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Abstract. We study the dependence of entropy solutions in the large for hyperbolic systems of conservation
laws whose flux functions depend on a parameter vector µ. We first formulate an effective approach for
establishing the L1-estimate pointwise in time between entropy solutions for µ 6= 0 and µ = 0, respectively,
with respect to the flux parameter vector µ. Then we employ this approach and successfully establish the
L1-estimate between entropy solutions in the large for several important nonlinear physical systems including
the isentropic and relativistic Euler equations and for the isothermal Euler equations, respectively, for which
the parameters are the adiabatic exponent γ > 1 and the speed of light c < ∞.

1. Introduction

Consider the Cauchy problem for a hyperbolic system of conservation laws in one-space dimension
{

∂tW
µ(U) + ∂xFµ(U) = 0, x ∈ R,

U |t=0 = U0(x),
(1.1)

where Wµ, Fµ : R
n → R

n are smooth functions that depend on a parameter vector µ = (µ1, . . . , µk) with
µi ∈ [0, µ0] (i = 1, . . . , k) for some µ0 > 0, and ∇Wµ(U) is uniformly invertible when µi ∈ [0, µ0] with
W 0(U) = U when µ = 0.

We are interested in the dependence of entropy solutions Uµ in the large to (1.1) on the parameter vector
µ. System (1.1) for µ = 0 is assumed to be uniformly stable in L1 with the Lipschitz Standard Riemann
Semigroup S that generates the entropy solution U . We denote by Uµ the entropy solution to (1.1) for µ 6= 0
which is constructed by the front-tracking method. In this paper, we first formulate an effective approach
for establishing the L1-estimates pointwise in time of the following type:

‖Uµ(t) − U(t)‖L1 ≤ C TV {U0} t ‖µ‖, (1.2)

under the convergence assumption of the front-tracking approximations to system (1.1) for µ 6= 0, even when
the initial data function U0 has large variation, where C > 0 is a constant independent of the parameter
vector µ and ‖µ‖ denotes the magnitude of the vector µ. Then we employ this approach and successfully
establish the L1-estimate between entropy solutions in the large for several important nonlinear physical
systems including the isentropic and relativistic Euler equations and for the isothermal Euler equations,
respectively, for which the parameters are the adiabatic exponent γ > 1 and the speed of light c < ∞.

Our approach utilizes the wave front-tracking method. More precisely, for every δ > 0, let U δ,µ be
the δ-approximate solution to (1.1) for µ 6= 0 constructed by the wave front-tracking method so that the
approximations U δ,µ are globally defined piecewise constant functions with finite number of discontinuities,
as constructed as follows: First, choose a piecewise constant function U δ

0 (x) such that

‖U δ
0 − U0‖L1 < δ. (1.3)

Let ̺ be a constant given at the outset of the construction algorithm. At each discontinuity point of U δ
0 (x),

a Riemann problem arises and the solution consists of shocks, contact discontinuities, and rarefaction waves.
We approximate the rarefaction waves by a centered rarefaction fan containing several small jumps traveling
at a speed close to the characteristic speed and with strength of each of these fronts less than δ. The piecewise
constant approximate solution can be prolonged until when the first set of interactions take place. Depending
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on the interaction, either the Accurate Riemann Solver (ARS) or the Simplified Riemann Solver (SRS) is
used to solve the Riemann problem that arises at the interaction point. ARS is basically the exact Riemann
solution except that the rarefaction waves are approximated by rarefaction fans as mentioned above, while

SRS introduces a non-physical wave front with constant speed λ̂. ASR is employed at t = 0 and at every
interaction between two physical waves when the product of the strengths of the incoming waves is |α α′| ≥ ̺,
and SRS is used at every interaction involving a non-physical incoming wave-front and also at interactions

where |α α′| ≤ ̺. Hence, the algorithm involves three parameters: A fixed speed λ̂, strictly larger than all
characteristic speeds; a threshold ̺ > 0 determining whether ASR or SRS is applied; and the maximum
strength of rarefaction fronts which is less than the front-tracking parameter δ.

To complete the construction, one needs to show that, for suitable ν and ρ, the above algorithm produces
a δ-approximate solution U δ,µ(t, x) defined for all t ≥ 0: U δ,µ(t, x) is piecewise constant with discontinuities
occurring along finitely many lines in the (t, x)-plane. The jumps can be of three types: shock fronts,
rarefaction fronts, and non-physical fronts. The shock fronts travel with the Rankine-Hugoniot speed, while
the rarefaction fronts travel with the characteristic speed of the right state and have strength less than

δ. All non-physical fronts have the same speed λ̂, where λ̂ is a fixed constant strictly greater than all the
characteristic speeds. The total strength of all non-physical fronts is uniformly small, i.e.,

∑

|α| < δ. For
more details for the front-tracking method, we refer the reader to Bressan [3], Dafermos [10], and Holden-
Risebro [14].

Our approach for the L1-estimate of dependence of entropy solutions in µ can be formulated in the
following fashion. Assume that Uµ can be constructed by the front-tracking method as described above:

U δ,µ → Uµ in L1
loc as δ → 0 + .

First, from the approximate initial data U δ
0 and the corresponding δ-approximate solution U δ,µ, we employ

the following standard formula in semigroup theory:

‖StU
δ
0 − U δ,µ(t)‖L1 ≤ L

∫ t

0

lim inf
h→0+

‖ShU δ,µ(τ) − U δ,µ(τ + h)‖L1

h
dτ, (1.4)

where L is the Lipschitz constant of the semigroup S. Observe that the limit in the integral of (1.4) is
invariant for time t between two interaction points. Then the essential ingredient for this approach is to
estimate

‖ShU δ,µ(τ) − U δ,µ(τ + h)‖L1 , (1.5)

which is equivalent to solving first the Riemann problem of (1.1) when µ = 0 for τ ≤ t ≤ τ + h with data

(UL, UR) =

{

U δ,µ(τ, x), x < x̄,
U δ,µ(τ, x), x > x̄

(1.6)

over each front x = x̄ at time τ and to comparing then the Riemann solution with U δ,µ(τ +h). We solve the
Riemann problem only for the non-interaction times τ of the δ–approximate solution U δ,µ since there is only
a finite number of interactions. For each front at (τ, x̄), there exists a > 0 so that the interval (x̄ − a, x̄ + a)
at t = τ contains only one front, i.e., only the front passing through (τ, x̄). Thus, it suffices to compare the
jump of the front of U δ,µ at (τ, x̄) as given by (1.6) with the Riemann solution generated by the semigroup
S at time t = τ + h for x ∈ (x̄ − a, x̄ + a). If we can establish that, for sufficiently small h/a,

1

h

∫ x̄+a

x̄−a

|ShU δ,µ(τ) − U δ,µ(τ + h)| dx = O(1)(|UL − UR| ‖µ‖ + δ), (1.7)

then summing over all fronts yields

‖StU
δ
0 − U δ,µ(t)‖L1 ≤ L

∫ t

0

∑

fronts x=x̄(τ)

1

h

∫ x̄+a

x̄−a

|ShU δ,µ(τ) − U δ,µ(τ + h)| dxdτ

= O(1)

(∫ t

0

TV {U δ,µ}(τ) dτ ‖µ‖ + δ t

)

= O(1)(TV {U0} t ‖µ‖ + t δ), (1.8)

2



where we use TV {U δ,µ}(t) = O(1)TV {U0}. As δ → 0+, we obtain

‖StU0 − Uµ(t)‖L1 = O(1)TV {U0} t ‖µ‖. (1.9)

Note that U(t, x) := StU0(x) is unique within the class of viscosity solutions (cf. [3]). Thus the whole
sequence Uµ converges in L1 to the entropy solution U of the limit equation µ = 0, as µ → 0.

In our applications of this approach to several nonlinear physical systems of Euler equations in this paper,
we use the Standard Riemann Semigroup S to the isothermal Euler equations:

{

∂tρ + ∂x(ρ u) = 0,

∂t(ρ u) + ∂x(ρ u2 + κ2ρ) = 0,
(1.10)

with large initial data

(ρ, ρu)|t=0 = (ρ0, ρ0u0)(x), (1.11)

where ρ > 0 and u is the density and velocity of the fluid, respectively. System (1.10) can be rewritten in a
conservation form as (1.1) with µ = 0 by setting

U = (ρ, ρu), W 0(U) = U, F 0(U) = (ρu, ρu2 + κ2ρ)⊤.

The existence of entropy solutions in BV of (1.10)–(1.11) was first established by Nishida [23] via the Glimm
scheme; and the construction of the Standard Riemann Semigroup to (1.10) is presented in Colombo-Risebro
[9] when the total variation of the initial data is not necessarily small. More precisely, for fixed two states
U− and U+ in Ω and a constant M > 0, there exist a domain D ⊆ BV (R), a semigroup S : [0,∞)×D 7→ D,
and a constant L > 0 such that

(i) D contains the L1−closure of the set of those functions U : R → Ω such that U − U− ∈ L1(−∞, 0),
U − U+ ∈ L1(0,∞) and TV {U} ≤ M ;

(ii) S is L1-Lipschitz continuous with constant L, i.e.,

‖StU0 − SsW0‖L1 ≤ L (‖U0 − W0‖L1 + |t − s|) ;

(iii) If U0 is piecewise constant, then, for small t, the map (t, x) 7→ StU0(x) coincides with the solution to
(1.10)–(1.11) obtained by piecing together the Lax solutions of the Riemann problems determined
at the jumps of U0.

Then the Standard Riemann Semigroup is unique and the trajectory StU0 is an entropy solution to (1.10)–
(1.11), which is unique in the class of viscosity solutions with interaction potential locally uniformly bounded.
These are exactly what we require for our approach for StU0.

For the most relevant work in the literature, we refer the reader to Temple [29] and Bianchini-Colombo
[2].

Temple [29] considered systems of conservation laws when the flux depends on a parameter µ and estab-
lished the existence of entropy solutions by observing that the nonlinear functional employed in the Glimm
scheme [13] depends only on the properties of the equations at µ = 0, for which the dependence of the
interaction estimates on the parameter µ was studied. Our approach here is to establish similar bounds on
the L1–difference between entropy solutions to such systems for µ 6= 0 and µ = 0, respectively.

Bianchini-Colombo [2] studied the dependence of entropy solutions on the flux functions. They considered
the systems with smooth flux functions F : Ω 7→ R

n with F ∈ Hyp(Ω), i.e., F that generates a Standard
Riemann Semigroup SF with domain DF , compared two systems with flux functions F , G ∈ Hyp(Ω) with
DG ⊂ DF , by introducing a distance function between F and G, and showed that the Standard Riemann
Semigroup is a Lipschitz function with respect to the C0–norm of derivative of F , i.e. DF . Note that, in
[2], both systems are required to generate a Standard Riemann Semigroup, which has been established if
the initial data is small (cf. [3]) or if the initial data is large for the isothermal Euler equations (γ = 1)
and the relativistic Euler equations (γ = 1, c < ∞) (cf. [9]). Thus, they apply their result to establish the
convergence of the entropy solutions of the relativistic Euler equations for the case γ = 1 and c < ∞ to the
classical limit (the isothermal Euler equations, γ = 1). In this paper, we formulate a different approach to
study the dependence of entropy solutions on the parameters of the flux function. To compare two systems
of conservations laws, we require only that one of them generates a Standard Riemann Semigroup and the
second system has a global entropy solution obtained by the front-tracking method. In this way, we can
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apply our approach to hyperbolic systems even if the initial data is not necessarily small and treat other
models of Euler equations for which the stability of entropy solutions has not been established yet.

In Sections 2-4, we present four applications of this effective approach and establish the L1-estimate
pointwise in time between entropy solutions for the isothermal Euler equations and those for (i) the isentropic
Euler equations, (ii) the relativistic Euler equations for conservation of momentum, and (iii) isentropic
relativistic Euler equations, as well as between entropy solutions for the relativistic Euler equations for
conservation of momentum for γ = 1 and those for the general relativistic Euler equations for conservation
of momentum for γ > 1. Furthermore, the approach presented in this paper will be further applied to solving
more complicated physical systems in our forthcoming papers.

We remark that the results in this paper show that entropy solutions away from the vacuum of these
physical systems are L1-stable when the adiabatic exponent γ > 1 tends to 1 and the light speed c tends
to ∞. It would be interesting to study the stability of entropy solutions containing vacuum states of these
physical systems, especially when the adiabatic exponent γ > 1 tends to 1 for the isentropic Euler equations.
The existence of such entropy solutions containing vacuum states in L∞ has been established for the isentropic
Euler equations in [4, 11, 12, 22, 21] (also see [5]) and the isothermal Euler equations in [15] (also see [16]).

2. Isentropic Euler Equations

In this section, we study the isentropic Euler equations

{

∂tρ + ∂x(ρu) = 0,

∂t(ρ u) + ∂x(ρu2 + p(ρ)) = 0
(2.1)

for a perfect polytropic fluid with the pressure-density relation: p(ρ) = κ2ργ , γ ≥ 1, where u is the velocity
of the fluid. Set

ε =
γ − 1

2
.

System (2.1) can be rewritten in a conservation form by setting U = (U1, U2)
⊤ = (ρ, ρu)⊤ and

W ε(U) = U, F ε(U) = (ρ, ρu2 + κ2ρ2ε+1)⊤

with Cauchy initial data

U |t=0 = U0(x) := (ρ0(x), ρ0(x)u0(x))⊤. (2.2)

System (2.1) is strictly hyperbolic with two distinct eigenvalues when ρ > 0:

λ1 = u − κ
√

γρ
γ+1

2 , λ2 = u + κ
√

γρ
γ+1

2 . (2.3)

Denote the entropy solution to (2.1)–(2.2) by Uε obtained as a limit of the front-tracking approximations.
Our aim is to first establish the front-tracking method and then investigate the dependence of the entropy
solutions Uε for ε ≥ 0 by employing the approach described in §1.

The Riemann invariants of (2.1) are

r = u + κ
√

2ε + 1
ρε − 1

ε
, s = u − κ

√
2ε + 1

ρε − 1

ε
. (2.4)

Note that, as ε → 0+, the corresponding Riemann invariants are

r = u + κ ln ρ, s = u − κ lnρ (2.5)

to the isothermal Euler equations (1.10).
From now on, we measure the strength of a front that joins the states UL and UR by α = ρR/ρL. The

following lemma presents the well known relations of shock and rarefaction curves on the (r, s)-plane:
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Lemma 2.1. The shock curves are

S1 :















rL − rR = κρε
L

(

√

(α − 1)(α2ε+1 − 1)

α
−
√

2ε + 1
αε − 1

ε

)

,

sL − sR = κρε
L

(

√

(α − 1)(α2ε+1 − 1)

α
+
√

2ε + 1
αε − 1

ε

)

, α > 1;

S2 :















rL − rR = κρε
L

(

√

(α − 1)(α2ε+1 − 1)

α
−
√

2ε + 1
αε − 1

ε

)

,

sL − sR = κρε
L

(

√

(α − 1)(α2ε+1 − 1)

α
+
√

2ε + 1
αε − 1

ε

)

, α < 1.

The rarefaction curves are

R1 : rL − rR = 0, sL − sR = 2κ
√

2ε + 1ρε
L

αε − 1

ε
, α < 1,

R2 : rL − rR = −2κ
√

2ε + 1ρε
L

αε − 1

ε
, sL − s = 0, α > 1.

The existence of entropy solutions to (2.1)–(2.2) was first established in Nishida-Smoller [24] by the Glimm
scheme [13]. This was recently captured by the front-tracking method by Asakura [1].

Lemma 2.2 (Asakura [1]). Assume that there exist ρ < ρ̄ such that

0 < ρ ≤ ρ0(x) ≤ ρ̄ < ∞. (2.6)

Then there exists a constant N > 0 such that, if

ε TV {U0} ≤ N, (2.7)

for every δ > 0, the Cauchy problem (2.1)–(2.2) admits a δ-approximate front-tracking solution U δ,ε, defined

for all t ≥ 0.

By standard arguments (cf. [3]), we arrive at

Lemma 2.3. Under assumptions (2.6)–(2.7), the Cauchy problem (2.1)–(2.2) has an entropy solution

Uε(t, x) defined for all t ≥ 0 obtained as a limit of the front-tracking approximations U δ,ε in L1
loc.

Using our approach described in §1, we have the following theorem.

Theorem 2.1. Assume that U0 satisfies (2.6)–(2.7). Let S be the Standard Riemann Semigroup to the

isothermal Euler equations (1.10) and (2.2). Let Uε be the entropy solution to (2.1)–(2.2) for ε > 0 obtained

by the front-tracking method. Then, for every t > 0,

‖StU0 − Uε(t)‖L1 = O(1)TV {U0} t ε. (2.8)

Proof. As explained in §1, it suffices to consider the front-tracking approximations U δ,ε to (2.1)–(2.2),
where δ > 0 is the front-tracking parameter for ε = (γ − 1)/2 ∈ [0, ε0]. By Lemma 2.2, U δ,ε exist for all
t > 0 and converge to Uε as δ ↓ 0. Thus it suffices to show that, for each t > 0,

‖StU
δ
0 − U δ,ε(t)‖L1 = O(1) (TV {U0} ε + δ) t for all δ > 0. (2.9)

In view of the approach developed in §1, establishing (2.9) is equivalent to studying the trajectory of the
semigroup S to (1.10) with Riemann data front (UL, UR) of the approximations U δ,ε at the discontinuity
point (τ, x̄) of U δ,ε, but away from the interaction, over the time interval (τ, τ + h). There are three cases
to be investigated: shock fronts, rarefaction fronts, and non-physical fronts.

Case 1: Shock Front (UL, UR). We first focus on a 1-shock front of (2.1), for which the speed of the
front is given by

σ(ε) =
ρLuL − ρRuR

ρL − ρR

and the strength is α = ρR/ρL. We define the jump on the Riemann invariants along the shock curves to be

H(S)(α, ε) :=

(

rL − rR

sL − sR

)

=





κρε
L

(

√

(α−1)(α2ε+1−1)
α −

√
2ε + 1 αε−1

ε

)

κρε
L

(

√

(α−1)(α2ε+1−1)
α +

√
2ε + 1 αε−1

ε

)



 , α ≥ 1 for 1-shock; (2.10)
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H(S)(α, ε) :=

(

rL − rR

sL − sR

)

=





κρε
L

(

√

(α−1)(α2ε+1−1)
α −

√
2ε + 1 αε−1

ε

)

κρε
L

(

√

(α−1)(α2ε+1−1)
α +

√
2ε + 1 αε−1

ε

)



 , α ≤ 1 for 2-shock. (2.11)

The Riemann solution to (1.10) (i.e., ε = 0) with data (UL, UR) consists of 3 states, UL, U∗, and UR,
joined by either 1- and 2- shocks, or by 1-shock and 2-rarefaction waves as shown in Figure 1. Without loss
of generality, let (τ, x̄) = (τ, 0).

UL UR

I

α

II

β1 β2

U ∗

UL UR

III

x̄

II

α

I

UR

x̄ URUL

β1

U ∗

UL

h

β2

h

Figure 1. The Riemann solutions for ε = 0

Since UL and U∗ are joined by a 1-shock, we have

rL − r∗ = κ
(β1 − 1√

β1
− lnβ1

)

, sL − s∗ = κ
(β1 − 1√

β1
+ ln β1

)

(2.12)

with strength β1 = ρ∗/ρL. Depending on whether the 2-wave is a shock or rarefaction wave of strength
β2 = ρR/ρ∗, we obtain either

r∗ − rR = κ
(1 − β2√

β2
− lnβ2

)

, s∗ − sR = κ
(1 − β2√

β2
+ lnβ2

)

, (2.13)

or
r∗ − rR = −2κ lnβ2, s∗ − sR = 0, (2.14)

respectively. We define G(β2) to be either

G(β2) = κ(
1 − β2√

β2
− lnβ2,

1 − β2√
β2

+ lnβ2)
⊤, β2 ≤ 1 for 2-shock, (2.15)

or
G(β2) = (−2κ lnβ2, 0)⊤, β2 > 1 for 2-rarefaction wave. (2.16)

By (2.10) and (2.12)–(2.15), we have

H(S)(α, ε) = H(S)(β1, 0) + G(β2).

It is easy to check that H(S) and G are C2–functions of their arguments. For example, we can view the term
in H(S) as

αε − 1

ε
= (α − 1)

∫ 1

0

(1 + µ(α − 1))ε−1 dµ ∈ C2. (2.17)

It is a straightforward calculation to check that the rank of matrix
(

∂H(S)

∂β1
,

∂G

∂β2

)

∣

∣

∣

{β1=α,β2=1}
=

(

... −2κ

κ(1
2α1/2 + 1

2α−3/2 + 1
α ) 0

)

is two. The Implicit Function Theorem yields that β1 and β2 are C2 functions of (α, ε):

β1 = β1(α, ε), β2 = β2(α, ε).

Moreover, β1(α, 0) = α, β2(α, 0) = 1, β1(1, ε) = 1, and β2(1, ε) = 1. Thus,

β1 = α + O(1)|α − 1| ε, β2 = 1 + O(1)|α − 1| ε. (2.18)

Let

Ū(x) =

{

UL for x ∈ (x̄ − a, x̄),
UR for x ∈ (x̄, x̄ + a).

(2.19)
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We now compare the Riemann solution ShŪ with the front states (UL, UR) of U δ,ε(τ + h, x) over x ∈
(x̄ − a, x̄ + a):

(i) Interval I: We first compare the speeds of the α- and β1-waves. Recall that the speed of the α-wave
is

σ(ε) =
ρLuL − ρRuR

ρL − ρR
. (2.20)

The speed of the β1-wave is

σ1 =
ρLuL − ρ∗u∗

ρL − ρ∗
. (2.21)

The fact that H(S) is C2 in ε and ρR, uR ∈ C2 in ε ∈ (0, ε0) yields σ(ε) ∈ C2 in ε for α > 1. As
ε → 0+, β1 → α and (ρ∗, u∗) → (ρR, uR); hence σ(0) = σ1. This implies that σ(ε) = σ1 + O(1)ε.
Furthermore, the length of Interval I is h|σ(ε) − σ1| = O(1)h ε. Thus the total contribution in
Interval I is

|UL − UR| · [length of interval] = O(1)h |UL − UR| ε. (2.22)

(ii) Interval II. Assume that U∗ is connected to UR via a 2-shock of strength β2 = ρR/ρ∗ and speed σ2.
Then, for 0 < ρ ≤ ρ∗ ≤ ρ < ∞,

ρ∗ − ρR = ρ∗(1 − β2) = O(1)|α − 1|ε, (2.23)

u∗ − uR = r∗ − rR + κ lnβ2 = G1(β2) + κ lnβ2 = O(1)|α − 1|ε. (2.24)

Furthermore, the length of Interval II is h|σ1 − σ2| = O(1)h. Indeed,

σ1 =
ρ∗u∗ − ρLuL

ρ∗ − ρL
= uL − 2κ

√

β1 < 0, β1 > 1,

and

σ2 =
ρRuR − ρ∗u∗

ρR − ρ∗
= uR +

2κ√
β2

> 0, β2 < 1.

Since, when ε = 0, there exists ρ̂ > 0 such that 0 < ρ̂ < ρ < ρ̂−1, then |σ1| + |σ2| is uniformly
bounded, which implies |σ1 − σ2| = |σ1| + |σ2| = O(1).

Thus the total contribution on Interval II is

|U∗ − UR| · [length of interval] = O(1)h |α − 1| ε. (2.25)

Note that the total variation of the Riemann data is |UL − UR| = O(1) |α − 1|.
(iii) Interval III: If U∗ is connected with UR via a 2-rarefaction wave, then we also need to treat this

interval. Denote the solution over this interval by U(ξ), where ξ = x/t ∈ [ξ∗2 , ξ2] := [λ2(U
∗), λ2(UR)].

Note that

|ξ∗2 − ξ2| = O(1)|U∗ − UR| = O(1)|α − 1| ε (2.26)

by the estimates over Interval II. Thus, by (2.23) and (2.26), for ξ ∈ [ξ∗2 , ξ2],

β2(ξ) :=
ρ(ξ)

ρ∗
= β2 + O(1)|ξ∗2 − ξ2| = β2 + O(1)|α − 1| ε. (2.27)

Hence, we can estimate |U(ξ) − UR| as follows:

ρ(ξ) − ρR = ρ∗ − ρR + ρ∗(β2(ξ) − 1) = O(1)|α − 1| ε,
u(ξ) − uR = r(ξ) − rR + κ lnβ2(ξ) = G1(β2(ξ)) + κ lnβ2(ξ) = O(1)|α − 1| ε.

Then the difference of the speeds is

|σ2(ξ
∗
2 ) − σ2(ξ2)| = |λ2(U

∗) − λ2(UR)| = O(1)|U∗ − UR| = O(1)|α − 1| ε.
Thus, the total contribution over Interval III is

∫

III

|ShŪ − UR| dx = O(1)h |UL − UR||α − 1| ε2. (2.28)
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This completes the 1-shock front case. Similarly, we can treat the 2− shock front case for α < 1. Therefore,
we have

1

h

∑

shock

fronts

∫ x̄+a

x̄−a

|ShU δ,ε(τ) − U δ,ε(τ + h)| dx = O(1)
∑

shock

fronts

(1 + ε |α − 1|)|α − 1| ε

= O(1)
∑

shock

fronts

(1 + ε |α − 1|)|U δ,ε(τ, x̄−) − U δ,ε(τ, x̄+)| ε. (2.29)

Case 2: Rarefaction Front (UL, UR). We first focus on the 1-rarefaction front case. Then the jump
across this front is less than δ by construction. Denote the speed by

σ(ε) := λε
1(UR) = uR − κ

√
2ε + 1ρε+1

R

and the strength by α = ρR/ρL, whence 1 − α < δ.

UL UR

I

UL UR

IIIII IV

α

β2β1

x̄

I

β2

x̄ URUL

UL UR

U ∗

III

h
α

β1

II

U ∗
h

Figure 2. The Riemann solutions for ε = 0

To deal with the rarefaction fronts, we introduce

H(R)(α, ε) :=

(

rL − rR

sL − sR

)

=















(

0

−2κ
√

2ε + 1ρε
L

αε−1
ε

)

, α < 1 for 1-rarefaction wave,
(

2κ
√

2ε + 1ρε
L

αε−1
ε

0

)

, α > 1 for 2-rarefaction wave,
(2.30)

corresponding to (2.10)–(2.11).
As before, the solution to (1.10) with Riemann data (2.19) consists of three states, UL, U∗, and UR joined

by either 1-rarefaction wave and a 2-shock or 1- and 2-rarefaction waves, as shown in Figure 2. Denote the
strength of these waves by β1 and β2, respectively. Without loss of generality, let x̄ = 0. If U∗ and UR are
joined by a 2-shock, then

U(t, x) = StŪ(x) =















UL, x/t < λ1(UL),
R1(s; UL), x/t = λ1(R1(s; UL)) ∈ [λ1(UL), λ1(U

∗)],
U∗, x/t ∈ [λ1(U

∗), σ2], σ2 = σ2(U
∗, UR),

UR, x/t > σ2,

t ∈ [0, h], x ∈ (−a, a);

(2.31)
otherwise

U(t, x) = StŪ(x) =























UL, x/t < λ1(UL),
R1(s; UL), x/t = λ1(R1(s; UL)) ∈ [λ1(UL), λ1(U

∗)],
U∗, x/t ∈ [λ1(U

∗), λ2(U
∗)],

R2(s; U
∗), x/t = λ1(R2(s; UL)) ∈ [λ1(U

∗), λ1(UR)],
UR, x/t > λ2(UR),

t ∈ [0, h], x ∈ (−a, a).

(2.32)
For α < 1, we have the relation

H(R)(α, ε) = H(R)(β1, 0) + G(β2), (2.33)
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where G is given in (2.15)–(2.16), β1 = ρ∗/ρL, and β2 = ρR/ρ∗. Note that H(R) and G are C2 with respect
to their arguments. It is easy to check that we can also apply the Implicit Function Theorem in this setting
to obtain

β1 = β1(α, ε), β2 = β2(α, ε),

and

β1 = α + O(1)|α − 1| ε, β2 = 1 + O(1)|α − 1| ε. (2.34)

Then we proceed as before by estimating the contributions on the different intervals.

(i) Interval I: Denote the solution by U(ξ), where ξ = x/t ∈ [ξ1, ξ
∗
1 ] := [λ1(UL), λ1(UR)]. Let

β1(ξ) := ρ(ξ)/ρL, (2.35)

hence β1(ξ1) = 1 and β1(ξ
∗
1) = ρ∗/ρL. We compare the speeds of the α- and β1-waves: The speed of

β1 is

σ1(ξ) = λ1(U(ξ)), λ1(UL) ≤ ξ = x/t ≤ λ1(UR).

Since σ(0) = λ1(UR), we obtain

|σ(ε) − σ1| = O(1)(|UL − UR| + ε) = O(1)(δ + ε)

for σ1 := σ1(ξ1) = λ1(UL). Moreover, the length of Interval I is h |σ(ε) − σ1| = O(1)h (δ + ε). Thus
the total contribution over Interval I is

|UL − UR| · [length of interval] = O(1)h |UL − UR| (δ + ε). (2.36)

(ii) Interval II: Note that |ξ∗1 − ξ1| = O(1)δ so that

β1(ξ) =
ρ(ξ)

ρL
= β1 + O(1) δ. (2.37)

We estimate |U(ξ) − UR| for ξ ∈ [ξ1, ξ
∗
1 ] to obtain

ρ(ξ) − ρR = ρL(1 − α) + ρL(β1(ξ) − 1) = O(1)(δ + |α − 1|ε),
u(ξ) − uR = uL − uR − κ lnβ1(ξ) = O(1)(δ + |α − 1|ε).

Now we compare the speeds to have

|σ1(ξ1) − σ1(ξ
∗
1)| = O(1)|UL − U∗| = O(1)|UL − UR| ε.

Moreover, the length of Interval II is h |σ1(ξ1) − σ1(ξ
∗
1)| = O(1)h|UL − UR|. Thus the total contri-

bution is
∫

II

|ShŪ − UR| dx = O(1)h|UL − UR| (δ + |α − 1|ε) ε. (2.38)

(iii) Interval III: Assume that U∗ is connected to UR via a 2-shock. We estimate |U∗ − UR| to obtain

ρ∗ − ρR = ρ∗(β2 − 1) = O(1)|α − 1| ε,
u∗ − uR = r∗ − rR + κ lnβ2 = G1(β2) + κ lnβ2 = O(1)|α − 1| ε.

As in Case 1, the length of Interval III is h |σ1(ξ
∗
1) − σ2| = O(1)h. Then the total contribution over

Interval III is

|U∗ − UR| · [length of interval] = O(1)h |α − 1| ε. (2.39)

(iv) Interval IV: If U∗ is connected to UR via a 2-rarefaction wave, then we also need to treat this region.
Denote the solution over this interval by U(ξ), where ξ = x/t ∈ [ξ∗2 , ξ2] := [λ2(U

∗), λ2(UR)]. Then
we estimate |U(ξ) − UR| as before to have

ρ(ξ) − ρR = ρ∗(1 − β2) + ρ∗(β2(ξ) − 1) = O(1)(δ + ε|α − 1|),
u(ξ) − uR = r(ξ) − rR + κ lnβ2(ξ) = O(1)(δ + ε|α − 1|).

Moreover,

|σ2(ξ
∗
2 ) − σ2(ξ2)| = |λ2(U

∗) − λ2(UR)| = O(1)|U∗ − UR| = O(1)|UL − UR| ε,
9



hence the length of Interval IV is h |σ2(ξ
∗
2 )−σ2(ξ2)| = O(1)h|UL−UR| ε. Thus, the total contribution

over Interval IV is
∫

IV

|ShŪ − UR| dx = O(1)h |UL − UR| (δ + ε|α − 1|) ε. (2.40)

This completes the rarefaction front case with the following estimate:

1

h

∑

rarefaction

fronts

∫ x̄+a

x̄−a

|ShU δ,ε(τ) − U δ,ε(τ + h)| dx

= O(1)
∑

rarefaction

fronts

|α − 1| (δ + ε + ε|α − 1| + εδ + ε2|α − 1|)

= O(1)
∑

rarefaction

fronts

|U δ,ε(τ, x̄−) − U δ,ε(τ, x̄+)|(δ + ε + |α − 1| ε). (2.41)

Case 3: Non-Physical Front (UL, UR). By construction, the sum of strengths of these fronts is less

than δ. The speed of the front is λ̂, strictly greater than the characteristic speed λi for all i = 1, 2. We
measure the strength of the front by α = ρR/ρL and know that |UL − UR| = O(1)|α − 1|.

UL UR

UL

h
α

UR

β1

U ∗

β2

speed λ̂
III

x̄

Figure 3. The Riemann solutions for ε = 0

Without loss of generality, we assume that the solution to the Riemann problem consists of two shocks
with strengths β1 and β2. We treat the case of rarefaction waves as in Cases 1 and 2.

(i) Interval I: Because of the structure of system (1.10), the total variation is decreasing. Hence

|U∗ − UL| ≤ |UL − UR| = O(1)|α − 1|.

Moreover, the length of Interval I is h |σ1 − σ2| = O(1)h. Thus the total contribution over Interval
I is

|U∗ − UL| · [length of interval] = O(1)h |α − 1|. (2.42)

(ii) Interval II: The length of the interval is h |σ2 − λ̂| = O(1)h. Thus the total contribution is

|UL − UR| · [length of interval] = O(1)h |α − 1|. (2.43)

Thus,

1

h

∑

non-physical

fronts

∫ x̄+a

x̄−a

|ShU δ,ε(τ) − U δ,ε(τ + h)| dx = O(1)
∑

non-physical

fronts

|α − 1| < δ. (2.44)
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By (2.29), (2.41), and (2.44), we conclude

‖StU
δ,ε(0) − U δ,ε(t)‖L1 ≤ L

∫ t

0

∑

fronts x=x̄(τ)

1

h

∫ x̄+a

x̄−a

|ShU δ,ε(τ) − U δ,ε(τ + h)| dx

= O(1)

(

(ε + δ)

∫ t

0

TV U δ,ε(τ) dτ + δ t

)

= O(1) t (TV {U0} ε + δ). (2.45)

The proof is complete.

Remark 2.1. The L1-estimate in t in (2.8) of order one is in fact optimal, which can be easily seen when

the initial data is Riemann data.

3. Relativistic Euler equations for conservation of momentum

The relativistic Euler equations for conservation of momentum are














∂t

(

(p + ρ c2)

c2

u2

c2 − u2
+ ρ

)

+ ∂x

(

(p + ρ c2)
u

c2 − u2

)

= 0,

∂t

(

(p + ρ c2)
u

c2 − u2

)

+ ∂x

(

(p + ρ c2)
u2

c2 − u2
+ p

)

= 0,
(3.1)

where u is the classical velocity, ρ the mass-energy density, and p = p(ρ) is the pressure of the fluid, and c
is the speed of light. We consider a perfect polytropic fluid with the pressure-density relation: p(ρ) = κ2ργ ,
γ := 2ε + 1 > 1. The corresponding physical region is

Ω = {(ρ, u) : 0 ≤ ρ < ρmax, |u| < c}, (3.2)

where ρmax = sup{ρ : p′(ρ) ≤ c2}, which represents the fact that the fluid speed is always less than the light
speed. System (3.1) can be written in the conservation form by setting U = (ρ, ρu)⊤ and

Wµ(U) = (Wµ
1 (U), Wµ

2 (U))⊤ =

(

(p + ρ c2)

c2

u2

c2 − u2
+ ρ, (p + ρ c2)

u

c2 − u2

)⊤

,

Fµ(U) = (Fµ
1 (U), Fµ

2 (U))⊤ =

(

(p + ρ c2)
u

c2 − u2
, (p + ρ c2)

u2

c2 − u2
+ p

)⊤

,

where µ = (ε, 1
c2 ).

The system is strictly hyperbolic with the following two eigenvalues:

λi(U) =
u + (−1)iκ

√
2ε + 1ρε

1 + (−1)i κu
√

2ε + 1 ρε/c2
, (3.3)

and two linearly independent eigenvectors

ri(U) =

(

(−1)i

c2 − u2
,

κ
√

2ε + 1 ρε

κ2 + ρ2ε+1 + ρ c2

)⊤

, i = 1, 2. (3.4)

Consider the Cauchy problem to (3.1) with initial data U0 = (ρ0, ρ0u0). Global BV solutions for ε = 0
were first constructed by Smoller-Temple [28] by the Glimm scheme [13] with large variation of the initial
data. Later, Chen [8] established the result for ε > 0 under the usual condition on the initial data. In view
of our approach in §1, to achieve our goal, we first need to obtain global BV solutions by the front-tracking
method. As it is shown by Li-Ren [19], we expect that the total variation will be uniformly bounded,
independent of µ. We first state the following preliminary results.

Lemma 3.1. The mapping (ρ, u) → (Wµ
1 , Wµ

2 ) is uniformly 1-1, and the Jacobian of the mapping is con-

tinuous and non-zero in the region Ω ∩ {ρ > 0} for ε ∈ [0, ε0] and c ∈ [c0,∞). Moreover, the convergence

Wµ → (ρ, ρu)⊤, Fµ(U) → (ρu, ρu2 + κ2ρ2ε+1)⊤ (3.5)

as c → ∞ is uniform in any bounded region {U : 0 < ρ < ρ̄, |u| < v̄ < c}, where ρ̄ and v̄ are positive

constants.
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One of the important properties of (3.1) is the invariance under the Lorenz transformation:

t̄ =
ct − τ

c x
√

1 − t2

c2

, x̄ =
cx − cτ t
√

1 − t2

c2

, u =
τ + ū

1 + τū
c2

,

where the barred coordinates (t̄, x̄) move with velocity τ as measured in the unbarred coordinates (t, x), u
denotes the velocity of a particle as measured in the unbarred frame, and ū denotes the velocity in the barred
frame.

Due to the Lorenz invariance, if there are two states (ρL, uL) and (ρR, uR) connected by a shock, we can
assume the velocity state of the left-hand side of the shock in the barred coordinates is ūL = 0. Hence the
Lax entropy and Rankine-Hugoniot conditions imply (see [6, 8, 17, 19]):

Lemma 3.2. The shock curves in the barred coordinates are given by

S̄1: ūR = −κc2

√

(α2ε+1 − 1)(α − 1)

(κ2α2ε+1 + ρ−2ε
L c2)(κ2ρ2ε

L + αc2)
, α = ρ/ρL > 1, for ρ > ρL, ū < ūL = 0;

S̄2: ūR = −κc2

√

(α2ε+1 − 1)(α − 1)

(κ2α2ε+1 + ρ−2ε
L c2)(κ2ρ2ε

L + αc2)
, α = ρ/ρL < 1, for 0 < ρ < ρL, ū < ūL = 0.

The rarefaction curves in the barred coordinates are given by

R̄1:
c

2
ln
(c + u

c − u

)

+
√

2ε + 1
c

ε

(

arctan
(κρε

c

)

− arctan
(κ

c

)

)

= const. for 0 < ρ < ρL, ū > ūL = 0;

R̄2:
1

2
c ln

(c + u

c − u

)

− c

√
2ε + 1

ε

(

arctan
(κρε

c

)

− arctan
(κ

c

)

)

= const. for ρ > ρL, ū > ūL = 0.

Since

c2

√

(α2ε+1 − 1)(α − 1)

(κ2α2ε+1 + ρ−2ε
L c2)(κ2ρ2ε

L + αc2)
= |α − 1|

√

√

√

√

(2ε + 1)
∫ 1

0 (1 + λ(α − 1))2εdλ

(κ2α2ε+1/c2 + ρ−2ε
L )(κ2ρ2ε

L /c2 + α)

and

1

2
c ln

(c + u

c − u

)

± c

√
2ε + 1

ε

(

arctan
(κρε

c

)

− arctan
(κ

c

)

)

=
1

2

∫ 1

−1

udλ

1 + λu/c
±
∫ 1

0

√
2ε + 1 dλ

1 + κ2(1 + λ(ρε − 1))2/c2

κ(ρε − 1)

ε
,

then these expressions can be viewed as C∞ functions of (α, µ, ρ) near α = 1 and for ε ∈ [0, ε0], c ≥ c0, and
ρ ∈ [ρ, ρ]. The following proposition is crucial to obtain the wave interaction estimates.

Proposition 3.3. Consider two shock curves of the first family, which start from the points (r0, s1) =
(r(U0), s(U1)) and (r0, s0) = (r(U0), s(U0)) and are continued to the points (r, s2) and (r, s), respectively.

Then

s0 − s − (s1 − s2) = O(1)ε(s1 − s0)(r0 − r), (3.6)

where O(1) depends only on ρ0, ρ1 ∈ [ρ, ρ] and c0, independent of ε > 0 and c ≥ c0 > 0.

Proof. Let s2 = s∗(ε, 1/c2, ∆r, ∆s), where ∆r = r − r0 and ∆s = s1 − s0. By Lemma 3.2 and following
[24], s∗ is a smooth function of its arguments and satisfies

s∗(0, 1/c2, 0, 0)− s∗(0, 1/c2, ∆r, 0) − (s∗(0, 1/c2, 0, ∆s) − s∗(0, 1/c2, ∆r, ∆s))

= ρ0 − ρ − (ρ1 − ρ2) = 0.
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Then

(s0 − s) − (s1 − s2)

= s∗(ε, 1/c2, 0, 0) − s∗(ε, 1/c2, ∆r, 0) − (s∗(ε, 1/c2, 0, ∆s) − s∗(ε, 1/c2, ∆r, ∆s))

= (s∗(ε, 1/c2, 0, 0)− s∗(0, 1/c2, 0, 0)) − (s∗(ε, 1/c2, ∆r, 0) − s∗(0, 1/c2, ∆r, 0))

− (s∗(ε, 1/c2, 0, ∆s) − s∗(0, 1/c2, 0, ∆s)) + (s∗(ε, 1/c2, ∆r, ∆s) − s∗(0, 1/c2, ∆r, ∆s))

= ε

∫ 1

0

I3dλ,

where

I3 = s∗ε(λ ε, 1/c2, 0, 0) − s∗ε(λ ε, 1/c2, ∆r, 0) − s∗ε(λ ε, 1/c2, 0, ∆s) + s∗ε(λ ε, 1/c2, ∆r, ∆s) = O(1)∆r∆s. (3.7)

This completes the proof.

We denote by UL, UM , and UR the three constant states from left to right, which are connected by two
incoming waves, and denote by γ + β → β′ + γ′ the interaction of a 2−wave γ with a 1−wave β which
produces an outgoing 1−wave β′ and a 2−wave γ′; the other case can be written in a similar way, while the
rarefaction waves are denoted by 0. Using the above lemma, we can carry out the same steps as in [24] to
derive the following interaction estimates.

Lemma 3.4. Assume that 0 < ρ < ρ < ∞. Then there exist C > 0 and δ ∈ (0, 1) depending only on the

system, ρ, and ρ such that the following estimates hold for the corresponding interactions:

(1) γ + β → β′ + γ′: One of the following holds:

(a) |β′| ≤ |β| + Cǫ|β||γ|, |γ′| ≤ |γ| + Cε|β||γ|;
(b) |β′| = |β| − ζ, |γ′| ≤ |γ| + Cε|β||γ| + η;

(c) |γ′| = |γ| − ζ, |β′| ≤ |β| + Cε|βγ| + η, 0 ≤ η ≤ δζ;
(2) γ + 0 → 0 + γ′: |γ′| = |γ|;
(3) γ1 + γ2 → 0′ + γ′: |γ′| = |γ1| + |γ2|;
(4) γ + 0 → β′ + γ′ or γ + 0 → β′ + 0: There exist 1−shock β0 and 2−shock γ0 such that the interaction

γ0 + β0 → β′ + γ′ is the same as in (1) and |β0| + |γ0| ≤ |γ| − C0|β0|;
(5) 0 + γ → β′ + γ′ or 0 + γ → β′ + 0: |γ′| + |β′| ≤ |γ| − C0|β′|;
(6) 0 + 0 → 0′ + 0′,

where C and C0 are constants independent of ε, β, γ, ρ ∈ [ρ, ρ], and c ≥ c0.

This lemma enables us to introduce the Glimm functional for the approximate solutions which are con-
structed by the front-tracking method with the same notations as in [1]. Let J be the space-like curve and
denote Sj(J) as the set of j−shock waves crossing J , and S(J) = S1(J) ∩ S2(J). We define

L−(J) =
∑

{|α| : α ∈ S(J)},

Q(J) =
∑

{|β||γ| : β ∈ S1(J), γ ∈ S2(J) and β and γ are approaching},
and set F (J) := L−(J) + 4CεQ(J). Let O stand for the initial I−curve as defined in [24]. Then we follow
[24] to obtain

Lemma 3.5. If CεF (O) ≤ C′ for some constant C′, then F (J2) ≤ F (J1) for J2 > J1. Therefore, L−(J) ≤
F (O).

Following [1] (see also [24]), the δ−approximate solutions U δ,µ are globally defined and converge to the
entropy solution Uµ to (3.1) as δ ↓ 0. See Lemmas 2.2 and 2.3.

Now, we present the principal result of this section.

Theorem 3.1. Suppose that 0 < ρ ≤ ρ0(x) ≤ ρ̄ < ∞ and ε TV {U0} ≤ N . Let S be the Standard Riemann

Semigroup to the isothermal Euler equations (1.10)–(1.11). If Uµ is the entropy solution to (3.1) with ε > 0
and c ≥ c0 obtained by the front-tracking method, then, for every t > 0,

‖StU0 − Uµ(t)‖L1 = O(1)TV {U0} t ‖µ‖, (3.8)

where ‖µ‖ = ε + 1/c2.
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Proof. We follow the proof of Theorem 2.1. Here, we emphasize only the estimates required to deal with
system (3.1). As before, we study the three possible types of fronts.

Case 1: Shock Front (UL, UR): Assuming that this is a 1-shock front of strength α = ρR/ρL > 1
without loss of generality. By Lemma 3.2, we have

uR =
uL + ūR

1 + uLūR

c2

(3.9)

for τ = uL. The speed of the front is

σ(µ) =
1

Wµ
1 (UR) − Wµ

1 (UL)

(

(κ2ρ2ε+1
R + ρRc2)uR

c2 − u2
R

− (κ2ρ2ε+1
L + ρLc2)uL

c2 − u2
L

)

. (3.10)

Note that ūR = ūR(α, µ) ∈ C2 in (α, ε, 1
c2 ) for α near 1, ε ∈ [0, ε0], and c ≥ c0, whence uR − uL ∈ C2(α, µ).

Also, σ(µ) ∈ C2(µ) for α > 1. Without loss of generality, we assume that the Riemann solution consists of
a 1-shock and a 2-shock. We treat the 2 rarefaction wave as in the proof of Theorem 2.1. Then we have

u∗ − uL = κ
1 − β1√

β1
, ρ∗ − ρL = ρL(β1 − 1), β1 ≥ 1,

uR − u∗ = κ
β2 − 1√

β2

, ρR − ρ∗ = ρ∗(β2 − 1), β2 ≤ 1,

where β1 = ρ∗/ρL and β2 = ρR/ρ∗. Hence

ρR − ρL = ρL(β1 − 1) + ρR
(β2 − 1)

β2
,

uR − uL = κ
1 − β1√

β1
+ κ

β2 − 1√
β2

.

We define

H(S)(α, µ) := (ρR − ρL, uR − uL)⊤ ∈ C2 in (α, µ)

for α near 1, ε ∈ [0, ε0], and c ≥ c0. Also,

G(β2) := (ρR − ρ∗, uR − u∗)⊤.

By the relation

H(S)(α, µ) = H(S)(β1, 0, 0) + G(β2)

and the Implicit Function Theorem, we obtain C2 solutions β1 = β1(α, µ) and β2 = β2(α, µ) that satisfy

β1(1, µ) = β2(1, µ) = 1, β1(α, 0, 0) = α, β2(α, 0, 0) = 1.

Therefore

β1 = β1(α, µ) = α + O(1)|α − 1| ‖µ‖, (3.11)

β2 = β2(α, µ) = 1 + O(1)|α − 1|‖µ‖ (3.12)

for ε ∈ [0, ε0], c ≥ c0, and ‖µ‖ = ε + 1/c2. Now we compare the Riemann solution ShŪ with the front states
(UL, UR) of U δ,µ(τ + h, x) for x ∈ (x̄ − a, x̄ + a) (see Fig. 2).

(i) Interval I: Denote by σi the speed of the i-shock. Then

σ1 =
ρLuL − ρ∗u∗

ρL − ρ∗
(3.13)

and σ(0, 0) = σ1. Since σ(µ) ∈ C2 for α > 1, we have

|σ(µ) − σ1| = O(1)‖µ‖. (3.14)

Moreover, the length of Interval I is h |σ(µ) − σ1| = O(1)h ‖µ‖. Then the total contribution over
Interval I is

|UL − UR| · [length of the interval] = O(1)h|UL − UR| ‖µ‖. (3.15)
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(ii) Interval II: We use (3.12) to estimate |U∗ − UR|:

ρ∗ − ρR = ρ∗(1 − β2) = O(1)|α − 1| ‖µ‖,
u∗ − uR = G1(β2) = O(1)|α − 1| ‖µ‖.

Interval II has length h |σ1 − σ2| = O(1)h. Thus the total contribution over Interval II is

|U∗ − UR| · [length of the interval] = O(1)h|UL − UR| ‖µ‖. (3.16)

(iii) Interval III: We need to work on this interval only if there is a 2-rarefaction wave instead of a 2-shock.
We treat this in the same way as Case 1 in Section 2.

Thus, for all shock fronts, we conclude

1

h

∑

shock

fronts

∫ x̄+a

x̄−a

|ShU δ,µ(τ) − U δ,µ(τ + h)| dx

= O(1)
∑

shock

fronts

(1 + ‖µ‖ |α − 1|)|U δ,µ(τ, x̄−) − U δ,µ(τ, x̄+)| ‖µ‖. (3.17)

Case 2: Rarefaction Front (UL, UR). The strength of this front is less than δ by construction. If this
is a 1-rarefaction front with speed

σ(µ) := λ1(µ)(UR) =
uR − κ

√
2ε + 1 ρε

R

1 − κ uR

√
2ε + 1 ρε

R/c2
(3.18)

and strength α = ρR/ρL, then 1−α < δ. The solution ShŪ consists of three states as given in (2.31)–(2.32).
Define H(R) similarly. Then we have the identity

H(R)(α, µ) = H(R)(β1, 0, 0) + G(β2) (3.19)

and conclude (3.11)–(3.12). We study each interval in Figure 2 as proceed as in Case 2 of Theorem 2.1.

(i) Interval I: As before, if σ1 is the speed of the β1-wave, by (3.18), we have

|σ(µ) − σ1| = O(1)(|UL − UR| + ‖µ‖) = O(1)(δ + ‖µ‖).

Thus the total contribution is

|UL − UR| · [length of interval] = O(1)h |UL − UR|(δ + ‖µ‖).

(ii) Interval II: By (3.11),

|ShŪ(x) − UR| = O(1)(δ + |α − 1| ‖µ‖) forx ∈ (x̄ − a, x̄ + a), (3.20)

where Ū is given in (2.19) and the length of the interval is O(1)h |UL − UR| ‖µ‖.
(iii) Interval III and IV are treated similarly.

Thus, we have

1

h

∑

rarefaction

fronts

∫ x̄+a

x̄−a

|ShU δ,µ(τ) − U δ,µ(τ + h)| dx

= O(1)
∑

rarefaction

fronts

|U δ,µ(τ, x̄−) − U δ,µ(τ, x̄+)|
(

δ + (1 + |α − 1| + δ)‖µ‖
)

. (3.21)

Case 3: Non-Physical Front. We follow the same argument as in Theorem 2.1 to obtain

1

h

∑

non-physical

shocks

∫ x̄+a

x̄−a

|ShU δ,µ(τ) − U δ,µ(τ + h)| dx < δ. (3.22)
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Thus, by (3.17) and (3.21)–(3.22), we conclude

‖StU
δ
0 − U δ,µ(t)‖L1 ≤ L

∫ t

0

∑

fronts x=x̄(τ)

1

h

∫ x̄+a

x̄−a

|ShU δ,µ(τ) − U δ,µ(τ + h)| dx

= O(1) t TV {U0}(‖µ‖ + δ), (3.23)

and the result follows.
Now consider the relativistic Euler equations (3.1) for ε = 0. In Colombo-Risebro [9], it was shown that

(3.1) for ε = 0 generates a Standard Riemann Semigroup Sc. Thus we have

Theorem 3.2. Suppose that 0 < ρ ≤ ρ0(x) ≤ ρ̄ < ∞ and ε TV {U0} ≤ N . Let Sc be the Standard Riemann

Semigroup to the relativistic Euler equations (3.1) for ε = 0. If Uε,c is the entropy solution to (3.1) for ε > 0
and c0 ≥ c < ∞ obtained by the front-tracking method, then, for every t > 0,

‖Sc
t U0 − Uε,c(t)‖L1 = O(1)TV {U0} t ε, (3.24)

where O(1) depends only on c0 > 0 and is independent of ε, c ≥ c0, t, and TV {U0}.
The proof can be carried out in a similar way by combining the proofs of Theorems 2.1 and 3.1.

4. Isentropic Relativistic Euler Equations

The Euler system of conservation laws of baryon number and momentum in special relativity reads:


















∂t

(

n
√

1 − u2/c2

)

+ ∂x

(

nu
√

1 − u2/c2

)

= 0,

∂t

(

(ρ + p/c2)u

1 − u2/c2

)

+ ∂x

(

(ρ + p/c2)u2

1 − u2/c2
+ p

)

= 0,

(4.1)

where ρ, p, u, and n represent the proper energy density, the pressure, the particle speed, and the proper
number density of baryons, respectively. The proper number density n is determined by the first law of
thermodynamics:

θdS =
dρ

n
− p + ρ

n2
dn, (4.2)

where θ is the temperature and S the entropy per baryon. For isentropic fluids, S is constant, hence

n = n(ρ) = n0 exp
(

∫ ρ

1

ds

s + p(s)/c2

)

, (4.3)

and for a perfect polytropic fluids, p(ρ) = κ2ργ , γ ≥ 1. The corresponding physical region is

Ω = {U : 0 ≤ ρ < ρmax, |u| < c} (4.4)

as in the relativistic model discussed in the previous section. We rewrite (4.1) in conservation form by setting

Wµ(U) =

(

n
√

1 − u2/c2
,
(ρ + p/c2)u

1 − u2/c2

)⊤

, Fµ(U) =

(

nu
√

1 − u2/c2
,
(ρ + p/c2)u2

1 − u2/c2
+ p

)⊤

for U = (ρ, ρu)⊤, where µ = (ε, 1
c2 ). The system is strictly hyperbolic in Ω and has two distinct eigenvalues

when ρ > 0:

λ1(U) =
u −√

p′

1 − u
√

p′/c2
, λ2(U) =

u +
√

p′

1 − u
√

p′/c2
. (4.5)

The corresponding eigenvectors are

rj(U) = αj(ρ, u)

(

n

ρ + p/c2
,
u + (−1)j

√
p′

√

1 − u2/c2

)⊤

, j = 1, 2, (4.6)

where

αj(ρ, u) =
(−1)j2

√
p′(ρ + p/c2)

ρ p′′ + 2p′ + (p p′′ − 2(p′)2)/c2

(1 + u
√

p′/c2)3

1 − u2/c2)3/2
6= 0, j = 1, 2. (4.7)
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Moreover, the system is invariant under Lorenz transformation:

t̄ =
ct − τ

c x
√

1 − t2

c2

, x̄ =
cx − cτ t
√

1 − t2

c2

, u =
τ + ū

1 + τū
c2

,

as in the previous section. Then

Lemma 4.1. The shock curves in the barred coordinates are given by

S̄1: ū = −c

√

G2(ρ) − H2(ρ)

G(ρ)
for ρ > ρL, ū < ūL = 0;

S̄2: ū = −c

√

G2(ρ) − H2(ρ)

G(ρ)
for 0 < ρ < ρL, ū < ūL = 0,

where G(ρ) = 2nL(ρ + pL/c2) > 0 and

H(ρ) = −n(p − pL)/c2 +
√

n2(p − pL)2/c4 + 4n2
L(ρ + pL/c2)(ρ + p/c2).

The rarefaction curves in the barred coordinates are given by

R̄1: r :=
1

2
c ln

(c + u

c − u

)

+

∫ ρ

1

√

p′(w)

w + p(w)/c2
dw = const. for 0 < ρ < ρL, ū > ūL = 0;

R̄2: s :=
1

2
c ln

(c + u

c − u

)

−
∫ ρ

1

√

p′(w)

w + p(w)/c2
dw = const. for ρ > ρL, ū > ūL = 0.

Note that, as c → ∞, system (4.1) and the curves in Lemma 4.1 tend to the corresponding expressions of
the classical isentropic Euler equations (2.1) as presented in Section 2.

Global existence of entropy solutions to the Cauchy problem (4.1) was first established by Pant [25] for
ε = 0 and later by Li-Shi [20] for ε > 0 with c = 1. See also Chen-Li [7] for the uniqueness and asymptotic
stability of Riemann solutions. The recent result by Li-Geng [18] establishes the global existence of entropy
solutions independently of c. However, all the results mentioned were obtained by the Glimm scheme. Now
the goal is to establish the convergence of the front-tracking method and obtain the bounds independent of
the adiabatic exponent γ > 1 and the speed of light c ≥ c0 for large c0. The next lemma is useful to obtain
the corresponding result to Proposition 3.3 in this setting.

Lemma 4.2. There is a smooth function g(µ, ρ, ρl) such that

g(µ, ρ, ρL) =
c
√

G2(ρ) − H2(ρ)

G(ρ)
(4.8)

for c ≥ c0, ε ≥ 0, and ρ ≥ ρL.

Proof. A direct computation yields

c2(G2(ρ) − H2(ρ)) = I1 + I2 −
2n2(p − pL)2

c2
, (4.9)

where

I1 =
2nL n

√

ρ + pL/c2(ρ − ρL)(n − nL)
√

ρ + pL/c2 +
√

ρ + p/c2
(4.10)

and

I2 =
2n3(p − pL)3

c4(
√

n2(p − pL)2/c4 + 4n2
L(ρ + pL/c2)(ρ + p/c2) +

√

4n2
L(ρ + pL/c2)(ρ + p/c2))

. (4.11)

On the other hand,

p − pL = (2ε + 1)

∫ 1

0

(ρL + λ(ρ − ρL))2εdλ (ρ − ρL) (4.12)

and

n − nL =

∫ 1

0

∂n

∂ρ
(ρL + λ(ρ − ρL))dλ (ρ − ρL). (4.13)
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Then there is a smooth function g1 such that

c
√

G2(ρ) − H2(ρ) = (ρ − ρL)g1(µ, ρ, ρL) (4.14)

for c ≥ c0, ε ≥ 0, and ρ ≥ ρL. Since G > 0, we arrive at the result.
Then, in a similar way, we have

Proposition 4.3. Consider two shock curves of first family, which start from the points (r0, s1) = (r(U0), s(U1))
and (r0, s0) = (r(U0), s(U0)) and are continuous to the points (r, s2) and (r, s), respectively. Then there exists

a constant c0 > 0 such that, for c ≥ c0,

s0 − s − (s1 − s2) = O(1)ε(s1 − s0)(r0 − r), (4.15)

where O(1) depends only ρ0, ρ1 ∈ [ρ, ρ] and c0 > 0.

Again, following [1] (see also [24]), we obtain the wave interaction estimates corresponding to Lemma 3.4
and conclude the existence of a global entropy solution Uµ to (4.1) by the front-tracking method.

Theorem 4.1. Suppose that 0 < ρ ≤ ρ0(x) ≤ ρ̄ < ∞ and ε TV {U0} ≤ N . Let S be the Standard Riemann

Semigroup to the isothermal Euler equations (1.10). If Uµ is the entropy solution to (4.1) for ε > 0 and

c ≥ c0 constructed by the front tracking method, then, for every t > 0,

‖StU0 − Uµ(t)‖L1 = O(1)TV {U0} t ‖µ‖,
where ‖µ‖ = ε + 1/c2.

Proof. The proof follows closely the proofs of Theorems 2.1 and 3.1. Given two front states (UL, UR)
of the δ-front tracking approximate solution U δ,µ at a non-interaction point (x̄, τ) with strength α, consider
the Standard Riemann Semigroup ShŪ to (1.10) that consists of three states of strength β1 and β2. In the
case of a shock front, the speed of the α-wave is

σ(µ) =
1

Wµ
1 (UR) − Wµ

1 (UL)

(

nRuR
√

1 − u2
R/c2

− nLuL
√

1 − u2
L/c2

)

,

and, as usual, one gets

|σ(µ) − σ1| = O(1)‖µ‖.
where σ1 denotes the speed of the β1-wave. Also, by employing the smoothness of the functions for α close
to 1, ε ∈ [0, ε0], and c ≥ c0, we have

β1 − α = β2 − 1 = O(1)|α − 1| ‖µ‖.
Using the standard techniques developed in the two previous sections, we prove the result.
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