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On the piecewise smoothness of entropy solutions to scalar

conservation laws for a large class of initial data

Tao Tang∗ Jinghua Wang† Yinchuan Zhao‡

Abstract

In this paper, we prove that if the initial data do not belong to a certain subset of Ck,

which is hitherto smallest in the sense of inclusion relation of sets, then the solutions of

scalar conservation laws are piecewise smooth. In particular, our initial data allow centered

compression waves, which is the case not covered by Dafermos (1974) and Schaeffer (1973).

More precisely, we are concerned with the structure of the solutions in the neighborhoods

of the points at which only a Ck+1 shock generates, while there can be infinite number of

intervals, the characteristics from each of these intervals will meet at a point in any small

neighborhood. We give sufficient and almost necessary conditions of the initial data for a

degenerate point at which a Ck+1 shock generates. It is also shown that there are finitely

many shocks for smooth initial data (in the Schwartz space) except a certain subset of S (R)

of the first category. It should be pointed out that this subset is smaller than those used in

previous works. We point out that Thom’s theory of catastrophes [10], which plays a key role

in Schaeffer [9], can not be used to analyze the larger class of initial data considered in this

work.

1 Introduction

Consider the Cauchy problem for the scalar hyperbolic conservation law:

{

ut + f(u)x = 0 in R × (0,∞)

u = φ on R × {t = 0},
(1.1)

where f is Ck+1 smooth and uniformly convex, i.e., ∂2f/∂u2 ≥ ǫ > 0, the initial data are Ck

smooth and bounded, with 3 ≤ k ≤ ∞. In general, the problem (1.1) does not admit a global

smooth solution even if the initial data are smooth, but for arbitrary bounded measurable initial

data a unique global weak solution does exist. The structure of entropy solution has been studied

by many authors, e.g., Chen-Zhang [1], Dafermos [2], Lax [5], Li-Wang [6, 7], Oleinik [8], Schaeffer

[9], and Tadmor & Tassa [11].
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The main results of this work will be obtained by using the minimizing process of F (x, t, u)

introduced by Lax [5]: For each initial function φ we define a function H × R:

F (x, t, u) = tg(u) + Φ(x − ta(u))(1.2)

where H = R × (0,∞), a(u) = f ′(u),

g(u) = ua(u) − f(u), Φ(y) =

∫ y

0
φ(x)dx.

Lax has proved that for almost all (x, t) there exists a unique value of u which minimizes F (x, t, •),

and u(x, t), the function defined(almost everywhere) to equal the value of u which minimizes

F (x, t, •), is in fact the solution of (1.1). It follows from the convexity hypothesis and the fact

that the initial function is bounded that F (x, t, u) → +∞ as u → ±∞. Therefore, F (x, t, •)

always has a minimum, and a minimizing value u must be a critical point of F , a solution of the

equation

(1.3) (∂F/∂u)(x, t, u) = 0.

Note that

(1.4) (∂F/∂u)(x, t, u) = ta′(u){u − φ(x − ta(u))},

and neither of the factors outside the brackets vanishes. It can be verified that the differential of

∂F/∂u never vanishes when ∂F/∂u = 0, so (1.3) defines a smooth surface S in H ×R. we record

here the following relations that will be needed below:

(∂F/∂x)(x, t, u) = u on S,(1.5)

(∂F/∂t)(x, t, u) = −f(u) on S.(1.6)

Let us introduce some notations and definitions. First let

L1 = {x ∈ R | (a(φ(x)))′ < 0, (a(φ(x)))′′ = 0, (a(φ(x)))′′′ = 0}

L2 = {x ∈ R | (a(φ(x)))′ < 0, (a(φ(x)))′′ = 0, · · · , (a(φ(x)))(k) = 0, k ≥ 3}

and

L3 = {x ∈ R | (a(φ(x)))′ < 0, (a(φ(x))′′ = 0, · · · , (a(φ(x)))(k) = 0, (k ≥ 3) &

there exists a point ξ ∈ (x, x + δ) such that (a(φ(ξ)))′′ < 0 or

a point η ∈ (x − δ, x) such that (a(φ(η)))′′ > 0 for any δ > 0}.

Remark 1.1 It can be verified that L2 is a proper subset of L1 when k > 3 and L3 is a proper

subset of L2 when k ≥ 3.

Definition 1.1 Let u0 be a minimizing value for F (x0, t0, •), u0 is called non-degenerate (degen-

erate) if Fuu(x0, t0, u0) 6= 0(= 0).
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Definition 1.2 The solution u(x, t) is said to be Ck piecewise smooth if every bounded subset

of (−∞,∞) × [0,∞) intersects at most a finite number of shocks, every shock is piecewise Ck+1

smooth curve, and u(x, t) is Ck smooth on the complement of the shock set.

To summarize some previous result, we will first give some definitions. Let

U = {(x, t) : ∃ unique minimizing value forF (x, t, •), on which Fuu 6= 0},

Γ1 = {(x, t) : ∃ two minimizing values for F (x, t, •), on which Fuu 6= 0},

Γ
(c)
0 = {(x, t) : ∃ three minimizing values for F (x, t, •), on which Fuu 6= 0},

Γ
(f)
0 = {(x, t) : ∃ unique minimizing value forF (x, t, •), on which Fuu = 0, F (4)

u 6= 0}.

Moreover, let M(x,t) be the set consisting of all the minimizing values for F (x, t, •), and

Γ1 = {(x, t) : ∃ two connected components of M(x,t)},

Γ
(f)
0 = {(x, t) : ∃ unique connected component [α, β] of M(x,t), and Fuu(x, t, α) = 0},

Γ
(c)
0 = {(x, t) : ∃n connected components of M(x,t), wheren ≥ 3}.

It is shown by Schaeffer [9] that U is an open subset of H = R × (0,∞), on which the solution

u(x, t) is smooth; Γ1 is a union of smooth curves across which the minimizing function has a jump

discontinuity and that Γ
(c)
0 and Γ

(f)
0 consist of isolated points at which the curves in Γ1 begin to

collide. It is obvious that Γ
(f)
0 is a proper subset of Γ

(f)
0 , Γ1 is a proper subset of Γ1 and Γ

(c)
0 is a

proper subset of Γ
(c)
0 . It has been proved by Schaeffer [9] that the solutions of (1.1) are piecewise

smooth and the total number of shocks is finite for smooth initial data (in the Schwartz space)

except in a certain subset of S (R) of the first category. In other words, there is a set Ω ⊂ S (R)

of first category such that for φ ∈ S (R) ∼ Ω

(1.7) H = U ∪ Γ1 ∪ Γ
(c)
0 ∪ Γ

(f)
0 .

Lemma 1.4 in [9] is very important, which shows that any point (x0, t0) ∈ Γ
(f)
0 has a neighborhood

Θ such that Γ1 ∩ Θ consists of a half-curve originating at (x0, t0). The minimizing function

is smooth on Θ′ ∼ Γ1, where Θ′ = Θ ∼ {(x0, t0)}. The proof is an adaption of standard

techniques from the theory of singularities of differentiable mappings, especially Thom’s theory

of catastrophes [10]. Schaeffer made a serious attempt to make this material accessible to analysts,

including reproving the so called universal unfolding of the Riemann-Hugoniot catastrophe, one of

the seven elementary catastrophes of Thom [10]. Section 2 in [9] is devoted to prove the unfolding

theorem for the Riemann–Hugoniot catastrophe.

It is naturally to ask if the conclusions of Lemma 1.4 in Schaeffer [9] are true when

(1.8) Fu(x0, t0, u0) = 0, Fuu(x0, t0, u0) = 0, · · · , F (2n−1)
u (x0, t0, u0) = 0, F (2n)

u (x0, t0, u0) > 0,

where n ≥ 3 is some integer; or even F
(m)
u (x0, t0, u0) = 0, (m = 1, 2, · · · ). Unfortunately, the

unfolding theorem for the Riemann–Hugoniot catastrophe is not applicable in this case since

F (x, t, u) is unstable as an unfolding of codimension two of F (x0, t0, u) when

(1.9) Fu(x0, t0, u0) = 0, Fuu(x0, t0, u0) = 0, F (3)
u (x0, t0, u0), F (4)

u (x0, t0, u0) = 0.
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One of the main purposes of this work is to show that the conclusions of Lemma 1.4 in [9] are

true under the conditions L3 = ∅, which is more general than the condition (1.9). The method

used in our proof is different from the one used by Schaeffer, which is elementary but technical.

It is shown by Li and Wang [6] that there is a set Ω1 ⊂ Ω ⊂ S (R) of first category such

that for φ ∈ S (R) ∼ Ω1 the solutions are piecewise smooth. The authors also give an explicit

conditions on Ω1:

(1.10) Ω1 = {φ ∈ R | (a(φ(x)))′ < 0, (a(φ(x)))′′ = 0, (a(φ(x)))′′′ = 0, x ∈ R}.

Dafermos [2] introduced the concept of generalized characteristic to study the solution structures

of hyperbolic conservation laws. He proved that generically the solutions generated by initial

data in Ck are piecewise smooth and do not contain centered compression waves. In other words,

there is a set Ω2 ⊂ Ck of the first category such that for φ ∈ Ck ∼ Ω2 the solutions are piecewise

smooth, where

(1.11) Ω2 = {φ ∈ Ck | (a(φ(x)))′ < 0, (a(φ(x)))′′ = 0, · · · , (a(φ(x)))(k) = 0, x ∈ R}.

In this paper, we first generalize Lemma 1.4 in Schaeffer [9], i.e., the case that (x0, t0) ∈ Γ
(f)
0

to the case that (x0, t0) ∈ Γ
(f)
0 . We will show that Γ1 is a union of Ck+1 curves, except the

points at which at least one connected component of M is not an isolated point, across which the

minimizing function has a jump discontinuity, Γ
(f)
0 consists of isolated points at which the curves in

Γ1 begin. Γ
(c)
0 consists of isolated points at which the curves in Γ1 collide. As a result, we will prove

that there is some neighborhood of (x0, t0) such that a unique Ck+1 smooth shock originating at

(x0, t0), while there may be infinite number of intervals on which (a(φ(x)))′ < 0, (a(φ(x)))′′ = 0

(i.e., a(φ(x)) is linearly decreasing) the characteristics from each of these intervals will meet at a

point in any small neighborhood of (x0, t0). We also show that for any point (x0, t0) ∈ Γ
(c)
0 i.e.

there exist finitely many, say n, connected components of M(x0,t0), there exists a neighborhood Θ

of (x0, t0) such that Γ1 ∩Θ is the union of n half shocks, n− 1 terminating and one originating at

(x0, t0). The shocks are piecewise Ck+1 smooth and shocks are not differentiable only at points of

intersection with other shocks and points which are centers of centered compression waves. The

minimizing function is Ck smooth on each n components of Θ′ ∼ Γ1. We prove that there is a set

Ω3 ⊂ Ck(R) of the first category such that for φ ∈ Ck(R) ∼ Ω3, H = U ∪Γ1 ∪Γ
(f)
0 ∪Γ

(c)
0 and the

minimizing process leads to piecewise smooth solution of initial value problem (1.1) pointwise in

H, where

Ω3 = {φ ∈ Ck | (a(φ(x)))′ < 0, (a(φ(x))′′ = 0, · · · , (a(φ(x)))(k) = 0, (k ≥ 3) &(1.12)

there exists a point ξ ∈ (x, x + δ)such that (a(φ(ξ)))′′ < 0 or

a point η ∈ (x − δ, x) such that (a(φ(η)))′′ > 0 for each δ > 0, x ∈ R}.

Here Ω3 is a proper subset of Ω2. To our knowledge, Ω3 has been the smallest in the sense of

inclusion relation of sets. We also prove that there is a set Ω4 ⊂ S (R) of the first category such

that for φ ∈ S (R) ∼ Ω4, there are only finite number of shocks. It is pointed out that piecewise

smooth solutions with the underlying initial conditions may contain centered compression waves.

This indicates that the class of piecewise smooth solutions with Ck initial data excluding Ω3

obtained in this paper is wider than the class of the piecewise solutions with Ck initial data

excluding Ω2 considered by Dafermos.
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This paper is arranged as follows: we study the local structure of the solutions in Section 2

and we prove the solutions are piecewise smooth based on the results in Section 2 in Section 3.

2 Local solution structure

In this section, we will study the local structure of the solutions of (1.1). Some main results in

this section are listed below:

• In Theorem 2.1, we study the structure of the solutions in the neighborhoods of the points

at which a shock generates. We show that there is a neighborhood such that a unique Ck+1

smooth shock originates, even there are infinite number of intervals, on which (a(φ(x)))′ < 0,

(a(φ(x)))′′ = 0, i.e., a(φ(x)) is linearly decreasing, the characteristics from each of these

intervals will meet at a point in any small neighborhood of (x0, t0), while all of these points

do not generate shocks.

• In Theorem 2.2, we study the points at which finitely many shocks collide to form a new

shock. All of the shocks are Ck+1 smooth except at points of interaction with other shocks

and points belonging to Γ1 ∼ Γ1, and the shocks are not differentiable at points of interaction

with other shocks and points which are centers of centered compression waves. In other

words, all the shocks are piecewise Ck+1 curves.

Let y(x, t, u) = x − ta(u). For each (x, t, u) ∈ R × R
+ × R, it is easy to see that y(x, t, u) is

just the intersection point of a straight line passing through (x, t) with slope a(u) with the line

t = 0. Note that

Fu(x, t, u) = ta′(u){u − φ(x − a(u)t)}.(2.1)

If Fu(x, t, u) = 0, then

(2.2) Fuu(x, t, u) = ta′(u)[1 + (a(φ(y(x, t, u))))′t].

If Fu(x, t, u) = 0 and Fuu(x, t, u) = 0, then

Fuuu(x, t, u) = ta′(u)[(a(φ(y(x, t, u))))′t]u = t2a′(u)[(a(φ(y(x, t, u))))′ ]u

= t2a′(u)[(a(φ(y(x, t, u))))′ ]y(x,t,u)(y(x, t, u))u

= (−t)3[a′(u)]2(a(φ(y(x, t, u))))′′ .(2.3)

By induction, if F
(m)
u (x, t, u) = 0, (m = 1, · · · , n − 1), then we have

(2.4) F (n)
u (x, t, u) = (−t)n[a′(u)]n−1(a(φ(y(x, t, u))))(n−1) , (n ≥ 3).

In view of (2.1)-(2.4), it can be verified that if (x, t, u) satisfies

(2.5) F (m)
u (x, t, u) = 0 (m = 1, · · · , 2n − 1), F (2n)

u (x, t, u) > 0, (n ≥ 2),

then we have, for y(x, t, u) = x − ta(u),

(2.6)

{

(a(φ(y(x, t, u))))′ < 0, (a(φ(y(x, t, u))))(m) = 0, (m = 2, 3, · · · , 2n − 2)

(a(φ(y(x, t, u))))(2n−1) > 0, (n ≥ 2).
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On the other hand, if x0 satisfies (2.6) then for u = φ(x0),

t = −
1

(a(φ(x0)))′
, x = x0 −

a(φ(x0))

(a(φ(x0)))′
.

Consequently, (2.5) is satisfied.

2.1 Some useful lemmas

Lemma 2.1 ([9]) Let the set U be set defined in the last section and let u(x, t) be the minimizing

function of F defined by (1.2). Then we have

• U is an open subset of H, and u(x, t) is smooth on U .

• Any point (x0, t0) ∈ Γ1 has a neighborhood Θ such that Γ1 ∩ Θ is a smooth curve x = γ(t)

passing through (x0, t0). The minimizing function u(x, t) is smooth on both components of

Θ ∼ Γ1.

The above lemma is from Lemmas 1.1 and 1.2 of [9]. Let u1(x, t) and u2(x, t) be the corre-

sponding solutions of (1.3) defined in some neighborhood Θ of (x0, t0). We see that for nearby

(x, t) the minimum of F (x, t, •) is assumed at either u1(x, t) or u2(x, t), or both. Hence every

point of Θ belongs to U or Γ1. Every point in the two components Θ1 and Θ2 of Θ ∼ Γ1 belongs

to U . Let ui(x, t) be the unique minimizing value for F (x, t, •) for (x, t) ∈ Θi (i = 1, 2). Any

curve in Γ1 which separates two components of U is defined by an equation in the following form

(2.7) F (x, t, u2(x, t)) − F (x, t, u1(x, t)) = 0

and it follows from (1.5),(1.6) that the jump relation

(2.8) γ̇(t) = [f(u)]/[u],

where [u] = u1 − u2, [f(u)] = f(u1) − f(u2) is satisfied along the curve. Thus γ is Ck+1.

Now we turn to discuss the connection between the critical point and the characteristic.

Suppose u0 is a critical point of F (x0, t0, •), i.e. Fu(x0, t0, u0) = 0, then u0 = φ(x0 − t0a(u0)) =

φ(y(x0, t0, u0)) due to (2.1) and so there exists a characteristic

(2.9) C0 : x = y(x0, t0, u0) + ta(φ(y(x0, t0, u0))) = x0 + (t − t0)a(u0)(t > 0),

passing through (x0, t0) and Fu(x, t, u0) = 0 for each (x, t) ∈ C0. On the other hand, consider a

characteristic C1 : x = x + ta(φ(x)), t > 0 then Fu(x, t, φ(x)) = 0, for (x, t) ∈ C1 due to the fact

that φ(x) = φ(x − ta(φ(x))) and (2.1). This implies that φ(x) is a critical point of F (x, t, •).

Naturally, it may be asked if φ(x) is a minimizing value for F (x, t, •) for (x, t) ∈ C1. The

following lemma gives an answer.

Lemma 2.2 Assume φ(x) is bounded and Ck smooth and let

C = {(x, t) : x = x0 + ta(φ(x0)), t > 0}.

Then precisely one of the following statements must hold:
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• C ⊂ U and φ(x0) is the unique minimizing value for F (x, t, •); or

• there exists a point (x1, t1) ∈ C such that φ(x0) is either the unique minimizing value for

F (x1, t1, •) which is degenerate or one of at least two minimizing values for F (x1, t1, •).

Thus, φ(x0) is the minimizing value for F (x, t, •) for (x, t) ∈ C− := C ∩ {(x, t) : t1 >

t > 0} ⊂ U while φ(x0) is no longer the minimizing value for F (x, t, •) for (x, t) ∈ C+ :=

C ∩ {(x, t) : t > t1}.

Proof: First we claim that φ(x0) will be no longer a minimizing value for F (x, t, •) for (x, t) ∈ C+

if there exist at least two minimizing values for F (x1, t1, •) and φ(x0) is one of them. Let

φ(x̃0) 6= φ(x0) be another minimizing value for F (x1, t1, •). Computing the directional derivative

along x = x0 + a(φ(x0))t:

d

dλ
=

∂

∂t
+

x1 − x0

t1

∂

∂x
;

d

dλ
F (x, t, φ(x0)) |(x1,t1)= g(φ(x0)) = h(

x1 − x0

t1
),

where

h(u) = ua−1(u) − f(a−1(u)) = g(a−1(u)),

a−1(u) is the inverse function of a(u). It can be verified that h(u) is convex since h′′(u) =

1/a′(u) > 0. In fact, it follows from x1 − x0/t1 = a(φ(x0)) that φ(x0) = a−1((x1 − x0)/t1). This

gives g(φ(x0)) = h(x1−x0

t1
). Hence

d

dλ
F (x, t, φ(x̃0))

= g(φ(x̃0)) − a(φ(x̃0))φ(x1 − t1a(φ(x̃0))) +
x1 − x0

t1
φ(x1 − t1a(φ(x̃0)))

= h(
x1 − x̃0

t1
) +

x̃0 − x̃0

t1
h′(

x1 − x̃0

t1
).

Using the convexity of h, we get

d

dλ
(F (x, t, φ(x0)) − F (x, t, φ(x̃0))) |(x1,t1)

=
1

2!
h′′(

x1 − θx0 − (1 − θ)x̃0

t1
)(

x̃0 − x0

t1
)2 > 0,

where 0 < θ < 1. Thus φ(x0) is no longer a minimizing value for F (x, t, •) for (x, t) ∈ C+.

If φ(x0) is a degenerate minimizing value for F (x1, t1, •), namely

Fuu(x1, t1, φ(x0)) = t1(a(φ(x0)))
′[1 + t1(a(φ(x0)))

′] = 0.

Consequently, Fu(x, t, φ(x0)) = 0 and Fuu(x, t, φ(x0)) < 0 for (x, t) ∈ C+, which implies that

φ(x0) is a local maximizing value for F (x, t, u) for (x, t) ∈ C+. Obviously, φ(x0) is not a mini-

mizing value for F (x, t, u). By noting that (x, t) ∈ C (t is sufficiently small) Fu(x, t, u) = 0 has a

unique minimizing value φ(x0), and Fuu(x, t, φ(x0)) > 0, the proof is completed. �

Lemma 2.2 is Lemma 6 in Li-Wang [6]. For self-contained and convenience, its proof will be

given below.
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Definition 2.1 A characteristic Ctc: x = x0 + a(φ(x0))t starting from point (x0, 0), 0 < t <

tc(≤ ∞) is called valid if φ(x0) is a unique minimizing value for F (x, t, •) for (x, t) ∈ Ctc .

Suppose u0 is a minimizing value for F (x0, t0, •) (not necessarily unique). Consider a charac-

teristic C : x = y(x0, t0, u0)+ta(φ(y(x0, t0, u0))) = x0+(t−t0)a(u0)(t ≥ 0), which passes through

(x0, t0) and (y(x0, t0, u0), 0). Consider the segment Ct0 : x = x0 + (t − t0)a(u0)(0 < t < t0). It

is valid according to Lemma 2.2. Therefore, a minimizing value for F (x0, t0, •) defines a part

of valid characteristic passing through (x0, t0), on the other hand a valid characteristic provides

a minimizing value for F (x, t, •) for each given point (x, t) belonging to the valid part of the

characteristic. Such kind of characteristic will be often used hereafter.

Lemma 2.3 Suppose that L3 = ∅. Then for each point (x, t) ∈ H, there are finitely many

connected components of M(x,t).

Proof: We see each connected component of M is either an isolated point or a closed interval.

Let M1 = [u−
i , u+

i ], M2 = [u−
i+1, u

+
i+1] (u+

i < u−
i+1) be two neighboring connected components of

M . Thus there exists a point ui ∈ (u−
i+1, u

+
i ) such that

Fu(x, t, ui) = 0, Fuu(x, t, ui) ≤ 0,(2.10)

where ui is a local maximizing value for F (x, t, •). Set y±i = y(x, t, u±
i ), y±i+1 = y(x, t, u±

i+1) and

yi = y(x, t, ui). Now we claim

there exists a point x′
i ∈ [y−i+1, yi] such that (a(φ(x′

i)))
′′ < 0.(2.11)

Otherwise, (a(φ(y)))′′ ≥ 0 for each y ∈ [y−i+1, yi].(2.12)

Two cases need to be considered.

Case 1: Fuu(x, t, u−
i+1) 6= 0. If this is the case, on one hand we have (a(φ(y−i+1)))

′ > −1/t ≥

(a(φ(yi)))
′ in view of (2.10); and on the other hand (a(φ(y−i+1)))

′ ≤ (a(φ(yi)))
′ due to (2.12). This

gives a contradiction; hence Case 1 does not hold.

Case 2: Fuu(x, t, u−
i+1) = 0. In this case, since L3 = ∅, we have

(2.13)
There exists a point δ0 > 0 such that (a(φ(y)))′′ ≥ 0 for each

y ∈ [y−i+1, y
−
i+1 + δ0] and (a(φ(z)))′′ ≤ 0 for each z ∈ [y+

i+1 − δ0, y
+
i+1].

Next we claim that

(2.14) there exists a point ξ ∈ (y−i+1, y
−
i+1 + δ) such that (a(φ(ξ)))′′ > 0 for each δ > 0.

Otherwise according to (2.13), there exists a constant δ1 > 0 such that (a(φ(ξ)))′′ ≡ 0 for each

ξ ∈ [y−i+1, y
−
i+1 + δ1]. Set y(x, t, α′) = y−i+1 + δ1, where α′ < u−

i+1. Then (a(φ(ξ)))′ = −1/t for each

ξ ∈ [y−i+1, y(x, t, α′)], which implies a(φ(ξ)) = −ξ/t + c, where c is a constant. Let ξ = y−i+1. We

have

c =
1

t
[y−i+1 + ta(φ(y−i+1))] =

x

t
,

and so

(2.15) a(φ(ξ)) = −
1

t
ξ +

x

t
.
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Consequently, a(u) = a(φ(y(x, t, u))), if we set ξ = y(x, t, u) in (2.15) and notice y(x, t, u) = x −

ta(u) for u ∈ [α′, u−
i+1], which implies that Fu(x, t, u) ≡ 0, F (x, t, u) is a constant for u ∈ [α′, u−

i+1].

This leads to a contradiction since [u−
i+1, u

+
i+1] is a connected component, hence Case 2 does not

hold. Thus we complete the proof of (2.14). Similarly, we have the following conclusion

(2.16) there exists a point η ∈ (y+
i+1 − δ, y+

i+1] such that (a(φ(η)))′′ < 0 for each δ > 0.

We see (a(φ(yi)))
′ ≤ (a(φ(y−i+1)))

′ = −1/t since Fuu(x, t, u−
i+1) = 0. On the other hand,

(a(φ(yi)))
′ > (a(φ(y−i+1)))

′ according to (2.12) and (2.14). This is a contradiction since (a(φ(yi)))
′ ≤

(a(φ(y−i+1)))
′. Thus the assertion (2.11) is true. By a similar argument, there exists a point

x′′
i ∈ [yi, y

+
i ] such that (a(φ(x′′

i )))′′ > 0. The above arguments yield

(2.17)
there exists a point x′

i ∈ [y−i+1, yi] and a point x′′
i ∈ [yi, y

+
i ]

such that (a(φ(x′
i)))

′′ < 0 and (a(φ(x′′
i )))

′′ > 0.

Next we claim there are only finitely many connected components of M . If this is not true,

then there exists a monotone increasing sequence {Mi} = ([u−
i , u+

i ]). The sequence {[y+
i , y−i ]} is

monotone decreasing and bounded, then it must be convergent to a point x0. It is easy to know

that

lim
i→∞

x′
i = lim

i→∞
x′′

i = lim
i→∞

yi = x0.

It follows from (a(φ(yi)))
′ ≤ −1/t that (a(φ(x0)))

′ ≤ −1
t

< 0. On the other hand, (a(φ(x0)))
′′ =

0, · · · , (a(φ(x0)))
(k) = 0 in light of (2.17). For each δ > 0, there exist i0 > 0 such that [y+

i , y−i ] ⊂

(x0 − δ, x0 + δ) for each i > i0. We see x0 < x′
i < x′′

i for each i > i0 since the sequence {[y+
i , y−i ]}

is monotone decreasing. Observing (a(φ(x′
i)))

′′ < 0, x′
i ∈ (x0, x0 + δ), which implies x0 ∈ L3.

This is contradicts L3 = ∅. The proof is completed. �

Same result by Li and Wang [7] to Lemma 2.3 has been obtained under the hypothesis that

φ is locally finite to f.

Below we give some lemmas which will be used in the proof of one of our main results, Theorem

2.1.

Lemma 2.4 The locus of the degenerate points on all the characteristics originating from some

neighborhood of [y(x0, t0, β), y(x0, t0, α)] form two half curves in the neighborhood of (x0, t0), for

t > t0 with a unique common point (x0, t0). Each of them is continuous and consists of union of

countable open arcs, on which the curve is Ck and points as the end point of the arcs on which

the curve is not differentiable but the left derivative continuous on the left and right derivative

continuous on the right. The graphs of them are demonstrated in Figure 1.

Proof: Note that by (2.1) the critical set of F (x, t, •) is contained in the compact interval

J = {u : |u| ≤ M}, where M = supy |φ(y)|. First we claim that

(2.18)

for each open interval (α − ε, β + ε), there exists an open

neighborhood Θ of (x0, t0) such that all the minimizing values

for F (x, t, •) belong to (α − ε, β + ε) for (x, t) belonging to Θ.

Otherwise there exists a sequence (xn, tn) convergent to (x0, t0) and a sequence un belonging

to J ∼ (α − ε, β + ε) such that F (xn, tn, un) = min
u∈R

F (xn, tn, u) (n = 1, 2, . . .). Since the set
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1 1
( , )x t

0 0
( , )x t

y(x ,t ,0 0 a)y(x ,t ,0 0 b) y(x ,t ,1 1 x )2
y(x ,t ,1 1 x )1

the locus of
degenerate point

Figure 1: The locus of the degenerate points on all the characteristics. The interval

(y(x1, t1, ξ2), y(x1, t1, ξ1)) is the linearly decreasing interval, on which (a(φ(•)))′′ = 0 and

(a(φ(•)))′ < 0. There may be infinitely many such intervals in the neighborhood of

(y(x1, t1, ξ2), y(x1, t1, ξ1)).

J ∼ (α − ε, β + ε) is compact and we can select a subsequence of un written again as un for

convenience convergent to u1 belonging to the set J ∼ (α − ε, β + ε). Then F (x0, t0, u0) =

lim
n→∞

F (xn, tn, un) = F (x0, t0, u1), since the function m(x, t) = min
u∈R

F (x, t, u) is continuous of x

and t (see Lemma A.1 in the Appendix). This implies that there are at least two connected

components of M(x0,t0). It is a contradiction since there is a unique connected component of

M(x0,t0). Thus the assertion (2.18) is true. According to (2.18), we can find a sufficiently small

constant ε0 > 0 and a neighborhood Θ of (x0, t0) such that for each (x, t) ∈ Θ, u ∈ (α−ε0, β+ε0),

x − ta(u) belongs to (y(x0, t0, β) − δ0, y(x0, t0, α) + δ0).

Two half curves mentioned above can be written in the following form

(2.19)















x(ξ) = ξ −
a(φ(ξ))

(a(φ(ξ)))′

t(ξ) = −
1

(a(φ(ξ)))′

ξ ∈ [y(x0, t0, α), y(x0, t0, α) + δ0]

(2.20)















x(ξ) = ξ −
a(φ(ξ))

(a(φ(ξ)))′

t(ξ) = −
1

(a(φ(ξ)))′

ξ ∈ [y(x0, t0, β) − δ0, y(x0, t0, β)].

We see they have a common point (x0, t0). Moreover, the slope of the line tangent to the curve

(2.19) at (x0, t0) is a(α) and the slope of the line tangent to the curve (2.20) at (x0, t0) is a(β).

By a direct computation and in light of (2.2), we have

Fu(x(ξ), t(ξ), φ(ξ)) = 0, Fuu(x(ξ), t(ξ), φ(ξ)) = 0.

Thus, the curve (2.19) is the locus of the degenerate points on all the characteristics that start

from the interval [y(x0, t0, α), y(x0, t0, α) + δ0] and the curve (2.20) is the locus of the degenerate
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points on all the characteristics that start from the interval [y(x0, t0, β) − δ0, y(x0, t0, β)]. Let

(xl, t1), (xr, t1) ∈ Θ (t1 > t0) be the intersection points of the line t = t1 with the curves (2.19)

and (2.20). Now we claim xr − xl > 0. The proof can be found in Lemma A.2 of the Appendix.

Thus these two curves have a unique common point (x0, t0). Each of them is continuous and

consists of union of countable open arcs, on which the curve is Ck and points as the end point of

the arcs on which the curve is not differentiable but the left derivative continuous on the left and

right derivative continuous on the right; the proof this statement will be postponed to Lemma

A.4 in Appendix. �

Lemma 2.5 All the characteristics that originate from the interval (y(x0, t0, α), y(x0, t0, α)+ δ0)

((y(x0, t0, β)−δ0, y(x0, t0, β))) can only intersect with each other after the time t0 and for any two

characteristics that originate from the points on the right (left) of (y(x0, t0, α), 0) ((y(x0, t0, β), 0)),

the time when the one closer to (y(x0, t0, α), 0) ((y(x0, t0, β), 0)) touches the curve (2.19) ((2.20))

is not later than the time when they intersect with each other, where δ0 > 0 is a constant.

Proof: Consider the following two characteristics:

x = x1 + ta(φ(x1)),(2.21)

x = x2 + ta(φ(x2)),(2.22)

where y(x0, t0, α) < x1 < x2 < y(x0, t0, α) + δ0. Suppose (x12, t12) is the intersection point of

them; i.e.,

t12 = −
x1 − x2

a(φ(x1)) − a(φ(x2))
= −

1

(a(φ(x12)))′
,

where x1 < x12 < x2. Let t1 = −1/(a(φ(x1)))
′ and t2 = −1/(a(φ(x2)))

′. Thus Fu(xi, ti, φ(xi)) = 0

and Fuu(xi, ti, φ(xi)) = 0, where xi = xi + tia(φ(xi)) (i = 1, 2). It can be verified that

(2.23) t0 < t1 ≤ t12 ≤ t2

according to (2.13) and (2.14). A similar conclusion can also be obtained if x1, x2 ∈ (y(x0, t0, β)−

δ0, y(x0, t0, β)). This implies that all the characteristics that originate from the intervals (y(x0, t0, α),

y(x0, t0, α)+δ0) and ((y(x0, t0, β)−δ0, y(x0, t0, β))) can only intersect with each other after t = t0;

and for any two characteristics that originate from the points on the right (left) of (y(x0, t0, α), 0)

and ((y(x0, t0, β), 0)), the time when the one closer to (y(x0, t0, α), 0) and ((y(x0, t0, β), 0)) touches

the curve (2.19) ((2.20)) is not later than the time when they intersect with each other. Thus we

complete the proof. �

Lemma 2.6 All the minimizing values for F (x, t, •) are non-degenerate for (x, t) ∈ Θ′ and there

exists a unique minimizing value for F (x, t, •) for (x, t) ∈ Θ′ lying under and on the curves (2.19)

and (2.20).

Proof: We consider two possible cases.

Case 1: under the curves. There is a unique minimizing value for F (x, t, •) for (x, t) ∈

Θ′ ∩ {t ≤ t0} which is non-degenerate due to Lemma 2.5. Consider a point (x1, t1) ∈ Θ, if

x1 < xl (x1 > xr). Then if follows from Lemma 2.5 that there exists a unique minimizing value
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for F (x1, t1, •) which is non-degenerate.

Case 2: on the curves. If x1 = xl(x1 = xr), we claim that

(2.24) there exists a unique minimizing value for F (x1, t1, •) and it is non-degenerate.

In fact, there exists a unique minimizing value u1 for F (x1, t1, •) such that y(x1, t1, u1) belongs to

(y(x0, t0, β)−δ0, y(x0, t0, β)) according to Lemma 2.5. If there exists another minimizing value u2

for F (x1, t1, •) such that y(x1, t1, u2) belongs to (y(x0, t0, α), y(x0, t0, α) + δ0). Then there exists

a characteristic passing through (x1, t1):

(2.25) x = y(x1, t1, u2) + ta(φ(y(x1, t1, u2))), 0 < t ≤ t1.

Let

(2.26) x = ξ + ta(φ(ξ)), 0 < t ≤ t1

be the line tangent to the curve (2.19) from below at the point (x1, t1). Since

t1 = −
1

(a(φ(ξ)))′
= −

1

(a(φ(y(x1, t1, u2))))′
,

according to the argument of assertion (2.14), we know if (a(φ(ξ)))′ < 0, (a(φ(ξ)))′′ = 0, for each

ξ ∈ [ξ1, ξ2], then all the characteristics that start from the interval [ξ1, ξ2] meet at a point, say

(x, t) and so F (x, t, u) is a constant for each u ∈ [φ(ξ2), φ(ξ1)], thus we have F (x1, t1, φ(ξ)) =

F (x1, t1, u2), which implies φ(ξ) is a minimizing value for F (x1, t1, •). Thus the characteristic

(2.26) is valid.

Let u1 and [u3, φ(ξ)] be the connected components of M(x1,t1). In light of Lemma A.3 in

Appendix, there exists an open neighborhood Θ of (x1, t1) such that Θ∩Γ1 contains a half curve

x = γ−(t) terminating at (x1, t1). Furthermore, we have

(2.27)
dγ−(t)

dt
=

f(u1(x, t)) − f(u2(x, t))

u1(x, t) − u2(x, t)
,

y(x, t, u1(x, t)) ∈ (y(x1, t1, u1), y(x1, t1, u1)+ δ), y(x, t, u2(x, t)) ∈ (ξ− δ, ξ), (t < t1). Let t → t1−,

we have

lim
t→t1−0

dγ−(t)

dt
=

f(u1) − f(φ(ξ))

u1 − φ(ξ)
∈ (a(φ(ξ)), a(u1)).

On the other hand, the slope of the line tangent to the curve (2.19) at (x, t) tending to (x1, t1)

is convergent to a(φ(ξ)). Consequently the curve x = γ−(t) lies between the characteristic

(2.26) and the curve (2.19) for t close to t1. Consider a point (x̃, t̃) = (γ−(t̃), t̃), there exists a

minimizing value u(x̃, t̃) for F (x̃, t̃, •) such that y(x̃, t̃, u(x̃, t̃)) ∈ (ξ−δ, ξ), thus there exists a valid

characteristic passing through (x̃, t̃). On the other hand, it touches the curve (2.19) and becomes

invalid according to Lemma 2.2, which is a contradiction. Hence the assertion (2.24) is true. �

It is easy to see that the shock will not touch the curves (2.19) and (2.20), which implies the

shock lies between these two curves, so it must be smooth.
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the shock curve

Figure 2: The local structure of the solution.

2.2 Shock generation results

Theorem 2.1 Assume L3 = ∅ and suppose that there is a unique connected component [α, β] of

M(x0,t0), and Fuu(x0, t0, α) = 0 then (x0, t0) has a neighborhood Θ such that Γ1 ∩ Θ consists of

a half-curve originating at (x0, t0). The minimizing function is smooth on Θ′ ∼ Γ1. The local

structure of the solution is given in Figure 2.

Proof. We will prove that there exists a Ck+1 smooth shock originating at (x0, t0). For each given

t1 > t0, let At1={x | (x, t1) ∈ Θ, there exists a valid characteristic which originates from a point on

the left of the point (y(x0, t0, β), 0) and passes through (x, t1)}. Bt1={x | (x, t1) ∈ Θ, there exists

a valid characteristic which originates from a point on the right of the point (y(x0, t0, α), 0) and

passes through (x, t1)}. According to the assertion (2.24), there exists a unique valid characteristic

passing through (xl, t1), then (xl, t1) ∈ At1 , which implies that At1 6= ∅ . Similar, Bt1 6= ∅. Let

x1 be the supremum of the set At1 and x2 be the infimum of the set Bt1 .

Next we will show:

(2.28)

There are two valid characteristics passing through (x1, t1). One originates

from a point on the left of the point (y(x0, t0, β), 0) the other originates

from a point on the right of the point (y(x0, t0, α), 0).

First we claim that

(2.29) there are at least two minimizing values for F (x1, t1, •).

To see this, if there is a unique minimizing value u1 of u for F (x1, t1, •) then there exists a unique

characteristic passing through (x1, t1), which satisfies one of the following cases:

case 1: it originates from a point on the left of the point (y(x0, t0, β), 0) and u1 is non-degenerate.

In this case, according to the Lemma 2.1, we can find a neighborhood U(x1) of x1 such that for

each x ∈ U(x1),(x, t1), there exists only one characteristic that originates from a point on the

left of the point (y(x0, t0, β), 0) . Since x1 is the supremum of the set At1 , there exists a point

x̃ ∈ U(x1) such that there exists a characteristic passing through (x̃, t1) that originates from a



14 T. Tang, J.-H. Wang and Y.-C. Zhao

point on the left of the point (y(x0, t0, β), 0). This is contradictory to the property of U(x1).

case 2: it originates from a point on the right of the point (y(x0, t0, α), 0). Similar to the case 1

above, a contradiction can also be obtained.

Next, we claim that

(2.30) there are at most two minimizing values for F (x1, t1, •)

Otherwise, there exist two minimizing values u1 and u2 for F (x1, t1, •) such that y(x1, t1, u1) =

x1−t1a(u1) and y(x1, t1, u2) = x1−t1a(u2) belong to (y(x0, t0, β)−δ0, y(x0, t0, β)) or (y(x0, t0, α), y(x0, t0, α)+

δ0). Suppose y(x1, t1, u1), y(x1, t1, u2) belong to (y(x0, t0, α), y(x0, t0, α) + δ0). Then there exist

two characteristics

x = x1 + ta(φ(x1))(2.31)

x = x2 + ta(φ(x2))(2.32)

and they are valid, where x̄1 < x̄2. Suppose that (x̄, t̄) is the intersection point of them. Then

we have

(2.33) x̄ =
x1a(φ(x2)) − x2a(φ(x1))

a(φ(x2)) − a(φ(x1))
, t̄ =

x1 − x2

a(φ(x2)) − a(φ(x1))
.

Let

(2.34) ¯̄t = −
1

(a(φ(x1)))′
, ¯̄x = x1 −

a(φ(x1))

(a(φ(x1)))′
.

Then (¯̄x, ¯̄t) lies on the characteristic (2.31), t̄ ≥ ¯̄t and (¯̄x, ¯̄t) satisfies

Fu(¯̄x, ¯̄t, φ(x1)) = 0, Fuu(¯̄x, ¯̄t, φ(x1)) = 0.

Hence, φ(x1) is a degenerate point of F (¯̄x, ¯̄t, •). It follows from Lemma 2.2 that φ(x1) is no longer

the minimum point of F (x, t, •) for (x, t) belonging to the characteristics x = x1 + ta(φ(x1)) (

t > ¯̄t). If t̄ > ¯̄t ,then the characteristic (2.31) becomes invalid when t > ¯̄t . This is contradictory

to the fact that the characteristic (2.31) is valid. If t̄ = ¯̄t, then φ(x̄1) is a degenerate minimizing

value for F (x1, t1, •) which is a contradiction according to the assertion (2.24).

Combining (2.29) and (2.30), we have the following conclusion

(2.35)

there are only two minimizing values for F (x1, t1, •) and they are

non-degenerate, which implies there are two valid characteristics passing through

(x1, t1). One originates from a point on the left of the point (y(x0, t0, β), 0)

the other originates from a point on the right of the point (y(x0, t0, α), 0).

By a similar argument to the assertion (2.28), we have

(2.36)

There are two valid characteristics passing through x2. One originates

from a point on the left of the point (y(x0, t0, β), 0) the other originates

from a point on the right of the point (y(x0, t0, α), 0).

Now we claim

(2.37) x1 = x2.
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If not, i.e., x1 6= x2, then it follows from the assertions (2.28) and (2.36) that there is a valid

characteristic passing through (x1, t1) and a valid characteristic passing through (x2, t1) such that

they intersect with each other at a time earlier than t1. This is a contradiction since they will

become invalid after the time when they intersect according to Lemma 2.2. Therefore x1 = x2.

In this way a unique curve x = γ(t) is defined for t ≥ t0. Therefor there are only two minimizing

values for F (γ(t), t, •).

Consider any point (x1, t1) ∈ Θ ∩ {t > t0}, if x1 < γ(t1)(x1 > γ(t1)), We see that there is a

unique value of u which minimizes F (x1, t1, •) since it lies on the left of the point (γ(t1), t1), thus

the minimizing function is smooth at the point (x, t) in view of Lemma 2.1. If x1 = γ(t1), then

there are only two values of u which minimizes F (x1, t1, •) and they are non-degenerate according

to (2.35). Combining Lemma 2.2 and the above arguments, we complete the proof. �

Remark 2.1 Lemma 1.4 in Schaeffer [9] is a special case of Theorem 2.1, even if we set α = β in

Theorem 2.1. Theorem 2.1 shows that even around a point or an interval [y(x0, t0, β), y(x0, t0, α)]

on t = 0, there can be infinite number of intervals, on which (a(φ(x)))′ < 0, (a(φ(x)))′′ = 0, i.e.,

a(φ(x)) is linearly decreasing, the characteristics from each of these intervals will meet at a point

in any small neighborhood of (x0, t0), no shocks generate at all of these points, while there is

only a Ck+1 smooth shock in this neighborhood. On the other hand, this theorem implies our

solutions contain centered compression waves.

Theorem 2.2 Assume L3 = ∅. If [u−
1 , u+

1 ], [u−
2 , u+

2 ], · · · , [u−
n , u+

n ] are the n connected components

of M(x0,t0) (suppose u−
1 ≤ u+

1 < u−
2 ≤ u+

2 · · · < u−
n ≤ u+

n ), where n ≥ 2, then (x0, t0) has a

neighborhood Θ such that Γ1 ∩ Θ consists of n half-curves, one originating at (x0, t0) and the

other (n − 1) terminating at (x0, t0). Moreover, the minimizing function is smooth on Θ′ ∼ Γ1.

Proof: Set

l+i : x = y(x0, t0, u
+
i ) + ta(φ(y(x0, t0, u

+
i )))(2.38)

l−i : x = y(x0, t0, u
−
i ) + ta(φ(y(x0, t0, u

−
i )))(2.39)

where i = 1, · · · , n, 0 < t < t0. By an argument similar to the proof of assertion (2.18), there

exists a neighborhood Θ of (x0, t0) and n intervals (y(x0, t0, u
+
i )−δ, y(x0, t0, u

−
i )+δ) (i = 1, · · · , n),

δ < 1
2 min

1≤i≤n−1
{a(u−

i+1) − a(u+
i )} such that for each given (x, t) ∈ Θ and each minimizing value

u(x, t) for F (x, t, •), y(x, t, u(x, t)) belongs to (y(x0, t0, u
+
i ) − δ, y(x0, t0, u

−
i ) + δ) for some i ∈

{1, · · · , n}. In light of Lemma A.3 in Appendix, we can deduce that all the minimizing values

for F (x, t, •) are non-degenerate for (x, t) ∈ Θ′ ∩ {t ≤ t0} here Θ′ = Θ ∼ {(x0, t0)}. Furthermore,

there exists a unique half-curve terminating at (x0, t0) denoted as x = γ−
i (t) is defined for t ≤ t0,

which lies in the triangle domain Gi
i+1 formed by the line t = 0, the characteristic l+i and l−i+1,

moreover there exist two minimizing values for F (x, t, •) and they are non-degenerate ,where

x = γ−
i (t)(i = 1, · · · , n − 1), according to Lemma A.3 in Appendix. By the same way used in

Theorem 2.1, there exists a half-curve originating at (x0, t0) denoted as x = γ+(t), (t ≥ t0). Thus,

we complete the proof. �

Corollary 2.1 Any point(x0, t0) ∈ Γ1 has a neighborhood Θ such that Γ1 ∩Θ is a curve x = γ(t)

passing through (x0, t0) and x = γ(t) is Ck+1 smooth at each point except t = t0. The minimizing

function u(x, t) is smooth on both components of Θ ∼ Γ1.
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The smoothness of the curve x = γ(t) can be decided by the following cases:

Case 1: M = {u1, u2} for F (x0, t0, •). In this case,

• If Fuu(x0, t0, u1) = 0 or Fuu(x0, t0, u2) = 0, then the curve x = γ(t) is C1 smooth. In

fact, x = γ(t) is only C1 at the point t = t0 since u1(x, t) and u2(x, t) are continuous, but

u1x(x, t0) → ∞ or u2x(x, t0) → ∞ as x → x0 − o or x → x0 + o although it is Ck+1 at each

point except t = t0.

• If Fuu(x0, t0, u1) 6= 0 and Fuu(x0, t0, u2) 6= 0, then the curve x = γ(t) is Ck+1 smooth.

Case 2: M = [u−
1 , u+

1 ] ∪ [u−
2 , u+

2 ], where u−
1 < u+

1 or u−
2 < u+

2 . In this case, the curve x = γ(t) is

continuous at the point t = t0.

Throughout this section, we can see the shocks are piecewise Ck+1 smooth except at points

of interaction with other shocks and points belonging to Γ1 ∼ Γ1, and the shocks are not dif-

ferentiable at points of interaction with other shocks and points which are centers of centered

compression waves. In other words, all the shocks curves are piecewise Ck+1 curves.

3 Piecewise Smoothness

In Section 2, we have studied the local structure of the solutions under the condition that L3 = ∅.

We can deduce that the solutions are piecewise smooth based on the local structure of the solutions

under the same condition. On the other hand we can obtain the asymptotical curves of the shock

curves using the technique similar to the Lemma 4.1 of Schaeffer in [9], thus we can show there

can be finitely many shock curves under certain conditions. Now we will show all of the results

mentioned above in detail. There are only finitely many connected components of M for F (x, t, •)

for each given point (x, t) ∈ H since L3 = ∅, and so we can know easily (x, t) ∈ U ∪Γ1∪Γ
(f)
0 ∪Γ

(c)
0

for each (x, t) ∈ R × (0,∞) i.e. H = U ∪ Γ1 ∪ Γ
(f)
0 ∪ Γ

(c)
0 provided that L3 = ∅. By Lemma

2.1, Γ = Γ1 ∪ Γ
(f)
0 ∪ Γ

(c)
0 is a closed subset of H, and Γ is covered by neighborhoods of the type

described in Theorem 2.1 and Theorem 2.2. For any compact set K ⊂ H, by choosing a finite

subcover of K ∩ Γ we see that K ∩ Γ consists of the union of a finite number of shock and each

shock is piecewise Ck+1 curve. Therefore the minimizing function u(x, t) is piecewise Ck smooth if

L3 = ∅. It is worth pointing out that our piecewise smooth solution contain centered compression

waves, which implies the class of piecewise smooth solutions with Ck initial data except a first

category subset Ω3 in this paper is wider than the class of the piecewise solutions with Ck initial

data, except a first category subset Ω2 considered by Dafermos in [2].

Dafermos [2] has proved that the initial data belonging to Ω2 is of first category. Thus Ω3 as

a proper subset of Ω2 is of first category. Consequently we get the following theorem.

Theorem 3.1 There is a set Ω3 ⊂ Ck(R) of the first category such that for φ ∈ S (R) ∼ Ω3,

H = U ∪Γ1 ∪Γ
(f)
0 ∪Γ

(c)
0 , where Ω3 is a proper subset of Ω2 . the solutions are piecewise smooth.

Next we show there are finite number of shocks under certain condition.

Li-Wang [6] in Theorem 4 in Section 3 and Theorem 5 in Section 4 have proved that there is an

open dense set △ ⊂ S (R) such that for φ ∈ △, the associated function Φ attains its minimum
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over R only at points ai (|ai| < ∞) and φ(li)(ai) 6= 0, φ(li−1)(ai) = · · · = φ(ai) = 0, where li
(i = 1, · · · ,m) is some integer, then for sufficiently large t there are precisely m+1 smooth shocks.

The proofs of them are similar to Lemma 4.1 and Proposition 4.2 in Section 4 in Schaeffer [9], so

we omit them. Consequently we see there is an open dense set △ ⊂ S (R) such that for φ ∈ △,

there are finitely many shock curves for sufficiently large t. Choose T such that for t > T there

are only finitely many smooth shock curves. It is a simple to show that there is a constant C

such that no shocks form in the region {(x, t) : |x| ≥ C, 0 ≤ t ≤ T}. Of course only finitely many

shocks form in the compact region {(x, t) : |x| ≤ C, 0 ≤ t ≤ T}, so we can get the following

theorem:

Theorem 3.2 There is a set Ω4 = Ω3 ∪ △c ⊂ S (R) of the first category such that for φ ∈

S (R) ∼ Ω4, H = U ∪ Γ1 ∪ Γ
(f)
0 ∪ Γ

(c)
0 , the solutions of (1.1) are piecewise smooth and there are

finite number of shocks, where △c = S (R) ∼ △.

4 Concluding remarks

In this work we proved that if the initial data do not belong to a very small subset of Ck then

the solutions of scalar conservation laws are piecewise smooth. It is important to understand the

conditions under which the solution of the conservation law (1.1) is piecewise smooth, since most

practical cases deal with the piecewise smooth solutions. For this reason, there have many studies

on approximation methods for conservation laws whose solutions are piecewise smooth. For

example, for systems of conservation laws, Goodman and Xin [3] proved that the viscosity methods

approximating piecewise smooth solutions with finitely many noninteracting shocks have a local

first-order rate of convergence away from the shocks; on the other hand, for scalar conservation

laws, the global rate of convergence for the viscosity methods can be obtained [14, 15], and the

point-wise rate of convergence for the viscosity methods has been obtained [12, 13].

In this work, we have introduced a new approach for studying the solution structures for

the conservation laws, which is particularly suitable for handling the larger class of initial data

considered in this works. We point out that Thom’s theory of catastrophes [10], which plays a

key role in Schaeffer [9], can not be used to analyze the larger class of initial data. The main

motivation of this study is to develop a new analysis approach which can be extended to study

the solution structures for the Hamilton-Jacobi equations. The study along this direction is under

investigation, and some relevant results will be reported elsewhere.

A Appendix

Lemma A.1 Set m(x, t) = minu∈R F (x, t, u). Then m(x, t) is a continuous function of x, t in

the semi-plane t > 0.

Proof: For each fixed point (x0, t0), let m(x0, t0) = F (x0, t0, u0) and (xn, tn) with n ≥ 1 be any

sequence convergent to (x0, t0). Now we prove limn→∞ m(xn, tn) = m(x0, t0). In fact, letting
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m(xn, tn) = F (xn, tn, un) gives

m(x0, t0) − m(xn, tn) ≤ F (x0, t0, un) − F (xn, tn, un)(A.1)

= t0g(un) + Φ(x0 − t0a(un)) − tng(un) − Φ(xn − tna(un))

= (t0 − tn)g(un) + Φ(x0 − t0a(un)) − Φ(xn − tna(un))

= (t0 − tn)g(un) + φ(ξ)[x0 − xn + (tn − t0)a(un)]

≤ M(|xn − x0| + |tn − t0|) → 0, as n → ∞,

where ξ is between x0 − t0a(un) and xn − tna(un), M is a positive constant. On the other hand,

since F (x, t, u0) is continuous at (x0, t0) as u0 is fixed,

(A.2) m(x0, t0) − m(xn, tn) ≥ F (x0, t0, u0) − F (xn, tn, u0) → 0, as n → ∞.

Combining (A.1) and (A.2), we have m(x0, t0) − m(xn, tn) → 0, as n → ∞. Thus m(x, t) is

continuous at (x0, t0). �

Lemma A.2 If (xl, t1), (xr, t1) ∈ Θ (t1 > t0) are the intersection points of the line t = t1 with

the curves (2.19) and (2.20), then xr − xl > 0.

Proof: It follows from (2.19) and (2.20) that there exist points x1 ∈ (y(x0, t0, α), y(x0, t0, α)+δ0)

and x2 ∈ (y(x0, t0, β) − δ0, y(x0, t0, β)) such that xl = x1 + t1a(φ(x1)) and xr = x̄2 + t1a(φ(x̄2)).

Consequently,

xr − xl = xr − x2 + x2 − x1 + x1 − xl(A.3)

= x2 + t1a(φ(x2)) − (y(x0, t0, β) + t1a(φ(y(x0, t0, β))))

+y(x0, t0, β) + t1a(φ(y(x0, t0, β))) − (y(x0, t0, α) + t1a(φ(y(x0, t0, α))))

+y(x0, t0, α) + t1a(φ(y(x0, t0, α))) − (x1 + t1a(φ(x1))),

where x2 = y(x0, t0, β))+ t1a(φ(y(x0, t0, β))) and x1 = y(x0, t0, β))+ t1a(φ(y(x0, t0, β))). Observe

x2 − x1(A.4)

= y(x0, t0, β) + t1a(φ(y(x0, t0, β))) − (y(x0, t0, α) + t1a(φ(y(x0, t0, α))))

= y(x0, t0, β) − y(x0, t0, α) + t1(a(φ(y(x0, t0, β))) − a(φ(y(x0, t0, α))))

= y(x0, t0, β) − y(x0, t0, α) + t1(a(φ(ξ)))′(y(x0, t0, β) − y(x0, t0, α))

= (y(x0, t0, β) − y(x0, t0, α))[1 + t1(−
1

t0
)] ≥ 0,

where y(x0, t0, β) < ξ < y(x0, t0, α). Moreover,

xr − x2(A.5)

= x2 + t1a(φ(x2)) − (y(x0, t0, β) + t1a(φ(y(x0, t0, β))))

= x2 − y(x0, t0, β) −
1

(a(φ(x2)))′
[a(φ(x2)) − a(φ(y(x0, t0, β)))]

= x2 − y(x0, t0, β) +
1

(a(φ(x2)))′
[(a(φ(x2)))

′(y(x0, t0, β) − x2)

+(y(x0, t0, β) − x2)
2

∫ 1

0
(1 − t)(a(φ))′′(x2 + t(y(x0, t0, β) − x2))dt]

=
1

(a(φ(x2)))′
(y(x0, t0, β) − x2)

2

∫ 1

0
(1 − t)(a(φ))′′(x2 + t(y(x0, t0, β) − x2))dt] > 0,
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for each x2 ∈ (y(x0, t0, β) − δ0, y(x0, t0, β)), where we have used the fact (a(φ(x2)))
′ < 0, (2.13)

and (2.16). Similarly, we have x1 − xl > 0. It follows from (A.3)-(A.5) that xr − xl = xr − x2 +

x2 − x1 + x1 − xl > 0. �

Lemma A.3 Suppose L3 = ∅. If [u−
1 , u+

1 ] and [u−
2 , u+

2 ] are two neighboring connected components

of M(x1,t1), where u−
1 ≤ u+

1 < u−
2 ≤ u+

2 ], then there exists an open neighborhood Θ of (x1, t1) such

that Θ ∩ G ∩ Γ1 contains a half curve x = γ−(t) terminating at (x1, t1), where G is the triangle

domain formed by t = 0, the characteristics x = y(x1, t1, u
−
2 ) + ta(u−

2 ) and x = y(x1, t1, u
+
1 ) +

ta(u+
1 ).

Proof: By an argument similar to the proof of assertion (2.18), there exists a neighborhood Θ of

(x1, t1) and two intervals (y(x1, t1, u
+
1 )− δ, y(x1, t1, u

+
1 )) and (y(x1, t1, u

−
2 ), y(x1, t1, u

−
2 ) + δ) such

that for each given (x, t) ∈ Θ
′
∩G and any minimizing value, say u, for F (x, t, •), y(x, t, u) belongs

to (y(x1, t1, u
+
1 )− δ, y(x1, t1, u

+
1 )) or (y(x1, t1, u

−
2 ), y(x1, t1, u

−
2 )+ δ). Now we claim that: for each

(x, t) ∈ Θ
′
∩G there exists a unique minimizing value u(x, t) for F (x, t, •) such that y(x, t, u(x, t)) ∈

(y(x1, t1, u
+
1 )− δ, y(x1, t1, u

+
1 )) and it is non-degenerate, where Θ

′
= Θ ∼ {(x1, t1)}. In fact, there

are only two cases to be considered

Case 1: Fuu(x1, t1, u
+
1 ) = 0. In this case, if there exist a point (x̃, t̃) ∈ Θ

′
∩ G such that

there exist at least two minimizing values u∗ and u∗∗ for F (x̃, t̃, •) and y(x̃, t̃, u∗), y(x̃, t̃, u∗∗) ∈

(y(x1, t1, u
+
1 )−δ, y(x1, t1, u

+
1 )). Thus there exist at least two characteristics passing through (x̃, t̃):

x = y(x̃, t̃, u∗) + ta(u∗),(A.6)

x = y(x̃, t̃, u∗∗) + ta(u∗∗).(A.7)

On the other hand, by using the fact that (a(φ(x)))′ is monotone decreasing on the interval

(y(x1, t1, u
+
1 ) − δ, y(x1, t1, u

+
1 )) and the assertion (2.16), we have

t̃ = −
y(x̃, t̃, u∗) − y(x̃, t̃, u∗∗)

a(u∗) − a(u∗∗)
= −

1

(a(φ(η)))′
> t1,

where η is between y(x̃, t̃, u∗) and y(x̃, t̃, u∗∗). This result is contradictory to the fact that t̃ < t1.

The claim is therefore proved.

Case 2: Fuu(x1, t1, u
+
1 ) 6= 0. In this case, since Fuu(x1, t1, u

+
1 ) 6= 0, it follows from the Implicit

Function Theorem that there is an open neighborhood U(u+
1 ) of u1 such that for (x, t) close to

(x1, t1) the equation (∂F/∂u)(x, t, u) = 0 has a unique solution u(x, t) ∈ U(u+
1 ). Consequently,

there is a unique minimizing value u(x, t) such that y(x, t, u(x, t)) ∈ (y(x1, t1, u
+
1 )−δ, y(x1, t1, u

+
1 )).

Similarly we can deduce that There exists a unique minimizing value u(x, t) for F (x, t, •)

for each (x, t) ∈ Θ
′
∩ G, such that y(x, t, u(x, t)) ∈ (y(x1, t1, u

−
2 ), y(x1, t1, u

−
2 ) + δ) and it is

non-degenerate.

Let At2={x | (x, t2) ∈ Θ
′
∩ G}. There exists a characteristic which originates from a point

on the left of the point (y(x1, t1, u
+
1 ), 0) and passes through (x1, t2)}. Let Bt2={x | (x, t2) ∈

Θ
′
∩ G}. There exists a characteristic which originates from a point on the right of the point

(y(x1, t1, u
−
2 ), 0) and passes through (x1, t2)}. Let x1 be the infimum of the set At2 and x2 be the

supremum of the set Bt2 . By an argument similar to the proofs of the assertion (2.35) and (2.36),

it can be shown that there exist two minimizing values for F (x1, t2, •) which are non-degenerate.
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This implies there are two valid characteristics passing through (x1, t2), one originated from a

point on the left of the point (y(x1, t1, u
+
1 ), 0) and the other originated from a point on the right

of the point (y(x1, t1, u
−
2 ), 0). Similarly, it can be shown that there exist two minimizing values

for F (x2, t2, •) which are non-degenerate. This implies that there are two valid characteristics

passing through (x2, t2), one originated from a point on the left of the point (y(x1, t1, u
+
1 ), 0)

and the other originated from a point on the right of the point (y(x1, t1, u
−
2 ), 0). By the same

argument for obtaining the assertion (2.37) we have

(A.8) x1 = x2.

Consequently, a unique half-curve terminating at (x1, t1) denoted by x = γ−(t) is defined for

t ≤ t1. Thus we complete the proof. �

Lemma A.4 The curve (2.19) (respective (2.20)) is continuous and is the closure of union of

countable open arcs, on which the curve is Ck. The points at which the curve (2.19) (respec-

tive (2.20))is not differentiable belong to the end points of the open arcs but the left derivative

continuous on the left and right derivative continuous on the right.

Proof: In fact, it is easy to compute that

(A.9) x′(ξ) =
(a(φ(ξ)))′(a(φ(ξ)))′′

(a(φ(ξ)))′2
, t′(ξ) =

(a(φ(ξ)))′′

(a(φ(ξ)))′2
,

for ξ ∈ [y(x0, t0, α), y(x0, t0, α) + δ0]. Let

(A.10) At = {ξ | t(ξ) = t}, Ax = {ξ | x(ξ) = x},

where x and t are given. Obviously, At is closed. Since L3 = ∅, we have (a(φ(ξ)))′′ ≥ 0 for each

ξ ∈ [y(x0, t0, α), y(x0, t0, α) + δ0]. We first prove

(A.11) x(ξ) is a function of t(ξ).

For any fixed t1 = t(ξ) with ξ ∈ At1 , there exists a unique x1(ξ) to t1. In fact, if At1 = {ξ1},

we have x1 = x(ξ1) which is unique. If At1 = [α1, β1], α1 6= β1, we have t′(ξ) = 0, which implies

x′(ξ) = 0 in light of (A.9), for each ξ ∈ [α1, β1]. Consequently, t(ξ1) = t(ξ2) implies x(ξ1) = t(ξ2),

here ξ1, ξ2 ∈ [α1, β1]. Then x1(ξ) is unique. This completes the proof of assertion (A.11). The

curve (2.19) can be denoted by x = β(t). Next we claim

(A.12) x = β(t) is a continuous function of t.

For each fixed point t1, we only need to prove

lim
t→t1+

β(t) = lim
t→t1−

β(t) = β(t1).

First we prove limt→t1− β(t) = β(t1). Let tn < t1, n ≥ 1, be any sequence convergent to t1, tn =

t(ξn) and t1 = t(ξ1), where ξn = supAtn and ξ1 = inf At1 . We will show limn→∞ β(tn) = β(t1).

Notice the function t is an increasing function of ξ, we have limn→∞ ξn = ξ1. Consequently,

lim
n→∞

β(tn) = lim
n→∞

β(t(ξn)) = lim
n→∞

x(ξn) = x(ξ1) = β(t1).
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Then limt→t1− β(t) = β(t1). Similarly, we have limt→t1+ β(t) = β(t1). So the assertion (A.12) is

true. Finally we prove

(A.13) x = β(t) is differentiable at point t1 ⇐⇒ the set At1 contains only one point.

Let At1 = [ξ1, ξ2] and tn < t1, n ≥ 1, be any sequence convergent to t1, tn = t(ξn) and t1 = t(ξ1),

with ξn = supAtn and ξ1 = inf At1 . Observe

β(tn) − β(t1)

tn − t1
=

x(ξn) − x(ξ1)

t(ξn) − t(ξ1)
(A.14)

=
ξn − a(φ(ξn))/(a(φ(ξn)))′ − ξ1 + a(φ(ξ1))/(a(φ(ξ1)))

′

1/(a(φ(ξ1)))′ − 1/(a(φ(ξn)))′

= a(φ(ξ1)) + T1,

where the last term is non-negative:

T1 :=
ξn − ξ1 +

(

a(φ(ξ1)) − a(φ(ξn))
)

/(a(φ(ξn)))′

1/(a(φ(ξ1)))′ − 1/(a(φ(ξn)))′
(A.15)

= (a(φ(ξn)))′(a(φ(ξ1)))
′
ξn − ξ1 +

(

a(φ(ξ1)) − a(φ(ξn))
)

/(a(φ(ξn)))′

(a(φ(ξn)))′ − (a(φ(ξ1)))′

= (a(φ(ξn)))′(a(φ(ξ1)))
′ (a(φ(ξ̃)))′′(ξn − ξ1)

2

2(a(φ(ξn)))′[(a(φ(ξn)))′ − (a(φ(ξ1)))′]
≥ 0,

where ξ̃ lies between ξn and ξ1 and satisfies

a(φ(ξ1)) − a(φ(ξn)) = (a(φ(ξn)))′(ξ1 − ξn) +
1

2!
(a(φ(ξ̃)))′′(ξ1 − ξn)2.

In the last step of (A.15), we have used the facts that (a(φ(ξ̃)))′′ ≥ 0 and (a(φ(ξn)))′−(a(φ(ξ1)))
′ <

0, which are due to the monotonicity of (a(φ(ξ)))′, the assertion (2.17) and ξn < ξ1. Similarly,

(A.16)
β(tn) − β(t1)

tn − t1
= a(φ(ξn)) + T2,

where

T2 :=
ξn − ξ1 +

(

a(φ(ξ1)) − a(φ(ξn))
)

/(a(φ(ξ1)))
′

1/(a(φ(ξ1)))′ − 1/(a(φ(ξn)))′
(A.17)

= −(a(φ(ξn)))′(a(φ(ξ1)))
′ (a(φ(ξ̂)))′′(ξn − ξ1)

2

2(a(φ(ξ1)))′[(a(φ(ξn)))′ − (a(φ(ξ1)))′]
≤ 0,

where ξ̂ is between ξn and ξ1 and satisfies

a(φ(ξn)) − a(φ(ξ1)) = (a(φ(ξ1)))
′(ξn − ξ1) +

1

2!
(a(φ(ξ̂)))′′(ξn − ξ1)

2.

Combining (A.14)-(A.17) gives

(A.18) a(φ(ξ1)) ≤
β(tn) − β(t1)

tn − t1
≤ a(φ(ξn)).
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Consequently,

(A.19) lim
tn→t1−

β(tn) − β(t1)

tn − t1
= a(φ(ξ1)),

which implies that

(A.20) lim
t→t1−

β(t) − β(t1)

t − t1
= a(φ(ξ1)).

Similarly,

(A.21) lim
t→t1+

β(t) − β(t1)

t − t1
= a(φ(ξ2)).

The above two results yield β′
−(t1) = a(φ(ξ1)) and β′

+(t1) = a(φ(ξ2)). Thus the function β(t) is

differentiable at t1 if and only if ξ1 = ξ2. This verifies the assertion (A.13). It is easy to show that

there are countable points (β(t), t) such that the set At contains more than one point. Moreover,

it can be shown that the set

(A.22) {(β(t), t) | At = {ξ}, (a(φ(ξ)))′′ 6= 0}

is an open set, and is therefore a union of disjoint open arcs. On the other hand, the set

(A.23) {(β(t), t) | At = [ξ1, ξ2], (a(φ(ξ1)))
′′ = 0}

is a closed set and contains at most countable points. Each point belonging to the set (A.23) is

an end point of some open arcs of the set (A.22). This implies that the curve (2.19) (respective

(2.20)) is continuous and is the closure of union of countable open arcs, on which the curve is

Ck. The points at which the curve (2.19) (respective (2.20)) is not differentiable belong to the

set (A.23); and the left derivative is continuous on the left and the right derivative is continuous

on the right. �
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