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R. BÜRGERA, A. GARCÍAA, K.H. KARLSENB, AND J.D. TOWERSC

Abstract. Multiphase flows of suspensions and emulsions are frequently approximated by spatially one-
dimensional kinematic models, in which the velocity of each species of the disperse phase is an explicitly
given function of the vector of concentrations of all species. The continuity equations for all species then
form a system of conservation laws which describes spatial segregation and the creation of areas of different
composition. This class of models also includes multi-class traffic flow, where vehicles belong to different
classes according to their preferential velocities. Recently, these models were extended to fluxes that depend
discontinuously on the spatial coordinate, which appear in clarifier-thickener models, in duct flows with
abruptly varying cross-sectional area, and in traffic flow with variable road surface conditions.

This paper presents a new family of numerical schemes for such kinematic flows with a discontinuous
flux. It is shown how a very simple scheme for the scalar case, which is adapted to the “concentration times
velocity” structure of the flux, can be extended to kinematic models with phase velocities that change sign,
flows with two or more species (the system case), and discontinuous fluxes. In addition, a MUSCL-type
upgrade in combination with a Runge-Kutta type time discretization can be devised to attain second-
order accuracy. It is proved that system variants of the scheme preserve an invariant region of admissible
concentration vectors, provided that all velocities have the same sign. Moreover, for the relevant case of a
multiplicative flux discontinuity, it is proved that scalar versions converge to a BVt entropy solution of the
model. In the latter case, the compactness proof involves a novel uniform but local estimate of the spatial
total variation of the approximate solutions.

Numerical examples illustrate the performance of all variants within the new family of schemes applied
to abstract examples and problems of sedimentation, traffic flow, and the settling of oil-in-water emulsions.

1. Introduction

1.1. Scope of the paper. Numerous multiphase flows involve the flow of one disperse substance, for ex-
ample solid mineral particles or oil droplets in an emulsion, through a continuous phase, say a liquid or gas.
In many cases, the disperse substance consists of small particles that belong to different species which differ
in some characteristic quantity such as size or density. The different species will segregate and create areas
of different composition, which is the most interesting property in many applications. Similar models also
includes certain continuum approximations of traffic flow of vehicles on a highway if cars with drivers having
different preferential velocities are identified as different species.

In general, we distinguish between N different species that give rise to N superimposed continuous phases
associated with volume fractions (or densities) φ1, . . . , φN . If vi is the one-dimensional velocity of species i,
then the continuity equations of the N species in differential form are

∂tφi + ∂x(φivi) = 0, i = 1, . . . , N,(1.1)

where t is time and x is the spatial position. The basic assumption of kinematic models is that the velocities
v1, . . . , vN are given functions of the vector Φ := (φ1, . . . , φN )T of local concentrations of all species, vi =
vi(Φ). This yields systems of conservation laws of the type

∂tφi + ∂x

(
φivi(Φ)

)
= 0, i = 1, . . . , N.(1.2)

Date: October 30, 2006.
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We focus on three specific kinematic models that recently attracted interest: one of multi-species traffic
flow [1, 2, 3, 4, 5, 6], one of sedimentation of polydisperse suspensions [7, 8, 9, 10, 11], and one of separation
of oil-in-water dispersions [12].

All these applications also give rise to spatially non-homogeneous flows, in which the velocity vi not only
depends on Φ, but also on a vector of parameters γi that is a function of the spatial position x, γi = γi(x).
While models for which γi depends, for example, Lipschitz continuously on x lead to conservation laws that
can be treated with standard analytical and numerical methods, we are here interested in the case that γi

depends discontinuously on x; more precisely, we assume that γi is piecewise smooth with a finite number
of discontinuities. The vector γi(x) may describe, for instance, abruptly changing road surface conditions in
the traffic flow model, as was done in [13, 14] for a single-species model; singular feed sources and diverging
bulk flows in clarifier-thickener models [15, 16]; and abruptly changing cross-sectional areas in vessels for the
settling of suspensions and emulsions.

It is the purpose of this contribution to formulate, in part analyze, and present numerical experiments for
easy-to-implement numerical schemes for kinematic models, in which the numerical flux is explicitly based
on the “concentration times velocity” structure of each flux component. The starting point is a simple
two-point monotone numerical flux for scalar (N = 1) kinematic flows with a non-negative velocity function
v = v(φ). We develop extensions of the scheme defined by this numerical flux to equations with a velocity of
variable sign, to equations with a discontinuous, to systems of conservation laws (N ≥ 2 species), and finally
to schemes with second-order accuracy. All these variants form the family of new schemes under study. It
is proved that for N ≥ 1 flows with non-negative velocities, the schemes preserve an invariant region, i.e.
generate approximations that assume values in the domain of physically relevant concentrations only. For
the scalar case (N = 1) and a discontinuous flux, we prove convergence to a BVt entropy solution. The
proof is based on a new uniform but local estimate of the spatial total variation of approximate solutions.
Numerical experiments demonstrate the performance of the new family of schemes.

What is intriguing about the new schemes is that (other than an estimate of the spectral radius for the
CFL condition) they do not require any calculation of eigenvalues, eigenvectors, field-by-field decomposition,
flux vector splitting etc. that are usually required for an upwind scheme. In this sense they are like a central
scheme. However, in many cases the first-order accurate version of the new schemes is much less dissipative
than the first-order version of the central scheme (the Lax-Friedrichs scheme).

1.2. Multi-species kinematic models. In this and the following section, we recall some known properties
and discretizations of kinematic models of the type (1.2), while some results related to conservation laws
with discontinuous flux are reviewed in Section 1.4.

In many applications, the number N of species may be large, and the different species in these applications
are competitive. It is therefore convenient to assume a maximal density φmax (for example, a maximal
’bumper-to-bumper’ car density in traffic models or the maximal sphere packing density φmax ≈ 0.66 in
sedimentation models), such that the phase space for (1.2) is

Dφmax :=
{
Φ = (φ1, . . . , φN )T ∈ RN : φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · ·+ φN ≤ φmax

}
.(1.3)

Introducing the flux vector

f(Φ) =
(
f1(Φ), . . . , fN (Φ)

)T :=
(
φ1v1(Φ), . . . , φNvN (Φ)

)T
,(1.4)

we can rewrite (1.2) as the nonlinear system of conservation laws

∂tΦ + ∂xf(Φ) = 0.(1.5)

It is well known that solutions of (1.5) are discontinuous in general, and that the propagation speed
σ(Φ+,Φ−) of a discontinuity in the concentration field φi separating the states Φ+ and Φ− is given by the
Rankine-Hugoniot condition

σ =
fi(Φ+)− fi(Φ−)

φ+
i − φ−i

.
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We recall that the system (1.5) is called hyperbolic at a state Φ if the Jacobian Jf (Φ) := (∂fi/∂φk)1≤i,k≤N

only has real eigenvalues, and strictly hyperbolic if these are moreover pairwise distinct.
The kinematic traffic model for N = 1 goes back to Lighthill and Whitham [17] and Richards [18] (“LWR

model”); for the sedimentation of suspensions, the classic reference is Kynch [19]. The extension of the LWR
model to multi-class traffic flow was proposed by Benzoni-Gavage and Colombo [1] and Wong and Wong
[2], while extensions of the sedimentation model to several species have been suggested for several decades
(see [11, 20] for reviews), mainly in the chemical engineering literature. The application of available tools
of mathematical and numerical analysis to kinematic flow models is difficult due to the dependence of the
functions vi(Φ) on all variables φ1, . . . , φN , which in general is nonlinear. Closed formulas for the eigenvalues
and eigenvectors of Jf (Φ) are at least complicated, if not unavailable for N ≥ 5. It is therefore in general
not possible to solve the Riemann problem for (1.2) in closed form. Moreover, for multi-species kinematic
models eigenvalues lack a direct physical interpretation, and in particular do not coincide with any of the
phase velocities v1, . . . , vN .

Advances were made recently in the hyperbolicity analysis and characterization of eigenvalues of kinematic
models. For the model of settling of oil-in-water dispersions, Rosso and Sona [12] proved for arbitrary N
strict hyperbolicity in Dφmax . The proof is based on deriving an explicit closed formula of the characteristic
polynomial of Jf (Φ), and discussing its zeros. Berres et al. [7] proved in a similar way that the model [7, 21,
22] for the sedimentation of polydisperse suspensions utilized herein is strictly hyperbolic for arbitrary N ,
provided that all particles have the same density. The basic idea was also used by Zhang et al. [5] to prove
strict hyperbolicity of the multi-class traffic model proposed in [1, 2].

1.3. Numerical schemes for kinematic models. Despite the new hyperbolicity results, insight into any
specific N -species kinematic model with N ≥ 3 can realistically be gained through numerical simulation
only. High resolution schemes for systems of conservation laws, which approximate discontinuities sharply
and without spurious oscillations and are at least second-order accurate in smooth regions, are natural
candidates for the numerical solution of (1.2). For example, Wong, Shu and their collaborators [4, 6] applied
weighted essentially non-oscillatory (WENO) schemes to the traffic model, while the first and third authors
and collaborators [7, 20, 23, 24] employed central difference schemes [25, 26] for the sedimentation model.
Meanwhile, central schemes have also been applied to a number of real-world problems of polydisperse
sedimentation, see for example Xue and Sun [10], Simura and Ozawa [27] and Wang et al. [28]. Recently
[29], WENO schemes were combined with a multiresolution technique to yield a numerical method for
kinematic models that adaptively concentrates computational effort on zones of strong variation.

All these methods are based on schemes that can be applied universally to systems of conservation laws,
and that are not tailored to a particular algebraic structure of the flux vector. Our new family of schemes
does, however, explicitly make use of the structure of fluxes for kinematic models. The schemes, which are
first-order accurate, can be upgraded to higher order accuracy by employing MUSCL-type techniques.

1.4. Well-posedness analysis and numerical schemes for conservation laws with discontinuous
flux. To put the treatment in the proper perspective, let us first recall some known results for the equation
ut + f(γ(x), u)x = 0. The basic difficulty is that its well-posedness is not a straightforward limit case of the
standard theory for conservation laws with a flux that depends smoothly on x. In fact, several extensions of
the Kružkov entropy solution concept [30] to conservation laws with a discontinuous flux were proposed in
recent years [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Each of these concepts is supported
by a convergence analysis of a numerical scheme; the differences between them appear in the respective
admissibility conditions for stationary jumps of the solution across the discontinuities of γ [46].

The choice of the entropy solution concept depends on the regularizing viscous physical model. For
clarifier-thickener models, the appropriate concept emerges from the limit ε → 0 of a viscous regulariza-
tion εuxx with a diffusion constant ε > 0 [47]. Diehl advanced thorough analyses and construction of exact
entropy solutions for clarifier-thickener models, which are culminating in his series of papers “Operating
charts for continuous sedimentation” [48, 49, 50, 51]. On the other hand, the authors with collaborators
made a series of contributions (including [15, 16, 47, 52]) to the well-posedness and numerical analysis for
these models, whose basic non-standard ingredient is a singular feed source that produces diverging bulk
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flows, which causes the discontinuous x-dependence of the flux. The same entropy solution concept has
also been applied to establish well-posedness, and to construct a working numerical scheme, for a model of
single-species traffic flow with abruptly changing road surface conditions [14].

The rigorous analysis is limited to the scalar case, but the numerical schemes that have been used to
constructively establish existence of weak solutions to the scalar clarifier-thickener model also possess working
versions for systems with discontinuous flux. In the context of clarifier-thickener models, such systems model
fluidization and classification units for polydisperse suspensions, see [53, 54].

1.5. Contents of the paper. The remainder of the paper is organized as follows. In Section 2, three
specific kinematic models are presented. Section 2.1 presents the multi-class kinematic traffic model, which
gives rise to an initial-value problem with periodic boundary conditions. Next, in Section 2.2, we outline the
polydisperse sedimentation model, for which the zero-flux boundary condition is relevant. A similar model
for the separation of oil-in-water dispersions is mentioned in Section 2.3. The distinctive property of the
sedimentation model is that the phase velocities of the particle species may be positive, zero or negative,
due to buoyancy effects, while in the two other models, these velocities are always non-negative.

Section 3 is devoted to the presentation of the family of schemes. To this end, we first introduce in
Section 3.1 the basic time and space discretizations. In Section 3.2, the scalar versions (i.e., for N = 1)
of the schemes are introduced, starting with Schemes 1 and 2 for fluxes with non-negative velocity and a
velocity of variable sign, respectively. It is shown that both schemes are monotone provided that a CFL
condition is satisfied. Furthermore, we extend Scheme 1 to an equation with discontinuous flux (Scheme 3).
In Section 3.3, we formulate schemes for multi-species kinematic models, that is, for systems of conservation
laws (N ≥ 1). The systems variants of the scalar Schemes 1 and 3 for models with non-negative velocities only
are Schemes 4 and 5. For models with velocities of variable sign, the direct extension of the scalar Scheme 2
is Scheme 6. However, as is detailed in Section 3.3, this scheme produces sharply resolved interfaces, but
overshoots in certain situations. An analysis of the viscosity coefficients of Scheme 6 leads to the improved
Scheme 7. It turns out that for the sedimentation model, this scheme still produces overshoots near stationary
discontinuities; for this reason, the final scheme advocated for systems with velocities of variable sign is
Scheme 8, which is slightly more viscous than Scheme 7. One desirable property of schemes for kinematic
models consists in the preservation of an invariant region, i.e. under a suitable CFL condition, the scheme
should produce approximations that assume values within the physically relevant phase space only (i.e.,
concentrations should be non-negative and sum up at most to the maximal concentration). We show in
Section 3.4 that Scheme 5, applied to the traffic model, and Scheme 4, applied to the oil-in-water dispersion
model, indeed do have these properties. Experience with the traffic and oil-in-water dispersion model leads
us to propose a working CFL condition also for the sedimentation model. In Section 3.5 we demonstrate
how the schemes developed so far can be improved to second-order accuracy both in space and time by
combining Runge-Kutta temporal differencing with MUSCL-type spatial differencing. The latter involves
the use of slope limiter functions; we refer to the variants with the minmod and Van Leer limiter functions as
Scheme 9 and 10, respectively. We show that if applied to scalar problems with a flux that does not depend
on x, these schemes preserve the maximum principle and the TVD property of the first-order version under
the same CFL condition.

In Section 4, we consider a scalar initial-boundary value problem with periodic boundary conditions and a
discontinuous flux, and prove that Scheme 3 generates a sequence of approximate solutions that converge to
the unique BVt entropy solution of the problem as the mesh parameters tend to zero. One basic ingredient
of the compactness argument involved here is a new type of local but uniform estimate of the total spatial
variation of approximate solutions. This type of argument (see Lemma 4.2 in Section 4 and its proof) is
new, and has not been used in any previous work on discontinuous flux problems.

In Section 5, we present eight numerical examples to demonstrate the performance of the schemes of the
family, especially compared to variants of the Lax-Friedrichs scheme. Examples 1 and 2 refer to “abstract”
scalar equations. Example 3 presents a simulation of a scalar clarifier-thickener model, and allows comparison
with a numerical result published in [16]. In Example 4, we study the multi-species traffic model with N = 9,
but without flux discontinuities, and choose parameters in such a way that results can be compared with
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those presented in [4]. In addition, for this example (and for Example 6) we present a history of approximate
L1 numerical errors. This is done for the first- and second-order variants of the scheme, as well as for the
corresponding variants of the LxF scheme. Example 5 corresponds to the traffic model with a discontinuously
varying parameter, and the numerical results can be compared those of Zhang et al. [6]. In Example 6, we
simulate the settling of a suspension withN = 2 species in a column using parameters from a well-documented
experiment by Schneider et al. [55]. These results, as those of Example 7, where we consider a suspension
with N = 11 species, can also be compared with those of [29]. Finally, Example 8 presents a simulation of
the settling of an oil-in-water dispersion with N = 10 species.

2. Examples of kinematic flow models

2.1. Traffic flow models. The classical LWR kinematic wave model [17, 18] for unidirectional traffic flow
on a single-lane highway starts from the principle of “conservation of cars”, where φ is the density of cars as
a function of distance x and time t and v = v(x, t) is the velocity of the car located at position x at time t:

∂tφ+ ∂x(φv) = 0, x ∈ R, t > 0,(2.1)

The original LWR model (2.1) is a single-species model (N = 1), whose basic assumption v = v(φ) states that
each driver instantaneously adjusts his velocity to the local car density. A common choice is v(φ) = vmaxV (φ),
where vmax is a preferential velocity a assumed on a free highway, and V (φ) is a hindrance function taking
into account that the presence of other cars urges each driver to adjust his speed. Thus, the flux is

f(φ) := φv(φ) =

{
vmaxφV (φ/φmax) for 0 ≤ φ ≤ φmax,
0 otherwise,

(2.2)

where φmax is the maximum “bumper-to-bumper” car density.
Recently, Benzoni-Gavage and Colombo [1] and Wong and Wong [2] independently formulated an extension

of the LWR model to multi-class traffic flow, considering that cars belong to a finite number N of classes
(species), each associated with a function v = vi(Φ). It is assumed that drivers of each species adjust their
velocity to the global car density φ = φ1 + · · · + φN seen at a point (x, t), which means that vi(Φ(x, t)) =
vi(φ(x, t)) for i = 1, . . . , N , and that all drivers adjust their velocity in the same way, such that

vi(Φ) = vi
maxV (φ/φmax), i = 1, . . . , N.(2.3)

Here, vi
max is the preferential (maximum) of species i and the function V : [0, φmax] → [0, 1] describes the

attitude of drivers [1], that is, represents the same hindrance function as in the single-class case.
Also of interest are models where we replace (2.3) by

(2.4) vi = vi(x,Φ) = vi
max(x)V (φ/φmax(x)), vi

max(x) > 0, i = 1, . . . , N.

By allowing vi to vary spatially through the coefficients vi
max(x) and φmax(x), it is possible to model road

conditions that change from location to location.
For the traffic model, we assume a circular road of length L and assume an initial traffic density

Φ(x, 0) = Φ0(x) =
(
φ0

1(x), . . . , φ
0
N (x)

)T ∈ Dφmax , 0 ≤ x ≤ L.(2.5)

The periodicity condition is

φi(0, t) = φi(L, t), t > 0, i = 1, . . . , N ;

however, we only consider compactly supported data and relatively short simulation times (shorter than
necessary for completing a loop), so that our solutions are also solutions to the initial-value problem posed
for x ∈ R, that is, for an infinite road.
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2.2. Sedimentation of polydisperse suspensions. We consider a polydisperse suspension of rigid spher-
ical particles which are dispersed in a viscous fluid of density %f and of dynamic viscosity µf . The solid
particles belong to N different species having sizes (diameters) d1 ≥ d2 ≥ · · · ≥ dN and densities %1, . . . , %N ,
where di 6= dj or %i 6= %j for i 6= j. Model equations for the three-dimensional motion of such a mixture
were derived in [8], based on earlier work by Masliyah [22] and Lockett and Bassoon [21]. We consider here
the kinematic model obtained by reducing these equations to one space dimension, see [8] for details. The
relevant parameters are δi := d2

i /d
2
1 and %̄i := %i−%f for i = 1, . . . , N . Here, φmax denotes a maximum solids

volume fraction, which we here assume to be constant. Moreover, we introduce the vector %̄ := (%̄1, . . . , %̄N )T,
the cumulative solids fraction φ := φ1 + · · · + φN , the viscosity parameter µ := gd2

1/(18µf) > 0, where g is
the acceleration of gravity, and the hindered settling factor V = V (φ), which may be chosen as

V (φ) =

{
(1− φ)n−2 if Φ ∈ Dφmax ,

0 otherwise,
n > 2.(2.6)

The phase velocity of particle species i is then given by

vi(Φ) = µV (φ)

[
δi(%̄i − %̄TΦ)−

N∑
m=1

δmφm(%̄m − %̄TΦ)

]
, i = 1, . . . , N.(2.7)

For one-dimensional batch settling of a suspension in a closed vessel of depth L, the initial condition is again
(2.5), while the zero-flux boundary conditions are

f |x=0 = f |x=L = 0.(2.8)

If the particles differ in size only (i.e., %1 = %2 = · · · = %N =: %s), then (2.7) simplifies to the following
expression, where v∞ = µ(%s − %f) is the settling velocity of a single particle of the largest species in an
unbounded medium (the so-called Stokes velocity of the largest species):

vi(Φ) = v∞(1− φ)V (φ)
(
δi − (δ1φ1 + · · ·+ δNφN )

)
, i = 1, . . . , N.(2.9)

In [7] it is proved that for equal-density particles (%̄ = · · · = %̄N = %s − %f), arbitrary N and particle size
distributions, the system (1.5) is strictly hyperbolic for all Φ ∈ D with φ1 > 0, . . . , φN > 0 and φ < 1 if the
flux vector (2.7) is chosen. As mentioned in Section 1.2, the proof proceeds in a similar fashion to that of
Rosso and Sona [12] outlined in Section 1.2.

2.3. Separation of oil-in-water dispersions. Kinematic models have also been proposed for the sedi-
mentation of small oil droplets in liquid-liquid dispersions. The separation process is similar to the settling
of a polydisperse suspension, the major difference being that since the density of oil is smaller than that of
water, the oil droplets move upwards, a process called creaming; however, to make results comparable with
the sedimentation model, we assume that the separation takes place in the direction of the positive x-axis,
so x is considered here to be a height variable. Numerous contributions to kinematic models for liquid-liquid
dispersions have been made by Hartland, Jeelani, and their collaborators, see for example [56, 57, 58, 59, 60].
The analogy between suspension and dispersion models is also emphasized by Nadiv et al. [61] and Frising
et al. [62]. The model utilized herein is due to Rosso and Sona [12], who consider the separation of small oil
droplets in an oil-in-water dispersion. (It is worth mentioning that Rosso and Sona explicitly refer to [63], a
doctoral thesis prepared under Hartland’s guidance.)

The model outlined in [12] can be written in the form (1.2) if we consider oil droplets of N different
volumes V∞ > V2 > · · · > VN > 0, where x is the upward-increasing height variable and φi = φi(x, t) is
the volume fraction occupied by droplets of volume Vi. The model is similar to that of sedimentation, but
as the authors argue, the differential motion of the particle species is not driven by the dispersion-water
density difference, which actually can be considered constant, but rather by differences in viscosity. The
basic nonlinearity is introduced by a viscosity function µd = µd(Φ) = µd(φ1, . . . , φN ). If we denote again by
µf the viscosity of pure water (without oil), then µd(Φ) is assumed to satisfy

µd ∈ C1(D); µd(Φ) > 0,
∂µd

∂φ1
> 0, . . . ,

∂µd

∂φN
> 0 ∀Φ ∈ D; µd(0, . . . , 0) = µf .
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The velocity functions v1(Φ), . . . , vN (Φ) are then given by

vi(Φ) = c
V2/3

i

µd(Φ)
(1− φ), i = 1, . . . , N, c :=

2g(%f − %oil)
9(4π/3)2/3

,(2.10)

where g, %f and %oil denote the acceleration of gravity, the density of pure water and density of pure oil,
respectively. For separation of a dispersion in a column of height L, we may again employ the initial and
boundary conditions (2.5) and (2.8).

3. Numerical schemes

Section 2 shows that we are interested in schemes for kinematic models with a flux that possibly depends
discontinuously on the spatial position x. Thus, seek weak solutions to the initial value problem

∂tφi + ∂xfi(x,Φ) = 0, (x, t) ∈ (0, L)× (0, T ) =: ΠT , i = 1, . . . , N,

fi(x,Φ) = φivi

(
γi(x),Φ

)
, Φ(x, 0) = Φ0(x), x ∈ (0, L),

(3.1)

which may be supplemented by periodic boundary conditions

Φ(0, t) = Φ(L, t), t > 0,

or zero-flux boundary conditions

fi(0,Φ) = fi(L,Φ) = 0, i = 1, . . . , N.

This setup is general enough to include the models discussed in the previous section.

3.1. Discretizations. We start by discretizing the domain [0, L]× [0, T ]. To discretize the spatial interval
[0, L], we choose a mesh width ∆x and an integer J such that (J + 1)∆x = L, and set

xj = (j + 1/2)∆x, j = −1/2, 0, 1/2, 1, 3/2, . . . ,J − 1,J + 1/2.

With this setup, x−1/2 = 0, xJ+1/2 = L. We discretize the time interval [0, T ] by selecting an integer N
and a sequence of temporal mesh widths ∆tn, and defining t0 := 0 and tn+1 := tn + ∆tn for n = 0, 1, . . . ,N
subject to the condition ∆t0 + · · · + ∆tN−1 = T . The ratio λn := ∆tn/∆x is always assumed to satisfy
a CFL condition, which will be specified below. Our numerical schemes will generate an approximation
Φn

j ≈ Φ(xj , tn) defined at the mesh points (xj , tn) for j ∈ {0, 1, . . . ,J } =: ZJ and n = 0, 1, . . . ,N . For our
first-order accurate scheme, we start by discretizing the initial data and the parameter vectors

Φ0
j = Φ0

(
x+

j

)
:= lim

x↓xj

Φ0(x), γi,j := γi

(
x+

j

)
, i = 1, . . . , N.

Here we have arbitrarily chosen the limit from above to resolve the ambiguities at possible jump discontinu-
ities in the data. This is somewhat arbitrary; we could also use the limit from below, or any average of the
two. We then march the solution forward in time according to

Φn+1
j = Φn

j − λn

(
hn

j+1/2 − hn
j−1/2

)
, j ∈ ZJ , n = 0, 1, . . . ,N .(3.2)

The numerical flux vector hn
j+1/2 is

(3.3) hn
j+1/2,=

(
h1

(
γ1,j+1,Φ

n
j+1,Φ

n
j

)
, . . . , hN

(
γN,j+1,Φ

n
j+1,Φ

n
j

))T
.

Recall that we are considering two types of boundary conditions. When dealing with zero flux boundary
conditions, we always set

(3.4) hn
−1/2 = hn

J+1/2 = 0, n = 0, 1, 2, . . .

When dealing with periodic boundary conditions, we may have formulas where j < −1/2 or j > J + 1/2.
In such cases we simply interpret j modulo (J + 1), in such a way that it lies within the proper range. For
periodic boundary conditions, we will always have

(3.5) hn
−1/2 = hn

J+1/2, n = 0, . . . ,N .
With these observations, we can deal with both types of boundary conditions simultaneously, and mostly
avoid discussing special processing at the boundaries.
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3.2. The scalar case. To discuss our new numerical flux in the simplest possible setting, we start with
scalar kinematic wave models, where no spatially dependent parameter vector occurs:

φt + f(φ)x = 0,(3.6)

where the flux takes the special form for kinematic flow models

f(φ) = φv(φ).(3.7)

The assumptions are that φ ≥ 0, and that v(φ) is given by a positive default velocity multiplying a hindrance
function. Since the hindrance increases with φ, the assumptions v(φ) ≥ 0 and v′(φ) ≤ 0 are very natural,
and clearly satisfied for all examples of kinematic models considered herein. For traffic flow, φ is the traffic
density, and v is the velocity of cars as a function of density, while for sedimentation, φ is the solids volume
fraction and v is the solids phase velocity.

3.2.1. Scheme 1 for scalar equations (N = 1) with non-negative velocity. The following is a two-point nu-
merical flux consistent with the actual flux (3.7):

h(φj+1, φj) := φjv(φj+1).(3.8)

For easy reference, we refer to the scheme (3.2), (3.3) with N = 1, γ ≡ const. and the flux (3.8) as Scheme 1.
Due to the special structure of this problem (φ ≥ 0, v(φ) ≥ 0, v′(φ) ≤ 0), Scheme 1 is monotone [64],
meaning that the function h(φj+1, φj) is non-increasing with respect to φj+1 and nondecreasing with respect
to φj . Therefore, Scheme 1 produces approximations that converge to the correct entropy solution to the
conservation law (3.6). However, these approximations will be at best first order accurate. What makes the
flux (3.8) interesting is that like the Lax-Friedrichs numerical flux, it is very simple (there is no Riemann
solver involved), but in many cases it is less dissipative than the Lax-Friedrichs numerical flux. This motivates
us to use (3.8), and various extensions to deal with systems and discontinuous coefficients, as a starting point
to build a second-order scheme.

3.2.2. Scheme 2 for scalar equations (N = 1) with a velocity of variable sign. Motivated by the polydisperse
settling model, where the velocities may become negative, we next consider the scalar case where the veloc-
ity v may become negative. It is easy to check that the following modification of (3.8) is a flux that retains
the monotonicity property in this more general situation:

h(φj+1, φj) = φj max
{
0, v(φj+1)

}
+ φj+1 min

{
0, v(φj+1)

}
.(3.9)

We refer to the scheme (3.2), (3.3) for N = 1 and γ ≡ const. with the flux (3.9) as Scheme 2. Another
formulation of (3.9) that will be useful in what follows is the so-called viscous form:

(3.10) h(φj+1, φj) =
1
2
(
f(φj+1) + f(φj)

)
− 1

2λ
Q(φj+1, φj)(φj+1 − φj),

where the numerical viscosity coefficient Q(φj+1, φj) is defined by

Q(φj+1, φj) := λ
∣∣v(φj+1)

∣∣ + λφj
v(φj)− v(φj+1)
φj+1 − φj

.(3.11)

To derive CFL conditions, let us concentrate for now on the case where the boundary conditions are
periodic. If we write Scheme 2 in incremental form

φn+1
j = φn

j + Cj+1/2∆+φ
n
j −Dj−1/2∆−φ

n
j ,

where we define the spatial difference operators ∆−Vj := Vj −Vj−1 and ∆+Vj := Vj+1−Vj , the incremental
coefficients are given by

Cj+1/2 = λφj

v(φn
j )− v(φn

j+1)
φn

j+1 − φn
j

− λmin
{
0, v(φn

j+1)
}
, Dj+1/2 = λmax

{
0, v(φn

j+1)
}
.(3.12)

To have a maximum principle

(3.13) min
{
φn

j−1, φ
n
j , φ

n
j+1

}
≤ φn+1

j ≤ max
{
φn

j−1, φ
n
j , φ

n
j+1

}
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and the Total Variation Decreasing (TVD) property

(3.14)
J∑

j=0

∣∣φn+1
j+1 − φn+1

j

∣∣ ≤ J∑
j=0

∣∣φn
j+1 − φn

j

∣∣,
sufficient conditions are [65, 66]

Cj+1/2 +Dj+1/2 ≤ 1, Cj+1/2 +Dj−1/2 ≤ 1, Cj+1/2 ≥ 0, Dj+1/2 ≥ 0.

It is clear from (3.12) that Cj+1/2 ≥ 0 and Dj+1/2 ≥ 0 are already satisfied. To enforce the first two
inequalities, we impose the CFL conditions

λmax
j∈ZJ

∣∣v(φj)
∣∣ ≤ α, α = 1/4, λmax

j∈ZJ
φj · max

j∈ZJ

∣∣v′(φj)
∣∣ ≤ α, α = 1/2.(3.15)

In this paper we state a CFL condition, like those in (3.15), in terms of the number α for ease of comparison
with other CFL conditions (with different values of α) that will appear elsewhere.

If the speed v is nonnegative, the second term on the right-hand side of the equation for Cj+1/2 in (3.12)
is not present, and we can replace (3.15) by the less restrictive CFL conditions

(3.16) λmax
j∈ZJ

v(φj) ≤ α, λmax
j∈ZJ

φj · max
j∈ZJ

∣∣v′(φj)
∣∣ ≤ α, α = 1/2.

3.2.3. Scheme 3 for scalar equations (N = 1) with non-negative velocity with a discontinuous flux. We will
also consider scalar conservation laws of the form

(3.17) φt + f
(
γ(x), φ

)
x

= 0, f(φ) = φv
(
γ(x), φ

)
, v(γ, φ) ≥ 0,

where the spatially varying coefficient vector γ may have jump discontinuities. For the traffic flow model, the
coefficient γ modulates the velocity function, and provides a way to model spatially varying road conditions.
For the conservation law (3.17), our numerical flux becomes

h(γj+1, φj+1, φj) = φjv(γj+1, φj+1), γj+1 := γ
(
x+

j+1

)
.(3.18)

For the scheme defined by (3.18), Scheme 3, we cannot derive CFL conditions by enforcing a maximum
principle like (3.13) or TVD property like (3.14). Nevertheless, we demonstrate in Section 4 that at least in
one important case the scheme is stable and convergent if the following CFL conditions are satisfied:

λmax
j∈ZJ

v(φj ,γj) ≤ α, λmax
j∈ZJ

φj · max
j∈ZJ

∣∣∂φv(γj , φj)
∣∣ ≤ α, α = 1/2.

3.3. Numerical flux for systems of conservation laws. When generalizing the numerical flux to multi-
species kinematic flows governed by (1.1) one should observe that only for the traffic and dispersion models,
the velocities vi(Φ) are always nonnegative; for the sedimentation model, the velocities vi(Φ) are defined by
(2.3) and may become negative due to buoyancy effects. This also occurs in the special case that all particles
have the same density, and the velocities vi(Φ) are defined by (2.9).

3.3.1. Scheme 4 for systems (N ≥ 1) with non-negative velocities. In light of the above observation, for the
multi-class traffic and the dispersion models a reasonable generalization of the scalar flux (3.8) is

hi,j+1/2 = hi(Φj+1,Φj) = φi,jvi(Φj+1), i = 1, . . . , N.(3.19)

We refer to the corresponding scheme as Scheme 4.

3.3.2. Scheme 5 for systems (N ≥ 1) with non-negative velocities and discontinuous flux. As mentioned
previously, for the multi-class traffic model, we are also interested in spatially varying velocities of the form
(2.4). In that case we replace the numerical flux (3.19) by

hi,j+1/2 = hi(ki,j+1,Φj+1,Φj) = φi,jv
i
max,j+1V (φj+1/φmax,j+1),

vi
max,j+1 := vi

max

(
x+

j+1

)
, φmax,j+1 := φmax

(
x+

j+1

)
, i = 1, . . . , N

(3.20)

(Scheme 5).
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3.3.3. Schemes 6, 7 and 8 for systems (N ≥ 1) with velocities of variable sign. For the sedimentation model,
where the velocities may become negative, a potential generalization of the scalar numerical flux (3.9) is

hi(Φj+1,Φj) = φi,j max
{
0, vi(Φj+1)

}
+ φi,j+1 min

{
0, vi(Φj+1)

}
, i = 1, . . . , N(3.21)

(Scheme 6), and for this flux, the numerical viscosity coefficients are given by

(3.22) Qi(Φj+1,Φj) = λ
∣∣vi(Φj+1)

∣∣ + λφi,j
vi(Φj)− vi(Φj+1)
φi,j+1 − φi,j

.

Our numerical experiments with (3.19) give satisfactory results, and this is the first-order version of the flux
that we use for systems where there are no negative velocities. When negative velocities are present, numerical
experiments with (3.21) produce sharply resolved interfaces, but with overshoot in certain situations. To
devise a numerical flux which overcomes this shortcoming, we return to the viscous formulation (3.10), (3.11)
of the scalar numerical flux and observe that due to our assumption that v(·) is non-increasing, both terms
on the right-hand side of (3.11) are nonnegative. In fact, we can rewrite (3.11) in the equivalent form

Q(φj+1, φj) = λ
∣∣v(φj+1)

∣∣ + λφj

∣∣∣∣v(φj)− v(φj+1)
φj+1 − φj

∣∣∣∣ = λ
∣∣v(φj+1)

∣∣ + λφj
|v(φj)− v(φj+1)|

φj+1 − φj
sgn(φj+1 − φj).

Inserting this into (3.10) yields the following form of the scalar numerical flux (3.9):

h(φj+1, φj) =
1
2
(
f(φj+1) + f(φj)

)
− 1

2

∣∣v(φj+1)
∣∣(φj+1 − φj)−

φj

2

∣∣v(φj)− v(φj+1)
∣∣sgn(φj+1 − φj),(3.23)

and this is the formulation that we generalize to systems when the velocities can become negative. In light
of (3.23), a natural candidate for systems with velocities of both signs is

hi(Φj+1,Φj) =
1
2
(
φi,j+1vi(Φj+1) + φi,jvi(Φj)

)
− |vi(Φj+1)|

2
(φi,j+1 − φi,j)

− φi,j

2

∣∣vi(Φj)− vi(Φj+1)
∣∣sgn(φi,j+1 − φi,j), i = 1, . . . , N,

(3.24)

which defines Scheme 7. For this flux the numerical viscosity coefficient is

Qi(Φj+1,Φj) = λ
∣∣vi(Φj+1)

∣∣ + λφi,j

∣∣∣∣vi(Φj)− vi(Φj+1)
φi,j+1 − φi,j

∣∣∣∣ .
Our modification (3.24) to the numerical flux (3.19) consists of forcing the second term in the viscosity
coefficient (3.22) to be positive. For scalar equations, this term is always positive, but this is not always
true for systems. This modification is also potentially applicable to systems where all of the velocities are
nonnegative, but we have found that the original flux (3.19) is satisfactory for such systems.

For polydisperse settling problems we find that (3.24) is an improvement over (3.21) but still sometimes
gives non-physical overshoots at the interfaces between beds of sediment. For these problems we propose a
slightly more viscous version of (3.24) that provides a good compromise between sharply resolved interfaces
and suppression of overshoots:

hi(Φj+1,Φj) =
1
2
(
φi,j+1vi(Φj+1) + φi,jvi(Φj)

)
− Ej+1

2
(φi,j+1 − φi,j)

− φi,j

2

∣∣vi(Φj)− vi(Φj+1)
∣∣sgn(φi,j+1 − φi,j), i = 1, . . . , N,

which defines Scheme 8, and where Ej+1 := max{|v1(Φj+1)|, . . . , |vN (Φj+1)|} .

3.4. Invariant regions and CFL conditions for systems. In Section 3.2 we derived CFL conditions
by enforcing the TVD property and a very strong maximum principle. Both of these regularity properties
are satisfied by the true solutions of the scalar conservation laws being approximated, but not generally for
systems of conservation laws. In this section we derive CFL conditions for systems. We first derive the form
of these CFL conditions by requiring that a certain invariant region be preserved. Once we have the form of
the CFL conditions, we determine the constants on the right sides by referring to our scalar CFL conditions.
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As discussed in Section 1.1, the problems of interest to us have a natural invariant region Dφmax defined
by (1.3). It is possible to show that our first-order scheme preserves this invariant region if we place some
restrictions upon the velocity functions vi(Φ). Since we also wish to allow for spatially varying coefficients,
we generalize the definition (1.3), allowing it to vary spatially:

Dφmax,j :=
{
Φ = (φ1, . . . , φN )T ∈ RN : φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · ·+ φN ≤ φmax,j

}
.

The following theorem applies to the multi-class traffic flow model discussed in Section 2.1.

Theorem 3.1. Consider Scheme 5 defined by (3.2) with numerical flux (3.20), and either type of boundary
conditions, (3.4) or (3.5). Assume that all velocity functions vi are of the form (2.4), where 0 ≤ vi

max(x) ≤
vi
max ≤ vmax and 0 < φ

max
≤ φmax(x) ≤ φmax, and that the hindrance factor V (z) satisfies

(3.25) 0 ≤ V (z) ≤ Vmax, V
′(z) ≤ 0, |V ′(z)| ≤ |V ′|max , z ∈ [0, 1]; V (1) = 0.

Then if Φn
j ∈ Dφmax,j and the CFL conditions

(3.26) λvmaxVmax ≤ α, λ
(
φmax/φmax

)
vmax |V ′|max ≤ α, α = 1

are satisfied at time level n, we will also have Φn+1
j ∈ Dφmax,j .

Proof. Assume for now that the boundary conditions are periodic. The marching formula takes the form

(3.27) φn+1
i,j = φn

i,j − λφn
i,jv

i
max,j+1V

(
φn

j+1

φmax,j+1

)
+ λφn

i,j−1v
i
max,jV

(
φn

j

φmax,j

)
, i = 1, . . . , N.

From this expression, it is clear that

φn+1
i,j ≥ φn

i,j − λφn
i,jv

i
max,j+1V

(
φn

j+1

φmax,j+1

)
=

[
1− λvi

max,j+1V

(
φn

j+1

φmax,j+1

)]
φn

i,j

for i = 1, . . . , N . This inequality implies that if Φn
j ∈ Dφmax,j for all j ∈ ZJ we will have φn+1

i,j ≥ 0 if the
first CFL condition appearing in (3.26) is satisfied.

Returning to the marching formula (3.27), we obtain that

φn+1
i,j ≤ φn

i,j + λφn
i,j−1v

i
max,jV

(
φn

j

φmax,j

)
≤ φn

i,j + λφn
i,j−1vmaxV

(
φn

j

φmax,j

)
.

Summing over i gives

φn+1
j ≤ φn

j + λ

N∑
i=1

φn
i,j−1vmaxV

(
φn

j

φmax,j

)
=: G(φn

j ).

Assumption (3.25) implies that G(φmax,j) = φmax,j . Moreover,

G′(φn
j ) = 1 + λ

N∑
i=1

φn
i,j−1vmax

φmax,j
V ′

(
φn

j

φmax,j

)
.

From this expression we deduce that if the second of the CFL conditions appearing in (3.26) is satisfied, the
function G will be a nondecreasing function of φn

j . Thus,

max
φn

j ∈[0,φmax,j ]
G(φn

j ) = G(φmax,j) = φmax,j ,

implying that φn+1
j ≤ φmax,j . Finally, if the boundary conditions are of the zero-flux type, we only have to

modify the proof at the two mesh points j = 0 and j = J , where one of the flux contributions in (3.27) will
be zero. Retracing the steps of the proof, we see that all inequalities remain valid. �

It is common in traffic modeling to use a linear version of V , i.e., V (z) = 1 − z. In that case the CFL
conditions (3.26) can be reduced to the single condition

(3.28) λ
(
φmax/φmax

)
vmax ≤ α, α = 1



12 BÜRGER, GARCÍA, KARLSEN, AND TOWERS

and if φmax does not depend on x, i.e., φmax(x) ≡ φmax, this can be simplified even further to

(3.29) λvmax ≤ α, α = 1.

The oil-in-water dispersion model of Section 2.3 does not quite fit the hypotheses of the previous theorem,
but it is still possible to prove that the scheme preserves the invariant region Dφmax if appropriate CFL
conditions are enforced.

Theorem 3.2. Consider Scheme 4 defined by (3.2) with numerical flux functions defined by (3.19), and
zero-flux boundary conditions, (3.5). With the form of the velocities vi for the oil-in-water dispersion model
specified in Section 2.3, if Φn

j ∈ Dφmax (here φmax = 1) and the CFL conditions

λvi(Φn
j ) ≤ α, i = 1, . . . , N, j ∈ ZJ , λ

c

µd(Φn
j )

N∑
i=1

φn
i,j−1 V

2/3
i ≤ α, α = 1, j ∈ ZJ(3.30)

are satisfied, then Φn+1
j ∈ Dφmax .

Proof. First take the case where the boundary condition is not involved, 0 < j < J (an interior point). The
marching formula then takes the form

φn+1
i,j = φn

i,j − λφn
i,jvi

(
Φn

j+1

)
+ λφn

i,j−1vi

(
Φn

j

)
, i = 1, . . . , N.(3.31)

This expression implies that

φn+1
i,j ≥ φn

i,j − λφn
i,jvi

(
Φn

j+1

)
=

(
1− λvi

(
Φn

j+1

))
φn

i,j , i = 1, . . . , N.

Using this inequality, along with the first CFL condition in (3.30), we conclude that if φn+1
i,j ≥ 0. The

marching formula (3.31) also implies that φn+1
i,j ≤ φn

i,j + λφn
i,j−1vi(Φn

j ). Summing over i gives

φn+1
j ≤ φn

j + λ

N∑
i=1

φn
i,j−1vi

(
Φn

j

)
=: G

(
Φn

j

)
.

To simplify notation, we write G as

G(Φ) = φ+ λ

N∑
i=1

ψi vi(Φ), Φ = Φn
j , φ = φn

j , ψi = φn
i,j−1.

Recalling that for this model φmax = 1, we complete the proof by showing that

(3.32) max
Φ∈Dφmax

G(Φ) ≤ 1.

From (2.10), we obtain that

(3.33) G(Φ) = φ+ λB · 1− φ

µd(Φ)
, B := c

N∑
i=1

ψi V2/3
i .

Rearranging (3.33) and using φ ≤ φmax = 1 yields

G(Φ) =
(

1− λ
B

µd(Φ)

)
φ+ λ

B

µd(Φ)
≤ 1.

To obtain the last inequality, we have used the second CFL condition appearing in (3.30). Thus, (3.32)
is valid, and the proof is complete for each interior point. To complete the proof, we must deal with the
remaining mesh points x0 and xJ . At x0, the marching formula (3.31) simplifies to

φn+1
i,0 = φn

i,0 − λφn
i,0vi

(
Φn

1

)
, i = 1, . . . , N.(3.34)

That φn+1
i,0 ≥ 0 now follows from the CFL condition exactly as in the case of an interior point. For the upper

bound, it is immediate by summing over i in (3.34) that φn+1
0 ≤ φn

0 , and thus Φn+1
0 ∈ Dφmax . At xJ , the

marching formula (3.31) becomes

φn+1
i,J = φn

i,J + λφn
i,J−1vi

(
Φn
J

)
, i = 1, . . . , N.(3.35)
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Now the proof that φi,J ≥ 0 is clear from (3.35), and the upper bound φn+1
J ∈ Dφmax follows exactly as in

the proof above for an interior point. �

In light of (2.10), the maximum velocities are given by vi
max = cV2/3

i /µf . Using these maximum velocities,
it is possible to combine the CFL conditions (3.30) for the oil-in-water dispersion model into the single and
simplified, but possibly more restrictive, condition

(3.36) λ max
i=1,...,N

vi
max ≤ α, α = 1.

In the scalar case (N = 1), the CFL conditions (3.26) and (3.30) are essentially the CFL conditions (3.16),
except with Courant number α = 1 instead of 1/2. The smaller α = 1/2 on the right side of (3.16) can be
explained by the fact that those conditions were derived in order to enforce both a TVD property and a
more restrictive local maximum principle. The non-oscillatory property of our scalar scheme is due to the
TVD property. Since we wish to extend this property to the systems version of our scheme, in practice we
use the more restrictive Courant number α = 1/2 in (3.26) for the multi-class traffic model. Similarly, we
use α = 1/2 in the CFL condition (3.30) for the scheme as it applies to the oil-in-water dispersion model.
Finally, we replace Courant number α = 1 by α = 1/2 in the simplified single CFL conditions (3.28) and
(3.29) and the simplified single CFL condition (3.36) for the oil-in-water model.

For the multi-class traffic model and the oil-in-water dispersion model, we have found the form that CFL
conditions should take by enforcing certain invariant regions, and then modifying the parameter on the right
side of the CFL inequalities by referring back to simpler scalar conservation laws. For the polydisperse
sedimentation model, we do not currently have a proof that our scheme preserves the invariant region Dφmax ,
so we can not directly carry out such a program. However, based on our analysis of the simpler multi-class
traffic and oil-in-water dispersion models, the CFL condition of the following type seems reasonable for the
polydisperse sedimentation model:

(3.37) λ max
i=1,...,N

|vi|max ≤ α, α = 1/2, |vi|max := max
Φ∈Dφmax

|vi(Φ)| .

Due to the complicated form of the velocities vi for the polydisperse sedimentation model, these maximum
velocities may be difficult to calculate. As an alternative, we can replace the CFL condition (3.37) by

λn max
j∈ZJ

max
i=1,...,N

∣∣vi(Φn
j )

∣∣ ≤ α, α = 1/2.

We enforce this CFL condition by computing at each time level

λn =
1

2 maxj∈ZJ maxi=1,...,N |vi(Φn
j )|

,

and then computing the time step via ∆tn = λn∆x. Our numerical experiments indicate that this approach
works well.

3.5. Higher-order versions (Schemes 9 and 10). Schemes 1 to 8 are only first-order accurate, meaning
that a very fine mesh is required in order to accurately resolve some features of the solution. To improve
on this situation, we propose a formally second-order scheme, constructed by using MUSCL [67] spatial
differencing, and Runge-Kutta temporal differencing. The MUSCL version of the ith flux component reads

hm
i (γi,j+1,Φj+2,Φj+1,Φj ,Φj−1) = hi

(
γi,j+1,Φj+1 −

1
2
σj+1,Φj +

1
2
σj

)
,(3.38)

γi,j+1 := γi

(
x+

j+1

)
, i = 1, . . . , N,(3.39)

where hi is the first-order version of the flux, and we define the slope vector σj := (σ1,j , . . . , σN,j)T with

σi,j =

{
minmod{φi,j+1 − φi,j , φi,j − φi,j−1} if j = 1, . . . , J − 1,
0 if j = 0 or j = J,

i = 1, . . . , N,(3.40)
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where, as usual, minmod{a, b} := (sgn(a) + sgn(b))min{|a|, |b|}/2, or the less dissipative Van Leer limiter

σi,j =

{
Θi,j if j = 1, . . . , J − 1,
0 if j = 0 or j = J,

i = 1, . . . , N,

Θi,j :=
|φi,j − φi,j−1|(φi,j+1 − φi,j) + |φi,j+1 − φi,j |(φi,j − φi,j−1)

|φi,j − φi,j−1|+ |φi,j+1 − φi,j |
.

(3.41)

When the boundary conditions are of the zero-flux type, we simply set σj = 0 when j = 0,J . In the scalar
case, this avoids non-physical overshoot that can occur otherwise.

In all examples in this paper, the parameter γ is piecewise constant. If γ is piecewise smooth, it is
necessary to use γi,j+1/2 := γi(x

+
j+1/2) in (3.38) instead of γi,j+1 in order to achieve second-order accuracy.

Some care is required here in order to avoid non-physical overshoots at jumps in γ. A simple way to avoid
such overshoots is to use γj+1 instead of γj+1/2 when there is a jump in γ between xj and xj+1. Note that
in any case we are not attempting to achieve higher than first-order accuracy at the location of jumps in γ.

Consequently, away from the boundaries, the MUSCL scheme is formally second-order accurate in space,
but not in time. To achieve formal second-order accuracy in time also, we use second-order Runge-Kutta
(RK) time stepping. More specifically, if we write our scheme with first-order Euler time differencing and
second-order spatial differencing abstractly as

(3.42) Φn+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
,

then the RK version takes the following two-step form

(3.43)
Φ̃n+1

j = Φn
j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
,

Φn+1
j =

1
2
Φn

j +
1
2
Φ̃n+1

j − 1
2
Γj

(
Φ̃n+1

j+2 , Φ̃
n+1
j+1 , Φ̃

n+1
j , Φ̃n+1

j−1 , Φ̃
n+1
j−2

)
.

This type of time discretization is formally second-order accurate in time, Strong Stability Preserving (SSP),
see [68], and does not require any additional reduction of the allowable time step. We refer to the scheme
based on the first-order flux (3.8) and extended to second-order in space and time accuracy by (3.38), (3.40)
and (3.42), (3.43), respectively, as Scheme 9, while the variant that uses the Van Leer limiter (3.41) (instead
of (3.40)) as Scheme 10.

Theorem 3.3. Consider the scalar initial value problem with flux (3.6) and periodic boundary conditions.
Assume that v′(φ) ≤ 0, v(φ) ≥ 0, v(φmax) = 0, v(0) = vmax. Assume that the initial data satisfies
φ0(x) ∈ [0, φmax], TV (φ0) <∞. Then Schemes 9 and 10 produce approximations that satisfy the maximum
principle (3.13) and TVD property (3.14) if the CFL condition (3.16) is satisfied and the slopes σj satisfy

(3.44) 0 ≤ σj

2∆+φj
≤ 1, 0 ≤ σj

2∆−φj
≤ 1.

Remark 3.1. The main point of the preceding theorem is that we do not have to reduce the allowable time
step when using the second-order scheme. Also, note that both the minmod limiter and the Van Leer limiter
enforce the inequalities (3.44).

Proof. Since the RK processing does not affect the stability properties, we carry out the proof for the scheme
where only the MUSCL processing is included. Following [69], we write the scheme in incremental form

φn+1
j = φn

j + Cn
j+1/2∆+φ

n
j −Dn

j−1/2∆−φ
n
j ,

where

Cn
j+1/2 =

−λ
∆+φn

j

[(
φn

j +
σn

j

2

)
v

(
φn

j+1 −
σn

j+1

2

)
−

(
φn

j +
σn

j

2

)
v

(
φn

j −
σn

j

2

)]
,

Dn
j−1/2 =

λ

∆−φn
j

[(
φn

j +
σn

j

2

)
v

(
φn

j −
σn

j

2

)
−

(
φn

j−1 +
σn

j−1

2

)
v

(
φn

j −
σn

j

2

)]
.
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A straightforward calculation gives

Cn
j+1/2 = −λ

(
φn

j +
σn

j

2

)
v′

(
ξn
j+1/2

)[
1−

σn
j+1

2∆+φn
j

+
σn

j

2∆+φn
j

]
,(3.45)

Dn
j−1/2 = λv

(
φn

j −
σn

j

2

) [
1 +

σn
j

2∆−φn
j

−
σn

j−1

2∆−φn
j

]
.(3.46)

The assumptions on φ0 imply φ0
j ∈ [0, φmax] and TV (φ0) <∞. Assume that φn

j ∈ [0, φmax] and TV (φn) <∞
also hold. Thanks to (3.44), the bracketed terms in (3.45) and (3.46) are nonnegative. The requirement (3.44)
also implies that the quantities φn

j ± σn
j /2 are contained in the interval [0, φmax]. With these observations,

it is clear that Cn
j+1/2 ≥ 0 and Dn

j−1/2 ≥ 0.
Finally, (3.44) implies that the bracketed terms in (3.45) and (3.46) do not exceed 2. Combining this fact

with the CFL condition (3.16), it is clear that Cn
j+1/2 ≤ 1/2 and Dn

j−1/2 ≤ 1/2. Thus Cn
j+1/2 +Dn

j+1/2 ≤ 1
and Cn

j+1/2 +Dn
j−1/2 ≤ 1. Combining these inequalities with the non-negativity of Cn

j+1/2 and Dn
j+1/2 proves

that φn+1
j ∈ [0, φmax], and TV (φn+1) <∞, and thus the proof is complete by induction on n. �

4. Convergence analysis

In this section we focus on the scalar initial value problem with periodic boundary conditions:

φt +
(
k(x)φV (φ/φmax)

)
x

= 0, (x, t) ∈ [0, L]× (0, T ) =: ΠT

φ(x, 0) = φ0(x),

φ(0, t) = φ(L, t),

(4.1)

with the initial datum φ0 satisfying

(4.2) φ0 ∈ BV ([0, L]) ∩ L1([0, L]) ∩ L∞([0, L]), φ0(x) ∈ [0, φmax] for all x ∈ [0, L].

We assume that the coefficient k is positive, bounded, and piecewise constant:

0 < kmin ≤ k(x) ≤ kmax, ∃ξ1, . . . , ξM ∈ (0, L) : k|(ξm,ξm+1) ≡ km.(4.3)

Note that the coefficient k has jumps at the points ξm.
Let f(φ) := φV (φ/φmax). We assume that V : [0, 1] 7→ [0, Vmax] is C1, satisfies (3.25), and that

∃φ∗ ∈ (0, φmax) : f ′(φ) > 0 for φ ∈ (0, φ∗) and f ′(φ) < 0 for φ ∈ (φ∗, φmax).(4.4)

This last condition is satisfied if for example, V (z) = (1− z)n, where n ≥ 1.
This is a simple scalar model of traffic flow discussed in Section 2.1. Relating this to (2.2)–(2.4), we obtain

the scalar velocity v(x, φ) = k(x)V (φ/φmax). The parameter k(x) is playing the role of v1
max(x); we make

this change to simplify the notation in this section. Also, we take φmax to be constant in this section. With
this simplification, along with the other assumptions stated above, the problem is a well-studied one.

Definition 4.1 (BVt entropy solution). A measurable function φ : ΠT → R is a BVt entropy solution of the
initial value problem (4.1) if

(4.5) φ ∈ L1(ΠT ) ∩BVt(ΠT ) ∩ L∞(ΠT ), φ(x, t) ∈ [0, φmax] for a.e. (x, t) ∈ ΠT ;

the following Kružkov-type entropy inequality holds for any ψ ∈ D(ΠT ), ψ ≥ 0, ψ(0, t) = ψ(L, t):∫∫
ΠT

(
|φ− c| ∂tψ + sgn(φ− c)

(
k(x)f(φ)− k(x)f(c)

)
∂xψ

)
dt dx

+
∫ T

0

M∑
m=0

∣∣k(ξ+m)
− k

(
ξ−m

)∣∣f(c)ψ(ξm, t) dt ≥ 0 ∀c ∈ R;

and the initial condition is satisfied in the following strong L1 sense:

(4.6) ess lim
t↓0

∫
R

∣∣φ(x, t)− φ0(x)
∣∣ dx = 0.
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Due to our assumptions on the flux f and the coefficient k, there is a well-developed uniqueness and
existence theory for the problem (4.1). In particular, by combining the results of [37] and [38], we have

Theorem 4.1. Problem (4.1) with assumptions (4.2)–(4.4) has a unique BVt entropy solution in the sense
of Definition 4.1.

To construct approximate solutions to the initial value problem (4.1) we discretize ΠT as in Section 3.1,
and use the marching formula

(4.7) φn+1
j = φn

j − λ
(
hn

j+1/2 − hn
j−1/2

)
, hn

j+1/2 := kj+1φ
n
j V (φn

j+1/φmax).

Here the flux hn
j+1/2 is defined by (3.18) (Scheme 3), as applied to the assumptions of this section.

To simplify the analysis, we choose a uniform time step ∆tn = ∆t such that the CFL condition

(4.8) λkmaxVmax ≤ α, λkmax |V ′|max ≤ α, α = 1/2

is satisfied. This is the version of (3.26) that applies to the present situation. We extend the grid function
φn

j so that it is defined on all of ΠT via

φ∆(x, t) =
N∑

n=0

J∑
j=0

φn
j χj(x)χn(t),

where χj(x) is the characteristic function for the spatial interval [xj − ∆x/2, xj + ∆x/2) and χn(t) is the
characteristic function for the temporal interval [tn, tn + ∆t).

Lemma 4.1. Scheme 3 is monotone in the sense that if {φn
j } and {σn

j } are two approximate solutions lying
in the interval [0, φmax] such that φn

j ≤ σn
j for all j ∈ J , then φn+1

j ≤ σn+1
j for all j ∈ J . Furthermore, if

the initial data φ0(x) lies in the interval [0, φmax] for all x ∈ [0, L], then the computed approximation also
satisfies φn

j ∈ [0, φmax] for all n ≥ 0 and all j ∈ J . In addition, we have the discrete time continuity estimate

(4.9)
J∑

j=0

∣∣φn+1
j − φn

j

∣∣ ≤ C, n = 0, 1, . . . ,N ,

where the constant C is independent of the mesh size ∆ and the time level n.

Proof. Substituting the formula for the numerical flux into the marching formula (4.7) and then taking
partial derivatives yields

∂φn+1
j

∂φn
j+1

= −
λkj+1φ

n
j

φmax
V ′

(
φn

j+1

φmax

)
,

∂φn+1
j

∂φn
j−1

= λkjV (φn
j /φmax),

∂φn+1
j

∂φn
j

= 1− λkj+1V

(
φn

j+1

φmax

)
+
λkjφ

n
j−1

φmax
V ′

(
φn

j

φmax

)
.

That the first two partial derivatives are nonnegative is obvious. The third one is nonnegative thanks to
the CFL condition. The first assertion is now an immediate consequence of the non-negativity of these
partial derivatives. For the second assertion, note that if we apply the scheme to the constant data p0

j ≡ 0
and q0j ≡ φmax, the result is p1

j ≡ 0 and q1j ≡ φmax. Since 0 = p0
j ≤ φ0

j ≤ q0j ≤ φmax, we will have
0 = p1

j ≤ φ1
j ≤ q1j ≤ φmax; this follows from the monotonicity. Continuing this way by induction completes

the proof of the second assertion. The third assertion (4.9) is basically a consequence of the Crandall-Tartar
lemma [64], along with the boundedness of the variation of the initial data. The proof is very similar to that
of [37, Lemma 3.3], so we omit the details. �

In order to establish compactness, we a need a spatial variation bound, which is provided by the following
lemma. Let V b

a (z) denote the total variation of the function x 7→ z(x) over the interval [a, b].

Lemma 4.2. For any interval [a, b] such that {ξ1, . . . , ξM} ∩ [a, b] = ∅, and any t ∈ [0, T ] we have a spatial
variation bound of the form V b

a (φ∆(·, t)) ≤ C(a, b), where C(a, b) is independent of ∆ and t for t ∈ [0, T ].
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Proof. Due to our time continuity estimate (4.9), there is a constant K such that

(4.10) ∆x
J∑

j=0

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K.

Since {ξ1, . . . , ξM} ∩ [a, b] = ∅, we can assume that there is an index m such that ξm < a < b < ξm+1. Fix
r > 0, and without loss of generality, assume that r > ∆x for all mesh sizes ∆x of interest. Let

A := A(∆) := {j|xj ∈ [a− r −∆x, a]}, B := B(∆) := {j|xj ∈ [b, b+ r + ∆x]},

and observe that |A|∆x ≥ r, |B|∆x ≥ r. It is then clear from (4.10) that

(4.11) ∆x
∑
j∈A

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K, ∆x
∑
j∈B

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K.

We can choose ja = ja(∆), jb = jb(∆) with ja ∈ A, jb + 1 ∈ B such that

N∑
n=0

∣∣φn+1
ja

− φn
ja

∣∣ = min
j∈A

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ , N∑
n=0

∣∣φn+1
jb+1 − φn

jb+1

∣∣ = min
j∈B

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ .
It follows from (4.11) that

(4.12)
N∑

n=0

∣∣φn+1
ja

− φn
ja

∣∣ ≤ K

|A|∆x
≤ K

r
,

N∑
n=0

∣∣φn+1
jb+1 − φn

jb+1

∣∣ ≤ K

|B|∆x
≤ K

r
.

Due to the way that we selected ja and jb, for ja ≤ j ≤ jb we can write the scheme as

(4.13) φn+1
j = φn

j − kmλ∆−f̄(φn
j+1, φ

n
j ), f̄(φn

j+1, φ
n
j ) := φn

j V (φn
j+1/φmax).

The formula (4.13) can also be written in incremental form

(4.14) φn+1
j = φn

j + Cn
j+1/2∆+φ

n
j −Dn

j−1/2∆−φ
n
j ,

where

Cn
j+1/2 = λkm

f(φn
j )− f̄(φn

j+1, φ
n
j )

∆+φn
j

, Dn
j−1/2 = λkm

f(φn
j )− f̄(φn

j , φ
n
j−1)

∆−φn
j

.

Using the definitions of f and f̄ , and invoking the CFL condition (4.8), it is easy to check that

(4.15) Cn
j+1/2 ≥ 0, Dn

j+1/2 ≥ 0, Cn
j+1/2 +Dn

j+1/2 ≤ 1.

The incremental form (4.14) implies that the differences evolve according to

(4.16) ∆+φ
n+1
j = ∆+φ

n
j + Cn

j+3/2∆+φ
n
j+1 − Cn

j+1/2∆+φ
n
j −Dn

j+1/2∆+φ
n
j +Dn

j−1/2∆−φ
n
j .

Note that when j = ja, we can write (4.16) as

(4.17) ∆+φ
n+1
ja

= ∆+φ
n
ja

+ Cn
ja+3/2∆+φ

n
ja+1 −Dn

ja+1/2∆+φ
n
ja
−

(
φn+1

ja
− φn

ja

)
.

Similarly, when j = jb, (4.16) takes the form

(4.18) ∆+φ
n+1
jb

= ∆+φ
n
jb
− Cn

jb+1/2∆+φ
n
jb

+Dn
jb−1/2∆−φ

n
jb

+
(
φn+1

jb+1 − φn
jb+1

)
.

Taking absolute values and summing over j in (4.16), we use the properties (4.15) to proceed as in the
proof of Harten’s lemma (Lemma 2.2 of [65]). To deal with the boundary contributions, we use (4.17) and
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(4.18). This calculation yields
jb∑

j=ja

∣∣∆+φ
n+1
j

∣∣ ≤ (
1−Dn

ja+1/2

) ∣∣∆+φ
n
ja

∣∣ + Cn
ja+3/2

∣∣∆+φ
n
ja+1

∣∣ +
∣∣φn+1

ja
− φn

ja

∣∣
+

jb−1∑
j=ja+1

(
1− Cn

j+1/2 −Dn
j+1/2

) ∣∣∆+φ
n
j

∣∣ +
jb−1∑

j=ja+1

Cn
j+3/2

∣∣∆+φ
n
j+1

∣∣
+

jb−1∑
j=ja+1

Dn
j−1/2

∣∣∆−φ
n
j

∣∣ +
(
1− Cjb+1/2

) ∣∣∆+φ
n
jb

∣∣ +Dn
jb−1/2

∣∣∆−φ
n
jb

∣∣ +
∣∣φn+1

ja
− φn

ja

∣∣
≤

jb∑
j=ja

∣∣∆+φ
n
j

∣∣ +
∣∣φn+1

ja
− φn

ja

∣∣ +
∣∣φn+1

jb+1 − φn
jb+1

∣∣ .
Proceeding by induction, and then using (4.12), we find that for 1 ≤ n ≤ N

(4.19)
jb∑

j=ja

∣∣∆+φ
n
j

∣∣ ≤ jb∑
j=ja

∣∣∆+φ
0
j

∣∣ +
n∑

ν=1

(∣∣φν
ja
− φν−1

ja

∣∣ +
∣∣φν

jb+1 − φν−1
jb+1

∣∣) ≤ jb∑
j=ja

∣∣∆+φ
0
j

∣∣ +
2K
r
.

The proof is completed with the observation that [a, b] ⊆ [xja , xjb+1 ], along with the assumption that u0 has
bounded variation. �

Remark 4.1. Note that the spatial variation bound provided by Lemma 4.2 is only local, and due to the term
2K/r appearing in (4.19), it blows up if the distance from one of the endpoints of the interval [a, b] to one of
the jump points ξm or ξm+1 approaches zero. This is consistent with the fact that there is currently no known
global spatial variation bound for conservation laws of this type (i.e., with a discontinuous coefficient). This
has made it necessary to use alternative approaches to prove compactness, including the singular mapping
approach, and the compensated compactness approach. The local variation bound established above provides
one more analytical tool for such problems.

We state the following lemma without proof; it follows from the monotonicity property (Lemma 4.1), and
is based on a discrete entropy inequality due to Crandall and Majda [64] which was later adapted to the
situation where there are discontinuous coefficients, see [37] or [38].

Lemma 4.3. For any c ∈ R, the following cell entropy inequality is satisfied by approximate solutions φn
j

generated by the scheme (4.7) (Scheme 3):∣∣φn+1
j − c

∣∣ ≤ ∣∣φn
j − c

∣∣− λ∆−H
n
j+1/2 + λ |kj+1 − kj | f(c),

where the numerical entropy flux Hn
j+1/2 is defined by

Hn
j+1/2 = kj+1f̄

(
φn

j+1 ∨ c, φn
j ∨ c

)
− kj+1f̄

(
φn

j+1 ∧ c, φn
j ∧ c

)
,

and f̄ is defined in (4.13).

Theorem 4.2. Let the function φ∆ be defined by (4.7) (Scheme 3). Assume that ∆ := (∆x,∆t) → 0 with
the ratio λ fixed and satisfying the CFL condition (4.8). Then φ∆ → φ boundedly a.e. and in L1(ΠT ), where
φ is the unique BVt entropy solution to the initial value problem (4.1) in the sense of Definition 4.1.

Proof. For our approximate solutions φ∆, Lemma 4.1 gives us an L∞ bound and a time continuity bound.
Since our spatial domain [0, L] is compact, a uniform L1 bound follows immediately from our L∞ bound. We
also have a bound on the spatial variation in any interval [a, b] not containing any of the points ξ1, . . . , ξM .

By standard compactness results, for any set S of the form

(4.20) S =
P⋃

p=1

[ap, bp], S ∩ {ξ1, . . . , ξM} = ∅,
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there is a subsequence (which we do not bother to relabel) such that φ∆ converges in L1(S × [0, T ]). Taking
a countable sequence of intervals Sν satisfying (4.20) and

∞⋃
ν=1

Sν = [0, L] \ {ξ1, . . . , ξM},

and employing a standard diagonal process we can extract a subsequence (which we again do not relabel)
such that φ∆ converges in L1(ΠT ) and also a.e. in ΠT to some φ ∈ L1(ΠT ) ∩ L∞(ΠT ). That the limit φ is
also in BVt(ΠT ) is a consequence of the time continuity estimate (4.9). We have verified that the limit φ
satisfies (4.5) of Definition 4.1.

That the limit φ satisfies the entropy inequality is a consequence of a Lax-Wendroff type calculation,
which we omit since it is similar to the proof Lemma 4.1 of [37], see also the proof of of Theorem 3.1 of
[16]. A proof of (4.6), i.e., that the initial values are assumed in the strong L1 sense, can be found in [38],
specifically, the proofs of Theorem 5.1 and Lemma B.1.

Finally, by the uniqueness portion of Theorem 4.1, the entire computed sequence φ∆ (not just a subse-
quence) converges to φ in L1(ΠT ) and boundedly a.e. in ΠT . �

5. Numerical examples

5.1. Example 1: Scalar equation without spatially varying parameters. To study the scalar scheme
in the simplest possible setting, we apply Scheme 1 and the Lax-Friedrichs (LxF) flux

(5.1) hLxF
j+1/2 :=

1
2

(φj+1vj+1 + φjvj)−
q

2λ
(φj+1 − φj)

to the initial value problem

(5.2) φt +
(
φ(1− φ)ν

)
x

= 0, φ0(x) =

{
0.85 if |x| > 1,
0.1 if |x| < 1.

For the parameter q appearing in (5.1), we take q = 1/2 because this ensures that the resulting scheme
satisfies the maximum principle (3.13) and TVD property (3.14). Plots (a) and (b) of Figure 1 show that
for ν = 1, both schemes give similar results. Plots (c) and (d) illustrate that for ν = 5, the schemes based
on (3.8) (both first-order and second-order versions, Schemes 1 and 10) give better resolution than the
schemes based on the LxF flux. The solid line in all plots of Figure 1 is a reference solution, computed using
Scheme 10, and the discretization parameters reduced by a factor of 8.

5.2. Example 2: Scalar equation with spatially varying coefficients. We next apply the variant of
Scheme 1 that applies to conservation laws with discontinuous flux, namely Scheme 3, and Scheme 10 to
scalar conservation laws with discontinuous flux of the form (2.2). The equation considered is

φt +
(
vmax(x)φ(1− φ/φmax(x))

)
x

= 0.

In Figures 2 (a) and (b) we use

φmax = 1, φ0(x) =

{
0.8 for x < 0,
0.1 for x > 0,

, vmax(x) =

{
1.0 for x < 0,
0.5 for x > 0.

(5.3)

In Figures 2 (c) and (d) we set

φmax(x) =

{
1.0 for x < 0,
0.5 for x > 0,

φ0(x) =

{
0.3 for x < 0,
0.7 for x > 0,

, vmax = 1.(5.4)

The solid line visible in all plots is a reference solution, computed using Scheme 10, and the discretization
parameters reduced by a factor of 16.

In each case, the new scheme (Scheme 3 or 10) gives better resolution than the corresponding scheme
based on the LxF flux. Note that there is some overshoot visible in plots (a) and (b). This overshoot
originates at the location of the jump in vmax, and then propagates as a traveling wave (a bump). As the
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Figure 1. Example 1 (scalar case, problem (5.2)): Scheme 1 (×) (a, c), Scheme 10 (×) (b,
d) and LxF flux (·). Plot (a): first-order schemes, ν = 1. Plot (b): second-order schemes,
ν = 1. Plot (c): first-order schemes, ν = 5. Plot (d): second-order schemes, ν = 5. The
solid line is the reference solution.

mesh size approaches zero, the magnitude and width of the bump approaches zero. Clearly, this non-physical
feature is more pronounced for the LxF scheme.

5.3. Example 3: Clarifier-thickener model. We now adapt our scheme to the clarifier-thickener model
with constant cross-sectional area studied in [16], specifically Example 2 of that paper. In this case the
conservation law is of the form

(5.5) φt +
(
φ[a(x)S(φ) + c(x)] + b(x)

)
x

= 0, x ∈ R, t > 0,

where S(φ) = φ∞(1− φ)2 and

a(x) =

{
1 for x ∈ (−1, 1),
0 for x /∈ (−1, 1),

b(x) =

{
−qLφF for x < 0,
−qRφF for x > 0,

c(x) =

{
qL for x < 0,
qR for x > 0.

Except for the term b(x) which we discretize separately, this problem fits into the framework of (3.1) with
N = 1, and the velocity v(φ, x) = a(x)S(φ) + c(x), which may assume either sign. Consequently, and
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Figure 2. Example 2 (scalar case with discontinuous flux, see (5.2)): Scheme 3 (×) (a, c),
Scheme 10 (×) (b, d) and LxF flux (·). Plot (a): coefficients (5.3), first-order schemes. Plot
(b): coefficients (5.3), second-order schemes. Plot (c): coefficients (5.4), first-order schemes.
Plot (d): coefficients (5.4), second-order schemes. The solid line is the reference solution.

following (3.9), the appropriate first-order scheme is Scheme 2, whose numerical flux is defined by

(5.6) hj+1/2 = φj max{0, vj+1}+ φj+1 min{0, vj+1}+ bj+1, vj := ajS(φj) + cj .

Note that we use bj+1, as opposed to bj (or some average of the two values) for the first-order version of the
scheme. Indeed, this biased discretization of the parameter b can be motivated by the requirement that if
S ≡ 0, then φ ≡ φF should be a stationary solution of (5.5).

For the second-order version of the scheme, we discretize γ(x) := (a(x), c(x)) as in (3.39), and and continue
to use bj+1 in (5.6); this discretization of b(x) preserves the steady solution φ ≡ φF if S ≡ 0. We use the
Van Leer limiter (3.41), so the scheme in question is Scheme 10.

For our experiments, we used the same parameters as for Example 2 of [16], namely qL = −1, qR = 0.6,
φF = 0.8 and φ∞ = 27/4. For discretization parameters, we used ∆x = 5 × 10−3, ∆t = 3.125 × 10−4,
implying λ = 1/16; this value of λ was chosen to agree with Example 2 of [16]. We started with initial data
φ0 ≡ 0. Plot (a) of Figure 3 shows the solution at t = 1, and plot (b) shows the solution at t = 3. These
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Figure 3. Example 3 (clarifier-thickener model (5.5)): (first-order) Scheme 2 (dashed line)
and second-order Scheme 10 (solid line). Plot (a) shows t = 1, plot (b) shows t = 3.

approximations are in good agreement with the solutions obtained in Example 2 of [16]. Scheme 2 provides
a somewhat less accurate solution than the one provided by the Engquist-Osher scheme proposed in [16].
However, Scheme 2 is much easier to code, and at least with our implementation, runs significantly faster.

5.4. Example 4: Multi-species traffic model. Zhang et al. [4] present numerical simulations of a traffic
flow model with N = 9 species (classes) of vehicles with the maximum velocities vi

max = (52.5+ i ·7.5) km/h,
i = 1, . . . , 9. We consider here Case 2 simulated in [4], where the function V (φ) = exp(−(φ/φ∗)2/2) with
the parameter φ∗ = 50 cars/km is used. This case, which forms our Example 4, consists of the evolution of
an isolated initial traffic “platoon” given by Φ0(x) = p(x)0.04φ0(1, 2, 3, 4, 5, 4, 3, 2, 1)T, where

p(x) :=


10x for 0 < x ≤ 0.1,
1 for 0.1 < x ≤ 0.9,
−10(x− 1) for 0.9 < x ≤ 1,
0 otherwise

is the platoon “shape function”, where x denotes distance measured in kilometers and φ0 = 120 cars/km. We
here use this example to compare the performance of Scheme 4, which is the first-order version of the scheme
that applies to systems with non-negative velocities only, with the standard first-order LxF scheme; and
that of Scheme 9, which is the second-order version of Scheme 4 generated by spatial MUSCL extrapolation
in combination with a second-order RK type discretization, with that of a second-order version of the LxF
scheme generated by the analogous MUSCL/RK “upgrades”. The reference solution was calculated using
Scheme 9 with the discretization parameters ∆x = 1/480 km. The reference solution and all numerical
solutions of this example have been calculated with λ = 1/240 h/km.

In Examples 4 and 6, we record an approximate L1 error defined with respect to the reference solution,
to evaluate the performance of some of the new schemes. We introduce two types of L1 error, denoted e1
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(a) (b)

(c) (d)

Figure 4. Example 4 (traffic model, N = 9): simulated total car density. Plots (a, c):
first-order schemes (LxF and Scheme 4). Plots (b, d): second-order schemes (LxF MM/RK
and Scheme 9). Plots (a, b) show t = 0.01 h, and plots (c, d) show t = 0.03 h.

and e2, which are defined by

e1 := ∆̃x
MR∑

i=ML

m∑
j=1

N∑
k=1

∣∣φ̃n
k,m(i−1)+j − φn

k,i

∣∣, e2 := ∆̃x
MR∑

i=ML

m∑
j=1

∣∣∣∣∣
N∑

k=1

(
φ̃n

k,m(i−1)+j − φn
k,i

)∣∣∣∣∣ ,
where φ̃n

k,l̃
and φn

k,l are the reference solution at x = xl̃ and the approximate solution at x = xl, respectively,
both for species k at t = tn; m is the value of ∆x of the approximate solution divided by that of the reference
solution; ML and MR are the indices of the positions between which we calculate the errors of the numerical
approximation; and ∆̃x is the spatial discretization parameter of the reference solution.

For Example 4, Figure 4 shows the simulated total car density at two times produced by the LxF scheme,
Scheme 4, the second-order version of the LxF scheme using the minmod limiter, and Scheme 9, while Table 1
displays the approximate L1 errors for this example, measured over the interval [−1 km, 6 km]. Both Figure 4
and Table 1 indicate the superiority of Scheme 4 over the LxF scheme, and of Scheme 9 over the second-order
MM/RK upgrade of the LxF scheme, respectively.

5.5. Example 5: Multiclass traffic model with spatially varying φmax. As an example where the
flux has a spatially varying parameter, we also present two simulations (Examples 5.1 and 5.2) that can be
compared with numerical results by Zhang et al. [6]. The model is the multi-class traffic model of Section 2.1,
whose flux is given by (2.4). Both examples are Riemann problems, and N = 3. The (normalized [6])
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t = 0.01 h t = 0.03 h
J + 1 e1 Conv. e2 Conv. e1 Conv. e2 Conv.

= L/∆x [cars] rate [cars] rate [cars] rate [cars] rate
Scheme LxF

100 35.121 34.660 29.365 27.091
200 21.885 0.682 21.317 0.701 19.163 0.616 15.372 0.818
300 16.298 0.727 15.657 0.761 15.232 0.566 10.702 0.893
400 13.187 0.736 12.486 0.787 13.110 0.522 8.176 0.936
600 9.830 0.725 9.034 0.798 10.830 0.471 5.536 0.962

Scheme 4
100 15.634 15.197 17.798 14.137
200 9.193 0.766 8.639 0.815 11.730 0.601 7.492 0.916
300 6.877 0.716 6.197 0.819 9.399 0.546 5.096 0.950
400 5.614 0.705 4.859 0.845 8.095 0.519 3.866 0.960
600 4.229 0.699 3.431 0.858 6.619 0.496 2.623 0.957

Scheme LxF MM/RK
100 14.649 13.589 11.608 5.941
200 7.880 0.895 6.852 0.988 8.405 0.466 2.563 1.213
300 5.602 0.842 4.596 0.985 7.257 0.362 1.741 0.954
400 4.505 0.757 3.457 0.990 6.476 0.396 1.414 0.722
600 3.376 0.711 2.263 1.044 5.450 0.425 1.052 0.730

Scheme 9
100 8.619 7.786 8.509 3.570
200 4.749 0.860 3.857 1.014 5.986 0.508 1.830 0.964
300 3.410 0.817 2.534 1.036 4.845 0.521 1.310 0.824
400 2.700 0.811 1.853 1.087 4.116 0.567 1.016 0.884
600 1.885 0.887 1.151 1.175 3.114 0.688 0.680 0.991

Table 1. Example 4: approximate L1 errors.

maximum velocities are constant: v1
max = 0.50, v2

max = 0.75 and v3
max = 1.00. We use the second-order

scheme of Section 3.5 with the minmod limiter (3.40) (Scheme 9). The mesh size for both problems is
∆x = 6.25 × 10−4, ∆t = 1.25 × 10−4. We march the solution forward in time for 8000 steps, arriving at
t = 1. The initial data Φ0 and maximum density φmax are constant except for a jump at x0 ∈ (0, 1),

φmax(x) =

{
3 for x < x0,
1 for x > x0,

, Φ0(x) =

{
Φ0

L for x < x0,
Φ0

R for x > x0.

For Examples 5.1 and 5.2, we choose x0 = 0.5, Φ0
L = (0.6, 0.3, 0.9)T and Φ0

R = (0.1, 0.0, 0.5)T, and x0 = 0.3,
Φ0

L = (0.6, 0.45, 0.15)T and Φ0
R = (0.05, 0.15, 0.2)T, respectively. As shown in Figure 5, for both problems,

the various waves are well resolved, and there is good agreement with the results obtained by Zhang et al.
in [6] (see Figures 4 and 7 of that paper).

5.6. Example 6: Settling of a bidisperse suspension of equal-density spheres. In this example, the
parameters are N = 2, %1 = %2 = %s = 2790 kg/m3, d1 = 4.96×10−4 m, d2 = 1.25×10−4 m, %f = 1208 kg/m3

and µf = 0.02416 Pa s. Here, we have δ1 = 1 and δ2 = d2
2/d

2
1 = 0.06351213. For this mixture, we select the

phase space D0.68 [23] and the function V (φ) given by (2.6) with the exponent n = 4.7; all these parameters
correspond to experimental data by Schneider et al. [55]. As in [55], we consider an initially homogeneous
suspension with Φ0 = (φ0

1, φ
0
2)

T = (0.2, 0.05) in a vessel of height L = 0.3 m.
The reference solution was calculated using the Scheme 10 with the discretization parameter ∆x =

1/8000 m. For the reference solution and all other computations of this example, we use λ = 56.95 s/m.
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Figure 5. Examples 5.1 (a, b) and 5.2 (c, d) (traffic model with spatially varying φmax,
N = 3): plots (a, c) show φ1/φmax (solid line), φ2/φmax (dashed line), φ3/φmax (dash-dotted
line). Plots (b, d) show (φ1 + φ2 + φ3)/φmax. Solutions are obtained by Scheme 9.

For Example 6, Figure 6 shows the numerical solution of the total solids concentration for t = 60 s and
t = 240 s, produced by the first-order LxF scheme, Schemes 6 and 8, the second-order version of the LxF
scheme involving the Van Leer limiter function, Scheme 8 with the Van Leer limiter function, and Scheme 10,
while Table 2 displays the approximate L1 errors for this example, measured over the interval [0 m, 0.3 m].
(Again, all second-order schemes utilize RK time stepping.)

It is clear from Figure 6 that Schemes 6 and 8 and their second order versions are less dissipative than their
counterparts based on the LxF flux. In plots (c) and (d), there is a spurious ”kink” and a small overshoot in
the solution created by Schemes 6 and 10. These artifacts are diminished by using instead the more viscous
Scheme 8, and its second order version. In the reference solution, which is computed using a very fine mesh,
these features are not visible at all. Table 2 corroborates what we see in the plots, specifically, smaller errors
and faster rates of convergence for Schemes 6 and 8 and their second order versions than the LxF based
schemes. It is interesting that Scheme 6, which is formally first order accurate, has smaller errors at t = 240 s
than the formally second order accurate version of the LxF scheme.
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Figure 6. Example 6 (settling of a suspension of equal-density spheres, N = 2): simulated
total solids concentration. Plots (a, c): first-order schemes (LxF, Schemes 68 and 8). Plots
(b, d): second-order schemes (LxF VL/RK, Scheme 8 VL/RK and Scheme 9). Plots (a, b)
show solutions at t = 60 s, and plots (c, d) show solutions at t = 240 s.

5.7. Example 7: Settling of a suspension with particles of 11 different sizes. To illustrate that
the new method handles systems with a large number of particle species, we consider a suspension of equal-
density particles of N = 11 different sizes. The parameters and initial concentrations of these size classes are
displayed in Table 3. This size distribution was determined by Tory et al. [9] as a discrete approximation
for a suspension of closely-sized spherical particles with continuously, roughly normally distributed particle
sizes [70]. Following [70], we consider a settling column of height L = 0.935 m. The hindered settling factor
found suitable is (2.6) with n = 4.65 and φmax = 0.641. According to [70], a single sphere with diameter
6.694×10−5 m has a Stokes velocity of ṽ∞ = 0.00392 m/s, so we here use (2.9) with v∞ = (8.769/6.694)2ṽ∞ =
0.00673 m/s. We calculate the numerical solution at the times t = t1 = 247.77 s, t = t2 = 412.94 s and
t3 = 578.15 s, using Scheme 10 with the discretization parameters ∆x = 9.13 × 10−4 m = L/1024 and
∆t = λ∆x, where λ = 74.29 s/m. The values of ∆x and t1, t2 and t3 have been chosen such that results can
be compared with the numerical solution of the same example by the multiresolution WENO scheme done
by Bürger and Kozakevicius [29].

Figures 7, 8 and 9 show the numerical solutions of each species concentration and the total solids con-
centration for t = 247.77 s, t = 412.94 s, and t = 578.15 s, respectively, over intervals where the solutions are
different from zero. By comparing these figures with Figures 18, 19, and 20 of [29], it is clear that Scheme
10 captures the same solution as the multiresolution scheme of that paper.



NUMERICAL SCHEMES FOR KINEMATIC FLOWS 27

t = 60 s t = 240 s
J + 1 e1 Conv. e2 Conv. e1 Conv. e2 Conv.

= L/∆x 10−3 rate 10−3 rate 10−3 rate 10−3 rate
LxF scheme

100 19.617 18.381 26.033 18.410
200 14.294 0.457 13.525 0.443 18.788 0.471 11.702 0.654
300 11.576 0.520 10.978 0.515 16.267 0.355 9.572 0.496
400 9.926 0.535 9.366 0.552 14.916 0.301 8.479 0.422
600 7.959 0.545 7.430 0.571 13.306 0.282 7.230 0.393

Scheme 8
100 11.033 10.004 15.499 12.348
200 6.999 0.657 6.293 0.669 11.397 0.444 9.002 0.456
300 5.370 0.654 4.828 0.654 9.433 0.467 7.134 0.574
400 4.447 0.655 3.992 0.660 8.095 0.532 6.097 0.546
600 3.419 0.649 3.065 0.652 6.595 0.505 4.852 0.563

Scheme 6
100 9.965 9.032 10.913 7.163
200 6.104 0.707 5.501 0.715 7.201 0.600 3.534 1.019
300 4.606 0.694 4.142 0.700 5.000 0.900 2.583 0.774
400 3.776 0.691 3.380 0.706 3.995 0.780 2.082 0.750
600 2.867 0.679 2.555 0.690 3.089 0.635 1.447 0.897

Scheme LxF VL/RK
100 7.134 6.269 13.180 8.510
200 3.741 0.931 3.281 0.934 8.717 0.596 5.130 0.730
300 2.479 1.015 2.170 1.020 6.849 0.595 3.786 0.749
400 1.861 0.996 1.626 1.002 5.719 0.627 3.047 0.756
600 1.196 1.091 1.046 1.088 4.384 0.656 2.182 0.824

Scheme 8 VL/RK
100 5.900 5.203 10.955 6.103
200 2.947 1.001 2.599 1.001 5.967 0.876 3.276 0.897
300 1.920 1.057 1.692 1.059 3.992 0.992 2.185 0.999
400 1.413 1.066 1.246 1.062 3.095 0.884 1.778 0.716
600 0.890 1.141 0.785 1.140 1.862 1.254 1.033 1.339

Scheme 10
100 5.620 5.005 8.648 5.125
200 2.725 1.045 2.427 1.044 4.183 1.048 2.537 1.015
300 1.742 1.104 1.554 1.099 2.584 1.188 1.635 1.083
400 1.262 1.119 1.125 1.122 1.849 1.164 1.248 0.939
600 0.762 1.245 0.680 1.242 1.182 1.102 0.776 1.173

Table 2. Example 6: approximate L1 errors.

In all figures we notice that larger species settle first and fill the lower layers of the vessel. In Figure 8 we
can see spurious tips in the solutions of the species 4 to 9, which do not appear in Figures 7 and 9. There
are also peaks in the simulated total concentration in Figures 8 and 9. It is clear that this does not have
physical sense and therefore is a numerical artefact.

5.8. Example 8: Oil-in-water dispersion model: Creaming of a dispersion with 10 different
droplet sizes. We consider the settling of a dispersion of droplets of diesel oil in water. We utilize the
droplet size distribution with N = 10 given by Figure 2 of Das and Biswas [71], a histogram of relative
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i di [10−5 m] δi φ0
i

1 8.769 1.0000 0.000435
2 8.345 0.9056 0.003747
3 7.921 0.8159 0.014420
4 7.497 0.7309 0.032603
5 7.073 0.6506 0.047912
6 6.649 0.5749 0.047762
7 6.225 0.5039 0.032663
8 5.801 0.4376 0.015104
9 5.377 0.3760 0.004511
10 4.953 0.3190 0.000783
11 4.529 0.2668 0.000060

Table 3. Example 7: Parameters for the settling of a suspension with N = 11 particle sizes.

Figure 7. Example 7 (settling of a suspension with particles of N = 11 different sizes):
solids concentrations at t = 247.77 s simulated by Scheme 10.

frequencies, which is converted into the initial vector Φ0 in Table 4. We use here the viscosity function
µd(Φ) = µd(φ) = µf(1 − φ/φmax)−2, and consider the creaming of the mixture characterized by Table 4 in
three different vessels of height L = 1m and with the bottom located in x = 0: Vessel 1 (Example 8.1), a
settling column of unit cross-sectional area, Vessel 2 (Example 8.2), which is defined by the cross-sectional
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Figure 8. Example 7 (settling of a suspension with particles of N = 11 different sizes):
solids concentrations at t = 412.94 s simulated by Scheme 10.

i Di [10−6 m] Vi[10−18 m3] θi φ0
i /φ

0 φ0
i

1 5 65.4 0.019 6.654×10−5 3.327×10−6

2 10 523.6 0.050 1.401×10−3 7.004×10−5

3 15 1767.1 0.047 4.444×10−3 2.222×10−4

4 20 4188.8 0.081 1.815×10−2 9.077×10−4

5 25 8181.2 0.148 6.479×10−2 3.239×10−3

6 30 14137.2 0.207 1.566×10−1 7.829×10−3

7 35 22449.3 0.202 2.426×10−1 1.213×10−2

8 40 33510.3 0.169 3.030×10−1 1.515×10−2

9 45 47712.9 0.064 1.634×10−1 8.169×10−3

10 50 65449.8 0.013 4.553×10−2 2.276×10−3

Table 4. Example 8: Droplet sizes and initial volume fractions for a dispersion of diesel
oil in water according to [71].

area function

S2(x) =

{
0.0025 m2 for 0m ≤ x ≤ 0.5 m,
0.01 m2 for 0.5 m < x ≤ 1.0 m,
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Figure 9. Example 7 (settling of a suspension with particles of N = 11 different sizes):
solids concentrations at t = 578.15 s simulated by Scheme 10.

and Vessel 3 (Example 8.3), which is just Vessel 2 turned “upside-down”, and is characterized by the
cross-sectional area function S3(x) := S2(1.0 m − x). Thus, in Examples 8.2 and 8.3, we have a system of
conservation laws whose flux depends discontinuously on x. Namely, we have the initial value problem

S(x)∂tφi + ∂xfi(S(x),Φ) = 0, (x, t) ∈ (0, L)× (0, T ) =: ΠT , i = 1, . . . , N,

fi(S(x),Φ) = S(x)φivi(Φ), Φ(x, 0) = Φ0(x), x ∈ (0, L),

which is supplemented by the zero-flux boundary conditions fi(S(0),Φ) = fi(S(L),Φ) = 0 for i = 1, . . . , N ,
where the cross-sectional area function S equals S2 and S3 for Vessels 2 and 3, respectively.

For Examples 8.2 and 8.3, in the numerical scheme we multiply λ by 1/Sj with Sj = S(x+
j ), and in the

CFL conditions (3.30), multiply the Courant number α by Smin/Smax, where Smin and Smax denote the
minimum and the maximum cross-sectional areas of the vessel, respectively.

For Example 8.1, we present the solution at three different times plus a plot of the cumulate density φ,
while for Examples 8.2 and 8.3 we consider plots of φ only. In Example 8.1, we compare the performances of
Schemes 4 and 9, while in Examples 8.2 and 8.3, we use Scheme 9 only. We set ∆x = 1/512 m in all cases,
λ = 738.9 s/m for Example 8.1, and λ = 184.725 s/m for Examples 8.2 and 8.3.

Figure 10 shows the simulated total oil concentration φ of Example 8.1 for t = 1000 s, t = 10000 s, and
t = 150000 s, with a zoom into a zone where the solution exhibits strong variation. In Figures 11, 12 and 13
we show the numerical solutions of the concentration of each species and the total oil concentration of the
Example 8.1 for t = 1000 s, t = 10000 s, and t = 150000 s, respectively, over intervals where the solutions are
different from zero. Clearly, the larger species settle first and fill the upper layers of the vessel.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Example 8.1 (creaming of a oil-in-water dispersion with N = 10 droplet sizes
in Vessel 1): simulated total oil concentration with Schemes 4 and 9: (a, b) at t = 1000 s,
(c, d) at t = 10000 s, and (e, f) at t = 150000 s.

Figures 14 (a), (c) and (e) show the numerical solutions of the total oil concentration of Example 8.2
(creaming of a oil-in-water dispersion with 10 different droplet sizes in Vessel 2) at three different times,
with a zoom in a zone with many changes in the solution, while Figures 14 (b), (d) and (f) display the
corresponding results of Example 8.3.
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Figure 11. Example 8.1 (creaming of an oil-in-water dispersion with N = 10 droplet sizes
in Vessel 1): concentrations at t = 1000 s simulated by Scheme 9.

We notice the effect of the geometry of Vessels 2 and 3 on the concentration profile. In the case of Vessel 2,
for t = 1000 s, the expansion of the area produces an instantaneous decrease of the total concentration at
x = 0.5 m. In the case of Vessel 3, for t = 1000 s, due to the contraction of the area, the total concentration
increases instantaneously just below x = 0.5 m, decreases strongly in x = 0.5 m, and then decreases smoothly.
Moreover, near steady state, for example at t = 150000 s, the thickness of the sediment in Vessel 2 is smaller
than that in Vessel 3. We see that in general that there is some oscillation in the solution using Scheme 9 at
the location of a large jump in φ; this does not seem to be present with the first order version of the scheme
(Scheme 4). This is left as a problem for future investigation.
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