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The zero-pressure gas dynamics system in the one-dimensional case was
studied in [1]. This system has the form

∂tρ+ ∂x(ρu) = 0, ∂t(ρu) +
∂

∂x
(ρu2) = 0 (1)

and, in the domains where the solution belongs to C1, is, as is known, equiv-
alent to the following system

∂tρ + ∂x(ρu) = 0, ∂tu+
1

2
∂xu

2 = 0. (2)

In particular, the solution of the Cauchy problem is constructed in the case
where the initial profile of velocity is an unstable step function. To construct
the second component ρ of the solution, i.e., to solve the continuity equa-
tion, the authors [1] choose a class of functions invariant under the scaling
transformation

x→ kx, t→ kt.

Indeed, the group of scaling transformations acts on the solution of the sys-
tem considered. But these are particular solutions. For example, in [2], such
solutions are considered in a quite different context. In [1], the assertion that
a vacuum domain exists is derived from the assumption that such invariant
solutions are unique. Such an assertion (in form, it pretends to be a descrip-
tion of some physically meaninful phenomenon) cannot be made based only
on the consideration of particular solutions.
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The following natural question arises: Can solutions that are not con-
tained in the class of solutions invariant under the action of the scaling group
help to fill a vacuum?

More generally, the question can be formulated as follows: Do there ex-
ist any natural conditions ensuring the uniqueness of the Goursat problem
solutions considered in [1]. In this small note, we give an affirmative answer
to this question. Namely, for any initial distribution ρ with compact sup-
port (perhaps, with a first kind discontinuity), the solution of the Goursat
problem is zero in the rarefaction domain.

In our considerations, we do not use the regularization procedure, which
uniformly approximates the solution of the Cauchy problem for (1). This can
be done using the simple formulas from [3], but the problem is very simple
and does not require any special technical methods.

So the solution of the Cauchy problem for (1) with the initial conditions

u|t=0 =

{
ul, x < x0,

ur, x > x0,
ul,r = const, ul < ur,

ρ|t=0 =

{
ρl, x < x0,

ρr, x > x0,
ρl,r ≥ 0,

for t > 0 has the form

u =



ul, x < x0 + ult,

ul +
x−ult−x0

t
, x ∈ [x0 + ult, x0 + urt],

ur, x > x0 + urt,

(3)

and, respectively,

ρ =



ρl(x− ult), x < x0 + ult,

ρ0(
x−x0
t

)t−1, x ∈ (x0 + ult, x0 + urt),

ρr(x− ult), x > x0 + urt,

(4)

where ρ0 = ρ0(z) is an arbitrary C1-function.
Formulas (3), (4) can be verified by a direct substitution. We only note

that since the function u in (3) is continuous, the Rankine–Hugoniot type
conditions are identically satisfied on the lines x = x0+ujt, j = l, r, because
the equation for ρ is linear in ρ.

The following obvious assertion holds.
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Lemma 1. Let (u, ρ) be a δ-shock wave type solution in the sense of [4] to
system (1), and let ρ|t=0 have a compact support. Then for any finite t,

〈ρ(x, t), ζ(x)〉 = 〈ρ(x, 0), ζ(x)〉
for any test function ζ(x) equal to 1 on the support of ρ(x, t); here 〈, 〉 is the
distribution action.

Proof. Paper [4] presents a method for constructing a weak asymptotic so-
lution to system (1), i.e., a pair of functions uε, ρε smooth for ε > 0 such
that:

(1) The weak limits of uε, ρε as ε→ 0 give a solution u, ρ to system (1)
in the sense of the integral identity [4].

(2) The product ρεuε has a limit as ε→ 0 in the sense of distributions.
(3) The relation

ρ′εt + (ρεuε)
′
x = OD′(ε)

holds, where OD′(ε) is a distribution such that

〈OD′(ε), ζ(x)〉 = O(ε)

for any test function ζ(x).
If ρ|t=0 has a compact support, then ρ has a compact support for any

finite t because of hyperbolicity, ρε = O(εN ), N 	 1, outside the support of
ρ, and the function u is bounded [4].

Choosing a test function ζ(x) such that ζ(x) = 1, x ∈ sup ρ, and applying
both sides of the equation for ρ to ζ, we obtain

〈ρ′εt, ζ(x)〉 = O(ε).

Passing to the limit as ε→ 0, we obtain the statement of the lemma.

Corollary 1. Let ρ have the form

ρ = R(x, t) +
N∑
k=1

ρRk(t)δ(x− ϕk),

where R(x, t) ∈ C([0, T ];L1(R1)) and Rk(t), ϕk(t) ∈ C1([0, T ]). Then

d

dt

[ ∫
R1
R(x, t) dx+

N∑
k=1

Rk(t)

]
= 0.
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Calculating the integral
∫
R1
ρ(x, t) dt for t > 0 (ρ(x, t) is defined in (4)),

we obtain ∫
R1
ρ(x, t) dx =

∫
x<x0

ρl dx+

∫
x>x0

ρr dx+

∫ ur
ul

ρ0(z) dz.

Hence, since ρ is nonnegative and 〈ρ, ζ〉 is preserved, we have

ρ0(z) = 0.

We point out that we derived this relation without any assumptions on the
properties of particular solutions to system (1). We also note that a (more
general than that in [1]) assumption ensuring the uniqueness of the solution
of the Goursat problem in the case under study could be the assumption
that ρ is bounded. However, if simultaneously with the rarefaction wave we
consider shock waves in the u-component, then δ-shock solutions arise, which
is prohibited by the boundedness condition.

But if the initial condition for ρ is replaced by the condition

ρ|t=0 = ρlH(x0 − x) + ρrH(x− x0) + ρ̂δ(x− x0),
then the choice of the function ρ0 in (4) is restricted only by the condition∫ ur

ul

ρ0(z) dz = ρ̂

and the solution of this “singular” Goursat problem is not unique.
It is also interesting to note the following fact.
It is proved in [4] that for system (1) to have a solution of the form

u = u0(x, t) + u1(x, t)H(−ϕ(t)− x),
v = v0(x, t) + v1(x, t)H(ϕ(t)− x) + e(t)δ(ϕx)

in the sense of the integral identity introduced in [4], it is necessary that

ėt(t) = ϕt([uv]− [v]ϕt)|x=ϕ, d

dt
(eϕt)− ([u2v]− [uv]ϕt)|x=ϕ, (5)

where [f ]|x=ϕ = f(ϕ(t) + 0)− f(ϕ(t)− 0).
It is easy to see that these relations form a second-order system of equa-

tions for e, ϕ. The original system is a first-order system, hence the value
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ϕt(0) remains undetermined. In [4], it is shown that, in the case of constant
ui, vi, i = 1, 2, system (5) has a unique solution if e(0) = 0. In this case, the
solution is independent of ϕt(0).

The formula for ϕ(t) obtained in [4] (see Theorem 4.3) has the form

ϕ(t) =



e(0) + [uv] +

√
e(0)2 + 2e(0)ė(0)t+ v−v+(u− − u+)2t2

[v]
, [v] 
= 0,

e(0)ϕ̇(0) + tv0[u]
2/2

e(0) + tv0[u]
, [v] = 0.

It follows from the first equation in (5) that the values of the constants
ė(0) and ϕ̇(0) can be expressed linearly in terms of each other. From these
formulas it is easily seen that, in the case e(0) = 0, the expression ϕ̇(0) (ė(0))
is not contained in the formula for ϕ(t).

A similar statement also holds in the general case. Indeed, for e(0) = 0,
relations (5) imply the following equation for ϕ̇(0):

ϕ̇(0)2[v]0− 2ϕ̇(0)[uv]0 + [u2v]0 = 0,

where [ ]0
def
= [ ]|t=0 and hence the quantities [ ]0 are functions of the argu-

ment ϕ(0). Solving this equation under the additional condition u+|t=0 <
ϕ̇(0) < u−|t=0, which is necessary for the existence of the desired δ-shock
type solutions, we obtain

ϕ̇(0) = {([uv]0)2 − [v]0[u2v]0}1/2([v]0)−1 def= G(ϕ(0)).

Thus, in the case e(0) = 0, the missing constant is determined by the natural
initial data of the problem.

It is also easy to verify that ė(0) > 0 in this case. Hence from the second
equation in (5) we obtain |ϕ̈(0)| <∞. Therefore, although the coefficient of
the second derivative ϕ̈ vanishes for t = 0, system (5) has a smooth solution
at least in the small in t. This can be proved as usual, by reducing the
problem to a system of integral equations.

The case v1|t=0 = −[v]0 = 0 is considered similarly (see [4] for ui, vi =
const).

Thus, we see that the “singular” Cauchy problem for system (1) does not
have the property that the solution is unique and the problem whose initial
conditions do not contain the Dirac function has a unique solution.
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