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Abstract

We present a second-order BGK scheme for the equations of multidimensional radiation
hydrodynamics (RHE) in zero diffusion limit by using the generalized Maxwellian in [1]
and the second-order BGK scheme for the Euler equations in [2, 3]. This extends a (first-
order) kinetic flux vector splitting scheme (KFVS) for RHE in [1] to a second-order BGK
scheme. Several one- and two-dimensional numerical examples demonstrate improvement
of the scheme in accuracy and resolution compared with the KFVS scheme in [1] and the
first-order BGK scheme.
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1 Introduction

In this paper, we present a second-order BGK scheme for the equations of multidimensional
radiation hydrodynamics in zero diffusion limit.

The importance of thermal radiation in physical problems increases as the temperature is
raised. At moderate temperatures, the role of the radiation is primarily one of transporting
energy by radiative process, while at higher temperature, the energy and momentum densities
of the radiation field may become comparable to or even dominates the corresponding fluid
quantities. In this case, the radiation field significantly affects the dynamics of the fluid. Hydro-
dynamics with explicit account of the radiation energy and momentum contributions constitutes
the charter of “radiation hydrodynamics”. The theory of radiation hydrodynamics finds a wide
range of application, including such diverse astrophysical phenomena as waves and oscillations
in stellar atmospheres and envelopes, nonlinear stellar pulsation, supernova explosions, stellar
winds, and many others (see, e.g., [4–6]). It has also direct application in other areas, for example
to the physics of laser fusion and of reentry vehicles.

In the case of (equilibrium diffusion and) zero diffusion limit, the equations of radiation
hydrodynamics can be written as a nonlinear hyperbolic system of conservation laws, but differ-
ent from the Euler equations in the (high nonlinear) radiation terms. In numerical simulations
of radiation hydrodynamics, one of the main difficulties (of standard numerical methods) is to
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resolve and keep track of strong shocks. Dai and Woodward [7] proposed the Godunov scheme
inclusive of linear and nonlinear Riemann solvers for the equations of radiation hydrodynamics.
Their numerical results show that their scheme preserves the principle advantages of Godunov
schemes. However, to our knowledge, their method is relatively costly.

In the past years, the development of the gas-kinetic schemes, such as kinetic flux vector
splitting schemes (KFVS) based on the collisionless Boltzmann equation (see, e.g., [1, 8–13])
and BGK scheme based on a collisional BGK model (see, e.g., [2, 14–16]), has attracted much
attention and significant progress has been made. These gas-kinetic schemes do not require any
Riemann solvers, and they have provided robust and accurate numerical solutions for various
unsteady compressible flow (for example, cf. [11, 12, 15, 16] and the reference therein). For
the equations of radiation hydrodynamics in zero diffusion limit, Tang and Wu [1] constructed
a KFVS scheme, and presented several numerical examples to demonstrate the performance of
their scheme. As is well-known, the BGK schemes differ from the KFVS-type schemes mainly on
the inclusion of particle collisions in the gas evolution stage. Instead of solving the collisionless
Boltzmann equation, the BGK schemes use a collisional BGK model in the numerical flux
evaluation. Since the gas evolution process is a relaxation process from a nonequilibrium state
to an equilibrium one, the entropy condition is always satisfied by the BGK scheme. Moreover,
due to its specific governing equation, the BGK scheme gives the compressible Navier-Stokes
equations in smooth regions, and provides a delicate dissipative mechanism, which is controlled
by the pseudo-particle collision time and the intrinsic collisional model, to get a stable and crisp
shock transition in nonsmooth regions.

In this paper, we propose a second-order BGK scheme for the equations of multidimen-
sional radiation hydrodynamics in zero diffusion limit by including the non-equilibrium effect
to a KFVS scheme, and hence, extend the first-order KFVS scheme in [1] to a second-order
BGK scheme. This extension to the second-order is the contribution of the present paper. To
construct our scheme, we use a generalized Maxwellian distribution introduced in [1] to recover
the radiation hydrodynamical equations, and then, to apply the second-order BGK scheme for
the Euler equations described in [2, 3] to simulate and keep track of strong shocks, thus result-
ing in a second-order BGK scheme for the multidimensional radiation hydrodynamics in zero
diffusion limit. The numerical tests show an obvious improvement in accuracy and resolution of
the scheme of this paper over the scheme proposed in [1] and the first-order BGK scheme.

This paper is organized as follows: In Section 2, we recall the macroscopic description of
radiation hydrodynamics and the gas distribution function of equilibrium states in [1] to recover
the d−dimensional radiation hydrodynamical equations in zero diffusion limit. In Section 3,
the second-order BGK scheme is presented based on the generalized Maxwellian distribution
given in Section 2. In section 4, several numerical tests are presented which demonstrate the
availablity and accuracy of the present scheme, and comparisons with the KFVS scheme in [1]
and the first-order BGK scheme are given.

2 Equations of radiation hydrodynamics in zero diffusion limit

For the equations of radiation hydrodynamics in zero diffusion limit, there are two ways of
description, one is macroscopic while the other is microscopic. We first introduce the macroscopic
equations describing the motion of a gas under a radiation field. Assuming that the radiative
temperature and the fluid temperature are equal, and that the gas is radiatively opaque so that
the equilibrium diffusion will be dealt with, and the mean-free-path of photons is much smaller
than the typical length of the flow, then, we can write the equations of radiation hydrodynamics
without radiative heat-diffusion in Rd, describing the conservation of mass, momentum and
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energy, as (cf. [4, 5])





∂tρ + div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) +∇
(
p +

1
3
aRT 4

)
= 0,

∂tE + div
[
u
(
E + p +

1
3
aRT 4

)]
= 0,

(2.1)

where ρ, u = (u1, · · · , ud), p and T denote the density, velocity, flow pressure and absolute
temperature, respectively, aR > 0 is a radiation constant, and

E =
1
2
ρu2 + ρe + aRT 4 (2.2)

is the total energy, e = e(ρ, T ) is the internal energy, u2 = u2
1 + · · ·+ u2

d.
From (2.1) and (2.2) we see that the system includes both gas and radiative contributions to

flow dynamics. The quantities 1
3aRT 4 and aRT 4 represent the radiative pressure and radiative

energy density, respectively. To complete the system (2.1), one needs the equation of state for
the pressure p = p(ρ, T ). In this paper for the purpose of our test problems, we will limit our
study to the polytropic ideal gas: p = (γ − 1)ρe with γ > 1 being the specific heat ratio and
e = cV T with cV being the specific heat, and as in [1, 7], we assume cV = 1 without loss of
generality. We point out that if one assumes aR = 0 in (2.1), then the system (2.1) reduces to
the usual inviscid Euler equations.

Another way to describe the flow motion is based on the particle motion, or the statistical
description of a fluid, in which a gas distribution function f(x, t,v) is introduced to describe the
probability of particles to be located in a certain velocity interval, and to approximate usually
the particle number density at a certain velocity in hydrodynamics, where v = (v1, · · · , vd) is the
particle velocity. Usually, the distribution function f is a basic unknown in the kinetic theory,
and satisfies the Boltzmann equation, we refer to [17, 18]) for the theory on the Boltzmann
equation.

The thermodynamic aspect of gas dynamics is based on the assumption that the deviation
of a gas from a local equilibrium state is sufficiently small. The distribution function f is usually
unknown in the real flow situation. However, the distribution function g corresponding to a local
equilibrium state can be explicitly given if the mass, momentum and energy are known. The
gas distribution function for an equilibrium state plays an important role in the construction of
gas-kinetic schemes. In the sequel, we study the equilibrium distribution for (2.1).

For the system (2.1) with aR = 0, i.e. the Euler equations with γ-law, the equilibrium state
is the Maxwellian distribution (cf. [17, 18]),

g(x, t,v, ξ) = ρ
(λ

π

)(d+K)/2
e−λ[(v−u)2+ξ2], (2.3)

where ξ2 = ξ2
1 + · · · + ξ2

K , (v − u)2 = (v1 − u1)2 + · · · + (vd − ud)2, and K = −d + 2/(γ − 1)
is the internal degree of freedom, λ = m/2kT with k and m being the molecular mass and the
Boltzmann constant respectively. Actually, K = 1 in the numerical tests of this paper because
d = 2 and γ = 5/3 are chosen. Then, the Euler equations can be recovered by taking moments
as ∫

Rd×RK

ψ
(
∂tg + v · ∇g

)
dΞ = 0, (2.4)
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where and in what follows, dΞ = dv1 · · · dvddξ1 · · · dξK , and the vector function ψ is given by

ψ =
(
1, v1, · · · , vd,

v2 + ξ2

2

)t
,

and the superscript t denotes transposition.
On the other hand, when aR 6= 0, the system (2.1) can not (easily) be written in the moment

form (2.4) through a Maxwellian distribution. As in [1], here we introduce an equilibrium state
function with two parameters λ1 and λ2, instead of one parameter λ, to recover (2.1) by the
moment method. Hence, we modify the Maxwellian distribution g in (2.3) to

ḡ(x, t,v, ξ) = ρ
(λ1

π

)d/2(λ2

π

)K/2
e−λ1(v−u)2−λ2ξ2

, (2.5)

where λ1 and λ2 are functions of T , m and k, and will be determined below.
Now, if we take moments of ψ with ḡ, we obtain




ρ

ρui

1
2

(
ρu2 + d ρ

2λ1
+ K ρ

2λ2

)




=
∫

Rd×RK

ψḡdΞ (2.6)

and 


ρuj

ρuiuj + ρ
2λ1

δij

1
2uj

[
ρu2 + (d + 2) ρ

2λ1
+ K ρ

2λ2

]




=
∫

Rd×RK

vjψḡdΞ, (2.7)

where dΞ = dv1 · · · dvddξ1 · · · dξK .
Comparing (2.6) and (2.7) with (2.1), we easily see that in order to recover the system (2.1)

by taking the moments of the distribution ḡ, the parameters λ1 and λ2 have to satisfy




ρ

2λ1
= p +

1
3
aRT 4,

K
ρ

2λ2
= Kp +

(
2− d

3

)
aRT 4.

(2.8)

We will use the modified Maxwellian (2.5) to construct our second-order BGK scheme in
the next section.

3 A 2nd-order BGK scheme based on the generalized Maxwellian

Using the Maxwellian distribution (2.5), Tang and Wu [1] proposed a KFVS algorithm of first-
order for the system (2.1) based on the relations (2.6)–(2.8). In this section, based on the
generalized Maxwellian distribution ḡ given in (2.5) and the BGK schemes described in [2, 3],
we construct a second-order BGK scheme for the system (2.1), therefore, extending the KFVS
scheme of first-order in [1].

For simplicity, we only describe our scheme for (2.1) in two dimensions. Extension to three-
dimensional problems is straightforward. We use (U, V ) to denote the velocity components
(u1, u2) in the x- and y-directions, and write (2.1) as
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∂W

∂t
+

∂F (W )
∂x

+
∂G(W )

∂y
= 0, (3.1)

where

W = (ρ, ρU, ρV, E)t,

F (W ) =
(
ρU, ρU2 + p +

aR

3
T 4, ρUV, U(E + p +

aR

3
T 4)

)t
,

G(W ) =
(
ρV, ρUV, ρV 2 + p +

aR

3
T 4, V (E + p +

aR

3
T 4)

)t
.

Let xi = i∆x, yj = j∆y and tn = n∆t (i, j, n ∈ Z) be the uniform mesh in cartesian
coordinates, where the ∆x,∆y and ∆t are the mesh sizes in the x-, y- and t-directions, respec-
tively; and let (i, j) denote the cell {(x, y); xi−1/2 < x < xi+1/2, yi−1/2 < y < yi+1/2}, where
xi−1/2 = (i− 1

2)∆x and yi−1/2 = (i− 1
2)∆y.

We denote by
Wi,j = (ρi,j , (ρU)i,j , (ρV )i,j , Ei,j) (3.2)

the cell averaged conservative variables at time tn in cell (i, j) whose center is (xi,j , yi,j).
Upon integrating the system (3.1) over the cell (i, j) and (tn, tn + ∆t), a conservative nu-

merical scheme for (3.1) is of the form

Wn+1
i,j = Wi,j +

1
∆x

∫ tn+∆t

tn
(Fi−1/2,j − Fi+1/2,j)dt +

1
∆y

∫ tn+∆t

tn
(Gi,j−1/2 −Gi,j+1/2)dt, (3.3)

where Fi−1/2,j and Gi,j−1/2 are the time-dependent numerical fluxes in the x- and y-directions
across the cell interface.

A BGK scheme is to construct the numerical fluxes Fi−1/2,j , Gi,j−1/2 by means of the
explicit solution of the BKG model and the relations between the macroscopic variables and
the gas distribution function (the solution of the BGK model). In this paper, we use the BGK
model to construct Fi−1/2,j , Gi,j−1/2 of second order by including the non-equilibrium effect,
and give therefore a second-order BGK scheme for (3.1).

The construction of the numerical fluxes Fi−1/2,j , Gi,j−1/2 is mainly divided in two stages:
(1) Initial reconstruction. It is directly applied to the initial cell-averaged conservative variables
to get the interpolated values (piecewise linear function) by using limiters. (2) Gas evolution
stage. It is a process to get the solution of the governing equation with the initial data obtained
from the first stage. More precisely, one can construct the initial distribution function f0 and
the equilibrium state ḡ from the reconstructed initial data, and thus obtain the general explicit
solution (3.26) (i.e. (3.7)) of the BGK model at cell interfaces, from which one gets the numerical
flux across cell interfaces. In the sequel we will describe the stages in details.

The BGK model in two dimensions reads:

ft + ufx + vfy = −f − ḡ

τ
, (3.4)

where (u, v) is the particle velocity, τ is the particle collision time related to the viscosity and
heat conduction coefficients, and ḡ is the Maxwellian distribution given by (2.5) that should
satisfy the compatibility condition:

∫
(f − ḡ)ψdudvdξ = 0, (3.5)
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where
ψ = (ψ1, ψ2, ψ3, ψ4)t ≡

(
1, u, v,

1
2
(u2 + v2 + ξ2)

)t

are the invariants. Recall that both f and ḡ depend on x, t, u, v and ξ.
Stage I. Initial Reconstruction. For a high resolution scheme, reconstruction techniques

are usually used to interpolate the cell averaged mass, momentum and energy densities. The
standard nonlinear limiter, in particular the MUSCL limiter [19] is used in this paper.

Denote by
Wi,j = (ρi,j , (ρU)i,j , (ρV )i,j , Ei,j)

the cell averaged initial conservative variables in cell (i, j) whose center is (xi,j , yi,j), where
(U, V ) denotes the flow velocity. The initial flow variables are constructed as

W̄i,j(x, y) = Wi,j + Lx(W )(x− xi,j) + Ly(W )(y − yi,j), (3.6)

where the slopes Lx(W ), Ly(W ) are defined as follows: Let the function

L(s+, s−) = (sign(s+) + sign(s−))min
{

2|s+|, 2|s−|, 1
2
|s+ + s−|

}

be the MUSCL limiter [19], then the slopes Lx(W ) and Ly(W ) take the form

Lx(W ) = L
(Wi+1,j −Wi,j

xi+1,j − xi,j
,
Wi,j −Wi−1,j

xi,j − xi−1,j

)
,

and
Ly(W ) = L

(Wi,j+1 −Wi,j

xi,j+1 − xi,j
,
Wi,j −Wi,j−1

xi,j − xi,j−1

)
.

Stage II. Gas Evolution. In the evolution stage, we utilize the explicit solution of the
BGK model (3.4). Denote the cell interface between cells (i, j) and (i + 1, j) by Γi+1/2,j =
{(xi+1/2,j , y); j − 1

2 ≤ y ≤ j + 1
2}. The general solution f of (3.4) at the point Xij =

(xi+1/2,j , yi+1/2,j) ∈ Γi+1/2,j and time t is given by

f(Xij , t, u, v, ξ) =
1
τ

∫ t

0
ḡ(x′, y′, t′, u, v, ξ)e−(t−t′)/τdt′

+ e−t/τf0(xi+1/2,j − ut, yi+1/2,j − vt), (3.7)

where x′ = xi+1/2,j − u(t− t′), y′ = yi+1/2,j − v(t− t′), f0 is the initial gas distribution function.
For simplicity, we assume xi+1/2,j = 0, yi+1/2,j = 0. The initial gas distribution function f0

is assumed to have the form

f0(x, y) =





gl(1 + alx + bly), x < 0,

gr(1 + arx + bry), x > 0,

(3.8)

with gl, gr being the Maxwellian distributions at the left and right of the cell interface which, in
view of (2.5), have the general form

gl = ρl
λ1l

π

(λ2l

π

)K/2
e−λ1l[(u−Ul)

2+(v−Vl)
2]−λ2lξ

2
,

and
gr = ρr

λ1r

π

(λ2r

π

)K/2
e−λ1r[(u−Ur)2+(v−Vr)2]−λ2rξ2

.
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The representation (3.8) means that even with a discontinuity at the cell interface, the gas is
assumed to stay in an equilibrium state on both sides of discontinuity, see [20] for more details.

The terms al, bl, ar, br in (3.8) are related to the spatial derivatives of a Maxwellian, and
assumed to have the following form obtained from the Taylor expansion of the Maxwellian (2.5)
(cf. (3.16)): 




al = a1l + a2lu + a3lv + 1
2a4l(u2 + v2) + 1

2a5lξ
2,

bl = b1l + b2lu + b3lv + 1
2b4l(u2 + v2) + 1

2b5lξ
2,

ar = a1r + a2ru + a3rv + 1
2a4r(u2 + v2) + 1

2a5rξ
2,

br = b1r + b2ru + b3rv + 1
2b4r(u2 + v2) + 1

2b5rξ
2.

(3.9)

Let W̄ (x, y) be the piecewise linear function whose restriction on the cell (i, j) is W̄i,j(x, y).
Then, from the following relation between the macroscopic variables W̄ and the gas distribution
function f0 (cf. (2.6))

W̄ =
∫

ψf0dudvdξ, (3.10)

we can obtain both gl and gr as well as their slopes in (3.8). In fact, by the initial reconstruction
(3.6), the left and right macroscopic states at the point Xij = (xi+1/2,j , yi+1/2,j) ∈ Γi+1/2,j are

W̄i,j(Xij) =




ρ̄i,j(Xij)

(ρ̄Ū)i,j(Xij)

(ρ̄V̄ )i,j(Xij)

Ēi,j(Xij)




, W̄i+1,j(Xij) =




ρ̄i+1,j(Xij)

(ρ̄Ū)i+1,j(Xij)

(ρ̄V̄ )i+1,j(Xij)

Ēi+1,j(Xij)




, (3.11)

which imply that



ρl

Ul

Vl




=




ρ̄i,j(Xij)

Ūi,j(Xij)

V̄i,j(Xij)




,




ρr

Ur

Vr




=




ρ̄i+1,j(Xij)

Ūi+1,j(Xij)

V̄i+1,j(Xij)




.

Correspondingly, λ1l, λ2l, λ1r, λ2r satisfy




ρ̄i,j(Xij)
2λ1l

= p̄i,j(Xij) +
1
3
aRT̄ 4

i,j(Xij),

K
ρ̄i,j(Xij)

2λ2l
= Kp̄i,j(Xij) +

(
2− d

3

)
aRT̄ 4

i,j(Xij).

and 



ρ̄i+1,j(Xij)
2λ1r

= p̄i+1,j(Xij) +
1
3
aRT̄ 4

i+1,j(Xij),

K
ρ̄i+1,j(Xij)

2λ2r
= Kp̄i+1,j(Xij) +

(
2− d

3

)
aRT̄ 4

i+1,j(Xij),
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where we have used p̄i,j , T̄
4
i,j and p̄i+1,j , T̄

4
i+1,j to denote the values of the pressure p and the

temperature T in the left and right cells of the point Xij ∈ Γ1+1/2,j .
On the other hand, if we differentiate (3.10) with respect to x and y, and take into account

(3.6), (3.8) and (3.9), we see that al and bl can be obtained by the relations:

1
ρl

Lx =
1
ρl




(∂ρ/∂x)l

(
∂(ρU)/∂x

)
l

(
∂(ρV )/∂x

)
l

(∂E/∂x)l




=
1
ρl

∫
ψalgldudvdξ = Ml




a1l

a2l

a3l

a4l

a5l




, (3.12)

and

1
ρl

Ly =
1
ρl




(∂ρ/∂y)l

(
∂(ρU)/∂y

)
l

(
∂(ρV )/∂y

)
l

(∂E/∂y)l




=
1
ρl

∫
ψblgldudvdξ = Ml




b1l

b2l

b3l

b4l

b5l




. (3.13)

The matrix
Ml =

1
ρl

∫
ψ ⊗ ψ̃gldudvdξ

is a function of the parameters (Ul, Vl, λ1l, λ2l) in gl, having the following form

Ml =




1 Ul Vl B1 − K
4λ2l

K
4λ2l

Ul U2
l + 1

2λ1l
UlVl B2 − KUl

4λ2l

KUl
4λ2l

Vl UlVl V 2
l + 1

2λ1l
B3 − KVl

4λ2l

KVl
4λ2l

B1 B2 B3 B4 B5




, (3.14)

where

ψ̃ = (1, u, v, 1
2(u2 + v2), 1

2ξ2)t,

B1 = 1
2

(
U2

l + V 2
l + 1

λ1l
+ K

2
1

λ2l

)
,

B2 = 1
2

(
U3

l + V 2
l Ul + 2 Ul

λ1l
+ K

2
Ul
λ2l

)
,

B3 = 1
2

(
V 3

l + U2
l Vl + 2 Vl

λ1l
+ K

2
Vl
λ2l

)
,

B4 = 1
4

(
(U2

l + V 2
l )2 + ( 4

λ1l
+ K

2λ2l
)(U2

l + V 2
l ) + 3

2λ2
1l

+ 2K+2
4λ1lλ2l

)
,

B5 = 1
4

(
K

2λ2l
(U2

l + V 2
l ) + K(K+2)

4λ2
2l

+ K
2λ1lλ2l

)
.
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In order to complete the equations (3.12) and (3.13), one has to give an additional equation
for ~al = (a1l, · · · , a5l) and ~bl = (b1l, · · · , b5l) respectively. In fact, recalling (3.8) and (3.9), the
direct Taylor expansion of the Maxwellian (2.5) upon the spatial variables x and y leads to

a1l = 1
ρl

( ∂ρ
∂x

)
l
+ d

2λ1l

(
∂λ1
∂x

)
l
+ K

2λ2l

(
∂λ2
∂x

)
l
− (

∂
∂x

[
λ1(U2 + V 2)

])
l
,

a2l = 2
(∂(λ1U)

∂x

)
l
, a3l = 2

(∂(λ1V )
∂x

)
l
, a4l = −2

(
∂λ1
∂x

)
l
, a5l = −2

(
∂λ2
∂x

)
l
,

b1l = 1
ρl

(∂ρ
∂y

)
l
+ d

2λ1l

(
∂λ1
∂y

)
l
+ K

2λ2l

(
∂λ2
∂y

)
l
− (

∂
∂y

[
λ1(U2 + V 2)

])
l
,

b2l = 2
(∂(λ1U)

∂y

)
l
, b3l = 2

(∂(λ1V )
∂y

)
l
, b4l = −2

(
∂λ1
∂y

)
l
, b5l = −2

(
∂λ2
∂y

)
l
.

(3.16)

Eliminating T 4 in the relations (2.8) and differentiating then the resulting equation with respect
to x and y, we obtain

Kρl

12λ2
2l

a5l − (2−d/3)ρl

4λ2
1l

a4l =
(

(2−d/3)
2λ1l

− K
6λ2l

)
( ∂ρ

∂x)l −
(
2− d

3 − K
3

)
( ∂p

∂x)l,

Kρl

12λ2
2l

b5l − (2−d/3)ρl

4λ2
1l

b4l =
(

(2−d/3)
2λ1l

− K
6λ2l

)
(∂ρ

∂y )l −
(
2− d

3 − K
3

)
(∂p

∂y )l,

(3.17)

where (by (2.2))

( ∂p
∂x)l = (γ − 1)

(
Tl(

∂ρ
∂x)l + ρl(∂T

∂x )l

)
,

(∂T
∂x )l = (ρl + 4aRT 3

l )−1
{

(∂E
∂x )l − ρlUl(∂U

∂x )l − ρlVl(∂V
∂x )l − 1

2

(
U2

l + V 2
l

)
( ∂ρ

∂x)l − Tl(
∂ρ
∂x)l

}
,

and ∂pl
∂y is given in the same manner. Thus, solving the system of algebraic equations (3.12),

(3.13) and (3.17), one obtains al and bl. In the same manner, the slopes ar and br can be
obtained. So, in view of (3.8), the initial distribution f0 has been determined.

To determine the equilibrium state ḡ in (3.4) around the point (x = 0, y = 0) of the cell
interface, we assume that ḡ is given by

ḡ(x, y, t) = g0(1 + ālx(1−H(x)) + ārxH(x) + b̄y + Āt), (3.18)

where H(x) is the Heaviside function, g0 is a local Maxwellian distribution located at (x = y =
0, t = 0). Notice that ḡ is continuous but has different x-slopes on both sides of x = 0.

The local Maxwellian distribution g0 has the form (cf. (2.5))

g0 =
λ10

π

(λ20

π

)K/2
e−λ10[(u−U0)2+(v−V0)2]−λ20ξ2

, (3.19)

where U0, V0, λ10 and λ20 (at time t = 0) can be obtained as follows, using (3.7) with t → 0, and
the compatibility condition (3.5) at (x = y = 0, t = 0) and taking into account (2.6).

W0 ≡




ρ0

ρ0U0

ρ0V0

E0




=
∫

ψg0dudvdξ =
∫

u>0

∫
ψgldudvdξ +

∫

u<0

∫
ψgrdudvdξ, (3.20)

9



which gives W0. Once the macroscopic variables W0 is obtained, the parameters λ10 and λ20

are then given by

ρ0

2λ10
= p0 +

1
3
aRT 4

0 , K
ρ

2λ20
= Kp0 +

(
2− d

3

)
aRT 4

0 . (3.21)

From (3.20) and (3.21), we get U0, V0, λ10, λ20. Thus, g0 is determined.
As aforementioned, the coefficients āl, ār, b̄, Ā in ḡ are related to the derivatives of a Maxwellian

in space and time, and assumed to have the following form obtained from a Taylor expansion of
a Maxwellian,

āl = ā1l + ā2lu + ā3lv +
1
2
ā4l(u2 + v2) +

1
2
ā5lξ

2,

ār = ā1r + ā2ru + ā3rv +
1
2
ā4r(u2 + v2) +

1
2
ā5rξ

2,

b̄ = b̄1 + b̄2u + b̄3v +
1
2
b̄4(u2 + v2) +

1
2
b̄5ξ

2,

Ā = Ā1 + Ā2u + Ā3v +
1
2
Ā4(u2 + v2) +

1
2
Ā5ξ

2.

Then, āl, ār in ḡ can be obtained by differentiating (3.5) with respect to x, and taking then the
value at (x = y = 0, t = 0) as follows (cf. the derivation of (3.12)).

W0 − W̄i,j(xi,j , yi,j)
ρ0∆x−

= M̄0




ā1l

ā2l

ā3l

ā4l

ā5l




, −W0 − W̄i+1,j(xi+1,j , yi+1,j)
ρ0∆x+

= M̄0




ā1r

ā2r

ā3r

ā4r

ā5r




,

where ∆x− = xi+1/2 − xi, ∆x+ = xi+1 − xi+1/2; and the matrix M̄0 = 1
ρ0

∫
ψ ⊗ ψ̃g0dudvdξ has

the same structure as the matrix Ml only with ρl, Ul, Vl, λ1l and λ2l replaced by ρ0, U0, V0, λ̄10

and λ̄20. On the other hand, there should hold

Kρ0

12λ2
20

ā5l − (2−d/3)ρ0

4λ2
10

ā4l = ( (2−d/3)
2λ10

− K
6λ20

)(∂ρ0

∂x )l − (2− d
3 − K

3 )(∂p0

∂x )l,

Kρ0

12λ2
20

ā5r − (2−d/3)ρ0

4λ2
10

ā4r = ( (2−d/3)
2λ10

− K
6λ20

)(∂ρ0

∂x )r − (2− d
3 − K

3 )(∂p0

∂x )r,

where we denote
(
(∂ρ0

∂x )l, (
∂(ρ0U0)

∂x )l, (
∂(ρ0V0)

∂x )l, (∂E0
∂x )l

)
=

(
W0−W̄i,j(xi,j ,yi,j)

ρ0∆x−

)t
,

(
(∂ρ0

∂x )r, (
∂(ρ0U0)

∂x )r, (
∂(ρ0V0)

∂x )r, (∂E0
∂x )r

)
=

(
− W0−W̄i+1,j(xi+1,j ,yi+1,j)

ρ0∆x+

)t
,

(∂p0

∂x )l = (γ − 1)
(
T0(∂ρ0

∂x )l + ρ0(∂T0
∂x )l

)
,

(∂T0
∂x )l = (ρ0 + 4aRT 3

0 )−1
{

(∂E0
∂x )l − T0(∂ρ0

∂x )l − ρ0U0(∂U0
∂x )l − ρ0V0(∂V0

∂x )l − 1
2(U2

0 + V 2
0 )(∂ρ0

∂x )l

}
,

10



and (∂p0

∂x )r is defined in the same manner.
In the y-direction at (x = y = 0, t = 0), the term b̄ in ḡ can be determined by the compati-

bility condition,
∂

∂y

∫
ψ(g − f0)dudvdξ = 0,

which yields consequently

1
ρ0

∫
ψb̄g0dudvdξ = M̄0




b̄1

b̄2

b̄3

b̄4

b̄5




=
1
ρ0

(∫

u>0

∫
ψblgldudvdξ +

∫

u<0

∫
ψbrgrdudvdξ

)
.

Similarly, b4, b5 should satisfy

Kρ0

12λ2
20

b̄5 − (2−d/3)ρ0

4λ2
10

b̄4 =
( (2−d/3)

2λ10
− K

6λ20

)
(∂ρ0

∂y )0 − (2− d
3 − K

3 )(∂p0

∂y )0,

where we denote
(
(∂ρ0

∂y )0, (
∂(ρ0U0)

∂y )0, (
∂(ρ0V0)

∂y )0, (∂E0
∂y )0

)
= 1

ρ0

(∫

u>0

∫
ψblgldudvdξ +

∫

u<0

∫
ψbrgrdudvdξ

)t
,

(∂p0

∂y )0 = (γ − 1)
(
T0(∂ρ0

∂y )0 + ρ0(∂T0
∂y )0

)
,

(∂T0
∂y )0 = (ρ0 + 4aRT 3

0 )−1
{

(∂E0
∂y )0 − T0(∂ρ0

∂y )0 − ρ0U0(∂U0
∂y )0 − ρ0V0(∂V0

∂y )0 − 1
2(U2

0 + V 2
0 )(∂ρ0

∂y )0
}

.

Solving the above algebraic equations, one gets the coefficient b̄.
Up to now, we have determined all the parameters in the initial gas distribution function

f0 and the equilibrium state ḡ at the beginning of the each time step t = 0. Inserting (3.8) and
(3.18) into the equation (3.7), we obtain the final gas distribution function f(x, y, t, u, v) at the
point x = y = 0,

f(0, 0, t, u, v, ξ) = (1− e−t/τ )g0 + (τ(−1 + e−t/τ ) + te−t/τ )
[(

ālH(u) + ār(1−H(u))
)
u + b̄v

]
g0

+ τ
( t

τ
− 1 + e−t/τ

)
Āg0

+ e−t/τ
[
(1− utal − vtbl)H(u)gl + (1− utar − vtbr)(1−H(u))gr

]
, (3.26)

where the only unknown left is Ā. To determine Ā, we use the compatibility condition (3.5) at
x = y = 0 in the whole time step ∆t, namely

∫ ∆t

0

∫
(ḡ − f)(0, 0, t, u, v, ξ)ψdudvdξdt = 0,

which yields

M̄0Ā =
1
ρ0

∫ {
γ1g0 + γ2u[ālH(u) + ār(1−H(u)) + b̄v] + γ3[H(u)gl + (1−H(u))gr]

+ γ4u[(alu + blv)H(u)gl + (aru + brv)(1−H(u))gr]
}

ψdudvdξ, (3.27)
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where

γ0 = ∆− τ(1− e−∆/τ ),
γ1 = −(1− e−∆t/τ )/γ0,

γ2 = [−∆t + 2τ(1− e−∆/τ )−∆te−∆t/τ ]/γ0,

γ3 = (1− e−∆t/τ )/γ0,

γ4 = [∆te−∆t/τ − τ(1− e−∆t/τ )]/γ0.

Since all the moments on the right hand side of the equation (3.27) can be calculated explicitly,
if we denote that

(
(∂ρ0

∂t ), (∂(ρ0U0)
∂t ), (∂(ρ0V0)

∂t ), (∂E0
∂t )

)
= ( the right hand side of (3.27) )t,

(∂p0

∂t ) = (γ − 1)
(
T0(∂ρ0

∂t ) + ρ0(∂T0
∂t )

)
,

(∂T0
∂t ) = (ρ0 + 4aRT 3

0 )−1
{

(∂E0
∂t )− T0(∂ρ0

∂t )− ρ0U0(∂U0
∂t )− ρ0V0(∂V0

∂t )− 1
2

(
U2

0 + V 2
0

)
(∂ρ0

∂t )
}

.

Then Ā4 and Ā5 should satisfy

Kρ0

12λ2
20

Ā5 − (2−d/3)ρ0

4λ2
10

Ā4 =
(

(2−d/3)
2λ10

− K
6λ20

)
(∂ρ0

∂t )−
(
2− d

3 − K
3

)
(∂p0

∂t ).

Solving the above algebraic equations, one obtains then the coefficient Ā.
Thus, we have obtained all the parameters which are needed in the construction of the gas

distribution function f(x, y, t, u, v, ξ) at a cell interface. Once we get f , the time-dependent
numerical flux Fi+1/2,j from (3.3) in the x-direction across the cell interface is given then by
taking the moments of f with the invariants (recalling xi+1/2,j = 0):

Fi+1/2,j =




Fρ

FρU

FρV

FE




=
∫

u




1

u

v

1
2(u2 + v2 + ξ2)




f(0, 0, t, u, v, ξ)dudvdξ. (3.30)

In the same manner, we can construct the time-dependent numerical flux Gi,j+1/2 in the y-
direction. Having constructed Fi+1/2,j and Gi,j+1/2, we can get by (3.3) the total mass, momen-
tum and energy at time step tn+1. This procedure can be repeated in the next time level.

In summary, our numerical algorithm consists of two steps:
(1) Initial reconstruction: it is directly applied to the conservative variables to get the

interpolated values W̄i,j(x, y) from the cell average Wi,j by using limiters.
(2) Gas evolution stage: it is a process to get the solution of the governing equation with the

initial data obtained from the first step. More precisely, one can construct the initial distribution
function f0 and the equilibrium state ḡ from the reconstructed initial data, and thus obtain the
general explicit solution (3.26) (i.e. (3.7)) of the BGK model at cell interfaces, from which one
gets the numerical flux across cell interfaces.

As the end of this section, we point out that due to inclusion of the non-equilibrium effect,
the BGK scheme of this paper solves actually the compressible Navier-Stokes equations (3.31)
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below, which provide a delicate dissipative mechanism controlled by the pseudo-particle collision
time and the intrinsic collisional model, to get a stable and crisp shock transition in nonsmooth
regions. In fact, by terms of the Chapman-Enskog expansion and straightforward calculations,
we see that the first-order approximation of the BGK model (3.4) is given by




ρ

ρU

ρV

E




t

+




ρU

ρU2 + P

ρUV

(E + P )U




x

+




ρV

ρUV

ρV 2 + P

(E + P )V




y

=




0

s1x

s2x

s3x




x

+




0

s1y

s2y

s3y




y

, (3.31)

where

P = (γ − 1)ρT +
aRT 4

3
,

E =
1
2
(ρU2 + ρV 2) + ρT + aRT 4,

s1x = τ
{

2PUx −
((γ − 1)ρ + 4aRT 3/3

ρ + 4aRT 3
(P + aRT 4)− aRT 4

3

)
(Ux + Vy)

}
,

s1y = τP (Ux + Vy),
s2x = τP (Ux + Vy),

s2y = τ
{

2PVy −
((γ − 1)ρ + 4aRT 3/3

ρ + 4aRT 3
(P + aRT 4)− aRT 4

3

)
(Vy + Ux)

}
,

s3x = τ
{

P
[
2UUx + V (Uy + Vx)

]
+

(γρT + 4aRT 4/3
ρ

)
x

−U
((γ − 1)ρ + 4aRT 3/3

ρ + 4aRT 3
(P + aRT 4)− aRT 4

3

)
(Ux + Vy)

}
,

s3y = τ
{

P
[
V Vy + U(Uy + Vx)

]
+

(γρT + 4aRT 4/3
ρ

)
y

−V
((γ − 1)ρ + 4aRT 3/3

ρ + 4aRT 3
(P + aRT 4)− aRT 4

3

)
(Ux + Vy)

}
.

From the right-hand side of (3.31), it is not difficult to see that for 1 ≤ γ ≤ 3 the right-hand side
of (3.31)2–(3.31)4 is an elliptic operator with respect to U, V, T , which enhance the stability of
the BGK scheme. On the other hand, ∂xs3x and ∂ys3y contain the second-order terms ρxx, ρyy,
the coefficients of which are always non-positive, while for the Euler equations this is not the
case because of aR = 0. These negative second-order terms perhaps could affect the stability of
the scheme for some problems, and this would be our future study. Fortunately, in our numerical
tests given in the next section, we do not observe instability.

4 Numerical tests

In this section, we present some numerical examples, some of which have been tested by the
(first-order) KFVS scheme presented in [1] and [7]. To show the performance of our scheme, the
comparison with the numerical results in [1] is given.
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For all numerical examples in this section, the collision time τ is taken as

τ = ε∆t + min
{

1.0, C1
|Pl − Pr|
Pl + Pr

}
∆t, (4.1)

where ∆t is the CFL time step, and Pl, Pr are the corresponding pressures in the states gl, gr

of the initial gas distribution function f0 respectively, ε and C1 are positive constants. In (4.1),
the first term on the right hand side gives a limit on the collision time to avoid the blowing
up the computation such as the evaluation of ∆t/τ , and also provides a background dissipation
for the numerical fluid, while the second term is related to the pressure jump which introduces
additional artificial dissipation if high pressure gradients are present in the fluid. In the smooth
flow region or in the vicinity of the slip line, the artificial dissipation introduced is very small or
diminishes because of continuous pressure distribution, see [3, 20, 21] for more discussions. We
will apply the MUSCL-type limiter to reconstruct the macroscopic initial data, and use uniform
grids and take γ = 5/3 in all numerical tests.

In the following first three examples, we test our scheme for one-dimensional problems, in
which we take all ε = 0.01, aR = 1, C1 = 5.0 and CFL= 0.45.

Example 1. One-dimensional shock-tube problem with the initial data

(ρ, T, u)t=0 =





(1, 0.5, 50), x < 0.6,

(2, 1,−40), x > 0.6.

A 100 grid cells with ∆x = 0.01 are employed in the simulation domain (0, 1). Fig.1 shows the
numerical results for the total density, temperature and velocity at t = 0.04. The results are
compared with those of using the KFVS scheme of Tang and Wu [1] and the 1st-order BGK as
well as 2000 cells. It can be seen that the 2nd-order BGK scheme resolves obviously better than
the KFVS and 1st-order schemes.

Example 2. To show that the scheme does work well with strong shocks, we take the initial
data of one-dimensional Riemann problem as

(ρ, T, u)t=0 =





(1, 0.5, 150), x < 0.5,

(2, 1,−100), x > 0.5.

The computation is performed in the domain (0, 1) with 100 cells (∆x = 0.01). The simulation
results are shown in Fig.2 for the total density, temperature and velocity at t = 0.018. We can
observe an obvious improvement of the 2nd-order BGK scheme over the KFVS and 1st-order
schemes.

Example 3. One-dimensional shock-tube problem involving the rarefaction waves with the
initial data for (ρ, T, u):

(ρ, T, u)t=0 =





(1, 1,−1), x < 0.5,

(1, 1, 1), x > 0.5.

The computation is performed in the domain (0, 1) with 100 cells (∆x = 0.01). Fig.3 shows the
numerical results for the total density, temperature and velocity at t = 0.2. We observe that the
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results here are comparable to those in [7], and again that the 2nd-order BGK scheme resolves
obviously better than the KFVS and 1st-order schemes. We should point out that there is a
“starting error” resulting from the purely discontinuous initial data, which induces some error
at x = 0.5.

In the following two examples, we test our scheme for two-dimensional problems, and we
take all ε = 0.05, C1 = 5.0 and CFL= 0.45.

Example 4. The first problem is the interaction between a shock and a denser cylindrical
bubble. Initially, there is a Mach 256.7 strong shock at x0 = 1.64, propagating in the x-
direction. The pre- and post-shock states for (ρ, T, u, v) are taken as (1, 0.01, -22.9472, 0) and
(6.57615, 20, 0, 0). On the other hand, there is a cylindrical bubble with radius R = 0.15
located at (x0 + 0.18, 0.5), and the state in the bubble is 100 denser than the pre-shock state.
The computation domain is 2× 1, the left, right, upper and lower boundary conditions are zero
gradient for the flow variables, and aR = 0.01. A grid of 256 × 128 with ∆x = ∆y = 1/128 is
used in the computation. The numerical results for the density and temperature at t = 0.07 are
shown in Fig.4, where comparing with the results in [1, 7], good agreement is seen here in the
large-scale structure. The comparison of our scheme with the KFVS scheme in [1] is given in
Fig.5, where one-dimensional contours are shown. We see that the 2nd-order scheme resolves
better in accuracy, comparing with the result obtained using 512 cells.

Example 5. The second problem is the interaction between a wind and a denser cylindrical
bubble. Initially, there is a cylindrical bubble of radius R = 0.15 with its center located at
(0.3,0.5) in the computation domain 2× 1. The bubble is 25 times denser than the ambient gas
whose state is (1, 0.09, 0, 0) for (ρ, T, u, v). In this problem, the wind is introduced through
the left boundary, on which the state (1, 0.09, 6(1 − e−10t), 0) for (ρ, T, u, v) is always assigned.
The right, upper and lower boundary conditions are zero gradient for the flow variables, aR is
taken to be 1. The computation is performed with 256 × 128 cells (∆x = ∆y = 1/128). The
simulation results for density and temperature at t = 0.6 are shown in Fig.6, where the simulated
results reproduce the large-scale structure of the corresponding numerical results in [1, 7]. The
comparison of our scheme with the KFVS scheme in [1] is given in Fig.7, where one-dimensional
contours are shown. Again, we observe from Fig.7 that that the 2nd-order scheme performs
better in resolution, comparing with the result obtained using 512 cells.

5 Conclusions

In this paper, based on the inclusion of a non-equilibrium effect to a KFVS scheme, the use of
the generalized Maxwellian introduced in [1] and the second-order BGK scheme for the Euler
equations in [2,3], we present a second-order BGK scheme for the equations of multidimensional
radiation hydrodynamics in (equilibrium diffusion and) zero diffusion limit, and extend therefore
the first-order KFVS scheme in [1] to a second-order BGK scheme. One- and two-dimensional
numerical experiments are carried out, and the numerical results validate the scheme and show
that the 2nd-order BGK scheme improves obviously the accuracy and resolution over the KFVS
scheme and the 1st-order BGK scheme.

We should point out that in view of the Chapman-Enskog expansion, the BGK scheme of the
present paper solves actually the compressible Navier-Stokes equations (3.31), which provide a
delicate dissipative mechanism controlled by the pseudo-particle collision time and the intrinsic
collisional model, to get a stable and crisp shock transition in nonsmooth regions. However, the
non-positivity of the coefficients of ρxx and ρyy on the right-hand side of (3.31)4 could perhaps
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affect the stability of the scheme for some problems(although no instability is present in our
numerical tests), and this would be the topic of the further studies.

Acknowledgement. The authors wish to thank Prof. Kun Xu and the referees for the useful
suggestions which improve this paper.
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Figure 1: Solid line: the solution obtained using 2000 cells; Gradient: the 1st-order BGK scheme;
RTriang: T-M’s results; Diamond: the 2nd-order BGK scheme
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Figure 2: Solid line: the solution obtained using 2000 cells; Gradient: the 1st-order BGK scheme;
RTriang: T-M’s results; Diamond: the 2nd-order BGK scheme
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Figure 3: Solid line: the solution obtained using 2000 cells; Gradient: the 1st-order BGK scheme;
RTriang: T-M’s results; Diamond: the 2nd-order BGK scheme
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Figure 4: The solutions obtained using 256 × 128 cells; (a) density and (b) temperature for the KFVS
scheme; (c) density and (d) temperature for the 2nd-order BGK scheme. Temperature, 15 contours:
1.745488 to 26.1831; Density, 30 contours: 2.59141-96.4827
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Figure 5: The density and temperature in the diagonal of x = 2y obtained using the KFVS and 2nd-
order BGK schemes in Problem 4. Square: the 2nd-order BGK scheme with 512× 512 cells; Delta: the
2nd-order BGK with 256× 256 cells; Diamond: the KFVS scheme with 256× 256 cells
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Figure 6: The results with 256× 128 cells in Problem 5; (a) density and (b) temperature for the KFVS
scheme; (c) density and (d) temperature for the 2nd-order BGK scheme. Temperature, 20 contours:
0.199425 to 2.2785; Density, 30 contours: 2.07753-33.326
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Figure 7: Density and temperature in the diagonal of x = 2y using the KFVS and 2nd-order BGK
schemes in Problem 5. Square: the 2nd-order BGK scheme with 512 × 512 cells; Delta: the 2nd-order
BGK sceheme with 256× 256 cells; Diamond: the KFVS scheme with 256× 256 cells
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