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Abstract. We show that the periodic Camassa–Holm equation ut − uxxt +
3uux − 2uxuxx − uuxxx = 0 possesses a global continuous semigroup of weak
conservative solutions for initial data u|t=0 in H1

per. The result is obtained
by introducing a coordinate transformation into Lagrangian coordinates. To
characterize conservative solutions it is necessary to include the energy density
given by the positive Radon measure µ with µac = (u2 + u2

x
) dx. The total

energy is preserved by the solution.

1. Introduction

The Camassa–Holm equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 (1.1)

was first studied extensively in 1993 [6, 7]. It can be derived as a model for shallow
water waves. Furthermore, the equation can be derived in the context of geodesic
flows of a certain invariant metric on the Bott–Virasoro group [25, 3].

The equation possesses many fascinating properties that has made it a popular
equation. In particular, it is bi-Hamiltonian, completely integrable, has infinitely
many conserved quantities, and has solitary waves, called (multi)peakons, that in-
teract like KdV-solitons. Another interesting aspect is that it enjoys wave-breaking
in finite time in the sense that the spatial derivative ux of the solution blows up
while the solution u itself as well as its energy, the H1-norm, both remain finite.
Continuation of the solution beyond wave breaking has been a challenge. Several
entropy conditions that single out the proper continuation have been analyzed.

The Cauchy problem for (1.1) has been studied in two different settings; on the
full line R and the periodic case on [0, 1]. We here address the latter case, and
for reasons of space we restrict the general references mainly to the periodic case.
Constantin and Moulinet have proved [14, p. 60] that for initial data u|t=0 = ū ∈
H1([0, 1]) such that m̄ = ū − ūxx is a non-negative Radon-measure, the equation
(1.1) possesses a unique solution u ∈ C1((0,∞), L2([0, 1])) ∩ C((0,∞), H1([0, 1])).
Furthermore, the quantities

∫

[0,1] u dx,
∫

[0,1](u
2 + u2

x) dx, and
∫

[0,1](u
3 + uu2

x) dx

are all conserved quantities. Regarding blow-up, Constantin and Escher [13] have
derived the following result. Let u0 ∈ H3([0, 1]). Then there exists a maximal T > 0
such that (1.1) has a unique solution u ∈ C([0, T ), H3([0, 1]))∩C1([0, T ), H2([0, 1])).
If ū is non-zero and

∫

[0,1]
(ū3 + ūū2

x) dx = 0, then T is finite. See also [10, 26].

The question about how to continue the solution beyond wave-breaking can be
nicely studied in the case of multipeakons (we here give the description on the full
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line). Multipeakons are given by (see, e.g., [21] and references therein)

u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)|, (1.2)

where the (pi(t), qi(t)) satisfy the explicit system of ordinary differential equations

q̇i =

n
∑

j=1

pje
−|qi−qj |, ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |.

Observe that the solution (1.2) is not smooth even with continuous functions
(pi(t), qi(t)); one possible way to interpret (1.2) as a weak solution of (1.1) is to
rewrite the equation (1.1) as

ut +
(1

2
u2 + (1 − ∂2

x)−1(u2 +
1

2
u2

x)
)

x
= 0.

Wave breaking may appear when at least two of the qi’s coincide. If all the pi(0)
have the same sign, the peakons move in the same direction, the solution experiences
no wave breaking, and one has a global solution. Higher peakons move faster
than the smaller ones, and when a higher peakon overtakes a smaller, there is an
exchange of mass, but no wave breaking takes place. Furthermore, the qi(t) remain
distinct. However, if some of pi(0) have opposite sign, wave breaking may incur.
For simplicity, consider the case with n = 2 and one peakon p1(0) > 0 (moving to
the right) and one antipeakon p2(0) < 0 (moving to the left). In the symmetric case
(p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the solution will vanish pointwise at the
collision time t∗ when q1(t

∗) = q2(t
∗), that is, u(t∗, x) = 0 for all x ∈ R. Clearly,

at least two scenarios are possible; one is to let u(t, x) vanish identically for t > t∗,
and the other possibility is to let the peakon and antipeakon “pass through” each
other in a way that is consistent with the Camassa–Holm equation. In the first
case the energy

∫

(u2 + u2
x) dx decreases to zero at t∗, while in the second case, the

energy remains constant except at t∗. Clearly, the well-posedness of the equation
is a delicate matter in this case. The first solution could be denoted a dissipative
solution, while the second one could be called conservative. Other solutions are
also possible. Global dissipative solutions of a more general class of equations were
recently derived by Coclite, Holden, and Karlsen [8, 9]. In their approach the
solution was obtained by first regularizing the equation by adding a small diffusion
term εuxx to the equation, and subsequently analyzing the vanishing viscosity limit
ε → 0.

Recently, a rather different approach to the Camassa–Holm equation was taken
by Bressan and Constantin [4]. The method has been further studied and extended
to the hyperelastic-rod wave equation, see [22, 24]. As a first step one reformulates
the Camassa–Holm equation (1.1) as the following system

ut + uux + Px = 0, (1.3a)

P − Pxx = u2 +
1

2
u2

x. (1.3b)

The equations are further reformulated as a semilinear system of ordinary differ-
ential equations taking values in a Banach space. This formulation allows one to
continue the solution beyond collision time, giving a global conservative solution
where the energy is conserved for almost all times. Thus in the context of peakon-
antipeakon collisions one considers the solution where the peakons and antipeakons
“pass through” each other. Local existence of the semilinear system is obtained
by a contraction argument. Furthermore, the reformulation allows for a global
solution where all singularities disappear. Going back to the original function u,
one obtains a global solution of the Camassa–Holm equation. The well-posedness,
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i.e., the uniqueness and stability of the solution, is resolved as follows. In addition
to the solution u, one includes a family of non-negative Radon measures µt with
density u2

x dx with respect to the Lebesgue measure. The pair (u, µt) constitutes
a continuous semigroup, in particular, one has uniqueness and stability. See also
[5, 17].

In this paper we follow [22, 24] rather than [4], and reformulate the equation
using a transformation that corresponds to the transformation between Eulerian
and Lagrangian coordinates. Let u = u(t, x) denote the solution, and y(t, ξ) the
corresponding characteristics, thus yt(t, ξ) = u(t, y(t, ξ)). Our new variables are
y(t, ξ),

U(t, ξ) = u(t, y(t, ξ)), H(t, ξ) =

∫ y(t,ξ)

−∞

(u2 + u2
x) dx (1.4)

where U corresponds to the Lagrangian velocity while H could be interpreted as
the Lagrangian cumulative energy distribution. In the periodic case one defines

Q =
1

2(e − 1)

∫ 1

0

sinh(y(ξ) − y(η))(U2yξ + Hξ)(η) dη (1.5)

− 1

4

∫ 1

0

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

(U2yξ + Hξ) dη,

P =
1

2(e − 1)

∫ 1

0

cosh(y(ξ) − y(η))(U2yξ + Hξ)(η) dη (1.6)

+
1

4

∫ 1

0

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

(U2yξ + Hξ) dη.

Then one can show that










yt = U,

Ut = −Q,

Ht = U3 − 2PU,

(1.7)

is equivalent to the Camassa–Holm equation. Global existence of solutions of (1.7)
is obtained starting from a contraction argument, see Theorem 2.7. The uniqueness
issue is resolved by considering the set D (see Definition 3.1) which consists of pairs
(u, µ) such that (u, µ) ∈ D if u ∈ H1

per and µ is a positive Radon measure with period

one, and whose absolutely continuous part satisfies µac = (u2 + u2
x) dx. With three

Lagrangian variables (y, U, H) versus two Eulerian variables (u, µ), it is clear that
there can be no bijection between the two coordinates systems. However, we define
a group of transformations which acts on the Lagrangian variables and lets the
system of equations (1.7) invariant. We are able to establish a bijection between the
space of Eulerian variables and the space of Lagrangian variables when we identify
variables that are invariant under the action of the group. This bijection allows us to
transform the results obtained in the Lagrangian framework (in which the equation
is well-posed) into the Eulerian framework (in which the situation is much more
subtle). In particular, and this constitutes the main result of this paper, we obtain a
metric dD on D and a continuous semi-group of solutions on (D, dD). The distance
dD gives D the structure of a complete metric space. This metric is compared with
some more standard topologies, and we obtain that convergence in H1

per implies
convergence in (D, dD) which itself implies convergence in L∞, see Propositions
5.1 and 5.2. The properties of the spaces as well as the various mappings between
them are described in great detail, see Section 3. Our main result, Theorem 4.2,
states that there exists a continuous semigroup T : D × R → D such that, for any
(ū, µ̄) ∈ D, if we denote (u(t), µ(t)) = Tt(ū, µ̄), then u(t) is a weak solution of the
Camassa–Holm equation. The topology on D is of course given by the metric dD
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and, by continuity of the semigroup, we mean that if (ūn, µ̄n) → (ū, µ̄) in D, then
(un(t), µn(t) → (u(t), µ(t)) in D, i.e., we use the same topology on the set of initial
data as on the set of solutions, which shows that the complete metric dD is the
appropriate metric for conservative solutions of the Camassa–Holm equation. The
associated measure µ(t) has constant total mass, i.e., µ(t)([0, 1)) = µ(0)([0, 1)) for
all t, which corresponds to the total energy of the system. This is the reason why
our solutions are called conservative.

Many of the ideas used in this article originate from [21] where the case of the
full line is treated and some of the proofs are indeed adaptations to the periodic
case. There is, however, one significant and important difference. It concerns the
group of transformations here denoted G̃ acting on the Lagrangian variables. By
introducing Lagrangian variables, one introduces a degree of arbitrariness which is
captured by the group of transformation acting on the new variables and which
is removed when one takes the quotient space. The determination of the correct
group is crucial as it enables us to return to the Eulerian coordinates via the
quotient space and to construct the continuous semigroup of solutions in Eulerian
coordinates. On the full line, this group consists of the group of diffeomorphism
with some regularity condition denoted G, which is also a natural choice taking into
account the geometric interpretation of the equation, see [3, 15]. In the periodic
case, the same group G is needed but we also have to take into account that we
introduce an additional degree of freedom by considering the cumulative energy.
Indeed, the energy is like a potential and defined up to a constant. In the case of
the full line, we normalize this constant to zero at −∞. We cannot do that in the
periodic case and instead we expand the group G to G̃ = G×R. The action of the
group (R, +) corresponds to the degree of freedom resulting from the fact that the
energy is defined up to a constant.

The method described here can be studied in detail for multipeakons, see [21]
for details on the full line. The results can be extended, as in [24], to show global
existence of conservative periodic solutions for the generalized hyperelastic-rod wave
equation







ut + f(u)x + Px = 0,

P − Pxx = g(u) +
1

2
f ′′(u)u2

x,
(1.8)

where f, g ∈ C∞(R) and f is strictly convex. Observe that if g(u) = u2 and

f(u) = u2

2 , then (1.8) is the classical Camassa–Holm equation (1.1).
Furthermore, the methods presented in this paper can be used to derive nu-

merical methods that converge to conservative solutions rather than dissipative
solutions. This contrasts finite difference methods that normally converge to dis-
sipative solutions, see [23] for a proof of convergence of a upwind scheme in the
periodic case, and [19] for the related Hunter–Saxton equation. See also [20].

2. Global solutions in Lagrangian coordinates

2.1. Equivalent system. We consider periodic functions. For the sake of simplic-
ity, we will only consider functions of unit period, that is, g(ξ + 1) = g(ξ). The
results are of course valid for any period after making the necessary adjustments.
We introduce the space V1 defined as

V1 = {f ∈ H1
loc(R) | f(ξ + 1) = f(ξ) + 1 for all ξ ∈ R}.

Functions in V1 map the unit interval into itself in the sense that if u is periodic
with period 1, then u◦f is also periodic with period 1. We define the characteristics
y : R → V1, t 7→ y(t, · ) as the solutions of

yt(t, ξ) = u(t, y(t, ξ)). (2.1)
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Assuming that u is smooth, it is not hard to check that (1.3) yields

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x. (2.2)

We define the Lagrangian energy cumulative distribution as

H(t, ξ) =

∫ y(t,ξ)

y(t,0)

(u2 + u2
x)(t, x) dx. (2.3)

Using (2.2) and (2.1), we obtain

dH

dt
=
[

(u3 − 2Pu) ◦ y
]ξ

0
. (2.4)

From (2.3), the periodicity of u and the fact that y ∈ V1, we can check that, for all
ξ ∈ R,

H(t, ξ + 1) − H(t, ξ) = H(t, 1) − H(t, 0).

Moreover, from (2.4), we can verify that H(t, 1) − H(t, 0) is constant in time so
that H(t, 1)−H(t, 0) = H(0, 1)−H(0, 0). For all t, H belongs to the vector space
V defined as follows

V = {f ∈ H1
loc(R) | there exists α ∈ R

such that f(ξ + 1) = f(ξ) + α, for all ξ ∈ R}.
We equip V with the norm ‖f‖V = ‖f‖H1([0,1]). Later we will prove that V is a

Banach space. To simplify the notation, we will denote H1([0, 1]) by H1 and follow
the same convention for the other norms we will consider.

We now derive formally a system equivalent to (1.3). From the definition of the
characteristics, it follows that

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px◦y (t, ξ). (2.5)

This last term can be expressed uniquely in term of U , y, and H . From (1.3b), we
obtain the following explicit expression for P ,

P (t, x) =
1

2

∫

R

e−|x−z|(u2(t, z) +
1

2
u2

x(t, z)) dz. (2.6)

Thus we have

Px◦y (t, ξ) = −1

2

∫

R

sgn(y(t, ξ) − z)e−|y(t,ξ)−z|(u2(t, z) +
1

2
u2

x(t, z)) dz

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1

2

∫

R

[

sgn(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1

2
u2

x(t, y(t, η))

)

yξ(t, η)
]

dη. (2.7)

We have

Hξ = (u2 + u2
x)◦y yξ . (2.8)

Therefore, (2.7) can be rewritten as

Px◦y (ξ) = −1

4

∫

R

sgn(y(ξ) − y(η)) exp(− |y(ξ) − y(η)|)
(

U2yξ + Hξ

)

(η) dη (2.9)

where the t variable has been dropped to simplify the notation. Later we will prove
that y is an increasing function for any fixed time t. If, for the moment, we take
this for granted, then Px◦y is equivalent to Q where

Q(t, ξ) = −1

4

∫

R

sgn(ξ−η) exp
(

−sgn(ξ−η)(y(ξ)−y(η))
)(

U2yξ+Hξ

)

(η) dη, (2.10)
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and, slightly abusing the notation, we write

P (t, ξ) =
1

4

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + Hξ

)

(η) dη. (2.11)

The derivatives of Q and P are given by

Qξ = −1

2
Hξ −

(

1

2
U2 − P

)

yξ and Pξ = Qyξ. (2.12)

For ξ ∈ [0, 1], using the fact that y(ξ + 1) = y(ξ) + 1 and the periodicity of Hξ and
U , these expressions can be rewritten as

Q =
1

2(e − 1)

∫ 1

0

sinh(y(ξ) − y(η))(U2yξ + Hξ)(η) dη

− 1

4

∫ 1

0

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

(U2yξ + Hξ) dη (2.13)

and

P =
1

2(e − 1)

∫ 1

0

cosh(y(ξ) − y(η))(U2yξ + Hξ)(η) dη

+
1

4

∫ 1

0

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

(U2yξ + Hξ) dη. (2.14)

Thus Px ◦y and P ◦y can be replaced by equivalent expressions given by (2.10)
and (2.11) which only depend on our new variables U , H , and y. We now derive
a new system of equations, formally equivalent to the Camassa–Holm equation.
Equations (2.5), (2.4) and (2.1) give us











yt = U,

Ut = −Q,

Ht =
[

U3 − 2PU
]ξ

0
.

(2.15)

Differentiating (2.15) yields


















yξt = Uξ,

Uξt =
1

2
Hξ +

(

1

2
U2 − P

)

yξ,

Hξt = −2Q Uyξ +
(

3U2 − 2P
)

Uξ.

(2.16)

The system (2.16) is semilinear with respect to the variables yξ, Uξ, and Hξ .

2.2. Existence and uniqueness of solutions of the equivalent system. In
this section, we focus our attention on the system of equations (2.15) and prove,
by a contraction argument, that it admits a unique solution. Let Id denote the
identity, i.e., Id(ξ) = ξ. We claim that the linear map Λ: (σ, h) 7→ f = σ + h Id is
an homeomorphism from H1

per × R to V where H1
per denotes the Banach space

H1
per = {σ ∈ H1

loc(R) | σ(ξ + 1) = σ(ξ) for all ξ ∈ R}
with the norm ‖σ‖H1

per
= ‖σ‖H1 . It is clear that Λ is invertible and, for any f ∈ V ,

its inverse (σ, h) = Λ−1f is given by h = f(1) − f(0) and σ = f − h Id. Let
f = Λ(σ, h), we have

‖f‖H1 ≤ ‖σ‖H1 + |h| ‖Id‖H1 = ‖σ‖H1 +

√

2

3
|h|

and therefore Λ is continuous. Conversely,

|h| = |f(1) − f(0)| ≤ 2 ‖f‖L∞ ≤ 2C ‖f‖H1 ,
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and

‖σ‖H1 ≤ ‖f‖H1 + 2 ‖f‖L∞ ‖Id‖H1 ≤ (1 + 2

√

2

3
C) ‖f‖H1

where the constant C denotes the constant of the Sobolev embedding H1 ⊂ L∞.
Hence, Λ−1 is continuous. Since H1

per × R is a Banach space, V is also a Banach

space. We introduce ζ = y − Id and (σ, h) = Λ−1(H), i.e., h = H(t, 1) − H(t, 0)
and σ = H − h Id. The system (2.15) is then equivalent to























ζt = U,

Ut = −Q,

σt =
[

U3 − 2PU
]ξ

0
,

ht = 0.

(2.17)

We will prove that the system (2.17) is a well-posed system of ordinary differential
equations in the Banach space E where

E = H1
per × H1

per × H1
per × R.

There is a bijection (ζ, U, σ, h) 7→ (y, U, H) between E and V1 ×H1
per × V given by

y = ζ + Id, H = σ + h Id and U is unchanged, so that in the remaining we will
use both set of variables. However, for the contraction argument it is important to
have a Banach space and we use E and the variables (ζ, U, σ, h) (note that V1 and
a fortiori V1 × H1

per × V are not Banach spaces). The following lemma gives the
Lipschitz bounds we need on Q and P .

Lemma 2.1. For any X = (ζ, U, σ, h) in E, we define the maps Q and P as

Q(X) = Q and P(X) = P where Q and P are given by (2.10) and (2.11), re-

spectively. Then, P and Q are Lipschitz maps on bounded sets from E to H1
per.

Moreover, we have

Qξ = −1

2
(σξ + h) −

(

1

2
U2 − P

)

(1 + ζξ), (2.18)

Pξ = Q(1 + ζξ). (2.19)

Proof. Let BM = {X = (ζ, U, σ, h) ∈ E | ‖X‖E ≤ M}. Let us first prove that

P and Q are Lipschitz maps from BM to L∞
per. Let X = (ζ, U, σ, h) and X̃ =

(ζ̃ , Ũ , σ̃, h̃) be two elements of BM . We have

‖y‖L∞ = ‖Id +ζ‖L∞ ≤ 1 + C ‖ζ‖H1 ≤ (1 + CM).

and ‖ỹ‖L∞ ≤ (1 + CM). Since the map x 7→ coshx is locally Lipschitz, it is
Lipschitz on {x ∈ R | |x| ≤ 2(1 + CM)}. Hence, if we denote by C a generic
constant that only depends on M , we have

|cosh(y(ξ) − y(η)) − cosh(ỹ(ξ) − ỹ(η))| ≤ C |y(ξ) − ỹ(ξ) − y(η) + ỹ(η)|

≤ C
∥

∥

∥
ζ − ζ̃

∥

∥

∥

L∞

for all ξ, η in [0, 1]. It follows that, for all ξ ∈ [0, 1],
∥

∥

∥
cosh(y(ξ) − y( · ))U2yξ( · ) − cosh(ỹ(ξ) − ỹ( · ))Ũ2ỹξ( · )

∥

∥

∥

L2

≤ C
(

∥

∥

∥
ζ − ζ̃

∥

∥

∥

L∞

+
∥

∥

∥
U − Ũ

∥

∥

∥

L∞

+
∥

∥

∥
ζξ − ζ̃ξ

∥

∥

∥

L2

)

and the map X = (ζ, U, σ, h) 7→ 1
2(e−1)

∫ 1

0 cosh(y(ξ) − y(η))(U2yξ)(η) dη which

corresponds to the first term in (2.14) is Lipschitz from BM to L∞
per. We handle the

other terms in (2.14) in the same way and we prove that P is Lipschitz from BM to
L∞

per. Similarly, one proves that Q : BM → L∞
per is Lipschitz. Direct differentiation
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gives us the expressions (2.12) for the derivatives Pξ and Qξ of P and Q. Since, as
we have just proved, P and Q are Lipschitz from BM to L∞

per, we have
∥

∥Q(X)ξ −Q(X̃)ξ

∥

∥

L2

=

∥

∥

∥

∥

yξP(X) − ỹξP(X̃) − 1

2
(U2yξ − Ũ2ỹξ + σξ − σ̃ξ + h − h̃)

∥

∥

∥

∥

L2

≤ C
(

∥

∥

∥
P(X) −P(X̃)

∥

∥

∥

L∞

+
∥

∥

∥
U − Ũ

∥

∥

∥

L∞

+
∥

∥

∥
ζξ − ζ̃ξ

∥

∥

∥

L2
+ ‖σξ − σ̃ξ‖L2 +

∣

∣

∣
h − h̃

∣

∣

∣

)

≤ C
∥

∥

∥
X − X̃

∥

∥

∥

E

where we have used the fact that U and Ũ are bounded in BM so that
∥

∥

∥
U2 − Ũ2

∥

∥

∥

L∞

≤

C
∥

∥

∥
U − Ũ

∥

∥

∥

L∞

. Hence, we have proved that Q : BM → H1
per is Lipschitz. We prove

that P : BM → H1
per in the same way, and this concludes the proof of the lemma. �

In the next theorem, by using a contraction argument, we prove the short-time
existence of solutions to (2.15).

Theorem 2.2. Given X̄ = (ζ̄ , Ū , σ̄, h) in E, there exists a time T depending only

on
∥

∥X̄
∥

∥

E
such that the system (2.15) admits a unique solution in C1([0, T ], E) with

initial data X̄.

Proof. Solutions of (2.15) can be rewritten as

X(t) = X̄ +

∫ t

0

F (X(τ)) dτ (2.20)

where F : E → E is given by F (X) = (U,−Q(X), [U 3 − 2P(X)U ]ξ0, 0) where X =
(ζ, U, σ, h). The integrals are defined as Riemann integrals of continuous functions

on the Banach space E. To prove that X 7→ [U 3 − 2P(U)U ]ξ0 is Lipschitz from
bounded set of E to H1

per, we proceed as in the proof of Lemma 2.1. Hence, F
is Lipschitz on bounded set, and the theorem follows from the standard theory of
ordinary differential equations, see, for example, [1]. �

We now turn to the proof of existence of global solutions of (2.15). We are
interested in a particular class of initial data that we are going to make precise later,
see Definition 2.5. In particular, we will only consider initial data that belong to
[

W 1,∞
per

]3 ×R where W 1,∞
per = {f ∈ W 1,∞

loc (R) | f(ξ + 1) = f(ξ) for all ξ ∈ R}, which

is a Banach space for the norm ‖f‖W 1,∞
per

= ‖f‖W 1,∞ . Of course,
[

W 1,∞
per

]3 × R is

a subset of E. Given X̄ = (ζ̄, Ū , σ̄, h̄) ∈ [W 1,∞]3 × R, we consider the short-time
solution X = (ζ, U, σ, h) ∈ C([0, T ], E) of (2.15) given by Theorem 2.2. Using the
fact that Q and P are locally Lipschitz (Lemma 2.1) and, since X ∈ C([0, T ], E),
we can prove that P and Q belongs to C([0, T ], H1

per). We now consider U , P , and

Q as given functions in C([0, T ], H1
per). Then, for any fixed ξ ∈ R, we can solve the

system of ordinary differential equations in R
3 given by































d

dt
α(t, ξ) = β(t, ξ),

d

dt
β(t, ξ) =

1

2
(γ(t, ξ) + h̄) +

[

(
1

2
U2 − P )(t, ξ)

]

(1 + α(t, ξ)),

d

dt
γ(t, ξ) = − [2(Q U)(t, ξ)] (1 + α(t, ξ)) +

[

(3U2 − 2P )(t, ξ)
]

β(t, ξ),

(2.21)

and which is obtained by substituting ζξ, Uξ and σξ in (2.16) by the unknowns α,
β and γ, respectively. We also replaced h(t) by h̄ since h(t) = h̄ for all t. We have
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to specify the initial conditions for (2.21). Let A be the following set

A = {ξ ∈ R |
∣

∣Ūξ(ξ)
∣

∣ ≤
∥

∥Ūξ

∥

∥

L∞
, |σ̄ξ(ξ)| ≤ ‖σ̄ξ‖L∞

,
∣

∣ζ̄ξ(ξ)
∣

∣ ≤
∥

∥ζ̄ξ

∥

∥

L∞
}.

Since we assumed X̄ ∈ [W 1,∞]3 × R, we have that A has full measure, that is,
meas(Ac) = 0. For ξ ∈ A we define (α(0, ξ), β(0, ξ), γ(0, ξ)) = (ζ̄ξ(ξ), Ūξ(ξ), σ̄ξ(ξ)).
However, for ξ ∈ Ac we take (α(0, ξ), β(0, ξ), γ(0, ξ)) = (0, 0, 0).

Lemma 2.3. Given initial condition X̄ = (ζ̄ , Ū , σ̄, h̄) ∈ [W 1,∞]3 × R, we consider

the solution X = (ζ, U, σ, h) ∈ C1([0, T ], E) of (2.21) given by Theorem 2.2. Then,

X ∈ C1([0, T ], [W 1,∞]3 × R). The functions α(t, ξ), β(t, ξ) and γ(t, ξ) which are

obtained by solving (2.21) for any fixed given ξ with the initial condition specified

above, coincide for almost every ξ and for all time t with ζξ, Uξ and σξ, respectively,

that is, for all t ∈ [0, T ], we have

(α(t, ξ), β(t, ξ), γ(t, ξ)) = (ζξ(t, ξ), Uξ(t, ξ), σξ(t, ξ)) (2.22)

for almost every ξ ∈ R.

Thus, this lemma allows us to pick up a special representative for (ζξ , Uξ, σξ)
given by (α, β, γ), which is defined for all ξ ∈ R and which, for any given ξ, satisfies
the ordinary differential equation (2.21) in R

3. In the remaining we will of course
identify the two and set (ζξ , Uξ, σξ) equal to (α, β, γ). To prove this lemma, we will
need the following proposition which is adapted from [28, p. 134, Corollary 2].

Proposition 2.4. Let R be a bounded linear operator on a Banach space X into

a Banach space Y . Let f be in C([0, T ], X). Then, Rf belongs to C([0, T ], Y ) and

therefore is Riemann integrable, and
∫

[0,T ] Rf(t) dt = R
∫

[0,T ] f(t) dt.

Proof of Lemma 2.3. We introduce the Banach space of everywhere bounded pe-
riodic function B∞

per whose norm is naturally given by ‖f‖B∞

per
= supξ∈[0,1] |f(ξ)|.

Obviously, the periodic continuous functions belong to B∞
per. We define (α, β, γ) as

the solution of (2.21) in
[

B∞
per

]3
with initial data as given above. Thus, strictly

speaking, this is a different definition than the one given in the lemma but we will
see that they are in fact equivalent. We note that the system (2.21) is affine (it con-
sists of a sum of a linear transformation and a constant) and therefore it is not hard

to prove, by using a contraction argument in
[

B∞
per

]3
, the short-time existence of

solutions. Moreover, due to the affine structure, a direct application of Gronwall’s
lemma shows that the solution exists on [0, T ], the interval on which (ζ, U, σ, h) is
defined. For any given ξ, the map f 7→ f(ξ) from B∞

per to R is linear and continuous
(the space B∞

per was precisely introduced in order to make this map continuous).
Hence, after applying this map to each term in (2.21) written in integral form and
using Proposition 2.4, we recover the original definition of α, β and γ as solutions,
for any given ξ ∈ R, of the system (2.21) of ordinary differential equations in R

3.
The derivation map d

dξ is continuous from H1
per into L2

per. We can apply it to each

term in (2.15) written in integral from and, by Proposition 2.4, this map commutes
with the integral. We end up with, after using (2.18) and (2.19),



































ζξ(t) = ζ̄ξ +

∫ t

0

Uξ(τ) dτ,

Uξ(t) = Ūξ +

∫ t

0

(

1

2
(σξ + h̄) + (

1

2
U2 − P )(1 + ζξ)

)

(τ) dτ,

σξ(t) = σ̄ξ +

∫ t

0

(

−2Q U(1 + ζξ) + (3U2 − 2P )Uξ

)

(τ) dτ.

(2.23)

The map from B∞
per to L2

per is also continuous, we can apply it to (2.21) writ-
ten in integral form, and again use Proposition 2.4. Then, we subtract each
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equation in (2.23) from the corresponding one in (2.21), take the norm and add
them. After introducing Z(t) = ‖α(t, · ) − ζξ(t, · )‖L2 + ‖β(t, · ) − Uξ(t, · )‖L2 +
‖γ(t, · ) − σξ(t, · )‖L2 , we end up with the following equation

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ

where C is a constant which, again, only depends on the C([0, T ], H1)-norms, of
U , P , and Q. By assumption on the initial conditions, we have Z(0) = 0 because
α(0) = ζ̄ξ , β(0) = Ūξ, γ(0) = σ̄ξ almost everywhere and therefore, by Gronwall’s
lemma, we get Z(t) = 0 for all t ∈ [0, T ]. This is just a reformulation of (2.22), and
this concludes the proof of the lemma. �

It is possible to carry out the contraction argument of Theorem 2.2 in the Banach
space [W 1,∞

per ]3×R but the topology on this space turns out to be too strong for our
purpose and that is why we prefer E whose topology is weaker. Our goal is to find
solutions of (1.3) with initial data ū in H1

per. Theorem 2.2 gives us the existence of
solutions to (2.15) for initial data in E. Therefore we have to find initial conditions
that match the initial data ū and belong to E. A natural choice would be to use
ȳ(ξ) = y(0, ξ) = ξ and Ū(ξ) = u(ξ). Then y(t, ξ) gives the position of the particle
which is at ξ at time t = 0. But, if we make this choice, then H̄ξ = ū2 + ū2

x and
Hξ does not belong to L2

per in general. We consider instead (ȳ, Ū , H̄) given by the
relations

∫ ȳ(ξ)

0

(ū2 + ū2
x) dx + ȳ(ξ) = (1 + h̄)ξ,

Ū(ξ) = ū◦ȳ(ξ) and H̄(ξ) =

∫ ȳ(ξ)

0

(

ū2 + ū2
x

)

dx,

(2.24)

where h̄ =
∫ 1

0
(ū2+ū2

x) dx = ‖ū‖2
H1

per
. The definition of ȳ is implicit, it is well-defined

as the function y 7→
∫ y

0
(ū2+ū2

x) dx+y is continous, strictly increasing and therefore

invertible. Later (see Remark 3.10), we will prove that (ȳ−Id, Ū , H̄−h̄ Id, h̄) belongs
to G where G is defined as follows.

Definition 2.5. The set G is composed of all (ζ, U, σ, h) ∈ E such that

(ζ, U, σ, h) ∈
[

W 1,∞
]3 × R, (2.25a)

yξ ≥ 0, Hξ ≥ 0, yξ + Hξ > 0 almost everywhere, (2.25b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere, (2.25c)

where we denote y(ξ) = ζ(ξ) + ξ and H = σ + h Id.

If (ζ, U, σ, h) ∈ G, then h ≥ 0. Indeed, since Hξ ≥ 0, H is an increasing function
and h = H(1) − H(0) ≥ 0. Note that if all functions are smooth and yξ > 0, we

have ux ◦ y =
Uξ

yξ
and condition (2.25c) is equivalent to (2.8). For initial data in G,

the solution of (2.15) exists globally.

Lemma 2.6. Given initial data X̄ = (ζ̄ , Ū , σ̄, h̄) in G, let X(t) = (ζ(t), U(t), σ(t), h(t))
be the short-time solution of (2.15) in C([0, T ], E) for some T > 0 with initial data

(ζ̄ , Ū , σ̄, h̄). Then,

(i) X(t) belongs to G for all t ∈ [0, T ],
(ii) for almost every t ∈ [0, T ], yξ(t, ξ) > 0 for almost every ξ ∈ R.

We denote by A the set where the absolute values of ζ̄ξ(ξ), σ̄ξ(ξ), and Ūξ(ξ) all
are smaller than

∥

∥X̄
∥

∥

[W 1,∞]3×R
and where the inequalities in (2.25b) and (2.25c)

are satisfied for ȳξ, Ūξ and H̄ξ. By assumption, we have meas(Ac) = 0 and we
set (ζ̄ξ, Ūξ, σ̄ξ) equal to zero on Ac. Thus, as allowed by Lemma 2.3, we choose
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a special representative for (ζ(t, ξ), U(t, ξ), σ(t, ξ)) whose derivative satisfies (2.16)
as an ordinary differential equation, for every ξ ∈ R. The proof of this lemma is
almost the same as in [22]. We repeat it here for completeness.

Proof. (i) We already proved in Lemma 2.3 that the space [W 1,∞]3×R is preserved
and X(t) satisfies (2.25a) for all t ∈ [0, T ]. Let us prove that (2.25c) and the
inequalities in (2.25b) hold for any ξ ∈ A and therefore almost everywhere. We
consider a fixed ξ in A and drop it in the notation when there is no ambiguity.
From (2.16), we have, on the one hand,

(yξHξ)t = yξtHξ + Hξtyξ = UξHξ + (3U2Uξ − 2yξQU − 2PUξ)yξ,

and, on the other hand,

(y2
ξU2 + U2

ξ )t = 2yξtyξU
2 + 2y2

ξUtU + 2UξtUξ

= 3UξU
2yξ − 2PUξyξ + HξUξ − 2y2

ξQU.

Thus, (yξHξ − y2
ξU2 − U2

ξ )t = 0, and since yξHξ(0) = (y2
ξU2 + U2

ξ )(0), we have

yξHξ(t) = (y2
ξU2 + U2

ξ )(t) for all t ∈ [0, T ]. We have proved (2.25c). Let us
introduce t∗ given by

t∗ = sup{t ∈ [0, T ] | yξ(t
′) ≥ 0 for all t′ ∈ [0, t]}.

Here we recall that we consider a fixed ξ ∈ A and dropped it in the notation.
Assume that t∗ < T . Since yξ(t) is continuous with respect to time, we have

yξ(t
∗) = 0. (2.26)

Hence, from (2.25c) that we just proved, Uξ(t
∗) = 0 and, by (2.16),

yξt(t
∗) = Uξ(t

∗) = 0. (2.27)

From (2.16), since yξ(t
∗) = Uξ(t

∗) = 0, we get

yξtt(t
∗) = Uξt(t

∗) =
1

2
Hξ(t

∗). (2.28)

If Hξ(t
∗) = 0, then (yξ , Uξ, Hξ)(t

∗) = (0, 0, 0) and, by the uniqueness of the solu-
tion of (2.16), seen as a system of ordinary differential equations, we must have
(yξ, Uξ, Hξ)(t) = 0 for all t ∈ [0, T ]. This contradicts the fact that yξ(0) and Hξ(0)
cannot vanish at the same time (ȳξ + H̄ξ > 0 for all ξ ∈ A). If Hξ(t

∗) < 0, then
yξtt(t

∗) < 0 and, because of (2.26) and (2.27), there exists a neighborhood U of
t∗ such that y(t) < 0 for all t ∈ U \ {t∗}. This contradicts the definition of t∗.
Hence, Hξ(t

∗) > 0 and, since we now have yξ(t
∗) = yξt(t

∗) = 0 and yξtt(t
∗) > 0,

there exists a neighborhood of t∗ that we again denote U such that yξ(t) > 0 for
all t ∈ U \ {t∗}. This contradicts the fact that t∗ < T , and we have proved the
first inequality in (2.25b), namely that yξ(t) ≥ 0 for all t ∈ [0, T ]. Let us prove
that Hξ(t) ≥ 0 for all t ∈ [0, T ]. This follows from (2.25c) when yξ(t) > 0. Now, if
yξ(t) = 0, then Uξ(t) = 0 from (2.25c) and we have seen that Hξ(t) < 0 would imply
that yξ(t

′) < 0 for some t′ in a punctured neighborhood of t, which is impossible.
Hence, Hξ(t) ≥ 0 and we have proved the second inequality in (2.25b). Assume
that the third inequality in (2.25c) does not hold. Then, by continuity, there exists
a time t ∈ [0, T ] such that (yξ + Hξ)(t) = 0. Since yξ and Hξ are positive, we must
have yξ(t) = Hξ(t) = 0 and, by (2.25c), Uξ(t) = 0. Since zero is a solution of (2.16),
this implies that yξ(0) = Uξ(0) = Hξ(0), which contradicts (yξ + Hξ)(0) > 0.

(ii) We define the set

N = {(t, ξ) ∈ [0, T ]× R | yξ(t, ξ) = 0}.
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Fubini’s theorem gives us

meas(N ) =

∫

R

meas(Nξ) dξ =

∫

[0,T ]

meas(Nt) dt (2.29)

where Nξ and Nt are the ξ-section and t-section of N , respectively, that is,

Nξ = {t ∈ [0, T ] | yξ(t, ξ) = 0} and Nt = {ξ ∈ R | yξ(t, ξ) = 0}.
Let us prove that, for all ξ ∈ A, meas(Nξ) = 0. If we consider the sets N n

ξ defined
as

Nn
ξ = {t ∈ [0, T ] | yξ(t, ξ) = 0 and yξ(t

′, ξ) > 0 for all t′ ∈ [t − 1/n, t + 1/n] \ {t}},
then

Nξ =
⋃

n∈N

Nn
ξ . (2.30)

Indeed, for all t ∈ Nξ , we have yξ(t, ξ) = 0, yξt(t, ξ) = 0 from (2.25c) and (2.16)
and yξtt(t, ξ) = 1

2Hξ(t, ξ) > 0 from (2.16) and (2.25b) (yξ and Hξ cannot vanish at
the same time for ξ ∈ A). This implies that, on a small punctured neighborhood
of t, yξ is strictly positive. Hence, t belongs to some N n

ξ for n large enough. This

proves (2.30). The set N n
ξ consists of isolated points that are countable since, by

definition, they are separated by a distance larger than 1/n from one another. This
means that meas(N n

ξ ) = 0 and, by the subadditivity of the measure, meas(Nξ) = 0.

It follows from (2.29) and since meas(Ac) = 0 that

meas(Nt) = 0 for almost every t ∈ [0, T ]. (2.31)

We denote by K the set of times such that meas(Nt) > 0, i.e.,

K = {t ∈ R+ | meas(Nt) > 0} . (2.32)

By (2.31), meas(K) = 0. For all t ∈ Kc, yξ > 0 almost everywhere and, therefore,
y(t, ξ) is strictly increasing and invertible (with respect to ξ). �

We are now ready to prove global existence of solutions to (2.15).

Theorem 2.7. For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.15) admits a unique

global solution X(t) = (y(t), U(t), H(t)) in C1(R+, E) with initial data X̄ = (ȳ, Ū , H̄).
We have X(t) ∈ G for all times. If we equip G with the topology inducted by the

E-norm, then the map S : G × R+ → G defined as

St(X̄) = X(t)

is a continuous semigroup.

In the formulation of Theorem 2.7, we write (y, U, H) where we really should
have written (ζ, U, σ, h) with y = ζ + Id and H = σ + h Id. In the remaining we
will continue abusing the notation in the same way because the relevant variables
are really (y, U, H) which correspond to Lagrangian variables.

Proof. The solution has a finite time of existence T only if ‖(ζ, U, σ, h)(t, · )‖E

blows up when t tends to T because, otherwise, by Theorem 2.2, the solution can
be prolongated by a small time interval beyond T . Let (ζ, U, σ, h) be a solution of
(2.15) in C([0, T ), E) with initial data (ζ̄ , Ū , σ̄, h̄). We want to prove that

sup
t∈[0,T )

‖(ζ(t, · ), U(t, · ), σ(t, · ), h(t)‖E < ∞. (2.33)

It is clear from (2.17) that h(t) = h̄ for all time. We now consider a fixed time t ∈
[0, T ) and to simplify the notation we omit it in the notation. From (2.15), we infer
that H(0) = 0. Since Hξ ≥ 0, H is an increasing function and ‖H‖L∞ ≤ H(1) =
H(1)−H(0) = h. Hence, as σ = H−h Id, ‖σ‖L∞ ≤ 2h and supt∈[0,T ) ‖σ(t, · )‖L∞(R)
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is bounded by 2h̄. For ξ and η in [0, 1], we have |y(ξ) − y(η)| ≤ 1 because y is
increasing and y(1)−y(0) = 1. From (2.25c), we infer U2yξ ≤ Hξ and, from (2.13),
we obtain

|Q| ≤ 1

e − 1

∫ 1

0

sinh(y(ξ) − y(η))Hξ(η) dη +

∫ 1

0

e−|y(ξ)−y(η)|Hξ(η) dη.

Hence, |Q| ≤ C(H(1)−H(0)) = Ch = Ch̄ for some constant C and supt∈[0,T ) ‖Q(t, · )‖L∞(R)

is finite. Similarly, one prove that supt∈[0,T ) ‖P (t, · )‖L∞(R) < ∞. Since Ut = −Q, it

follows that supt∈[0,T ) ‖U(t, · )‖L∞(R) < ∞ and, since ζt = U , supt∈[0,T ) ‖ζ(t, · )‖L∞(R)

is also finite. We have proved that

C1 = sup
t∈[0,T )

{‖U(t, · )‖L∞ + ‖P (t, · )‖L∞ + ‖Q(t, · )‖L∞}

is finite. Let Z(t) = ‖yξ(t, · )‖L2 + ‖Uξ(t, · )‖L2 + ‖Hξ(t, · )‖L2 . Using the semi-
linearity of (2.16), we obtain

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ

where C is a constant depending only on C1. It follows from Gronwall’s lemma
that supt∈[0,T ) Z(t) is finite and, as ζξ = yξ − Id and σ = H − h̄ Id, it proves that

(2.33) holds. From standard theory for ordinary differential equations we infer that
St is a continuous semi-group. �

3. From Eulerian to Lagrangian coordinates and vice versa

Even if the H1-norm is conserved by the equation and therefore H1
per could be

seen as the natural space for the equation, the conservative solutions are not well-
posed in this space. There are cases, see [4, 20, 21] for the non periodic case, where
the energy density (u2 +u2

x) dx becomes a singular measure. The appropriate space
which makes the conservative solution into a semigroup is the D defined as:

Definition 3.1. The set D is composed of all pairs (u, µ) such that u belongs to
H1

per and µ is a positive periodic Radon measure whose absolute continuous part,
µac, satisfies

µac = (u2 + u2
x) dx. (3.1)

A Radon measure µ is said to be 1-periodic if µ(1+ B) = µ(B) for all Borel sets
B. The equivalent system (2.15) was derived by using the characteristics. Since y
satisfies (2.1), y, for a given ξ, can also be seen as the position of a particle evolving
in the velocity field u, where u is the solution of the Camassa–Holm equation. We
are then working in Lagrangian coordinates. In [15], the Camassa–Holm equation
is derived as a geodesic equation on the group of diffeomorphism equipped with
a right-invariant metric. In the present paper, the geodesic curves correspond to
y(t, · ). Note that y does not remain a diffeomorphism since it can become non
invertible, which agrees with the fact that the solutions of the geodesic equation
may break down, see [11]. The right-invariance of the metric can be interpreted
as an invariance with respect to relabeling as noted in [3]. This is a property that
we also observe in our setting. We denote by G the subgroup of the group of
homeomorphisms on the unit circle defined as follows: f ∈ G if f is invertible,

f ∈ W 1,∞
loc (R), f(ξ + 1) = f(ξ) + 1 for all ξ ∈ R, and (3.2)

f − Id and f−1 − Id both belong to W 1,∞
per . (3.3)

The set G can be interpreted as the set of relabeling functions. For any α > 1, we
introduce the subsets Gα of G defined by

Gα = {f ∈ G | ‖f − Id‖W 1,∞ +
∥

∥f−1 − Id
∥

∥

W 1,∞ ≤ α}.
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The subsets Gα do not possess the group structure of G. The next lemma provides
a useful characterization of Gα.

Lemma 3.2. Let α ≥ 0. If f belongs to Gα, then 1/(1 + α) ≤ fξ ≤ 1 + α
almost everywhere. Conversely, if f satisfies (3.2) and there exists c ≥ 1 such that

1/c ≤ fξ ≤ c almost everywhere, then f ∈ Gα for some α depending only on c.

Proof. Given f ∈ Gα, let B be the set of points where f−1 is differentiable.
Rademacher’s theorem says that meas(Bc) = 0. For any ξ ∈ f−1(B), we have

lim
ξ′→ξ

f−1(f(ξ′)) − f−1(f(ξ))

f(ξ′) − f(ξ)
= (f−1)ξ(f(ξ))

because f is continuous and f−1 is differentiable at f(ξ). On the other hand, we
have

f−1(f(ξ′)) − f−1(f(ξ))

f(ξ′) − f(ξ)
=

ξ′ − ξ

f(ξ′) − f(ξ)
.

Hence, f is differentiable for any ξ ∈ f−1(B) and

fξ(ξ) ≥
1

‖(f−1)ξ‖L∞

≥ 1

1 + α
. (3.4)

The estimate (3.4) holds only on f−1(B) but, since meas(Bc) = 0 and f−1 is
Lipschitz and one-to-one, meas(f−1(Bc)) = 0 (see, e.g., [2, Remark 2.72]), and
therefore (3.4) holds almost everywhere. We have fξ ≤ 1 + ‖fξ − 1‖L∞ ≤ 1 + α.

Let us now consider a function f that satisfies (3.2) and such that 1/c ≤ fξ ≤ c
almost everywhere for some c ≥ 1. Since fξ ≥ 1/c almost everywhere, f is strictly
increasing and, since it is also continuous, it is invertible. As f is Lipschitz, we can
make the following change of variables (see, for example, [2]) and get that, for all
ξ1, ξ2 in R such that ξ1 < ξ2,

f−1(ξ2) − f−1(ξ1) =

∫

[f−1(ξ1),f−1(ξ2)]

fξ

fξ
dξ ≤ c(ξ2 − ξ1).

Hence, f−1 is Lipschitz and (f−1)ξ ≤ c. We have f−1(ξ′) − ξ′ = ξ − f(ξ) for
ξ′ = f(ξ) and therefore ‖f − Id‖L∞ =

∥

∥f−1 − Id
∥

∥

L∞
. Finally, we get

‖f − Id‖W 1,∞ +
∥

∥f−1 − Id
∥

∥

W 1,∞ ≤ 2 ‖f − Id‖L∞ + 2

+ ‖fξ‖L∞ +
∥

∥(f−1)ξ

∥

∥

L∞

≤ 2 ‖f − Id‖L∞ + 2 + 2c.

Since ‖f − Id‖L∞ ≤
∫ 1

0
(|fξ| + 1) dξ ≤ c + 1, the lemma is proved. �

We define the subsets Fα and F of G as follows

Fα = {X = (y, U, H) ∈ G | 1

1 + h
(y + H) ∈ Gα},

and

F = {X = (y, U, H) ∈ G | 1

1 + h
(y + H) ∈ G}.

We recall that h = H(ξ + 1) − H(ξ) = H(1) − H(0). For α = 0, G0 = {Id}.
As we will see, the space F0 will play a special role. These sets are relevant only
because they are in some sense preserved by the governing equation (2.15) as the
next lemma shows.

Lemma 3.3. The space F is preserved by the governing equation (2.15). More

precisely, given α, T ≥ 0 and X̄ ∈ Fα, we have

St(X̄) ∈ Fα′

for all t ∈ [0, T ] where α′ only depends on T , α and
∥

∥X̄
∥

∥

E
.
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Proof. Let X̄ = (ȳ, Ū , H̄) ∈ Fα, we denote X(t) = (y(t), U(t), H(t)) the solution of
(2.15) with initial data X̄ and set v(t, ξ) = 1

1+h (y(t, ξ)+H(t, ξ)), v̄(ξ) = 1
1+h̄

(ȳ(ξ)+

H̄(ξ)). By definition, we have v̄ ∈ Gα and, from Lemma 3.2, 1/c ≤ v̄ξ ≤ c almost
everywhere, for some constant c > 1 depending only α. We consider a fixed ξ and
drop it in the notation. Applying Gronwall’s inequality backward in time to (2.16),
we obtain

|yξ(0)| + |Hξ(0)| + |Uξ(0)| ≤ eCT (|yξ(t)| + |Hξ(t)| + |Uξ(t)|) (3.5)

for some constant C which depends on ‖X(t)‖C([0,T ],E), which itself depends only

on
∥

∥X̄
∥

∥

E
and T . From (2.25c), we have

|Uξ(t)| ≤
√

yξ(t)Hξ(t) ≤
1

2
(yξ(t) + Hξ(t)).

Hence, since yξ and Hξ are positive, (3.5) gives us

1 + h

c
≤ ȳξ + H̄ξ ≤ 3

2
eCT (yξ(t) + Hξ(t)),

and vξ(t) = 1
1+h (yξ(t) + Hξ(t)) ≥ 2

3ce−CT . Similarly, by applying Gronwall’s

lemma forward in time, we obtain vξ = 1
1+h (yξ(t) + Hξ(t)) ≤ 3

2 ceCT . We have
1

1+h (y +H)(t, ξ+1) = 1
1+h (y +H)(t, ξ)+1. Hence, applying Lemma 3.2, we obtain

that 1
1+h (y(t, · ) + H(t, · )) ∈ Gα′ and therefore X(t) ∈ Fα′ for some α′ depending

only on α, T and
∥

∥X̄
∥

∥

E
. �

For the sake of simplicity, for any X = (y, U, H) ∈ F and any function f ∈ G,

we denote (y ◦ f, U ◦ f, H ◦ f) by X ◦ f . We denote by G̃ the product group G×R.

The group operation on G̃ is given by (f1, γ1) · (f2, γ2) = (f2 ◦ f1, γ1 + γ2) where

(f1, γ1) and (f2, γ2) are two elements of G̃. We define the map Φ: G̃ × F → F as
follows











ȳ = y ◦ f,

H̄ = H ◦ f + γ,

Ū = U ◦ f,

where (ȳ, Ū , H̄) = Φ{(f, γ), (y, U, H)}. We denote (ȳ, Ū , H̄) = (f, γ) • (y, U, H).

Proposition 3.4. The map Φ defines a group action of G̃ on F .

Proof. It is clear that Φ satisfies the fundamental property of a group action, that
is, (f2, γ2) • ((f1, γ1) •X) = (f1 ◦ f2, γ1 + γ2) •X for all X ∈ F and all (f1, γ1) and

(f2, γ2) in G̃. It remains to prove that (f, γ)•X indeed belongs to F . It is not hard
to check that (0, γ) •X belongs to F . Thus, by the group action property, we only
have to show that (f, 0)•X = X◦f belongs to F . We denote X̄ = (ȳ, Ū , H̄) = X◦f .
As compositions of two Lipschitz maps, ȳ, Ū and H̄ are Lipschitz. It is not hard to
check that ȳ(ξ+1) = ȳ(ξ)+1, Ū(ξ+1) = Ū(ξ) and H̄(ξ+1) = H̄(ξ)+H(1)−H(0),
for all ξ ∈ R. Let us prove that

ȳξ = yξ◦f fξ, Ūξ = Uξ◦f fξ and H̄ξ = Hξ◦f fξ (3.6)

almost everywhere. Let B1 be the set where y is differentiable and B2 the set where
ȳ and f are differentiable. Using Radamacher’s theorem, we get that meas(Bc

1) =
meas(Bc

2) = 0. For ξ ∈ B3 = B2 ∩ f−1(B1), we consider a sequence ξi converging
to ξ (ξi 6= ξ). We have

y(f(ξi)) − y(f(ξ))

f(ξi) − f(ξ)

f(ξi) − f(ξ)

ξi − ξ
=

ȳ(ξi) − ȳ(ξ)

ξi − ξ
. (3.7)
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Since f is continuous, f(ξi) converges to f(ξ) and, as y is differentiable at f(ξ), the
left-hand side of (3.7) tends to yξ◦f(ξ) fξ(ξ). The right-hand side of (3.7) tends to
ȳξ(ξ), and we get that

yξ(f(ξ))fξ(ξ) = ȳξ(ξ) (3.8)

for all ξ ∈ B3. Since f−1 is Lipschitz, one-to-one and meas(Bc
1) = 0, we have

meas(f−1(B1)
c) = 0 and therefore (3.8) holds everywhere. One proves the two

other identities in (3.6) similarly. From Lemma 3.2, we have that fξ > 0 almost
everywhere. Then, using (3.6) we easily check that (2.25b) and (2.25c) are fulfilled.
Thus, we have proved that (ȳ, Ū , H̄) fulfills (2.25). We have h̄ = H̄(1) − H̄(0) =
H(1) − H(0) = h. Hence, 1

1+h̄
(ȳ + H̄) = 1

1+h (y + H) ◦ f which implies, since
1

1+h (y + H) and f belongs to G and G is a group, that 1
1+h̄

(ȳ + H̄) ∈ G. Therefore

X̄ ∈ F and the proposition is proved. �

Since G̃ is acting on F , we can consider the quotient space F/G̃ of F with
respect to the group action. We denote by Π(X) = [X ] the projection of F into

the quotient space F/G̃. Let us introduce the subset H of F0 defined as follows

H = {(y, U, H) ∈ F0 |
∫ 1

0

y(ξ) dξ = 0}.

It turns out that H contains one and only one representative in F of each element
of F/G̃, that is, there exists a bijection between H and F/G̃. In order to prove
this we introduce two maps Γ1 : F → F0 and Γ2 : F0 → H defined as follows

Γ1(X) = X ◦ f−1

with f = 1
1+h (y + H) ∈ F and X = (y, U, H), and











ȳ = y(ξ − a)

H̄ = H(ξ − a) + (1 + h)a

Ū = U(ξ − a)

with a =
∫ 1

0
y(ξ) dξ and (ȳ, Ū , H̄) = Γ2(y, U, H). In fact, Γ1(X) = (f−1, 0) •X and

Γ2(X) = (τa, (1 + h)a) • X where τa denotes the translation by a. After noting
that the group action let invariant the quantity h = H(1)−H(0), it is not hard to
check that Γ1(X) indeed belongs to F0, that is, 1

1+h̄
(ȳ+H̄) = Id. Let us prove that

(ȳ, Ū , H̄) = Γ2(y, U, H) belongs to H for any (y, U, H) ∈ F0. On the one hand, we
have

1

1 + h̄
(ȳ + H̄)(ξ) =

1

1 + h
[(y + H) ◦ (ξ − a) + (1 + h)a] = ξ

because h̄ = h and 1
1+h(y + H) = Id as (y, U, H) ∈ F0. On the other hand,

∫ 1

0

ȳ(ξ) dξ =

∫ 1−a

−a

y(ξ) dξ =

∫ 1

0

y(ξ) dξ +

∫ 0

−a

y(ξ) dξ +

∫ 1−a

1

y(ξ) dξ

and, since y(ξ + 1) = y(ξ) + 1, we obtain
∫ 1

0

ȳ(ξ) dξ =

∫ 1

0

y(ξ) dξ +

∫ 0

−a

y(ξ) dξ +

∫ −a

0

y(ξ) dξ − a =

∫ 1

0

y(ξ) dx − a = 0.

Thus Γ2(X) ∈ H. We denote the composition map Γ2 ◦ Γ1 from F to H by Γ. We
have

Γ(X) = (τa, (1 + h)a) • ((f−1, 0) • X) = (f−1 ◦ τa, (1 + h)a) • X

where f and a has been defined above. Thus, Γ(X) belongs to the same equivalence

class as X , and we can define the map Γ̃ : F/G̃ → H on the quotient space as

Γ̃([X ]) = Γ(X) for any representantive X of [X ]. It is easily checked that Γ1 and
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Γ2 let invariant H so that Γ|H = Id|H. Hence, Γ̃ ◦Π|H = Id|H and it follows that Γ̃

is a bijection from F/G̃ to H.

Any topology defined on H is naturally transported into F/G̃ by the bijection Γ̃.
We equip H with the metric induced by the E-norm, i.e., dH(X, X ′) = ‖X − X ′‖E

for all X, X ′ ∈ H. Since H is closed in E, this metric is complete. We define the
metric on F/G̃ as

dF/G̃([X ], [X ′]) =
∥

∥

∥
Γ̃([X ]) − Γ̃([X ′])

∥

∥

∥

E
,

for any [X ], [X ′] ∈ F/G̃. Then, F/G̃ is isometrically isomorphic with H and the
metric dF/G̃ is complete.

Lemma 3.5. Given α ≥ 0. The restriction of Γ to Fα is a continuous map from

Fα to H.

Proof. We prove first that Γ1 is continuous from Fα to F0 and then, that Γ2 is
continuous from F0 to H. We equip Fα with the topology induced by the E-norm.
Let Xn = (yn, Un, Hn) ∈ Fα be a sequence that converges to X = (y, U, H) in
Fα. We denote X̄n = (ȳn, Ūn, H̄n) = Γ1(Xn) and X̄ = (ȳ, Ū , H̄) = Γ1(X). By
definition of F0, we have H̄n = −ζ̄n + h̄nξ (recall that ζn = yn − Id). Let us prove
first that H̄n tends to H̄ in L∞

per. We denote fn = 1
1+hn

(yn +Hn), f = 1
1+h (y +H),

and we have fn, f ∈ Gα. Thus H̄n − H̄ = (Hn −H) ◦ fn
−1 + H̄ ◦ f ◦ fn

−1 − H̄ and
we have

∥

∥H̄n − H̄
∥

∥

L∞
≤ ‖Hn − H‖L∞ +

∥

∥H̄ ◦ f − H̄ ◦ fn

∥

∥

L∞
. (3.9)

From the definition of F0, we know that H̄ is Lipschitz with Lipschitz constant
smaller than 1 + h̄n. Hence,

∥

∥H̄ ◦ f − H̄ ◦ fn

∥

∥

L∞
≤ (1 + h̄n) ‖fn − f‖L∞ . (3.10)

Since Hn and fn converges to H and f , respectively, in L∞
per and h̄n = hn converges

to h, from (3.9) and (3.10), we get that H̄n converges to H̄ in L∞
per. Let us prove

now that H̄n,ξ tend to H̄ξ in L2
per. We have H̄n,ξ − H̄ξ =

Hn,ξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1

which can be decomposed into

H̄n,ξ − H̄ξ =

(

Hn,ξ − Hξ

fn,ξ

)

◦ fn
−1 +

Hξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1. (3.11)

Since fn ∈ Gα, there exists a constant c > 0 independent of n such that 1/c ≥
fn,ξ ≥ c almost everywhere, see Lemma 3.2. We have
∥

∥

∥

∥

(

Hn,ξ − Hξ

fn,ξ

)

◦ fn
−1

∥

∥

∥

∥

2

L2

=

∫ 1

0

(Hn,ξ − Hξ)
2 1

fn,ξ
dξ ≤ c ‖Hn,ξ − Hξ‖2

L2 , (3.12)

where we have made the change of variables ξ′ = fn
−1(ξ). Hence, the left-hand

side of (3.12) converges to zero. If we can prove that
Hξ

fn,ξ
◦ fn

−1 → Hξ

fξ
◦ f−1 in

L2
per, then, using (3.11), we get that H̄n,ξ → H̄ξ in L2

per, which is the desired result.

We recall that, since the space V and H1
per × R are homeomorphic, Hn → H in V

is equivalent to (σn, hn) → (σ, h) in H1
per × R. We have

Hξ

fn,ξ
◦ fn

−1 =
(H̄ξ ◦ f)fξ

fn,ξ
◦ fn

−1 = (H̄ξ ◦ gn)gn,ξ

where gn = f ◦ fn
−1. Let us prove that limn→∞ ‖gn,ξ − 1‖L2 = 0. We have, after

using a change of variables,

‖gn,ξ − 1‖2
L2 =

∫ 1

0

(

fξ

fn,ξ
◦ fn

−1 − 1

)2

dξ = c ‖fξ − fn,ξ‖2
L2 . (3.13)
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Hence, since fn,ξ → fξ in L2
per, limn→∞ ‖gn,ξ − 1‖L2 = 0. We have

∥

∥H̄ξ ◦ gngn,ξ − H̄ξ

∥

∥

L2 ≤
∥

∥H̄ξ ◦ gn

∥

∥

L∞
‖gn,ξ − 1‖L2 +

∥

∥H̄ξ ◦ gn − H̄ξ

∥

∥

L2 . (3.14)

We have
∥

∥H̄ξ ◦ gn

∥

∥

L∞
≤ 1 + hn since, as we already noted, H̄ is Lipschitz with

Lipschitz constant smaller than 1 + h̄n = 1 + hn. Hence, the first term in the sum
in (3.14) converges to zero. As far as the second term is concerned, one can always
approximate H̄ξ in L2

per by a periodic continuous function v. After observing that

1/c2 ≤ gn,ξ ≤ c2 almost everywhere, we can prove, as we have done several times

now, that ‖Hξ ◦ gn − v ◦ gn‖2
L2 ≤ c2 ‖Hξ − v‖2

L2 and v◦gn can be chosen arbitrarily

close to Hξ ◦ gn in L2 independently of n, that is, for all ε > 0, there exists v such
that

‖Hξ ◦ gn − v ◦ gn‖L2 ≤ ε

3
and ‖Hξ − v‖L2 ≤ ε

3
(3.15)

for all n. By Lebesgue’s dominated convergence theorem, we have v◦gn → v in L2
per.

Hence, for n large enough, we have ‖v ◦ gn − v‖L2 ≤ ε
3 which, together with (3.15),

implies
∥

∥H̄ξ ◦ gn − H̄ξ

∥

∥

L2 ≤ ε, and H̄ξ ◦ gn → H̄ξ in L2
per. It remains to prove that

Γ2 is continuous from F0 to H. We consider a sequence Xn = (yn, Un, Hn) in F0

which converges to X = (y, U, H) and denote an =
∫ 1

0
yn(ξ) dξ and a =

∫ 1

0
y(ξ) dξ.

We set X̄n = Γ2(Xn) and X̄ = Γ2(X). Since yn → y in L∞, an → a. We have
ȳn = yn ◦ τan

, H̄ = Hn ◦ τan
+(1+hn)an, Ūn = U ◦ τan

where hn = Hn(1)−Hn(0).
Since, τan

→ τa in H1 and τan,ξ = 1 so that the τan,ξ are clearly uniformly bounded
away from zero and infinity, we can repeat the proof of continuity of Γ1 and prove
that yn ◦ τan

→ y ◦ τa, Hn ◦ τan
→ H ◦ τa and Un ◦ τan

→ U ◦ τa in H1. Then, as

an → a, it follows that X̄n → X̄ and the continuity of Γ̃2 is proved. �

Remark 3.6. The map Γ1 is not continuous from F to F0 and therefore neither
is the map Γ from F to H. The spaces Fα were precisely introduced in order to
make the map Γ continuous.

3.1. Continuous semigroup of solutions in F/G̃. We denote by S : F ×R+ →
F the continuous semigroup which to any initial data X̄ ∈ F associates the solution
X(t) of the system of differential equation (2.15) at time t. As we indicated earlier,
the Camassa–Holm equation is invariant with respect to relabeling, more precisely,
using our terminology, we have the following result.

Theorem 3.7. For any t > 0, the map St : F → F is G̃-equivariant, that is,

St ((f, γ) • X) = (f, γ) • St(X) (3.16)

for any X ∈ F and (f, γ) ∈ G̃. Hence, the map S̃t from F/G̃ to F/G̃ given by

S̃t([X ]) = [StX ]

is well-defined. It generates a continuous semigroup.

Proof. For any X0 = (y0, U0, H0) ∈ F and (f, γ) ∈ G̃, we denote X̄0 = (ȳ0, Ū0, H̄0) =
(f, γ) • X0, X(t) = St(X0) and X̄(t) = St(X̄0). We claim that (f, γ) • X(t) sat-
isfies (2.15) and therefore, since (f, γ) • X(t) and X̄(t) satisfy the same system
of differential equation with the same initial data, they are equal. We denote
X̂(t) = (ŷ(t), Û (t), Ĥ(t)) = (f, γ) • X(t). We have

Ût =
1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − y(η))
) [

U(η)2yξ(η) + Hξ(η)
]

dη.

(3.17)

We have ŷξ(ξ) = yξ(f(ξ))fξ(ξ) and Ĥξ(ξ) = Hξ(f(ξ))fξ(ξ) for almost every ξ ∈ R.
Hence, after the change of variable η = f(η′), we get from (3.17) that

Ût =
1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − ŷ(η))
)

[

Û(η)2ŷξ(η) + Ĥξ(η)
]

dη.
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We treat similarly the other terms in (2.15), and it follows that (ŷ, Û , Ĥ) is a

solution of (2.15). Since (ŷ, Û , Ĥ) and (ȳ, Ū , H̄) satisfy the same system of ordinary
differential equations with the same initial data, they are equal, i.e., X̄(t) = (f, γ)•
X(t) and (3.16) is proved. We have the following diagram:

H Π
// F/G̃

Fα

Γ

OO

H

St

OO

Π
// F/G̃

S̃t

OO

(3.18)

on a bounded domain of H whose diameter together with t determines the constant
α, see Lemma 3.3. By the definition of the metric on F/G̃, the map Π is an isometry

from H to F/G̃. Hence, from the diagram (3.18), we see that S̃t : F/G̃ → F/G̃
is continuous if and only if Γ ◦ St : H → H is continuous. Let us prove that
Γ ◦ St : H → H is sequentially continuous. We consider a sequence Xn ∈ H that
converges to X ∈ H in H, that is, limn→∞ ‖Xn − X‖E = 0. From Theorem 2.7,
we get that limn→∞ ‖St(Xn) − St(X)‖E = 0. Since Xn → X in E, there exists a
constant C ≥ 0 such that ‖Xn‖ ≤ C for all n. Lemma 3.3 gives us that St(Xn) ∈ Fα

for some α which depends on C and t. Hence, St(Xn) → St(X) in Fα. Then, by
Lemma 3.5, we obtain that Γ ◦ St(Xn) → Γ ◦ St(X) in H. �

3.2. Maps between the two coordinate systems. Our next task is to derive
the correspondence between Eulerian coordinates (functions in D) and Lagrangian

coordinates (functions in F/G̃). Earlier we considered initial data in D with a
special structure: The energy density µ was given by (u2 + u2

x) dx and therefore µ
did not have any singular part. The set D however allows the energy density to
have a singular part and a positive amount of energy can concentrate on a set of
Lebesgue measure zero. We constructed corresponding initial data in F0 by the
means of (2.24). This construction can be generalized to the set D. To any positive
periodic Radon measure µ, we associate the function Fµ defined as

Fµ(x) =











µ([0, x)) if x > 0,

0 if x = 0,

−µ([x, 0)) if x < 0.

The function Fµ is lower-semicontinuous, increasing and

Fµ(b) − Fµ(a) = µ([a, b)) (3.19)

for all a < b in R, see for example [16]. We denote by L : D → F/G̃ the map
transforming Eulerian coordinates into Lagrangian coordinates whose definition is
contained in the following theorem.

Theorem 3.8. For any (u, µ) in D, let

h = µ([0, 1)), (3.20a)

y(ξ) = sup {y | Fµ(y) + y < (1 + h)ξ} , (3.20b)

H(ξ) = (1 + h)ξ − y(ξ), (3.20c)

U(ξ) = u◦y(ξ) . (3.20d)

Then (y, U, H) ∈ F0. We define L(u, µ) ∈ F/G̃ to be the equivalence class of

(y, U, H).
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Proof. From (3.19), since µ is periodic, we obtain that

Fµ(z + 1) = Fµ(z) + h. (3.21)

Hence, for all z ∈ R, we have Fµ(z + 1) + z + 1 < (1 + h)(ξ + 1) if and only if
Fµ(z)+z < (1+h)ξ, and it follows that y(ξ+1) = y(ξ)+1 and H(ξ+1) = H(ξ)+h
for all ξ ∈ R. The function Fµ is increasing. Hence, the function z 7→ Fµ(z) + z
and therefore y are also increasing. Let us prove that y is Lipschitz with Lipschitz
constant at most 1+h. We consider ξ, ξ′ in R such that ξ < ξ′ and y(ξ) < y(ξ′) (the
case y(ξ) = y(ξ′) is straightforward). It follows from the definition that there exists
an increasing sequence, x′

i, and a decreasing one, xi such that limi→∞ xi = y(ξ),
limi→∞ x′

i = y(ξ′) with Fµ(x′
i) + x′

i < (1 + h)ξ′ and Fµ(xi) + xi ≥ (1 + h)ξ.
Subtracting the second inequality from the first, we obtain

Fµ(x′
i) − Fµ(xi) + x′

i − xi < (1 + h)(ξ′ − ξ). (3.22)

For i large enough, since by assumption y(ξ) < y(ξ′), we have xi < x′
i and therefore

Fµ(x′
i) − Fµ(xi) = µ([xi, x

′
i)) ≥ 0. Hence, x′

i − xi < (1 + h)(ξ′ − ξ). Letting i tend
to infinity, we get y(ξ′)−y(ξ) ≤ (1+h)(ξ′−ξ). Hence, y is Lipschitz with Lipschitz
constant bounded by 1+h and, by Rademacher’s theorem, it is differentiable almost
everywhere. Following [16], we decompose µ into its absolute continuous, singular
continuous and singular part, denoted µac, µsc and µs, respectively. Here, since
(u, µ) ∈ D, we have µac = (u2 + u2

x) dx. The support of µs consists of a countable
set of points. The points of discontinuity of Fµ exactly coincide with the support
of µs (see [16]). Let A denote the complement of y−1(supp(µs)). We claim that for
any ξ ∈ A, we have

Fµ(y(ξ)) + y(ξ) = (1 + h)ξ. (3.23)

From the definition of y(ξ) follows the existence of an increasing sequence xi which
converges to y(ξ) and such that Fµ(xi) + xi < (1 + h)ξ. Since Fµ is lower semi-
continuous, limi→∞ Fµ(xi) = Fµ(y(ξ)) and therefore

Fµ(y(ξ)) + y(ξ) ≤ (1 + h)ξ. (3.24)

Let us assume that Fµ(y(ξ)) + y(ξ) < (1 + h)ξ. Since y(ξ) is a point of continuity
of Fµ, we can then find an x such that x > y(ξ) and Fµ(x) + x < (1 + h)ξ. This
contradicts the definition of y(ξ) and proves our claim (3.23). In order to check
that (2.25c) is satisfied, we have to compute yξ and Uξ. We define the set B1 as

B1 =

{

x ∈ R | lim
ρ↓0

1

2ρ
µ((x − ρ, x + ρ)) = (u2 + u2

x)(x)

}

.

Since (u2+u2
x) dx is the absolutely continuous part of µ, we have, from Besicovitch’s

derivation theorem (see [2]), that meas(Bc
1) = 0. Given ξ ∈ y−1(B1), we denote

x = y(ξ). We claim that for all i ∈ N, there exists 0 < ρ < 1
i such that x − ρ

and x + ρ both belong to supp(µs)
c. Assume namely the opposite. Then for any

z ∈ (x− 1
i , x+ 1

i )\supp(µs), we have that z′ = 2x−z belongs to supp(µs). Thus we

can construct an injection between the uncountable set (x− 1
i , x+ 1

i )\supp(µs) and
the countable set supp(µs). This is impossible, and our claim is proved. Hence, since
y is surjective, we can find two sequences ξi and ξ′i in A such that 1

2 (y(ξi)+y(ξ′i)) =

y(ξ) and y(ξ′i) − y(ξi) < 1
i . We have, by (3.19) and (3.23), since y(ξi) and y(ξ′i)

belong to A,

µ([y(ξi), y(ξ′i))) + y(ξ′i) − y(ξi) = (1 + h)(ξ′i − ξi). (3.25)

Since y(ξi) /∈ supp(µs), µ({y(ξi)}) = 0 and µ([y(ξi), y(ξ′i))) = µ((y(ξi), y(ξ′i))).
Dividing (3.25) by ξ′i − ξi and letting i tend to ∞, we obtain

yξ(ξ)(u
2 + u2

x)(y(ξ)) + yξ(ξ) = 1 + h (3.26)
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where y is differentiable in y−1(B1), that is, almost everywhere in y−1(B1). We
now derive a short lemma which will be useful several times in this proof.

Lemma 3.9. Given an increasing Lipschitz function f : R → R, for any set B of

measure zero, we have fξ = 0 almost everywhere in f−1(B).

Proof of Lemma 3.9. The lemma follows directly from the area formula:
∫

f−1(B)

fξ(ξ) dξ =

∫

R

H0
(

f−1(B) ∩ f−1({x})
)

dx (3.27)

where H0 is the multiplicity function, see [2] for the formula and the precise defini-
tion of H0. The function H0

(

f−1(B) ∩ f−1({x})
)

is Lebesgue measurable (see [2])

and it vanishes on Bc. Hence,
∫

f−1(B) fξ dξ = 0 and therefore, since fξ ≥ 0, fξ = 0

almost everywhere in f−1(B). �

We apply Lemma 3.9 to Bc
1 and get, since meas(Bc

1) = 0, that yξ = 0 almost
everywhere on y−1(Bc

1). On y−1(B1), we proved that yξ satisfies (3.26). It follows
that 0 ≤ yξ ≤ 1 + h almost everywhere, which implies, since Hξ = 1 + h − yξ, that
Hξ ≥ 0. In the same way as we proved that y was Lipschitz with Lipschitz constant

at most 1 + h, we can prove that the function ξ 7→
∫ y(ξ)

−∞ u2
x dx is also Lipschitz.

Indeed, from (3.22), for i large enough, we have

∫ x′

i

xi

u2
x dx ≤ µac([xi, x

′
i)) ≤ µ([xi, x

′
i)) = Fµ(x′

i) − Fµ(xi) < (1 + h)(ξ′ − ξ).

Since limi→∞ x′
i = y(ξ′) and limi→∞ xi = y(ξ), letting i tend to infinity, we obtain

∫ y(ξ′)

y(ξ) u2
x dx < (1 + h)(ξ′ − ξ) and the function ξ 7→

∫ y(ξ)

0 u2
x dx is Lipchitz with

Lipschitz coefficient at most 1 + h. For all (ξ, ξ′) ∈ R
2, we have, after using the

Cauchy–Schwarz inequality,

|U(ξ′) − U(ξ)| =

∫ y(ξ′)

y(ξ)

ux dx

≤
√

y(ξ′) − y(ξ)

√

∫ y(ξ′)

y(ξ)

u2
x dx (3.28)

≤ (1 + h) |ξ′ − ξ|

because y and ξ 7→
∫ y(ξ)

0
u2

x dx are Lipschitz with Lipschitz constant at most 1 + h.
Hence, U is also Lipschitz and therefore differentiable almost everywhere. We
denote by B2 the set of Lebesgue points of ux in B1, i.e.,

B2 = {x ∈ B1 | lim
ρ→0

1

ρ

∫ x+ρ

x−ρ

ux(t) dt = ux(x)}.

We have meas(Bc
2) = 0. We choose a sequence ξi and ξ′i such that 1

2 (y(ξi)+y(ξ′i)) =

x and y(ξ′i) − y(ξi) ≤ 1
i . Thus

U(ξ′i) − U(ξi)

ξ′i − ξi
=

∫ y(ξ′

i)

y(ξi)
ux(t) dt

y(ξ′i) − y(ξi)

y(ξ′i) − y(ξi)

ξ′i − ξi
.

Hence, letting i tend to infinity, we get that for every ξ in y−1(B2) where U and y
are differentiable, that is, almost everywhere on y−1(B2),

Uξ(ξ) = yξ(ξ)ux(y(ξ)). (3.29)
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From (3.28) and using the fact that ξ 7→
∫ y(ξ)

0 u2
x dx is Lipschitz with Lipschitz

constant at most 1 + h, we get
∣

∣

∣

∣

U(ξ′) − U(ξ)

ξ′ − ξ

∣

∣

∣

∣

≤
√

1 + h

√

y(ξ′) − y(ξ)

ξ′ − ξ
.

Hence,

|Uξ(ξ)| ≤
√

yξ(ξ). (3.30)

Since meas(Bc
2) = 0, we have by Lemma 3.9, that yξ = 0 almost everywhere on

y−1(Bc
2). Hence, Uξ = 0 almost everywhere on y−1(Bc

2). Thus, we have computed
Uξ almost everywhere. It remains to verify (2.25c). We have, after using (3.26)
and (3.29), that yξHξ = yξ(1 + h − yξ) = y2

ξ (u2 + u2
x) ◦ y and, finally, yξHξ =

y2
ξU2 + U2

ξ almost everywhere on y−1(B2). On y−1(Bc
2), we have yξ = Uξ = 0

almost everywhere. Therefore (2.25c) is satisfied almost everywhere. By definition,
we have 1

1+h(y + H) = Id, which concludes the proof of the theorem. �

Remark 3.10. If µ is absolutely continuous, then µ = (u2 + u2
x)dx and, from

(3.23), we get
∫ y(ξ)

0

(u2 + u2
x) dx + y(ξ) = (1 + h)ξ

for all ξ ∈ R.

At the very beginning, H(t, ξ) was introduced as the energy contained in a strip
between y(0, ξ) and y(t, ξ), see (2.3). This interpretation still holds. We obtain
µ, the energy density in Eulerian coordinates, by pushing forward by y the energy
density in Lagrangian coordinates, Hξ dξ. We recall that the push-forward of a
measure ν by a measurable function f is the measure f#ν defined as

f#ν(B) = ν(f−1(B))

for all Borel sets B. We are led to the map M which transforms Lagrangian coor-
dinates into Eulerian coordinates and whose definition is contained in the following
theorem.

Theorem 3.11. Given any element [X ] in F/G̃. Then, (u, µ) defined as follows

u(x) = U(ξ) for any ξ such that x = y(ξ), (3.31a)

µ = y#(Hξ dξ) (3.31b)

belongs to D and is independent of the representative X = (y, U, H) ∈ F we choose

for [X ]. We denote by M : F/G̃ → D the map which to any [X ] in F/G̃ associates

(u, µ) as given by (3.31).

Proof. First we have to prove that the definition of u makes sense. Since y is
surjective, there exists ξ, which may not be unique, such that x = y(ξ). It remains
to prove that, given ξ1 and ξ2 such that x = y(ξ1) = y(ξ2), we have

U(ξ1) = U(ξ2). (3.32)

Since y(ξ) is an increasing function in ξ, we must have y(ξ) = x for all ξ ∈ [ξ1, ξ2]
and therefore yξ(ξ) = 0 in [ξ1, ξ2]. From (2.25c), we get that Uξ(ξ) = 0 for all
ξ ∈ [ξ1, ξ2] and (3.32) follows. It is not hard to check that u(x + 1) = u(x).

Since y is proper and Hξ dξ is a Radon measure, we have, see [2, Remark 1.71],
that µ is also a Radon measure. The fact that y(ξ + 1) = y(ξ) + 1 implies that
y−1(B +1) = 1+y−1(B) and, since Hξ is periodic, it follows that µ is also periodic.
For any X̄ = (ȳ, Ū , H̄) ∈ F which is equivalent to X , we denote (ū, µ̄) the pair given

by (3.31) when we replace X by X̄ . There exists (f, γ) ∈ G̃ such that X = (f, γ)•X̄ .



PERIODIC CONSERVATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION 23

For any x, there exists ξ′ such that x = ȳ(ξ′) and ū(x) = Ū(ξ′). Let ξ = f−1(ξ′).
As x = ȳ(ξ′) = y(ξ), by (3.31a), we get u(x) = U(ξ) and, since U(ξ) = Ū(ξ′), we
finally obtain ū(x) = u(x). For any continuous function with compact support φ,
we have

∫

R

φ dµ̄ =

∫

R

φ ◦ ȳ(ξ′)H̄ξ(ξ
′) dξ′,

see [2]. Hence, after making the change of variables ξ′ = f(ξ), we obtain
∫

R

φ dµ̄ =

∫

R

φ ◦ ȳ ◦ f(ξ) H̄ξ ◦ f(ξ) fξ(ξ) dξ

and, since Hξ = H̄ξ ◦ ffξ almost everywhere,
∫

R

φ dµ̄ =

∫

R

φ ◦ y(ξ)Hξ(ξ) dξ =

∫

R

φ dµ.

Since φ was arbitrary in Cc(R), we get µ̄ = µ. This proves that X and X̄ give raise
to the same pair (u, µ), which therefore does not depend on the representative of
[X ] we choose.

Let us prove that u ∈ H1. We have u ∈ L∞, u periodic and it remains to prove
that ux ∈ L2

loc(R). Given a bounded open set U of R, for any smooth function φ
with compact support in U , we have, using the change of variables x = y(ξ),
∫

U

u(x)φx(x) dx =

∫

y−1(U)

U(ξ)φx(y(ξ))yξ(ξ) dξ = −
∫

y−1(U)

Uξ(ξ)(φ ◦ y)(ξ) dξ

(3.33)
after integrating by parts. Let B1 = {ξ ∈ y−1(U) | yξ(ξ) > 0}. Because of
(2.25c), and since yξ ≥ 0 almost everywhere, we have Uξ = 0 almost everywhere on
Bc

1. Hence, we can restrict the integration domain in (3.33) to B1. We divide and
multiply by

√
yξ the integrand in (3.33) and obtain, after using the Cauchy–Schwarz

inequality,

∣

∣

∣

∣

∫

U

uφx dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B1

Uξ√
yξ

(φ ◦ y)
√

yξ dξ

∣

∣

∣

∣

≤
√

∫

B1

U2
ξ

yξ
dξ

√

∫

B1

(φ ◦ y)2yξ dξ.

By (2.25c), we have
U2

ξ

yξ
≤ Hξ . Hence, after another change of variables, we get

∣

∣

∣

∣

∫

U

uφx dx

∣

∣

∣

∣

≤
√

∫

y−1(U)

Hξ dξ ‖φ‖L2(U) . (3.34)

Since limξ→±∞ y(ξ) = ±∞, y−1(U) is bounded and (3.34) implies that ux ∈ L2(U).
As U was an arbitrary bounded open set, it follows that ux ∈ L2

loc.
Let us prove that the absolutely continuous part of µ is equal to (u2 + u2

x) dx.
We introduce the sets Z and B defined as follows

Z =
{

ξ ∈ R | y is differentiable at ξ and yξ(ξ) = 0

or y or U are not differentiable at ξ
}

and

B = {x ∈ y(Z)c | u is differentiable at x} .

Since u belongs to H1, it is differentiable almost everywhere. We have, since y is
Lipschitz and by the definition of Z, that meas(y(Z)) =

∫

Z yξ(ξ) dξ = 0. Hence,

meas(Bc) = 0. For any ξ ∈ y−1(B), we denote x = y(ξ). By necessity, we have
ξ ∈ Zc. Let ξi be a sequence converging to ξ such that ξi 6= ξ for all i. We write
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xi = y(ξi). Since yξ(ξ) > 0, for i large enough, xi 6= x. The following quantity is
well-defined

U(ξi) − U(ξ)

ξi − ξ
=

u(xi) − u(x)

xi − x

xi − x

ξi − ξ
.

Since u is differentiable at x and ξ belongs to Zc, we obtain, after letting i tend to
infinity, that

Uξ(ξ) = ux(y(ξ))yξ(ξ). (3.35)

For all subsets B′ of B, we have

µ(B′) =

∫

y−1(B′)

Hξ dξ =

∫

y−1(B′)

(

U2 +
U2

ξ

y2
ξ

)

yξ dξ.

We can divide by yξ in the integrand above because yξ does not vanish on y−1(B).
After a change of variables and using (3.35), we obtain

µ(B′) =

∫

B′

(u2 + u2
x) dx. (3.36)

Since (3.36) holds for any set B′ ⊂ B and meas(Bc) = 0, we have µac = (u2 +
u2

x) dx. �

The next theorem shows that the transformation from Eulerian to Lagrangian
coordinates is a bijection.

Theorem 3.12. The maps M and L are invertible. We have

L ◦ M = IdF/G̃ and M ◦ L = IdD .

Proof. Given [X ] in F/G̃, we choose X = (y, U, H) = Γ̃([X ]) as a representative
of [X ] and consider (u, µ) given by (3.31) for this particular X . Note that, from

the definition of Γ̃, we have X ∈ H. Let X̄ = (ȳ, Ū , H̄) be the representative of
L(u, µ) in F0 given by the formulas (3.20). We claim that (ȳ, Ū , H̄) and (y, U, H)
are equivalent and therefore L ◦ M = IdF/G̃. Let

g(x) = sup{ξ ∈ R | y(ξ) < x}. (3.37)

It is not hard to prove, using the fact that y is increasing and continuous, that

y(g(x)) = x (3.38)

and y−1([a, b)) = [g(a), g(b)) for any a < b in R. Hence, by (3.31b), we have

µ([a, b)) =

∫

y−1([a,b))

Hξ dξ =

∫ g(b)

g(a)

Hξ dξ = H(g(b)) − H(g(a)). (3.39)

Since X ∈ F0, y+H = (1+h) Id and from (3.38) we obtain H(g(b)) = (1+h)g(b)−b
and a similar expression for H(g(a)). From (3.39) and the definition of Fµ, it follows
then that

Fµ(x) + x = (1 + h)(g(x) − g(0)). (3.40)

Inserting this result into the definition of ȳ, we obtain that

ȳ(ξ) = sup{x ∈ R | g(x) < ξ + g(0)}. (3.41)

For any given ξ ∈ R, let us consider an increasing sequence xi tending to ȳ(ξ)
such that g(xi) < ξ + g(0); such sequence exists by (3.41). Since y is increasing
and using (3.38), it follows that xi ≤ y(ξ + g(0)). Letting i tend to ∞, we obtain
ȳ(ξ) ≤ y(ξ + g(0)). Assume that ȳ(ξ) < y(ξ + g(0)). Then, there exists x such that
ȳ(ξ) < x < y(ξ+g(0)) and equation (3.41) then implies that g(x) ≥ ξ+g(0). Hence,
x ≥ y(ξ + g(0)), as y is increasing, and contradicts the fact that x < y(ξ + g(0)).
Thus we have

ȳ(ξ) = y(ξ + g(0)). (3.42)
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Since X̄ ∈ F0, H̄(ξ) = (1 + h)ξ − ȳ(ξ). Hence, H̄(ξ) = (1 + h)ξ − y(ξ + g(0)) and,
since y(ξ + g(0)) + H(ξ + g(0)) = (1 + h)(ξ + g(0)),

H̄(ξ) = H(ξ + g(0)) − (1 + h)g(0). (3.43)

It is not hard to prove that

Ū(ξ) = U(ξ + g(0)) (3.44)

From (3.42), (3.43) and (3.44), it follows, as claimed, that X and X̄ are equivalent,
as X̄ = (τ−g(0),−(1 + h)g(0)) • X . In fact, we have X = Γ2(X̄). Thus we have
proved that L ◦ M = IdF/G̃.

Given (u, µ) in D, we denote by (y, U, H) the representative of L(u, µ) in F0

given by (3.20). Then, let (ū, µ̄) = M ◦L(u, µ). We claim that (ū, µ̄) = (u, µ). Let
g be the function defined as before by (3.37). The same computation that leads to
(3.40) now gives

Fµ̄(x) + x = (1 + h)(g(x) − g(0)). (3.45)

Given ξ ∈ R, we consider an increasing sequence xi which converges to y(ξ) and
such that Fµ(xi) + xi < (1 + h)ξ. The existence of such sequence is guaranteed
by (3.20b). Passing to the limit and since Fµ is lower semi-continuous, we obtain
Fµ(y(ξ)) + y(ξ) ≤ (1 + h)ξ. We take ξ = g(x) and get

Fµ(x) + x ≤ (1 + h)g(x). (3.46)

From the definition of g, there exists an increasing sequence ξi which converges to
g(x) such that y(ξi) < x. The definition (3.20b) of y tells us that Fµ(x) + x ≥
(1 + h)ξi. Letting i tend to infinity, we obtain Fµ(x) + x ≥ (1 + h)g(x) which,
together with (3.46), yields

Fµ(x) + x = (1 + h)g(x). (3.47)

Comparing (3.47) and (3.45) we get that Fµ = Fµ̄ +(1+h)g(0). Hence µ̄ = µ. It is
clear from the definitions that ū = u. Hence, (ū, µ̄) = (u, µ) and M ◦L = IdD. �

4. Continuous semigroup of solutions on D
The fact that we have been able to establish a bijection between the two coor-

dinate systems, F/G̃ and D, enables us now to transport the topology defined in

F/G̃ into D. On D we define the distance dD which makes the bijection L between

D and F/G̃ into an isometry:

dD((u, µ), (ū, µ̄)) = dF/G̃(L(u, µ), L(ū, µ̄)).

Since F/G̃ equipped with dF/G̃ is a complete metric space, we have the following

theorem.

Theorem 4.1. D equipped with the metric dD is a complete metric space.

For each t ∈ R, we define the map Tt from D to D by

Tt = MS̃tL.

We have the following commutative diagram:

D F/G̃
M

oo

D

Tt

OO

L
// F/G̃

S̃t

OO

(4.1)

Our main theorem reads as follows.
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Theorem 4.2. T : D × R+ → D (where D is defined by Definition 3.1) defines a

continuous semigroup of solutions of the Camassa–Holm equation, that is, given

(ū, µ̄) ∈ D, if we denote t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory,

then u is a weak solution of the Camassa–Holm equation (1.3). Moreover µ is a

weak solution of the following transport equation for the energy density

µt + (uµ)x = (u3 − 2Pu)x. (4.2)

Furthermore, we have that

µ(t)([0, 1)) = µ(0)([0, 1)) for all t, (4.3)

and

µ(t)([0, 1)) = µac(t)([0, 1)) = ‖u(t)‖2
H1

per
= µ(0)([0, 1)) for almost all t. (4.4)

Remark 4.3. We denote the unique solution described in the theorem as a con-

servative weak solution of the Camassa–Holm equation.

Proof. The proof is similar to the non periodic case. We want to prove that, for all
φ ∈ C∞(R+ × R) with compact support,
∫

R+×R

[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt =

∫

R+×R

−Px(t, x)φ(t, x) dxdt

(4.5)
where P is given by (2.11) or equivalently (2.6). Let (y(t), U(t), H(t)) be a rep-
resentative of L(u(t), µ(t)) which is solution of (2.15). Since y is Lipschitz in ξ
and invertible for t ∈ Kc (see (2.32) for the definition of K, in particular, we have
meas(K) = 0), we can use the change of variables x = y(t, ξ) and, using (3.29), we
get

∫

R+×R

[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt

=

∫

R+×R

[−U(t, ξ)yξ(t, ξ)φt(t, y(t, ξ)) + U(t, ξ)Uξ(t, ξ)φ(t, y(t, ξ))] dξdt. (4.6)

Using the fact that yt = U and yξt = Uξ, one easily checks that

(Uyξφ ◦ y)t − (U2φ)ξ = Uyξφt ◦ y − UUξφ ◦ y + Utyξφ ◦ y. (4.7)

After integrating (4.7) over R+ × R, the left-hand side of (4.7) vanishes and we
obtain
∫

R+×R

[−Uyξ φt◦y + UUξ φ◦y ] dξdt

=
1

4

∫

R+×R2

[

sgn(ξ−η)e−{sgn(ξ−η)(y(ξ)−y(η)}×
(

U2yξ+Hξ

)

(η)yξ(ξ)φ◦y(ξ)
]

dηdξdt

(4.8)

by (2.15). Again, to simplify the notation, we deliberately omitted the t variable.
On the other hand, by using the change of variables x = y(t, ξ) and z = y(t, η)
when t ∈ Kc, we have

−
∫

R+×R

Px(t, x)φ(t, x) dxdt =
1

2

∫

R+×R2

[

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

u2(t, y(η)) +
1

2
u2

x(t, y(η))
)

φ(t, y(ξ))yξ(η)yξ(ξ)
]

dηdξdt.
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Since, from Lemma 2.6, yξ is strictly positive for t ∈ Kc and almost every ξ, we
can replace ux(t, y(t, η)) by Uξ(t, η)/yξ(t, η), see (3.29), in the equation above and,
using the fact that y is an increasing function and the identity (2.25c), we obtain

−
∫

R+×R

Px(t, x)φ(t, x) dxdt =
1

4

∫

R+×R2

[

sgn(ξ−η) exp
(

−sgn(ξ−η)(y(ξ)−y(η)
)

×
(

U2yξ + Hξ

)

(η)yξ(ξ)φ(t, y(ξ))
]

dηdξdt. (4.9)

Thus, comparing (4.8) and (4.9), we get
∫

R+×R

[−Uyξ φt(t, y) + UUξ φ] dξdt = −
∫

R+×R

Px(t, x)φ(t, x) dxdt

and (4.5) follows from (4.6). Similarly, one proves that µ(t) is solution of (4.2). We
have y−1([0, 1)) = [g(0), g(1)) where g is given by (3.37). From (3.37) and the fact
that y(ξ +1) = y(ξ)+1 for all ξ, we infer that g(x+1) = g(x)+1. Hence, it follows
from (3.31a), since Hξ is periodic, that

µ(t)([0, 1)) =

∫

[g(0),g(0)+1)

Hξ dξ =

∫

[0,1)

Hξ dξ = H(t, 1) − H(t, 0)

which is constant in time, from the governing equation (2.15). Hence, (4.3) is
proved. We know from Lemma 2.6 (ii) that, for t ∈ Kc, yξ(t, ξ) > 0 for almost
every ξ ∈ R. Given t ∈ Kc (the time variable is suppressed in the notation when
there is no ambiguity), we have, for any Borel set B,

µ(t)(B) =

∫

y−1(B)

Hξ dξ =

∫

y−1(B)

(

U2 +
U2

ξ

y2
ξ

)

yξ dξ (4.10)

from (2.25c) and because yξ(t, ξ) > 0 almost everywhere for t ∈ Kc. Since y is
one-to-one when t ∈ Kc and ux ◦ yyξ = Uξ almost everywhere, we obtain from
(4.10) that

µ(t)(B) =

∫

B

(u2 + u2
x)(t, x) dx.

Hence, as meas(K) = 0, (4.4) is proved. �

5. The topology on D
The metric dD gives to D the structure of a complete metric space while it

makes continuous the semigroup Tt of conservative solutions for the Camassa–Holm
equation as defined in Theorem 4.2. In that respect, it is a suitable metric for the
Camassa–Holm equation. However, as the definition of dD is not straightforward,
this metric is not so easy to manipulate and in this section we compare it with more
standard topologies. More precisely, we establish that convergence in H1

per implies
convergence in (D, dD), which itself implies convergence in L∞

per.

Proposition 5.1. The map

u 7→ (u, (u2 + u2
x)dx)

is continuous from H1
per into D. In other words, given a sequence un ∈ H1

per

converging to u in H1
per, then (un, (u2

n + u2
nx)dx) converges to (u, (u2 + u2

x)dx) in

D.

Proof. Let Xn = (yn, Un, Hn) and X = (y, U, H) be the representatives in F0 given
by (3.20) of L(un, (u2

n + u2
nx)dx) and L(u, (u2 + u2

x)dx), respectively. By definition

of the topology of D and F/G̃, we have to prove that Γ(Xn) → Γ(X) in H. Since Γ
is continuous from F0 into H, see Lemma 3.5, it is enough to prove that Xn → X



28 HOLDEN AND RAYNAUD

in E. We write gn = u2
n + u2

n,x and g = u2 + u2
x; gn and g are periodic. Following

Remark 3.10, we have
∫ y(ξ)

0

g(x) dx + y(ξ) = (1 + h)ξ ,

∫ yn(ξ)

0

gn(x) dx + yn(ξ) = (1 + hn)ξ (5.1)

and, after taking the difference between the two equations, we obtain
∫ y(ξ)

0

(g − gn)(x) dx +

∫ y(ξ)

yn(ξ)

gn(x) dx + y(ξ) − yn(ξ) = (hn − h)ξ. (5.2)

Since gn is positive,
∣

∣

∣
y − yn +

∫ y

yn
gn(x) dξ)

∣

∣

∣
= |y − yn| +

∣

∣

∣

∫ y

yn
gn(x) dξ)

∣

∣

∣
and (5.2)

implies

|y(ξ) − yn(ξ)| ≤
∫ y(ξ)

0

|g − gn| dx + |hn − h| |ξ| ≤ ‖g − gn‖L1 + |hn − h|

because y(0) = 0 and therefore [0, y(ξ)] ⊂ [0, 1] for ξ ∈ [0, 1]. Since un → u in
H1, gn → g in L1 and it follows that ζn → ζ and Hn → H in L∞. We recall that
ζ(ξ) = y(ξ) − ξ and H = hξ − ζ (as X, Xn ∈ F0). We have

Un − U = un ◦ yn − u ◦ yn + u ◦ yn − u ◦ y. (5.3)

Since un → u in L∞, un ◦ yn → u ◦ yn in L∞. Moreover, since u is uniformly
continuous [0, 1] and yn → y in L∞, u ◦ yn − u ◦ y in L∞. Hence, it follows from
(5.3) that Un → U in L∞. The measures (u2 + u2

x)dx and (u2
n + u2

n,x)dx have, by
definition, no singular part and in that case (3.26) holds almost everywhere, that
is,

yξ =
1

g ◦ y + 1
and yn,ξ =

1

gn ◦ yn + 1
(5.4)

almost everywhere. Hence,

ζn,ξ − ζξ = (g ◦ y − gn ◦ yn)yn,ξyξ

= (g ◦ y − g ◦ yn)yn,ξyξ + (g ◦ yn − gn ◦ yn)yn,ξyξ. (5.5)

Since 0 ≤ yξ ≤ 1 + h, we have
∫

[0,1]

|g ◦ yn − gn ◦ yn| yn,ξyξ dξ ≤ (1 + h)

∫

[0,1]

|g ◦ yn − gn ◦ yn| yn,ξ dξ (5.6)

= (1 + h) ‖g − gn‖L1 .

Let C = supn(1 + hn). For any ε > 0, there exists a continuous function v with
compact support such that ‖g − v‖L1 ≤ ε/3C. We can decompose the first term in
the right-hand side of (5.5) into

(g ◦ y − g ◦ yn)yn,ξyξ = (g ◦ y − v ◦ y)yn,ξyξ

+ (v ◦ y − v ◦ yn)yn,ξyξ + (v ◦ yn − g ◦ yn)yn,ξyξ. (5.7)

Then, we have
∫

[0,1]

|g ◦ y − v ◦ y| yn,ξyξ dξ ≤ (1 + hn)

∫

|g ◦ y − v ◦ y| yξ dξ ≤ C ‖g − v‖L1 ≤ ε/3

and, similarly, we obtain
∫

[0,1]
|g ◦ yn − v ◦ yn| yn,ξyξ dξ ≤ ε/3. Since yn → y in L∞

and v is continuous, by applying the Lebesgue dominated convergence theorem, we
obtain v ◦ yn → v ◦ y in L1 and we can choose n big enough so that

∫

[0,1]

|v ◦ y − v ◦ yn| yn,ξyξ dξ ≤ C2 ‖v ◦ y − v ◦ yn‖L1 ≤ ε/3.
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Hence, from (5.7), we get that
∫

[0,1] |g ◦ y − g ◦ yn| yn,ξyξ dξ ≤ ε so that

lim
n→∞

∫

[0,1]

|g ◦ y − g ◦ yn| yn,ξyξ dξ = 0,

and, from (5.5) and (5.6), it follows that ζn,ξ → ζξ in L1. Since Xn ∈ F0, ζn,ξ is
bounded in L∞ and we finally get that ζn,ξ → ζξ in L2 and, by (3.20c), Hn,ξ → Hξ

in L2. It remains to prove that Un,ξ → Uξ in L2. Since yn,ξ, Hn,ξ and U tend to
yξ, Hξ and U in L2, respectively and ‖Un‖L∞ , ‖yn,ξ‖L∞

are uniformly bounded, it
follows from (2.25c) that

lim
n→∞

‖Un,ξ‖L2 = ‖Uξ‖L2 . (5.8)

Once we have proved that Un,ξ converges weakly to Uξ, then (??) will imply that
Un,ξ → Uξ strongly in L2, see, for example, [28, section V.1]. For any continuous
function φ with compact support, we have

∫

R

Un,ξφ dξ =

∫

R

un,x ◦ ynyn,ξφ dξ =

∫

R

un,x φ ◦ yn
−1 dξ. (5.9)

By assumption, we have un,x → ux in L2. Since yn → y in L∞, the support of
φ ◦ yn

−1 is contained in some compact that can be chosen to be independent of
n. Thus, after using Lebesgue’s dominated convergence theorem, we obtain that
φ ◦ yn

−1 → φ ◦ y−1 in L2 and therefore

lim
n→∞

∫

R

Un,ξφ dξ =

∫

R

ux φ ◦ y−1 dξ =

∫

R

Uξφ dξ. (5.10)

From (5.8), we have that Un,ξ is bounded and therefore, by a density argument,
(5.10) holds for any function φ in L2 and Un,ξ ⇀ Uξ weakly in L2. �

Proposition 5.2. Let (un, µn) be a sequence in D that converges to (u, µ) in D.

Then

un → u in L∞
per and µn

∗
⇀ µ.

Proof. We denote by Xn = (yn, Un, Hn) and X = (y, U, H) the representative in
H of L(un, µn) and L(u, µ). Let C = supn(1 + hn). For any x ∈ R, there exists
ξn and ξ, which may not be unique, such that x = yn(ξn) and x = y(ξ). We set
xn = yn(ξ). We have

un(x) − u(x) = un(x) − un(xn) + Un(ξ) − U(ξ), (5.11)

and

|un(x) − un(xn)| =

∣

∣

∣

∣

∣

∫ ξn

ξ

Un,ξ(η) dη

∣

∣

∣

∣

∣

≤
√

|ξn − ξ|
(

∫ ξn

ξ

U2
n,ξ dη

)1/2

(Cauchy–Schwarz)

≤
√

|ξn − ξ|
(

∫ ξn

ξ

yn,ξHn,ξ dη

)1/2

(from (2.25c))

≤ C
√

|ξn − ξ|
√

|yn(ξn) − yn(ξ)| (since Hn,ξ ≤ C)

= C
√

|ξn − ξ|
√

|y(ξ) − yn(ξ)|
≤ C

√

|ξn − ξ| ‖y − yn‖1/2
L∞ . (5.12)

We have

|yn(ξn) − yn(ξ)| = |y(ξ) − yn(ξ)| ≤ ‖yn − y‖L∞ . (5.13)



30 HOLDEN AND RAYNAUD

Without loss of generality, we can assume that ‖yn − y‖L∞ < 1 so that (5.13)
implies |ξn − ξ| < 1 as yn is increasing and yn(ξ̄ + 1) = yn(ξ̄) + 1 for all ξ̄. Hence,
(5.12) implies

|un(x) − un(xn)| ≤ C ‖y − yn‖1/2
L∞ . (5.14)

Since yn → y and Un → U in L∞, it follows from (5.11) and (5.14) that un → u in
L∞. By weak-star convergence, we mean that

lim
n→∞

∫

R

φ dµn =

∫

R

φ dµ (5.15)

for all continuous functions with compact support. It follows from (3.31b) that
∫

R

φ dµn =

∫

R

φ ◦ ynHn,ξ dξ and

∫

R

φ dµ =

∫

R

φ ◦ yHξ dξ (5.16)

see [2, Definition 1.70]. Since yn → y in L∞, the support of φ ◦ yn is contained
in some compact which can be chosen independently of n and, from Lebesgue’s
dominated convergence theorem, we have that φ ◦ yn → φ ◦ y in L2. Hence, since
Hn,ξ → Hξ in L2,

lim
n→∞

∫

R

φ ◦ ynHn,ξ dξ =

∫

R

φ ◦ yHξ dξ,

and (5.15) follows from (5.16).
�
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