarks on the sonic case. As in Subsection 6.1, we need to deal with the sonic
case that the t-axis is tangential to the i-characteristic at the origin (x, t) = (0, 0+) for some
i. It is clear that Theorem 7.3 still holds, where αRi is replaced by αi = 0. In addition, we
use the wi-equation in (7.10), by noting the fact that λi(W

0) = 0, W 0 = W (αi = 0, αj = 0),
to get

(7.31)

(

∂wi
∂t

)
∣

∣

∣

∣

(αi,αj)=(0,0)

= Hi(0,W
0).

It follows that

(7.32) (Dwi)0

(

∂U

∂t

)

∗

= Hi(0,W
0).

We summarize these facts in the following theorem (cf. Theorem 6.2).

Theorem 7.8. Assume that the t-axis is located in the rarefaction wave associated with the
eigenvalue λi. Then (∂U/∂t)∗ is determined by a system of m linear equations; the m − 1
equations are given in (7.17) with αRi = 0, and the other one is given by (7.32).

7.3. The resolution of jump discontinuities. We use the same approach as in Section
5 in order to resolve the jump discontinuity (shock or contact discontinuity) for general
systems. Let the jump location be given by x = x(t) with speed σ(t) = x′(t). This jump
discontinuity is described by the Rankine-Hugoniot jump condition,

(7.33) F (U) − F (U) = σ(U − U),

where U and U are the limiting states on two sides, respectively. Let us fix the state U .
Then (7.33) is the system of the size m but with m+ 1 unknowns U and σ. As a standard
approach [8], we write (7.33) as

(7.34)
[

A(U,U) − σI
]

(U − U) = 0,

where we are using the Roe matrix

(7.35) A(U,U) =

∫ 1

0

DF (τU + (1 − τ)U)dτ.

Solving (7.34) yields,

(7.36)

{

σ = σi(U,U),

U = U + ηΓi(U,U),
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for a parameter η ∈ R, where the i-th jump discontinuity speed σi is the eigenvalue of
A(U,U), and Γi is the associated eigenvector, i = 1, · · · , m.

For a fixed i-jump discontinuity, we eliminate η in (7.36) to get m− 1 equations,

(7.37) Ψj
i (U,U) = 0, j = 1, · · · , m− 1.

Indeed, this is the system determining the i-th Hugoniot locus in the U space. We differen-
tiate these equations in the direction of the jump discontinuity x = x(t), x′(t) = σi(U,U),
to get

(7.38) ∇UΨj
i (U,U) ·

(

∂U

∂t
+ σi

∂U

∂x

)

= −∇UΨj
i (U,U) ·

(

∂U

∂t
+ σi

∂U

∂x

)

.

Denote the limiting values of σi, U , U , ∂U/∂t and ∂U/∂x as t tends to zero by

(7.39) lim
t→0+

σi = σ0
i , lim

t→0+
U = Ul, lim

t→0+
U = Ur, lim

t→0+

∂U

∂t
=

(

∂U

∂t

)

l

, lim
t→0+

∂U

∂x
= U ′

r.

We suppose that the jump discontinuity moves to the right so that σi(Ul, Ur) > 0. Our
goal is to seek (∂U/∂t)l. Using (1.1) for smooth solutions, we replace the time derivative
∂U/∂t by the spatial derivative ∂U/∂x and replace the spatial derivative ∂U/∂x by the time
derivative ∂U/∂t,

(7.40)

∂U

∂t
= −DF (U)

∂U

∂x
+ S(x, U),

∂U

∂x
= DF (U)−1

[

−∂U
∂t

+ S(x, U)

]

,

where we assume that DF (Ul) is invertible. The case that DF (Ul) is singular is discussed
below in the context of quasi-Riemann invariants. Inserting these relations in (7.38) and
taking the time limit we get, for j = 1, ..., m− 1,
(7.41)

∇UΨj
i (Ul, Ur)[I − σ0

iDF (Ul)
−1]

(

∂U

∂t

)

l

= −σ0
i∇UΨj

i (Ul, Ur)DF (Ul)
−1S(0, Ul) −∇UΨj

i (Ul, Ur) [(σ0
i I −DF (Ur))U

′

r + S(0, Ur)] .

Note that this is a system of m−1 linearly independent algebraic equations with m unknowns
(∂U/∂t)l. This leads to the following theorem for the resolution of the i-shock.

Theorem 7.9. Let the jump discontinuity x = x(t) be associated with the eigenvalue λi, the
related limiting states are denoted in (7.39). Then at the singularity point (x, t) = (0, 0) we
have

(7.42)
m
∑

q=1

ajiq

(

∂uq
∂t

)

l

= dji , j = 1, · · · , m− 1,
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where all coefficients ajiq and dji are given explicitly by,
(7.43)

(aji1, · · · , ajim) = ∇UΨj
i (Ul, Ur)[I − σ0

iDF (Ul)
−1]

dji = −σ0
i∇UΨj

i (Ul, Ur)DF
−1(Ul)S(0, Ul) −∇UΨj

i (Ul, Ur) [(σ0
i I −DF (Ur))U

′

r + S(0, Ur)] .

Now we turn to the case of a weakly coupled system (7.30), as in Definition 7.7, and work
with the quasi-Riemann invariants W = (w1, · · · , wm). Then (7.37) can be written as

(7.44) Φj
i (W ;W ) = 0, j = 1, · · · , m− 1.

We use the same approach as above to differentiate (7.44) in the direction of the jump
discontinuity x = x(t), express ∂W/∂x by ∂W/∂t and ∂W/∂t by ∂W/∂x using (7.30),

(7.45)

∇WΦj
i ·
(

∂W

∂t
+ σi

∂W

∂x

)

= −∇WΦj
i ·
(

∂W

∂t
+ σi

∂W

∂x

)

,

∂W

∂x
= Λ(W )−1 ·

[

−∂W
∂t

+ Π(W,
∂W b

∂t
) +K(x,W )

]

,

∂W

∂t
= −Λ(W ) · ∂W

∂x
+ Π(W,

∂W
b

∂x
) +K(x,W ),

where Π(W, ∂W b/∂t) = Π(W,Λb(W )−1 · (−∂W b

∂t
+Kb(x,W ))), and non-zero eigenvalues are

assumed. Indeed, once some eigenvalue λk (k 6= i) is zero in the limit t→ 0+, we have from
(7.30),

(7.46)
∂wk
∂t

= Πk

(

W,
∂W b

∂x

)

+Kk(x,W ), k 6= i.

Then the limiting value of ∂wk/∂t is known, and we just need to consider the reduced (7.45)
in terms of the other variables wj, j 6= k. For the simplicity in presentation, we therefore
assume that all eigenvalues are not zero. Incorporating the last two identities of (7.45) into
the first one, we have,

(7.47)

∇WΦj
i

[

(I − σiΛ(W )−1)
∂W

∂t
+ σiΛ(W )−1 · Π(W,

∂W b

∂t
)

]

= −∇WΦj
i · σi · Λ(W )−1 ·K(x,W )

−∇WΦj
i

[

(σiI − Λ(W ))
∂W

∂x
+K(x,W ) + Π(W, ∂W b/∂x)

]

.
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By taking the limit t→ 0+, we obtain (in analogy to (7.41)),

(7.48)

∇WΦj
i (Wl,Wr)

[

(I − σ0
i Λ(Wl)

−1)

(

∂W

∂t

)

l

+ σ0
iΛ(Wl)

−1 · Π
(

Wl,

(

∂W b

∂t

)

l

)]

= −∇WΦj
i (Wl,Wr) · σ0

i · Λ(Wl)
−1 ·K(0,Wl)

−∇WΦj
i (Wl,Wr)

[

(σ0
i I − Λ(Wr))W

′

r +K(0,Wr) + Π(Wr, (W
b
r )

′)
]

.

This is a system of m − 1 algebraic equations with m unknowns (∂wk/∂t)l, k = 1, · · · , m.
Note that the i-th term of the matrix I−σ0

i Λ(Wl)
−1 may be zero. Therefore we let (∂wi/∂t)l

be a free undetermined parameter, and we obtain a system of m−1 equations for the limiting
values (∂wk/∂t)l, k 6= i, which is given by the following theorem.

Theorem 7.10. Consider the weakly coupled system (7.30). Let the jump discontinuity
x = x(t) be associated with λi, σ

0
i = x′(0) > 0. Then at the singularity point (x, t) = (0, 0),

we have the following connections between the vector (∂W/∂t)l of time derivatives on the left
hand side of the jump discontinuity and the spatial derivatives W ′

r := (∂W/∂x)r on the right
hand side,

(7.49)

m
∑

q=1

∂Φj
i

∂wq
· λq(Wl) − σ0

i

λq(Wl)
·
(

∂wq
∂t

)

l

+

m
∑

q=1

∂Φj
i (Wl,Wr)

∂wq
· 1

λq(Wl)
·Πq(Wl,

(

∂W b

∂t

)

l

) = dji ,

where j = 1, · · · , m− 1, and dji are given explicitly by,

(7.50)
dji = −∑m

q=1

∂Φj
i (Wl,Wr)

∂wq
· σ0

i

λq(Wl)
·Kq(0,Wl)

−
∑m

q=1

∂Φj
i (Wl,Wr)

∂wq
·
[

(σ0
i − λq(Wr))W

′

r +Kq(0,Wr) + Πq(Wr, (W
b
r )

′)
]

.

The system (7.49) is an algebraic system for (∂wk/∂t)l, k 6= i, with the value (∂wi/∂t)l being
an independent parameter.

Remark 7.11. Theorems 7.9 and 7.10 show that we can either use the primitive variables U
or the quasi-Riemann invariants W for weakly coupled systems in resolving jump disconti-
nuities. The choice of either approach depends on the practical convenience.

Remark 7.12. (Weak jump). As in Remark 7.4, in the limit that the strength of the i−th
shock becomes zero (Wl = Wr), the shock trajectory x = x(t) degenerates to a charac-
teristic curve and λi(Wl) = σ0

i = λi(Wr). The term containing (∂wi/∂t)l is kicked out in
(7.49). Finally we get (∂wj/∂t)l = (∂wj/∂t)r and (∂wj/∂x)l = (∂wj/∂x)r, j 6= i. However,
(∂wi/∂t)l 6= (∂wi/∂t)r.

7.4. Remarks on the resolution of contact discontinuities. In the last subsection we
have resolved the jump discontinuities, including contact discontinuities associated with lin-
early degenerate eigenvalues. However, when the system (1.1) is endowed with a coordinate
system of Riemann invariants, as written in (7.10), the situation becomes much simpler for
contact discontinuities.
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Assume that the eigenvalue λi is linearly degenerate and the corresponding contact dis-
continuity is x = x(t). By the definition of Riemann invariants, see (7.3), we see that the
Riemann invariant wj, associated with λi, is continuous across the contact discontinuity
x = x(t), x′(t) = σi(U,U) = λi(U) = λi(U),

(7.51) wj(U) = wj(U), j 6= i.

Using the same approach as in the last subsection, we differentiate wj in the direction of
x = x(t) to yield

(7.52)
∂wj(U)

∂t
+ λi(U)

∂wj(U)

∂x
=
∂wj(U)

∂t
+ λi(U)

∂wj(U)

∂x
.

Using (7.10), we have

(7.53)

∂wj(U)

∂x
=

1

λj(U)

[

−∂wj(U)

∂t
+Hj(x,W (U))

]

,

∂wj(U)

∂t
= −λj(U)

∂wj(U)

∂x
+Hj(x,W (U)).

Note that if λj(U) = 0, (∂wj/∂t)l = H(0,Wl), and we do not need the above manipulation.
Thus we assume that λj(Ul) 6= 0 so that we use (7.53) in (7.52) and take the time limit to
obtain (see (7.39) for notations),

(7.54)

(

∂wj
∂t

)

l

:=
λlj

λlj − λli

[

(λri − λrj)(wj)
′

r +Hj(0,Wr) −
λli
λlj
Hj(0,Wl))

]

,

where λlj = λj(Ul), (wj)
′

r = (∂wj/∂x)r etc. Thus we obtain the time derivative (∂wj/∂t)l pro-
vided that (wj)

′

r and the associated Riemann solution are known. Then the time derivative
(∂U/∂t)l follows. We summarize the above to give the following theorem.

Theorem 7.13. Let the contact discontinuity x = x(t) be associated with λi and separate
two limiting states Wl and Wr. Then we have

(7.55) Dwj(Ul) ·
(

∂U

∂t

)

l

= drlj , j 6= i,

where the quantity drlj is expressed explicitly as

(7.56) drlj =
λlj

λlj − λli

[

(λri − λrj)(wj)
′

r +Hj(0,Wr) −
λli
λlj
Hj(0,Wl)

]

.

7.5. The time derivative of solutions at the singularity. In this final subsection we
wrap up the calculation of the GRP solution (∂U/∂t)∗, see (2.2). We assume that the
rarefaction waves, shocks and contact discontinuities can be resolved with the approach
in Subsections 7.1–7.4, and that the local wave pattern at the origin, determined by the
associated Riemann solution of (2.3) and (2.4), consists of m waves. If the t-axis is located
on one side of all waves, the value of (∂U/∂t)∗ can be obtained upwind. Therefore, we assume
that the t-axis is located inside the intermediate region between the i-th wave and (i+ 1)-st
wave. The strategy of the computation of (∂U/∂t)∗ is analogous to Proposition 7.5, but at
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present, the treatment depends on the type of the j-th wave (j = 1, · · · , m); a rarefaction
wave, a shock or a contact discontinuity. As has been pointed out, the local wave pattern is
determined by the associated Riemann solution RA(x/t;UL, UR), see Proposition 2.1.

Theorem 7.14. The limiting value (∂U/∂t)∗ can be obtained by solving the following system
of linear algebraic equations

(7.57)

m
∑

k=1

ajk

(

∂uk
∂t

)

∗

= dj, j = 1, · · ·m,

where the coefficients ajk and dj are explicitly determined by the initial data (2.1) and the
associated Riemann solution RA(0;UL, UR).

Proof. The basic idea of the proof, and, indeed, the cornerstone of the GRP methodology, is
identical to that of Proposition 7.5, where all m waves were assumed to be rarefaction wave.
In fact, the initial slopes (2.1) are “rotated” through the various waves emanating from the
origin so as to yield the desired (∂U

∂t
)∗. We first observe that the results of Subsection 7.1

(rarefaction waves) and Subsections 7.3-7.4 (jump discontinuities) can be summarized as
follows. Given the limiting values (at (x, t) = (0, 0)) of the temporal and spatial derivatives
of the unknowns (expressed either by U or the quasi-Riemann invariants W ) on one side
of the discontinuity, we find (m − 1) equations for the (limiting values of the) temporal
derivatives on the other side (the spatial derivatives are then obtained from the system
(1.1)). In other words,“crossing” a single wave we are left with one free parameter in a
system of m equations for the derivatives (on the side labelled as “unknown”). Suppose
now that the t−axis is located between the i-th and (i + 1)-st waves. Counting from the
left (x < 0) we get for (∂U

∂t
)∗ a system of m equations, with i free parameters. Similarly,

approaching from the right (x > 0) we cross (m− i) waves, and thus get another system of
m equations, containing (m− i) free parameters. Eliminating the total of m free parameters
from the two systems of m equations we obtain precisely the system claimed in the theorem.

Note that in the sonic case, where the t-axis is “imbedded” in a rarefaction wave, the
proof is simpler and the full system is determined by the data on one side.

To illustrate our procedure, we examine a few examples in the case of a system of four
equations (m = 4). The use of quasi-Riemann invariants enables us to simplify the general
procedure above (with free parameters) as follows. First we consider a degenerate example
of two waves, as in Figure 7.2: A shock associated with λ1 moves to the left and a rarefaction
wave associated with λ4 moves to the right, the dashed curves represent the acoustic waves
associated with λ3 and λ4, respectively. Applying Theorem 7.3, we get the limiting values
of the derivatives for w1, w2 and w3 in the region I4 by resolving the 4-rarefaction wave.
Note (Remarks 7.4 and 7.12) that out of these derivatives only the derivatives of w1 and w2

are continuous across the 3-acoustic wave. Hence we get the limiting values (∂w1/∂t)∗ and
(∂w2/∂t)∗ in the region I3. On the other hand, across the 1−shock we have three equations
for the limiting values of four unknowns ∂wi/∂t, i = 1, 2, 3, 4, in the region I2, see Theorem
7.10. Since the derivatives of w1, w3 and w4 are continuous across the 2-acoustic wave and
(∂w1/∂t)∗ is already known, we can solve the three equations for the limiting values of the
unknowns ∂wi/∂t, i = 2, 3, 4, in the region I2. Then these limiting values for i = 3, 4 are
equal to (∂w3/∂t)∗ and (∂w4/∂t)∗ in the region I3, respectively.

The second example consists of two shocks, as in Figure 7.3. In this case the 4-rarefaction
wave of the previous example is replaced by a 4-shock. We use Theorem 7.10 (see (7.49))
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1-Shock

2-Acoustic 3-Acoustic

4-Rarefaction

Figure 7.2. An example for a two–wave degenerate pattern for four-equation
system: A shock of first family wave moves to the left and a rarefaction wave
of fourth family moves to the right.

to obtain three equations for the limiting values of the four unknowns ∂wi/∂t in the region
I2 by resolving the 1−shock, and another set of three equations for the limiting values of
the four unknowns ∂wi/∂t in the region I4 by resolving the 4−shock, i = 1, 2, 3, 4. Since
∂wi/∂t, i = 1, 3, 4, are continuous across the 2−acoustic wave and ∂wi/∂t, i = 1, 2, 4,
are continuous across the 3−acoustic wave, we finally obtain six equations with the four
unknowns (∂wi/∂t)∗, i = 1, 2, 3, 4, in the region I3 and the other two unknown limiting
values ∂w2/∂t in the region I2 and ∂w3/∂t in the region I4.

x

t

I1

0

I2

I3 I4

I5

1-Shock

2-Acoustic 3-Acoustic

4-Shock

Figure 7.3. An example for a two-wave degenerate pattern for four-equation
system: Two shocks of first and fourth families move to the left and right,
respectively.

We assume for the third example, as in Figure 7.4, that the local wave configuration
consists of four waves: Two rarefaction waves propagate to the right, a rarefaction wave
and a shock move to the left, the t-axis is located in the intermediate region I3. With the
results in Subsection 7.1, we can get the limiting values of ∂w1/∂t, ∂w2/∂t and ∂w3/∂t in the
region I4 by resolving the 4-rarefaction wave. Then the limiting values of ∂w1/∂x, ∂w2/∂x
and ∂w3/∂x are obtained by using (7.10). We continue to resolve the 3-rarefaction wave to
get the limiting value (∂w1/∂t)∗ and (∂w2/∂t)∗ in the intermediate region I3. Analogously,
we can resolve the 1-rarefaction wave from the left-hand side to get the limiting values of
∂w2/∂t, ∂w3/∂t and ∂w4/∂t (resp. the limiting values of ∂w2/∂x, ∂w3/∂x and ∂w4/∂x
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again by using (7.10)) in the region I2. Then we proceed to resolve the 2-shock to obtain
(∂w3/∂t)∗ and (∂w4/∂t)∗ in the intermediate region I3. Recall (Theorem 7.10) that there
are three equations connecting the limiting values of derivatives of wi, i = 1, 2, 3, 4. Note
that the limiting values of the derivatives for w2, w3 and w4 in the region I2 are determined
by the treatment of the 1-rarefaction wave, leaving there the limiting value of ∂w1/∂t as a
free parameter. Using the (already known) limiting values (∂w1/∂t)∗ and (∂w2/∂t)∗ in the
region I3, we have three equations for three unknowns; the limiting value of ∂w1/∂t in the
region I2 as well as (∂w3/∂t)∗ and (∂w4/∂t)∗ in the region I3. Solving these we get (∂w3/∂t)∗
and (∂w4/∂t)∗ in I3.

Once we solve the resulting system of linear equations to get (∂wi/∂t)∗, i = 1, 2, 3, 4, we
immediately obtain (∂U/∂t)∗ in the intermediate region I3.

x

t

I1

0

I2

I3

I4

I5

1-Rarefaction

2-Shock
3-Rarefaction

4-Rarefaction

Figure 7.4. An example for a full four-wave pattern for four-equation system:
Two rarefaction waves move to the right, and a rarefaction wave and a shock
move to the left.

�

8. The acoustic approximation and the G1-scheme

The acoustic approximation makes sense if the jump at the singularity point (x, t) = (0, 0)
is sufficiently small. Assume that the initial variables U(x, 0) in (2.1) are continuous at
x = 0 while their slopes are not; UL = UR and U ′

L 6= U ′

R. Then the Riemann solution to
the associated Riemann problem is constant RA(x/t;UL, UR) ≡ UL = UR. Therefore the
initial wave pattern does not contain a jump discontinuity (shock) or a centered rarefaction
wave. The “waves” emanating from the origin (x, t) = (0, 0) are acoustic, and therefore their
speeds are λi(UL) = λi(UR), i = 1, · · · , m.

Denote U∗ = UL = UR. Then we can linearize (1.1) around U = U∗ to get

(8.1)
∂U

∂t
+DF (U∗)

∂U

∂x
= S(x, U∗).

With this linear system of equations, we can use the customary methods, as in Section 3, to
get the derivative (∂U/∂t)∗: Diagonalize the system (8.1), calculate the derivatives upwind
and return to the primitive variables (∂U/∂t)∗.

In our GRP scheme, the initial data (2.1) has a jump discontinuity, and we can solve the
generalized Riemann problem (1.1) and (2.1) analytically to calculate the time derivative of
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solution, as has been summarized in Subsection 7.5. This leads to the scheme which we label
as the G∞ scheme.

In practice, when UL − UR is sufficiently small, we can simplify this process by resorting
to the acoustic case. Setting the Riemann solution U∗ = RA(0;UL, UR) as the background
solution, we linearize the system (1.1) to get the linear system (8.1). Diagonalize the system
to arrive at

(8.2)
∂W

∂t
+ Λ(W∗)

∂W

∂x
= L(W∗)S(x,W∗) =: H(x,W∗),

where W = L(U∗)U , L = (L1, · · · , Lm)⊤, Li is the left (row) eigenvector associated with
λi, and Λ is a diagonal matrix with entries λi(U∗). Therefore we can calculate the time
derivative of W , as in the scalar case,

(8.3)

(

∂W

∂t

)

∗

= lim
t→0+

∂W

∂t
(0, t) = −

[ |Λ| + Λ

2
W ′

L +
|Λ| − Λ

2
W ′

R

]

+H(x,W∗),

where |Λ| = diag(|λ1|, · · · , |λm|). This is an O(∆t) approximation of the time derivatives
appearing in (1.5). Returning to the original variables U we get

(8.4)

(

∂U

∂t

)

∗

= L−1(U∗)

(

∂W

∂t

)

∗

.

The resulting scheme is labelled as the G1–scheme. In the original GRP scheme [4], there are
the corresponding E1 (Eulerian) scheme and L1 (Lagrangian) scheme. Observe that when
U ′

L = U ′

R = 0, the scheme degenerates to the Godunov scheme. Thus the G1–scheme is the
simplest possible extension of the Godunov scheme. Once the Godunov scheme is imple-
mented, the implementation of the G1–scheme adds a negligible amount of computational
effort.

9. Several examples in applications

In this section we use the methodology developed above in order to treat several well-
known physical examples. Our first two examples, the system of isentropic compressible
fluid flow and the system of rotating shallow water equations, are endowed with coordinate
systems of Riemann invariants so that they can be treated by the method of Sections 4–6.
The third example, the system of nonisentropic compressible fluid flow in a duct of variable
cross-section, does not possess a full coordinate system of Riemann invariants although
there exist Riemann invariants for each characteristic field. However, this system falls into
the category of weakly coupled systems, as defined in Definition 7.7.

9.1. Isentropic compressible fluid flow. The system of one-dimensional isentropic flow
in gas dynamics is given by

(9.1)
∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+
∂(ρu2 + p(ρ))

∂x
= 0,

where ρ ≥ 0 is the density, u is the velocity, and p(ρ) = aργ is the pressure, a > 0 and γ > 1
are given constants. The system (9.1) has two eigenvalues

(9.2) λ− = u− c, λ+ = u+ c,
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where c is the speed of sound, given by c2 = aγργ−1. The two Riemann invariants are taken
as

(9.3) φ = u− 2c

γ − 1
, ψ = u+

2c

γ − 1
,

where φ is associated with λ+, and ψ is associated with λ−. In terms of these Riemann
invariants, the system (9.1) is reduced to a diagonal system (see (4.2))

(9.4)
∂φ

∂t
+ λ−

∂φ

∂x
= 0,

∂ψ

∂t
+ λ+

∂ψ

∂x
= 0.

We consider a typical local wave pattern consisting of a rarefaction wave moving to the left
and a shock moving to the right, and assume that the t-axis is located inside the intermediate
region, as in Figure 2.1. However, note that there is no contact discontinuity in the present
case. In order to resolve the rarefaction wave, we need to set up the associated characteristic
coordinates (α, β). Taking (α, β) as in Section 4, we obtain the following explicit expressions
(cf. [5]),

(9.5) tass(α, β) =
α

(ψL − β)
1

2µ2

, xass(α, β) =
αβ

(ψL − β)
1

2µ2

, µ2 =
γ − 1

γ + 1
.

The Hugoniot loci for shocks are given by

(9.6) σ =
ρu− ρu

ρ− ρ
, u = u±

(

1

ρρ
· (p(ρ) − p(ρ))(ρ− ρ)

)
1
2

:= u± Φ(ρ, ρ),

where σ(t) = x′(t) is the shock speed, (ρ, u) and (ρ, u) are the preshock and postshock states,
respectively.

The following proposition is a straightforward application of Theorems 6.1 and 6.2.

Proposition 9.1. Consider the system (9.1) subject to the piecewise initial data (2.1). As-
sume a typical wave pattern consisting of a rarefaction wave propagating to the left and a
shock moving to the right. Then the limiting values (∂ρ/∂t)∗ and (∂u/∂t)∗ (see (2.2)) are
determined by a pair of linear equations,

(9.7)
aL

(

∂u

∂t

)

∗

+ bL

(

∂ρ

∂t

)

∗

= dL,

aR

(

∂u

∂t

)

∗

+ bR

(

∂ρ

∂t

)

∗

= dR.

The coefficients aL, bL, dL, aR, bR, dR are given explicitly in the following two cases.
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(i) ( Non-sonic case.) When the t-axis is located inside the intermediate region between
the rarefaction wave and the shock, we have the non-sonic case,

(9.8)

aL = 1, bL =
c∗
ρ∗
, dL = −(u∗ + c∗)

(

c∗
cL

)
1

2µ2 −1(

u′L +
cL
ρL
ρ′L

)

,

aR = 1 − σ0u∗
u2
∗
− c2

∗

− ∂Φ

∂ρ
· σ0ρ∗
u2
∗
− c2

∗

, bR =
σ0

u2
∗
− c2

∗

· c
2
∗

ρ∗
− ∂Φ

∂ρ
·
(

1 − σ0u∗
u2
∗
− c2

∗

)

,

dR =
3(σ0 − uR)2 + c2R

2(σ0 − uR)
· u′R − (σ0 − uR)2 + 3c2R

2ρR
ρ′R,

and

(9.9) σ0 =
ρ∗u∗ − ρRuR
ρ∗ − ρR

,
∂Φ

∂ρ
=

(σ0 − u∗)
2 + c2

∗

2ρ∗(σ0 − u∗)
.

(ii) (Sonic case.) When the t-axis (the cell interface) is located inside the rarefaction
wave associated with λ−, we have the sonic case. The coefficients aL, bL and dL are given in
(9.8) in which (ρ∗, u∗, c∗) is replaced by (ρ0, u0, c0) there (such that c0−u0 = 0, cf. Subsection
6.1), and aR, bR, dR are given by

(9.10) aR = 1.0, bR = − c0
ρ0
, dR = 0.0.

9.2. Rotating shallow water equations with Coriolis force. We consider the shallow
water motion on the rotating plane without dependence on one of the coordinates (say, y).
This system was investigated in [6] and references therein. We use this system to illustrate
the performance of our GRP scheme. The governing system can be written in the following
form,

(9.11)

∂h

∂t
+
∂(hu)

∂x
= 0,

∂(hu)

∂t
+
∂(hu2 + gh2/2)

∂x
= fhv,

∂(hv)

∂t
+
∂(huv)

∂x
= −fhu,

where h is the height of water, u, v are two components of the velocity, f is the (constant)
Coriolis force coefficient, g is the gravitational constant. Note that the first two equations
(with f = 0) are actually the one-dimensional shallow water model [13] and they are equiv-
alent to the one-dimensional isentropic system (9.1), where h is regarded as ρ and γ = 2. A
difference from (9.1) is the weak coupling with the other velocity component v through the
source terms, while v is transported with the velocity u. Another difference is that there is a
contact discontinuity associated with the eigenvalue u, across which h and u are continuous,
and v has a jump.
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The system (9.11) has the Riemann invariants v, and

(9.12) φ = u− 2c, ψ = u+ 2c,

where c =
√
gh. The pairs (v, ψ), (v, φ) and (φ, ψ) are, respectively, associated with the

eigenvalues λ− = u− c, λ+ = u+ c and u. They comprise a coordinate system of Riemann
invariants of the system (9.11). In terms of φ, ψ and v, we reduce (9.11) to the characteristic
(diagonal) form,

(9.13)
∂φ

∂t
+ λ−

∂φ

∂x
= fv,

∂ψ

∂t
+ λ+

∂ψ

∂x
= fv,

∂v

∂t
+ u

∂v

∂x
= −fu.

Since the genuinely nonlinear eigenvalues u− c and u+ c are the same as those for (9.1),
we can use the same characteristic coordinates as in (9.5) when γ = 2. That is, throughout
the rarefaction wave associated with u−c, the characteristic coordinates (α, β) are expressed
as

(9.14) tass(α, β) =
α

(ψL − β)
3
2

, xass(α, β) =
αβ

(ψL − β)
3
2

.

In analogy with (9.1), we immediately have the limiting values (∂h/∂t)∗ and (∂u/∂t)∗.
However, there is a small difference due to the presence of source terms in the current
case. Also, we have the third wave (contact discontinuity) associated with u. As we see
in the following propositions, this additional wave imposes no difficulty in the resolution of
rarefaction waves and shocks.

Proposition 9.2. Assume the configuration as shown in Figure 2.1, i.e, a rarefaction wave
moves to the left and a shock moves to the right. Then we can apply the same approach as
Proposition 9.1 in order to obtain the time derivatives (∂h/∂t)∗ and (∂u/∂t)∗ (replacing ρ
by h and γ = 2). The coefficients aL, bL, aR and bR are given in (9.8), while dL and dR are
given as follows.

(i) For the non-sonic case, we have

(9.15)

dL = −(u∗ + c∗) ·
(

c∗
cL

)
1
2
(

u′L +
cL
ρL
ρ′L

)

+ fvL,

dR =
3(σ0 − uR)2 + c2R

2(σ0 − uR)
· u′R − (σ0 − uR)2 + 3c2R

2ρR
ρ′R

+fvR

[

1 − σ0

u2
∗
− c2

∗

· σ
2
0 − u2

∗
+ c2

∗

2(σ0 − u∗)

]

.

(ii) For the sonic case, dL is given in (9.15), and dR is given as

(9.16) dR = fvL.

Next we treat the variable v. Note that for the associated Riemann problem, v = vL
across the rarefaction wave, and v = vR across the shock. For the case of the GRP (i.e., the
initial data for v is piecewise linear), we have the following result for (∂v/∂t)∗.
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Proposition 9.3. Assume the configuration in Figure 2.1. Then we have:
(i) if u∗ > 0, the value (∂v/∂t)∗ is obtained from the rarefaction wave (left hand) side,

(9.17)

(

∂v

∂t

)

∗

= −Fr∗
(

c∗
cL

)3

cLv
′

L

+fFr∗

[

−uL + 3c∗

(

1 −
(

c∗
cL

)2
)

− 2cL

(

1 −
(

c∗
cL

)3
)

+ (u∗ − c∗)

]

,

where the Froude number Fr∗ = u∗/c∗;
(ii) if u∗ < 0, the value (∂v/∂t)∗ is calculated from the shock (right hand) side,

(9.18)

(

∂v

∂t

)

∗

=
u∗(σ0 − uR)

u∗ − σ0
[v′R + f ] ,

where σ0 is the initial speed of the shock wave.

Proof. When u∗ > 0, we see that v is continuous to the left of the contact discontinuity
dx
dt

= u. We can use the same method as in Theorems 4.3 and 4.4: Using the characteristic
coordinates (α, β) and taking v as a Riemann invariant, we first calculate ∂v/∂α(0, β) and
then return to express the derivatives of v with respect to x and t, yielding (9.17).

When u∗ < 0, we use the continuity property of v across the shock and differentiate along
the shock trajectory x = x(t) to get

(9.19)
∂v(x(t) − 0, t)

∂t
+ σ(t)

∂v(x(t) − 0, t)

∂x
=
∂v(x(t) + 0, t)

∂t
+ σ(t)

∂v(x(t) + 0, t)

∂x
,

where σ(t) is the shock speed. Using the equation for v in (9.13), substituting the spatial
derivative of v in the postshock side by the time derivative and the time derivative in the
preshock side by the spatial derivative, we then take the limit to obtain (9.18). �

9.3. A variable area duct flow. We now consider the variable area duct flow governed by
the system [4, Chapter 4]

(9.20)

∂(A(x)ρ)

∂t
+
∂(A(x)ρu)

∂x
= 0,

∂(A(x)ρu)

∂t
+
∂(A(x)ρu2)

∂x
+ A(x)

∂p

∂x
= 0,

∂(A(x)ρE)

∂t
+
∂(A(x)u(ρE + p))

∂x
= 0,

where the variables ρ, u, p and E are the density, velocity, pressure and the total specific
energy. The total specific energy consists of two parts E = u2

2
+ e, e is the internal specific

energy. The function A(x) is the area of the duct. When A(x) ≡ 1, the system (9.20)
represents the planar compressible Euler equations. Let T be the temperature. Then the
entropy S can be defined, as usual, by the second law of thermodynamics,

(9.21) TdS = de− p

ρ2
dρ.



Hyperbolic Balance Laws: Riemann Invariants, the generalized Riemann problem 37

In terms of ρ, u and S, the system (9.20) can be written, for smooth flows, as,

(9.22)

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= −A

′(x)

A(x)
ρu,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0,

∂S

∂t
+ u

∂S

∂x
= 0,

where p is regarded as a function of ρ and S. We discuss the case of polytropic gases, for
which the internal energy e = p

(γ−1)ρ
. Then in terms of ρ, u and p, the third equation of

(9.22) can be replaced by,

(9.23)
∂p

∂t
+ u

∂p

∂x
+ ρc2

∂u

∂x
= −A

′(x)

A(x)
ρc2u.

Here c is the local speed of sound, given by c2 = γp
ρ

. Note that (9.22) is just valid for smooth

flows. For non-smooth flows, we need to use the conservative form (9.20) with the conserved
variables (ρ, ρu, ρE).

The system (9.20), or equivalently (9.22), possesses three eigenvalues

(9.24) λ− = u− c, λ0 = u, λ+ = u+ c.

We introduce two variables φ, ψ [5],

(9.25) φ = u−
∫ ρ c(ω, S)

ω
dω, ψ = u+

∫ ρ c(ω, S)

ω
dω.

The functions φ, ψ can be expressed in terms of total differentials, see [5, Eqs. (2.6), (2.10)
and (2.15)]

(9.26) dφ = du− 1

ρc
dp− T

c
dS, dψ = du+

1

ρc
dp+

T

c
dS.

For the entropy S, we have

(9.27) TdS =
dp

(γ − 1)ρ
− c2

(γ − 1)ρ
dρ.

The three pairs (ψ, S), (u, p) and (φ, S) are the Riemann invariants associated with λ−, λ0

and λ+, respectively. However, there is no full coordinate system of Riemann invariants
so that (9.20) cannot be reduced to a diagonal form. At this point, the system (9.20) is
substantially different from the system of isentropic flow (9.1) and the system of shallow
water equations (9.11). However, it falls into the category of weakly coupled systems, as
defined in Definition 7.7. Indeed, we take φ, ψ and S as the (quasi)-Riemann invariants to
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write (9.22) as

(9.28)















































∂φ

∂t
+ (u− c)

∂φ

∂x
= B1,

∂ψ

∂t
+ (u+ c)

∂ψ

∂x
= B2,

∂S

∂t
+ u

∂S

∂x
= 0.

where B1 = T ∂S
∂x

+ A′(x)
A(x)

cu, B2 = T ∂S
∂x

− A′(x)
A(x)

cu. For the present system, W a = (φ, ψ)⊤ and

W b = S, corresponding to Definition 7.7.
We use this weakly coupled form to resolve the generalized Riemann problem for (9.20)

subject to piecewise linear initial data of the form (2.1). Assume that the configuration is
as shown in Figure 2.1; a rarefaction wave associated with u − c moves to the left, a shock
associated with u + c moves to the right, and the t-axis is located inside the intermediate
region. Denote by p∗, u∗ the limiting values of p, u at the contact discontinuity as t → 0+.
Similarly, denote by ρ∗1, c∗1 and ρ∗2, c∗2 the limiting values of ρ, c on the left-hand and
right-hand sides of the contact discontinuity, respectively. Then we resolve the rarefaction
wave, the shock and the contact discontinuity, separately.

First we resolve the rarefaction wave associated with u− c from the left. According to the
general treatment of weakly coupled system in Section 7, this is done by first treating W b

and solving for W a. In our case, it means that we are using the Riemann invariants φ, ψ
with appropriate dependence on S. Due to the special form of the system, the dependence
of S is very simple. For this purpose, we need to establish the system of characteristic
coordinates (x, t) → (α, β), where α and β are defined in terms of the eigenvalues u + c,
u−c, respectively. See Figure 2.1 and the section of Figure 4.1. The associated characteristic
coordinates tass(α, β), xass(α, β) are given in (9.5). In the limit α → 0, u(0, β)− c(0, β) = β
so that c = µ2(ψL− β) and u = (µ2 − 1)(ψL− β) + ψL, where µ2 = γ−1

γ+1
, ψL = ψ(ρL, uL, pL).

Eqs. (9.4) are replaced by the first two equations of (9.28). According to Theorem 7.3, we
obtain ∂ψ/∂t and ∂S/∂t, as stated in the following proposition.

Proposition 9.4. Assume that the rarefaction wave associated with u− c moves to the left,
as in Figure 2.1. Consider the Riemann invariants S, ψ and their time derivatives ∂S/∂t,
∂ψ/∂t as continuous functions of α, β, in the rectangle −α0 ≤ α ≤ 0, βL ≤ β ≤ β∗ for some
α0 > 0. Then we have,

(9.29)
T
∂S

∂t
(0, β) = −(β + cLθ)θ

2γ

γ−1TLS
′

L, θ = c(0, β)/cL,

∂ψ

∂t
(0, β) = H1 +

A′(0)

2A(0)
H2,
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where TLS
′

L is defined by (9.27), and H1, H2 are given by,

(9.30)

H1 = −β + cLθ

cL
θ

γ+1
γ−1TLS

′

L +
β + 2cLθ

cL
θ

3−γ
2(γ−1)

[

2γ

3γ − 1
TLS

′

L − cLψ
′

L

]

,

H2 = β(β + cLθ) − (β + 2cLθ)
[

uLθ
3−γ

2(γ−1) +H2

]

,

H2 =



















−2(γ + 1)cLθ

(γ − 1)(3γ − 5)

(

1 − θ
5−3γ

2(γ−1)

)

− (γ + 1)ψL
γ − 3

[

1 − θ
3−γ

2(γ−1)

]

, if γ 6= 3, 5/3,

2cL(θ − 1) − ψL ln θ, if γ = 3,

2 [cLθ ln θ + ψL (1 − θ)] , if γ = 5/3.

Proof. According to the general treatment of Section 7, we need to consider the evolution of
the time derivatives of two pairs of Riemann invariants (φ, S) and (φ, ψ).

(i) The computation of T∂S/∂t. we use the first and third equations of (9.28) to form
a system of two equations,

(9.31)



















∂φ

∂t
+ (u− c)

∂φ

∂x
= B1,

∂S

∂t
+ (u+ c)

∂S

∂x
= c

∂S

∂x
.

Then, in terms of α and β, we have (since ∂x/∂α = (u−c)∂t/∂α and ∂x/∂β = (u+c)∂t/∂β),

(9.32)

∂S

∂β
=
∂t

∂β
·
[

∂S

∂t
+ (u+ c)

∂S

∂x

]

=
∂t

∂β
· c∂S
∂x

,

∂S

∂α
=

∂t

∂α

[

∂S

∂t
+ (u− c)

∂S

∂x

]

= − ∂t

∂α
· c∂S
∂x

.

We note, as in (4.15), that

(9.33)
∂2t

∂α∂β
(0, β) =

1

2c(0, β)

∂t

∂α
(0, β),

where we have used the fact that λ−(0, β) = β, λ−(0, β) − λ+(0, β) = −2c(0, β) and
(∂t/∂β)(0, β) = 0. Thus, differentiating the first equation of (9.32) with respect to α and
noting ∂t

∂β
(0, β) ≡ 0, we get

(9.34)
∂

∂β

(

∂S

∂α
(0, β)

)

=
1

2

∂t

∂α
(0, β) · ∂S

∂x
(0, β) = − 1

2c(0, β)

∂S

∂α
(0, β).

Integrating from βL to β yields,

(9.35)
∂S

∂α
(0, β) =

∂S

∂α
(0, βL) exp

(

−
∫ β

βL

1

2c(0, η)
dη

)

=
∂S

∂α
(0, βL) · θ

1
2µ2 .
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Similarly, we get from (9.33)

(9.36)
∂t

∂α
(0, β) =

∂t

∂α
(0, βL)θ

−
1

2µ2 .

In particular, from the second equation of (9.32) and(9.36), we have

(9.37) c(0, β)
∂S

∂x
(0, β) = −∂S

∂α
(0, β) ·

(

∂t

∂α

)−1

(0, β) = cLS
′

Lθ
1

µ2 .

Hence using the entropy equation in (9.28), we return to the (x, t)-coordinate system to get
T ∂S
∂t

,

(9.38) T (0, β)
∂S

∂t
(0, β) = −u(0, β)T (0, β)

∂S

∂x
(0, β),

which gives T ∂S
∂t

in (9.29) by using (9.37) and noting T/TL = c2/c2L.

(ii) The computation of ∂ψ/∂t. We now consider the first two equations in (9.28),
i.e., the system of two equations,

(9.39)



















∂φ

∂t
+ (u− c)

∂φ

∂x
= B1,

∂ψ

∂t
+ (u+ c)

∂ψ

∂x
= B2.

As in (9.32), we note

(9.40)
∂ψ

∂t
+ (u− c)

∂ψ

∂x
=

(

∂t

∂α

)−1
∂ψ

∂α
.

Regard the source terms as functions of (α, β). In the limit (α → 0), they are known from
the first part of the proof, see Eq. (9.37). In terms of the general treatment of weakly
coupled systems in Section 7, this is at the stage where W b (= {S}) is fully resolved, and
we can turn to the diagonal system for W a (= {φ, ψ}). Following the same reasoning as the
one leading up to equation (9.34), we get

(9.41)
∂

∂β

(

∂ψ

∂α
(0, β)

)

=
1

2c(0, β)
· ∂t
∂α

(0, β) · B2(0, β).

The integration from βL to β yields,

(9.42)
∂ψ

∂α
(0, β) =

∂ψ

∂α
(0, βL) +

∫ β

βL

1

2c(0, η)
· ∂t
∂α

(0, η) · B2(0, η)dη,

The initial data for ∂ψ/∂α is given by

(9.43)
∂ψ

∂α
(0, βL) =

∂t

∂α
(0, βL)

[

TLS
′

L − A′(0)

A(0)
cLuL − 2cLψ

′

L

]

,

where we note the following relation by using (9.39) and (9.40),

(9.44)
∂ψ

∂α
=

∂t

∂α
·
[

∂ψ

∂t
+ (u− c)

∂ψ

∂x

]

=
∂t

∂α
·
[

B2 − 2c
∂ψ

∂x

]

.
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Once we obtain (∂ψ/∂α)(0, β) from (9.42), we get

(9.45) 2c(0, β)
∂ψ

∂x
(0, β) = B2(0, β) −

(

∂t

∂α

)−1

(0, β)
∂ψ

∂α
(0, β).

we insert this into (9.40) to get

(9.46)
∂ψ

∂t
(0, β) = −u− c

2c
B2(0, β) +

u+ c

2c

(

∂t

∂α

)−1
∂ψ

∂α
(0, β).

Then using B2(0, β) = T (0, β)∂S
∂x

(0, β) − A′(0)
A(0)

c(0, β)u(0, β) and the value ∂ψ
∂α

(0, β) in (9.42),

we obtain the second equation in (9.29). �

Proposition 9.5. (Resolution of rarefaction waves.) Assume that the rarefaction wave
associated with u − c moves to the left. Use the characteristic coordinates (α, β) as above
and consider the limiting values ∂u

∂t
(0, β) and ∂p

∂t
(0, β), βL ≤ β ≤ β∗. Then we have

(9.47) ãL(0, β)
∂u

∂t
(0, β) + b̃L(0, β)

∂p

∂t
(0, β) = d̃L(β),

where the coefficients ãL, b̃L and d̃L can be expressed explicitly as follows. With θ =
c(0, β)/cL,

(9.48) ãL(0, β) = 1, b̃L(0, β) =
1

ρ(0, β)c(0, β)
,

and

(9.49) d̃L(β) =
β + 2θcL

cL
· θ

3−γ

2(γ−1)

(

2γ

3γ − 1
TLS

′

L − cLψ
′

L

)

+
A′(0)

2A(0)
H2,

where H2 is given in (9.30).

Proof. We use (9.26) to get

(9.50)
∂u

∂t
+

1

ρc

∂p

∂t
=
∂ψ

∂t
− T

c

∂S

∂t
.

The right-hand side can be evaluated at (0, β) using the two equations in (9.29) to yield
(9.47) as well.

�

As in Section 7.3, we can use the Riemann invariants W for the resolution of jump discon-
tinuities. However, as in the first part of Section 7.3, it is more convenient to use the basic
primitive variables U = (ρ, u, p). See Remark 7.11.

The Rankine-Hugoniot conditions for shocks are

(9.51) σ =
ρu− ρu

ρ− ρ
, u = u± Φ(p; p, ρ), ρ = h(p; p, ρ),

where (ρ, u, p) and (ρ, u, p) are the states ahead and behind the shock, respectively, and

(9.52) Φ(p; p, ρ) = (p− p)

√

1 − µ2

ρ(p+ µ2p)
, h(p; p, ρ) = ρ

p+ µ2p

p+ µ2p
, µ2 =

γ − 1

γ + 1
.
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Assume that this shock is associated with u+ c and moves to the right, as shown in Figure
2.1. Then it can be resolved with a standard method, see [5].

Proposition 9.6. (Resolution of shocks.) Assume that a shock associated with u+ c moves
to the right. Then the limiting values (∂p/∂t)∗ and (∂u/∂t)∗ satisfy the linear relations

(9.53) ãR

(

∂u

∂t

)

∗

+ b̃R

(

∂p

∂t

)

∗

= d̃R,

where the coefficients are given explicitly in the following,

(9.54)

ãR = 1 − σ0u∗
u2
∗
− c2

∗2

− σ0ρ∗2c
2
∗2

u2
∗
− c2

∗2

· Φ1, b̃R =
1

ρ∗2

σ0

u2
∗
− c2

∗2

−
(

1 − σ0u∗
u2
∗
− c2

∗2

)

Φ1,

d̃R = LRp · p′R + LRu · u′R + LRρ · ρ′R +
A′(0)

A(0)
jR,

and

(9.55)

LRp = − 1

ρR
+ (σ0 − uR) · Φ2,

LRu = σ0 − uR − ρR · c2R · Φ2 − ρR · Φ3,

LRρ = (σ0 − uR) · Φ3,

jR = −(Φ2c
2
∗2 + Φ3)ρRuR + (1 + Φ1ρ∗2u∗)

σ0c
2
∗2u∗

u2
∗
− c2

∗2

;

σ0 =
ρ∗2u∗ − ρRuR
ρ∗2 − ρR

,

Φ1 =
1

2

√

1 − µ2

ρR(p∗ + µ2pR)
· p∗ + (1 + 2µ2)pR

p∗ + µ2pR
,

Φ2 = −1

2

√

1 − µ2

ρR(p∗ + µ2pR)
· (2 + µ2)p∗ + µ2pR

p∗ + µ2pR
,

Φ3 = −p∗ − pR
2ρR

√

1 − µ2

ρR(p∗ + µ2pR)
.

Next we want to resolve the contact discontinuities. Let x = x(t) be the jump discontinuity.
The Rankine-Hugoniot (jump) conditions are

(9.56) u(x(t) − 0, t) = u(x(t) + 0, t), p(x(t) − 0, t) = p(x(t) + 0, t).

Indeed, u and p are the Riemann invariants associated with λ0 = u. Denote D/Dt =
∂/∂t + u∂/∂x, u±(t) := u(x(t) ± 0, t), p±(t) = p(x(t) ± 0, t). Then along x = x(t) we have

(9.57)
Du+(t)

Dt
=
Du−(t)

Dt
,

Dp+(t)

Dt
=
Dp−(t)

Dt
.
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Note that

(9.58)

∂u

∂t
=
Du

Dt
+

u

ρc2
Dp

Dt
+
A′(x)

A(x)
u2,

∂p

∂t
=
Dp

Dt
+ ρu

Du

Dt
.

or

(9.59)

Du

Dt
=

1

c2 − u2

[

c2
∂u

∂t
− u

ρ

∂p

∂t
− A′(x)

A(x)
c2u2

]

,

Dp

Dt
=

c2

u2 − c2

[

ρu
∂u

∂t
− ∂p

∂t
− A′(x)

A(x)
ρu3

]

.

Then, once the limiting values (∂u/∂t)∗ and (∂p/∂t)∗ on one side of the contact discontinuity
are known, then we can obtain them on the other side. We remind that they are different
on the two sides since the density ρ experiences a jump there.

Combining all above discussion, we can solve the generalized Riemann problem (9.20) and
(2.1). We summarize our results in the following propositions.

Proposition 9.7. (Non-sonic case.) Assume a typical wave configuration for the generalized
Riemann problem for (9.20) as shown in Figure 2.1. Then we can obtain (∂u/∂t)∗ and
(∂p/∂t)∗ by solving the following pair of linear equations,

(9.60)
aL

(

∂u

∂t

)

∗

+ bL

(

∂p

∂t

)

∗

= dL,

aR

(

∂u

∂t

)

∗

+ bR

(

∂p

∂t

)

∗

= dR,

where aL, bL, dL and aR, bR, dR are specified below. Also the computation of (∂ρ/∂t)∗ are
also computed by the following two cases.

(i) If u∗ > 0, the contact discontinuity moves to the right. The coefficients aL, bL and dL
are given in (9.47),

(9.61) (aL, bL, dL) = (ãL, b̃L, d̃L).

The coefficients aR, bR and dR are given by

(9.62)

aR =
c2
∗1

c2
∗1 − u2

∗

[

ãR(1 − ρ∗1u
2
∗

ρ∗2c2∗2
) + b̃R(ρ∗2 − ρ∗1)u∗

]

,

bR =
1

c2
∗1 − u2

∗

[

ãR(− 1

ρ∗1
+

c2
∗1

ρ∗2c2∗2
)u∗ − b̃R(−ρ∗2

ρ∗1
u2
∗
+ c2

∗1)

]

,

dR = d̃R +
A′(0)

A(0)

u3
∗

c2
∗1 − u2

∗

[

ãR(1 − ρ∗1c
2
∗1

ρ∗2c2∗2
) + b̃R(ρ∗2 − ρ∗1)c

2
∗1

]

.

The value (∂ρ/∂t)∗ is computed from the rarefaction side,

(9.63)

(

∂ρ

∂t

)

∗

=
1

c2
∗





(

∂p

∂t

)

∗

+ (γ − 1)ρ∗u∗

(

c∗
cL

)
1+µ2

µ2

TLS
′

L



 ,
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by using the state equation p = p(ρ, S).

(ii) If u∗ < 0, the contact discontinuity moves to the left. The coefficients aR, bR and dR
are given in Proposition 9.6,

(9.64) (aR, bR, dR) = (ãR, b̃R, d̃R).

While the coefficients aL, bL and dL are computed by

(9.65)

aL =
c2
∗2

c2
∗2 − u2

∗

[

ãL(1 − ρ∗2u
2
∗

ρ∗1c2∗1
) + b̃L(ρ∗1 − ρ∗2)u∗

]

,

bL =
1

c2
∗2 − u2

∗

[

ãL(−
1

ρ∗2
+

c2
∗2

ρ∗1c2∗1
)u∗ − b̃L(−ρ∗1

ρ∗2
u2
∗
+ c2

∗2)

]

,

dL = d̃L +
A′(0)

A(0)

u3
∗

c2
∗2 − u2

∗

[

ãL(1 − ρ∗2c
2
∗2

ρ∗1c
2
∗1

) + b̃L(ρ∗1 − ρ∗2)c
2
∗2

]

.

The value (∂ρ/∂t)∗ is computed from the shock side,

(9.66) gRρ

(

∂ρ

∂t

)

∗

+ gRp

(

Dp

Dt

)

∗

+ gRu

(

Du

Dt

)

∗

= u∗ · fR,

where gRρ , gRp , gRu and fR are constant, explicitly given in the following,

(9.67)

gRρ = u∗ − σ0, gRp =
σ0

c2
∗2

− u∗H1, gRu = ρ2∗(σ0 − u∗) · u∗ ·H1,

fR = (σ0 − uR) ·H2 · p′R + (σ0 − uR) ·H3 · ρ′R − ρR · (H2c
2
R +H3) · u′R

−A
′(0)

A(0)
·
(

H2c
2
R +H3

)

ρRuR,

and H1, H2 and H3 are expressed by

(9.68) H1 =
ρR(1 − µ4)pR
(pR + µ2p∗)2

, H2 =
ρR(µ4 − 1)p∗
(pR + µ2p∗)2

, H3 =
p∗ + µ2pR
pR + µ2p∗

.

Proposition 9.8. (Sonic case). Assume that the t−axis is located inside the rarefaction
wave associated with u− c. Then we have
(9.69)
(

∂u

∂t

)

0

=
1

2

[

d̃L + θ
2γ

γ−1TLS
′

L +
A′(0)

A(0)
u2

0

]

,

(

∂p

∂t

)

0

=
ρ0c0
2

[

d̃L − θ
2γ

γ−1TLS
′

L − A′(0)

A(0)
u2

0

]

,

where d̃L is given in (9.49), with θ = c0/cL, and (u0, ρ0, c0) is the limiting value of (u, ρ, c)
along the t-axis so that u0 − c0 = 0, cf. the sonic case in Proposition 9.1.

Proof. Note that at the origin, we have

(9.70)

(

∂φ

∂t

)

0

=

(

∂φ

∂t

)

0

+ (u0 − c0)

(

∂φ

∂x

)

0

=

(

T
∂S

∂x

)

0

+
A′(0)

A(0)
c0u0.
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That is,

(9.71)

(

∂u

∂t

)

0

− 1

ρ0u0

(

∂p

∂t

)

0

=

(

T
∂S

∂x

)

0

+
A′(0)

A(0)
c0u0.

Since (T∂S/∂x)0 = θ
2γ

γ−1TLS
′

L, we use Proposition 9.5 to complete the proof. �

Finally we present the acoustic case that UL = UR but U ′

L 6= U ′

R, which leads to the G1

scheme.

Proposition 9.9. (Acoustic case.) Assume that UL = UR and U ′

L 6= U ′

R. Then we have the
acoustic case, and (∂u/∂t)∗ and (∂p/∂t)∗ are solved as
(9.72)

(

∂u

∂t

)

∗

= −1

2

[

(u∗ + c∗)

(

u′L +
p′L
ρ∗c∗

)

+ (u∗ − c∗)

(

u′R − p′R
ρ∗c∗

)]

,

(

∂p

∂t

)

∗

= −ρ∗c∗
2

[

(u∗ + c∗)

(

u′L +
p′L
ρ∗c∗

)

− (u∗ − c∗)

(

u′R − p′R
ρ∗c∗

)]

− A′(0)

A(0)
ρ∗c

2
∗
u∗.

The quantity (∂ρ/∂t)∗ is solved according to the direction of the contact discontinuity,

(9.73)

(

∂ρ

∂t

)

∗

=
1

c2
∗

[(

∂p

∂t

)

∗

+ u∗
(

p′L − c2
∗
ρ′L
)

]

if u∗ = uL = uR > 0; and

(9.74)

(

∂ρ

∂t

)

∗

=
1

c2
∗

[(

∂p

∂t

)

∗

+ u∗
(

p′R − c2
∗
ρ′R
)

]

if u∗ = uL = uR < 0.

10. Numerical Examples

In consistent with Section 9, we present several numerical examples to show the perfor-
mance of our GRP scheme.

10.1. The Riemann problem for isentropic flows. Two examples are given for isen-
tropic flows (9.1), see Figure 10.1, in which fifty grid points are used both for the Godunov
scheme and the GRP scheme. The first simulates the dam collapse problem with an almost
dry bed on one side. We clearly see that the sonic point glitch in the first order Gudonov
solution is eliminated by the GRP scheme. Also this example shows that our GRP can
preserve the positivity of the height of water. The second is the standard Riemann problem.
The solution contains a shock propagating to the left and a rarefaction wave moving to the
right. We see the high accuracy of the GRP scheme, particularly for the rarefaction wave,
which may be due to its analytic resolution in our GRP scheme. Recall that in [12] the
rarefactive wave is replaced by a rarefaction shock.
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(a) Dam collapse problem with low height of water:
a = 4.9, γ = 2
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(b) Riemann problem for isentropic flow: a = 1,
γ = 1.4

Figure 10.1. Numerical solutions for isentropic flows. (a). The Riemann
initial data are: ρL = 10.0, uL = 0.0, ρR = 10−5, uR = 0.0. (b). The Riemann
initial data are: ρL = 10.0, uL = 0.0, ρR = 25, uR = 0.0.

10.2. Rotating shallow water equations with Coriolis force. We use our scheme to
simulate the classical Rossby problem, which illustrates the evolution of a simple jet-shaped
initial momentum imbalance, see [6]. The initial distribution h(x, 0) ≡ 10, u(x, 0) ≡ 0.0 and
v(x, 0) = V NL(x), where

(10.1) NL(x) =
(1 + tanh(4x/L+ 2)) · (1 − tanh(4x/L− 2))

(1 + tanh(2))2
,

and the parameters V and L are given by the Rossy number Ro = V
fL

and the Burger number

Bu = gh
f2L2 . In Figure 10.2, we use f = 0.5, g = 9.81, Ro = 1.0 and Bu = 0.25. We observe

that two shocks are formed at t/Tf = 0.6, Tf = 2π/f , and propagate to the left and to the
right from the jet, respectively. One of the shocks is formed within the jet core. The result
is totally consistent with that in [6].

10.3. A steady flow in a converging-diverging nozzle. We use the examples in [4,
Section 6.5] to test the ability of the present scheme to attain the steady state very quickly.
Consider a flow in a converging-diverging nozzle, which occupies the interval 0 ≤ x ≤ 1, and
whose cross-sectional area function is given by the following expression,

(10.2) A(x) =







Ain exp
(

− log(Ain) sin2(2πx)
)

, 0 ≤ x < 0.25,

Aex exp
(

− log(Aex) sin2
(

2π(1−x)
3

))

,
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Figure 10.2. Shock formation from jets

where Ain = 4.8643 and Aex = 4.2346. The initial data we use are

(10.3) U(x, 0) =















UL = (ρ0, 0, p0), 0 < r < 0.25,

UR = (ρ0, 0, ρ0(pb/p0)
γ), 0.25 < r < 1,

where pb is a constant value determined by the steady state solution at x = 1.
For a perfect gas with a polytropic index γ = 1.4, the Mach number M(x) = u(x)/c(r) is

determined by A(r) through the algebraic relation

(10.4) [A(x)]2 =
1

[M(x)]2

[

2

γ + 2

(

1 +
γ − 1

2
[M(x)]2

)]
γ+1
γ−1

.

Then the steady flow is given by

(10.5)

p(x) = p0

[

1 +
γ − 1

2
[M(x)]2

]−
γ

γ−1

,

ρ(x) = ρ0

[

1 +
γ − 1

2
[M(x)]2

]−
1

γ−1

,

u(x) = M(x)
√

γp(x)/ρ(x),

where ρ0 and p0 need to be specified.
We consider two cases:
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(A) A smooth flow where p(1) = 0.0272237 is obtained from (10.5) by taking x = 1 in
(10.4) leading to M(1) = 3.

(B) Setting p(1) = 0.4 leads to a discontinuous steady state solution, as shown by the
solid lines in Figure 10.4.
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Figure 10.3. Large time in the Laval Nozzle. The solid line is the steady
solution, and the points are the GRP solution with 22 grid points at time
t = 15.5

We use the same strategy in [4, Section 6.5] to deal with the boundary conditions at x = 0
and x = 1. In both cases, we use 22 coarse points to display the performance of our scheme
in Figures 10.3 and 10.4, and see that our GRP solution is in very good agreement with the
exact solution.

In order to see how fast our GRP solution converges to the steady state, we display two
different time intervals: t = 1.0 and t = 2.5, see Figures 10.5 and 10.6. It is seen that at
time t = 2.5, our GRP solution almost attains the steady state. These show that our GRP
solution can converge to the steady state very quickly.
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Figure 10.4. Large time in the Laval Nozzle. The solid line is the steady
solution, and the points are the GRP solution with 22 grid points at time
t = 15.5
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