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Abstract. We present a relaxation system for ideal MHD that is an extension of the Suliciu
relaxation system for the Euler equations of gas dynamics. From it one can derive approximate
Riemann solvers with three or seven waves, that generalize the HLLC solver for gas dynamics.
Under some subcharacteristic conditions, the solvers satisfy discrete entropy inequalities, and
preserve positivity of density and internal energy. The subcharacteristic conditions are nonlinear
constraints on the relaxation parameters relating them to the initial states and the intermediate
states of the approximate Riemann solver itself. The 7-wave version of the solver is able to
resolve exactly all material and Alfven isolated contact discontinuities. Practical considerations

and numerical results will be provided in another paper.

1. Introduction

The equations of ideal magnetohydrodynamics (MHD) give a continuum description of a charged
gas interacting with a magnetic field. They may be formulated as conservation laws for mass
density, energy, momentum and magnetic field strength. If the state is a function of time t, and
only one spatial dimension x, the equations are

ρt + (ρu)x = 0,(1.1)

(ρu)t + (ρu2 + p+
1

2
|B⊥|2 −

1

2
B2

x)x = 0,(1.2)

(ρu⊥)t + (ρuu⊥ −BxB⊥)x = 0,(1.3)

Et + [(E + p+
1

2
|B⊥|2 −

1

2
B2

x)u−Bx(B⊥ · u⊥)]x = 0,(1.4)

(B⊥)t + (B⊥u−Bxu⊥)x = 0,(1.5)

where ρ is the mass density, p the pressure, and the velocity is split into its longitudinal and
transversal component u and u⊥, as is the magnetic field into Bx and B⊥. Hence u⊥ and B⊥
are two-dimensional vectors. Since the divergence of the magnetic field is zero at all times, we
may assume that Bx is constant for one-dimensional data. Finally E is the total energy, E =
1
2ρ(u

2 + |u⊥|2) + ρe+ 1
2 (B2

x + |B⊥|2), with e denoting the specific internal energy.
The system is closed by an equation of state connecting p to ρ and e. For an ideal gas,

p = (γ − 1)ρe with γ > 1, but we consider here a more general setting: the specific physical
entropy s = s(ρ, e) must be well-defined and satisfy

(1.6) de+ pd(
1

ρ
) = Tds

for some temperature T (ρ, e) > 0. Then, to ensure the hyperbolicity of the system, we assume

(1.7) p′ ≡
(

∂p

∂ρ

)

s

> 0,
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where the subscript s means that the partial derivative is taken with s constant. We shall also
make the classical assumption that

(1.8) −s is a convex function of (
1

ρ
, e).

To ensure the dissipativity of shocks, we need some additional constraints, and the second law
of thermodynamics implies the entropy inequalities

(1.9) (ρφ(s))t + (ρuφ(s))x ≤ 0

for all smooth, nonincreasing, convex functions φ, the assumption (1.8) ensuring that ρφ(s) is
convex with respect to the conservative variable. For an isentropic gas on the other hand, one
would still solve (1.1)-(1.5) with s = cst, except that from the second law of thermodynamics, the
energy equation (1.4) is replaced by an inequality

(1.10) Et + [(E + p+
1

2
|B⊥|2 −

1

2
B2

x)u−Bx(B⊥ · u⊥)]x ≤ 0,

so that E becomes a mathematical entropy for the system.
The eigenvalues of system (1.1)-(1.5) are given by

(1.11)

u, u±

√

√

√

√

√

1

2



p′ +
|B|2
ρ

−

√

(

p′ +
|B|2
ρ

)2

− 4p′
B2

x

ρ



, u± |Bx|√
ρ
,

u±

√

√

√

√

√

1

2



p′ +
|B|2
ρ

+

√

(

p′ +
|B|2
ρ

)2

− 4p′
B2

x

ρ



.

The associated waves are called respectively material wave, slow magnetosonic waves, Alfven
waves, and fast magnetosonic waves. Some of these waves will have the same speed when either
Bx or B⊥ vanishes, which means the system is nonstrictly hyperbolic. The system has three
types of contact discontinuities corresponding to linearly degenerate eigenvalues: the material

contacts associated to the eigenvalue u, the left Alfven contacts associated to u − |Bx|√
ρ , and the

right Alfven contacts associated to u + |Bx|√
ρ . The jump relations associated to these contact

discontinuities are as follows. Across a material contact, the quantities u, u⊥, p+ 1
2 |B⊥|2 − 1

2B
2
x,

BxB⊥ are constant. Across an Alfven contact, the quantities ρ, u, p, |B⊥|2 are constant, and
moreover for a left Alfven contact we have ∆B⊥ = sign(Bx)

√
ρ∆u⊥, while for a right Alfven

contact ∆B⊥ = −sign(Bx)
√
ρ∆u⊥ (where ∆ denotes the jump).

1.1. Conservative schemes and stability. Let us consider a general system of conservation
laws

(1.12) Ut + F (U)x = 0.

The MHD system (1.1)-(1.5) can be written under the form (1.12), with U = (ρ, ρu, ρu⊥, E,B⊥)
and F (U) = (ρu, ρu2 + p+ |B⊥|2/2 −B2

x/2, ρuu⊥ −BxB⊥, (E + p+ |B⊥|2/2 −B2
x/2)u−BxB⊥ ·

u⊥, B⊥u − Bxu⊥). The general system (1.12) may be approximated by the Godunov scheme,
which consists of the following steps. Let the initial data be given as constants Un

i over intervals
(xi− 1

2

, xi+ 1

2

) partitioning R, and evolve this by (1.12) for a time interval ∆t small enough that

the waves emerging from the cell boundaries do not interact. Then take Un+1
i as the averages of

the obtained solution over the cells, and restart the process. One iteration may be written as

(1.13) Un+1
i − Un

i +
∆t

hi
[F c(Un

i , U
n
i+1) − F c(Un

i−1, U
n
i )] = 0, hi = xi+ 1

2

− xi− 1

2

,

where F c(Un
i , U

n
i+1) is the numerical flux, given via the solution to the so called Riemann problem,

that is the interaction of initially two constant states Un
i , U

n
i+1 separated by a single jump. More

generally, if we take some numerical flux F c such that F c(U,U) = F (U), (1.13) is consistent to
first-order accuracy, and we call it a conservative scheme.
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If the flux F has an entropy flux pair (η,G) (meaning that η is a smooth convex function and
G is such that G′(U) = η′(U)F ′(U)), we also prescribe an entropy inequality

(1.14) η(U)t +G(U)x ≤ 0.

In our case we have a family of entropy inequalities (1.9) for all convex nonincreasing φ. In this
situation it is desirable to look for conservative schemes that satisfy a discrete entropy inequality

(1.15) η(Un+1
i ) − η(Un

i ) +
∆t

hi
[Gc(Un

i , U
n
i+1) −Gc(Un

i−1, U
n
i )] ≤ 0,

with Gc(U,U) = G(U). Such inequalities in fact play a central role when rigorous convergence
analysis is possible, for example for scalar equations and two-by-two systems. In any case, such
an inequality provides an a priori bound, and ensures that the computed shocks are physically
relevant.

A problem when solving gas dynamics problems numerically is that unphysical states may
occur, more specifically density or internal energy may become negative. In addition to these
irrelevant values, this often ruins computer simulations when it occurs. It is therefore desirable to
have schemes such that if ρn > 0 and en > 0, then ρn+1 > 0 and en+1 > 0. This means that we
want

(1.16) ρ > 0 and ρe = E − 1

2
ρ(u2 + |u⊥|2) −

1

2
(B2

x + |B⊥|2) > 0

at all times also for the numerical computation. However, it is well-known that positivity of
density and entropy inequalities (1.15) for η = ρφ(s) for all φ imply positivity of internal energy.

Since the Riemann problem is often very complicated to solve, and generally contains a lot of
detail that is averaged over before the next timestep, simpler ways of determining the numerical
flux F c are often preferred. The main method to do that is to replace the exact Riemann solution
with an approximate one, by defining a self-similar function R(x

t , Ul, Ur), called an approximate
Riemann solver. This provides a consistent conservative numerical flux if R(x

t , U, U) = U , and

(1.17) F (Ul) −
∫ 0

−∞
(R(ξ, Ul, Ur) − Ul) dξ = F (Ur) +

∫ ∞

0

(R(ξ, Ul, Ur) − Ur) dξ,

with the left or right-hand side defining the numerical flux F c(Ul, Ur). It yields an entropy
inequality (1.15) for an entropy pair (η,G) if it is entropy consistent, meaning that

(1.18) G(Ul) −
∫ 0

−∞
(η(R(ξ, Ul, Ur)) − η(Ul)) dξ ≥ G(Ur) +

∫ ∞

0

(η(R(ξ, Ul, Ur)) − η(Ur)) dξ,

and if a suitable CFL condition is satisfied, see [4]. For the Euler and MHD equations, if
R(x

t , Ul, Ur) has positive density and internal energy, then so will Un+1
i .

The simplest approximate Riemann solver is the HLL solver [17], which consists of two discon-
tinuities separating a constant intermediate state. Conservativity (1.17) implies

(1.19) RHLL(ξ, Ul, Ur) =











Ul, ξ < σ1,
σ2Ur−σ1Ul−F (Ur)+F (Ul)

σ2−σ1

, σ1 < ξ < σ2,

Ur, σ2 < ξ,

where the signal velocities σ1 and σ2 must be chosen properly.
Conditions of stability, like positivity or entropy inequalities, are usually much more subtle to

prove than consistency and conservativity. For the HLL solver, finding good signal velocities σ1

and σ2 is crucial for stability. They must be chosen larger than the characteristic speeds over a
certain subset of state space, typically a subset containing the exact solution. However, the sizes
of these signal speeds control the amount of artificial diffusion applied by the scheme. If the signal
speeds are too large, the scheme will not have optimal accuracy. The behaviour of more complex
solvers is governed by similar conditions. The main weakness of the HLL solver is that it is too
dissipative, because it approximates the solution with only two waves, instead of seven in the true
solver for the MHD system. It is therefore important to find approximate Riemann solvers with
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more waves, that can in particular well resolve the contact discontinuities, which are the most
diffused waves.

1.2. The Suliciu relaxation scheme. For the gas dynamics system (i.e. (1.1)-(1.5) with B ≡ 0
and u⊥ ≡ 0), the Suliciu relaxation system is obtained as follows. We observe first that for smooth
solutions, one has

(1.20) (ρp)t + (ρup)x + ρ2p′ux = 0.

Then, the idea of relaxation is to replace the pressure p = p(ρ, e) by an independent variable π,
that will be an approximation to it, and solve for π an additional equation which is preferably an
approximation to (1.20). This motivates the Suliciu relaxation system

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = 0,

Et + [(E + π)u]x = 0,

(ρπ)t + (ρπu)x + c2ux = 0,(1.21)

where E = 1
2ρu

2 + ρe, and c is a constant replacing the Lagrangian sound speed ρ
√
p′. We say

that the system is at equilibrium whenever π = p(ρ, e). In order for π to be an approximation
to p(ρ, e), one needs to include a procedure of relaxation to equilibrium. A classical way of doing
this is to put a right-hand side ρ(p− π)/ε in the right-hand side of the last equation of (1.21). In
the isentropic case this relaxation approximation has been shown to converge as ε→ 0 in [25].

In the time discrete case, which is our interest here, the relaxation procedure is performed at
each timestep, this is the so called transport-projection method introduced in [5]. It works as
follows. We start from initial data at equilibrium, that is to say knowing values of ρ, u,E we set
π = p(ρ, e) to complete the data. Then we solve (1.21) over a timestep, and in the solution at the
next time level we keep only the conserved variables ρ, ρu,E. In this way the timestep ∆t takes the
role of the relaxation parameter ε, as can be seen from a Chapman-Enskog analysis. The algorithm
can also be interpreted within the Godunov approach. Indeed, starting from piecewise constant
data and averaging the obtained solution over the cell, one sees that the method is equivalent to
an approximate Riemann solver R(x/t, Ul, Ur) obtained by taking only the components ρ, ρu,E
of the solution to the Riemann problem associated to (1.21) when starting from initial data at
equilibrium (i.e. we complete Ul, Ur by setting πl = p(ρl, el), πr = p(ρr, er)), see [4]. Since the
resolution of (1.21) is exact, the numerical flux F c(Ul, Ur) associated to the method is then given
by the first components of the flux of (1.21) evaluated at the interface x/t = 0.

The system (1.21) has characteristic speeds u − c
ρ , u and u + c

ρ with the intermediate speed

having multiplicity 2. All of the characteristic fields are linearly degenerate, hence the Riemann
problem is easy to solve. Note that the constant c in (1.21) represents the signal speed of the
corresponding approximate Riemann solver. Hence it is not surprising that it plays a crucial role
in the convergence behaviour of relaxation systems as well as for the approximate Riemann solver.
In the context of relaxation systems, a lower bound on c that is sufficient for stability is called a
subcharacteristic condition.

In [8] a general framework for relaxation of conservation laws was presented. One may consider
relaxation systems of the form

(1.22) ψt +A(ψ)x =
Q(ψ)

ǫ
,

with an equilibrium mapping ψ = M(U), and a linear operator L such that LM(U) = U . One
requires also that LQ(ψ) = 0, and that Q(ψ) = 0 if and only if ψ = M(U) for some U . The
fluxes are connected by the relation LA(M(U)) = F (U). One can show that such systems define
an approximate Riemann solver, and hence a conservative scheme, by the same procedure as
described for the Suliciu solver, see [3] or [4]. If the resulting approximate Riemann solver is a
simple solver, which means that it only consists of constant states separated by discontinuities,
the numerical flux is LA(ψ) evaluated at the cell interface (Note that A(ψ) is always continuous
here by the Rankine-Hugoniot condition).
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We can also formalize the entropy stability of (1.22) with respect to an entropy pair (η,G)
for F . Let A have an entropy pair (H,G), such that H(M(U)) = η(U), G(M(U)) = G(U), and
the minimization principle H(M(Lψ)) ≤ H(ψ) holds for any ψ. Then we say that (1.22) has an
entropy extension relative to η, and if so is the case, the deduced approximate Riemann solver will
be entropy consistent with respect to η. The relaxation system (1.21) has an entropy extension in
the isentropic case under the subcharacteristic condition ρ2p′(ρ) ≤ c2. We explain below how this
can be used to create entropy satisfying schemes for full gas dynamics.

1.3. Some previous results on approximate Riemann solvers. In this section we summarize
some results on approximate Riemann solvers for the Euler equations and for ideal MHD.

First, for the HLL solver, methods to choose the signal speeds have been given for example in
[10], [14] and [24]. Entropy inequalities for the HLL solver may be found in [10], or in [18] where
a relaxation interpretation is employed.

It was remarked already in [17] that the HLL solver is very diffusive on contact waves, especially
for nearly stationary contact discontinuities. To improve this, they suggested adding a third wave
inside the approximate Riemann fan. This was carried out in [23] by assigning a constant value
u∗ to u across the whole Riemann fan, and let u∗ be the speed of the middle wave, defining the
HLLC approximate Riemann solver. The choice of signal velocities for HLLC is addressed in [1].
The speeds of [14] for HLL ensure positivity and sharpness at shocks also for HLLC, but they may
underestimate shock speeds for shocks emerging from a Riemann problem. In [13] it was shown
that a linearized solver can not be positive, but that for HLLC it is enough that Cl < u∗ < Cr,

Cl < ul −
√

γ−1
2γ

√

γpl

ρl
, and Cr > ur +

√

γ−1
2γ

√

γpr

ρr
for an ideal gas. The last two conditions were

also given in [14] for HLL.
The HLLC solver can indeed be interpreted as the approximate Riemann solver deduced from

the relaxation system (1.21), but with a nonconstant c solving ct + ucx = 0. This gives two
independent signal speeds ul − cl

ρl
and ur + cr

ρr
. This is presented in more detail in [3] and [4],

where an entropy inequality is proved to hold under the following subcharacteristic condition. Let
the left and right intermediate values of ρ be given as ρ∗l and ρ∗r , and assume that they are positive.
Then entropy consistency is implied by

ρ2p′(ρ, sl) ≤ c2l , for ρ ∈ [ρl, ρ
∗
l ],

ρ2p′(ρ, sr) ≤ c2r, for ρ ∈ [ρr, ρ
∗
r ].(1.23)

Note that the condition does not refer to the exact solution, but only to the approximate one.
From this one can derive explicit estimates on the signal speeds such that the entropy inequality
holds and positivity of ρ and e is maintained, see [4].

In [12] a flux vector splitting method is given that is entropy consistent under some unspec-
ified CFL-condition for Lagrangian gas dynamics. This method can indeed be identified with
the Suliciu relaxation solver. An extension to MHD is given in [2], with a proof of asymptotic
entropy inequalities when the sound speeds tend to infinity. Both a 7-wave and a 3-wave solver
are suggested for MHD in [15] with a proof of entropy stability for large enough sound speeds.
Moreover, the 7-wave solver exactly solves isolated Alfven contacts.

Generalized HLLC solvers have been proposed for MHD in [16] and [19]. They present tests
and both observe increased resolution at material contact discontinuities compared to the HLL-
solver. In addition, [16] uses a modified solver whenever Bx = 0 such that so called tangential
discontinuities are exactly resolved also, but u⊥ andB are otherwise taken to be constant across the
approximate Riemann fan. An Einfeldt type speed is used and shown to lead to exact resolution of
isolated fast shocks. This idea was taken further with the 5-wave solver of [20], which can exactly
resolve isolated Alfven contacts. A positivity condition is given there, but otherwise no stability
results are known.

Concerning other approaches to derive numerical fluxes, we mention that a kinetic flux vector
splitting scheme for MHD was derived and tested in [22] and [26]. A Roe-solver was derived and
tested in [6] for ideal gases with γ = 2, and this was extended to general values of γ in [7].
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2. The relaxation system

In order to get a relaxation system for MHD that corresponds to (1.21), we first observe that
for a smooth solution to (1.1)-(1.5), we have

(2.1) pt + upx + ρp′ux = 0,

(2.2)

( |B⊥|2
2

)

t

+ u

( |B⊥|2
2

)

x

+ |B⊥|2ux −BxB⊥ · (u⊥)x = 0,

and

(2.3) (−BxB⊥)t + u(−BxB⊥)x −BxB⊥ux +B2
x(u⊥)x = 0.

Replacing p+ 1
2 |B⊥|2− 1

2B
2
x by an independent variable π, and −BxB⊥ by an independent variable

π⊥, we obtain the following relaxation system,

ρt + (ρu)x = 0,(2.4)

(ρu)t + (ρu2 + π)x = 0,(2.5)

(ρu⊥)t + (ρuu⊥ + π⊥)x = 0,(2.6)

Et + [(E + π)u+ π⊥ · u⊥]x = 0,(2.7)

(B⊥)t + (B⊥u−Bxu⊥)x = 0,(2.8)

with still E = 1
2ρ(u

2 + |u⊥|2) + ρe+ 1
2 (B2

x + |B⊥|2), and with the relaxation pressures π and π⊥
evolved by

(ρπ)t + (ρπu)x + (|b|2 + c2b)ux − cab · (u⊥)x = 0,(2.9)

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2a(u⊥)x = 0.(2.10)

The parameters ca ≥ 0, cb ≥ 0, and b ∈ R2 play the role of approximations of
√
ρ|Bx|, ρ

√
p′ and

sign(Bx)
√
ρB⊥ respectively. Indeed, ca, cb, b are not taken constant, but are evolved with

(2.11) (ca)t + u(ca)x = 0, (cb)t + u(cb)x = 0, bt + ubx = 0.

The equilibrium is defined by

(2.12) π = p+
1

2
|B⊥|2 −

1

2
B2

x and π⊥ = −BxB⊥.

As in the gas dynamics case, the approximate Riemann solver associated to the relaxation sys-
tem is obtained as follows. We start with left and right states Ul, Ur, and we complete them
with left and right values of π and π⊥ at equilibrium, i.e. πl/r = (p + 1

2 |B⊥|2 − 1
2B

2
x)l/r and

(π⊥)l/r = −(BxB⊥)l/r . We also have to provide values for (ca)l/r , (cb)l/r, bl/r. Then we solve the
Riemann problem for (2.4)-(2.11), and in the solution (that depend only on x/t) we retain only
the components ρ, ρu, ρu⊥, E, B⊥. This gives the approximate Riemann solver. By construc-
tion this automatically gives a consistent conservative scheme, and the numerical flux is given by
F c(Ul, Ur) = (ρu, ρu2 + π, ρuu⊥ + π⊥, (E + π)u+ π⊥ · u⊥, B⊥u−Bxu⊥) evaluated at x/t = 0. Of
course, this is true provided that the solution to the Riemann problem for (2.4)-(2.11) exists and
takes physically relevant values. In order to get this property, and also entropy inequalities, we
have to make a good choice of the parameters (ca)l/r , (cb)l/r, bl/r.

2.1. Treating nonsolenoidal magnetic fields. For multidimensional applications, it can be
useful to allow Bx to vary, and a convenient technique to facilitate this consists of augmenting the
system with a term depending on ∇ · B, an idea introduced in [21]. Here we propose a different
system than in [21], which consists in letting ∇·B be transported by the flow, by adding the term
u∇ · B to the induction equation. Hence in one dimension we get

(2.13) (B⊥)t + (B⊥u−Bxu⊥)x + u⊥(Bx)x = 0,

(2.14) (Bx)t + u(Bx)x = 0.

Equation (2.13) simply replaces (2.8) in the relaxation system, while (2.14) is added. It allows for
left and right values of Bx. A related approach can be found in [11], and this would also easily
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fit into (2.4)-(2.10). The source terms suggested there do not violate conservation, and could be
treated by an operator splitting. There are several other approaches to this issue, but they are
not directly connected to the design of one-dimensional Riemann solvers.

2.2. Exact resolution of contact discontinuities. The approximate Riemann solver derived
from the relaxation system (2.4)-(2.11) has the property of being able to solve exactly isolated
contact discontinuities of the MHD system.

Indeed, consider data Ul, Ur corresponding to an isolated contact with speed λ. Then the
exact resolution property is true as soon as the solution to the MHD Riemann problem (i.e.
U(x/t, Ul, Ur) = Ul if x/t < λ, U(x/t, Ul, Ur) = Ur if x/t > λ) when completed with π, π⊥ at
equilibrium, is a solution to the relaxation system (2.4)-(2.10). Since we are at equilibrium and
U(x/t) is a solution to the MHD system, equations (2.4)-(2.8) hold, and it only remains to check
(2.9)-(2.10). Consider first the case of a material contact. Then the jump relations ensure that
u, u⊥, π, π⊥ are constant, and since λ = u, the equations (2.9)-(2.10) hold obviously. Consider
then the case of a left Alfven discontinuity, λ = u − |Bx|/

√
ρ with the jump relations written in

the introduction. Then by a simple computation, (2.9)-(2.10) hold as soon as cal =
√
ρ|Bx|, and

bl colinear to (B⊥l + B⊥r)/2 (no condition is needed on car and br, nor on cbl, cbr). For a right
Alfven discontinuity λ = u + |Bx|/

√
ρ, we get the conditions car =

√
ρ|Bx|, and br colinear to

(B⊥l +B⊥r)/2.
Therefore, one would like to derive choices of the parameters ca, cb, b on the left and on the

right, in such a way that the previous conditions are satisfied whenever the data are those of an
isolated Alfven contact.

2.3. Chapman-Enskog analysis. The Chapman-Enskog expansion provides a stability condi-
tion for a relaxation system when the solution is sufficiently smooth. Consider our MHD relaxation
system (2.4)-(2.11) completed with BGK relaxation terms, i.e. (2.9)-(2.10) is replaced by

(ρπ)t + (ρπu)x + (|b|2 + c2b)ux − cab · (u⊥)x = ρ
p+ |B⊥|2/2 −B2

x/2 − π

ε
,(2.15)

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2a(u⊥)x = ρ
−BxB⊥ − π⊥

ε
.(2.16)

We perform an expansion in ε, keeping only the first term, proportional to ε. From (2.15)-(2.16)
we deduce that π = p+ 1

2 |B⊥|2− 1
2B

2
x+O(ε) and π⊥ = −BxB⊥+O(ε). Inserting this in (2.4)-(2.8),

we get the MHD system (1.1)-(1.5), up to terms in ε. In order to get second-order expansions of π
and π⊥, we write down the values of π and π⊥ obtained from the right-hand side of (2.15)-(2.16),
and express the left-hand side with the first-order expansion of π and π⊥. This gives

(2.17)

π = p+
|B⊥|2

2
− B2

x

2
− ε

ρ

[

(

ρ(p+
|B⊥|2

2
− B2

x

2
)

)

t

+

(

ρu(p+
|B⊥|2

2
− B2

x

2
)

)

x

+(|b|2 + c2b)ux − cab · (u⊥)x

]

+O(ε2),

π⊥ = −BxB⊥ − ε

ρ

[

(ρ(−BxB⊥))t + (ρ(−BxB⊥u))x − cabux + c2a(u⊥)x

]

+O(ε2).

But since the MHD system (1.1)-(1.5) is resolved up to terms in ε, the identities (2.1)-(2.3) hold
true up to terms in ε, and using this in (2.17), we get
(2.18)

π = p+
|B⊥|2

2
− B2

x

2
− ε

ρ

[

(|b|2 + c2b − ρ(ρp′ + |B⊥|2))ux + (ρBxB⊥ − cab) · (u⊥)x

]

+O(ε2),

π⊥ = −BxB⊥ − ε

ρ

[

(ρBxB⊥ − cab)ux + (c2a − ρB2
x)(u⊥)x

]

+O(ε2).
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Putting this in (2.4)-(2.8) we obtain

(2.19)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+
|B⊥|2

2
− B2

x

2
)x = ε

[

( |b|2 + c2b
ρ

− (ρp′ + |B⊥|2)
)

ux

+(BxB⊥ − cab

ρ
) · (u⊥)x

]

x

+O(ε2),

(ρu⊥)t + (ρuu⊥ −BxB⊥)x = ε

[

(BxB⊥ − cab

ρ
)ux + (

c2a
ρ

−B2
x)(u⊥)x

]

x

+O(ε2),

Et + [(E + p+
|B⊥|2

2
− B2

x

2
)u−BxB⊥ · u⊥]x

= ε

[

u

( |b|2 + c2b
ρ

− (ρp′ + |B⊥|2)
)

ux + u(BxB⊥ − cab

ρ
) · (u⊥)x

+u⊥ · (BxB⊥ − cab

ρ
)ux + u⊥ · (c

2
a

ρ
−B2

x)(u⊥)x

]

x

+O(ε2),

(B⊥)t + (B⊥u−Bxu⊥)x = 0.

Now, up to ε2 we have a system of the form

(2.20) Ut + F (U)x = ε(D(U)Ux)x.

The entropy is then evolved according to

(2.21) η(U)t +G(U)x − ε[η′(U)D(U)Ux]x = −εD(U)tη′′(U) · Ux · Ux.

A natural stability condition is to ensure entropy dissipation by enforcing D(U)tη′′(U) to be
symmetric nonnegative. Computing the matrixD(U) from (2.19) one can check that the symmetry
holds for all entropies η(U) = ρφ(s) (φ convex nonincreasing), while nonnegativity means that

(2.22)

c2a
ρ

−B2
x ≥ 0,

|b|2 + c2b
ρ

− (ρp′ + |B⊥|2) ≥ 0,
∣

∣

∣

∣

BxB⊥ − cab

ρ

∣

∣

∣

∣

2

≤
( |b|2 + c2b

ρ
− (ρp′ + |B⊥|2)

)(

c2a
ρ

−B2
x

)

.

Developing the last inequality and factorizing it differently, we can rewrite it to get finally the
stability conditions

(2.23)

1

ρ
− B2

x

c2a
≥ 0, c2b − ρ2p′ ≥ 0,

∣

∣

∣

∣

B⊥ − Bxb

ca

∣

∣

∣

∣

2

≤
(

c2b − ρ2p′
)

(

1

ρ
− B2

x

c2a

)

.

We observe that the reference values ca =
√
ρ|Bx|, cb = ρ

√
p′, b = sign(Bx)

√
ρB⊥ give equalities

in (2.23). Indeed, for these optimal values, the dissipation matrix D(U) vanishes. However, the
above analysis is valid only for smooth solutions, and the inequalities (2.23) involve only a single
state U . What we are going to do in the next sections is to analyze the entropy inequalities for
the Riemann problem. Then we shall derive a discrete version of (2.23), involving Ul, Ur and the
intermediate values of the Riemann solver.

2.4. Relations with other solvers. The approximate Riemann solver obtained with our re-
laxation approach has a priori nothing to do with other proposed MHD solvers, like those of
[2, 15, 16, 19, 20]. However, a few links exist.

At first, it is easy to see that if we take ca, cb, b constant, then writing the relaxation system
in Lagrange coordinates gives a linear system, leading to a Lagrange numerical flux of flux vector
splitting type. Thus it is somehow related to [2].

The main difference between what we do here and the solvers of [2, 15] is that for our 7-wave
solver, the entropy inequality is here obtained for consistent values of the relaxation speeds ca, cb,
b (instead of ”sufficiently large” values). This means that for data Ul, Ur being sufficiently close to
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a reference state U , the speeds of the solver tend to the true eigenvalues of the system (evaluated
at U), and the jumps in the intermediate states tend to have the direction of the true eigenvectors.
This accuracy property is related to the fact that the viscosity in the Chapman-Enskog expansion
(2.20) vanishes identically for these consistent values of ca, cb, b.

Finally, one can check that the approximate Riemann solver of [20] can be interpreted as the
solution to a (partial) relaxation system, where only the longitudinal pressure π is relaxed while
the orthogonal pressure π⊥ is kept to equilibrium,

ρt + (ρu)x = 0,(2.24)

(ρu)t + (ρu2 + π)x = 0,(2.25)

(ρu⊥)t + (ρuu⊥ −BxB⊥)x = 0,(2.26)

Et + [(E + π)u −BxB⊥ · u⊥]x = 0,(2.27)

(B⊥)t + (B⊥u−Bxu⊥)x = 0,(2.28)

with still E = 1
2ρ(u

2 + |u⊥|2)+ ρe+ 1
2 (B2

x + |B⊥|2), and with the relaxation pressure π evolved by

(ρπ)t + (ρπu)x + (|b|2 + c2b)ux − cab · (u⊥)x = 0.(2.29)

The equilibrium is still defined by

(2.30) π = p+
1

2
|B⊥|2 −

1

2
B2

x.

However, a Chapman-Enskog expansion from (2.24)-(2.29) gives instability, unfortunately.

2.5. The approximate Riemann solver. In order to get the approximate Riemann solver,
we have to solve the Riemann problem for (2.4)-(2.11). This system is a quasilinear system of
dimension 14. We shall not give the details of the computation, but one can check that its
eigenvalues are u with multiplicity 8, u± ca/ρ, and u+X/ρ where X is a root of the polynomial

(2.31) P (X) = X4 − (|b|2 + c2b + c2a)X2 + c2ac
2
b .

Since P (ca) ≤ 0 (and also P (cb) ≤ 0), there are two real roots with respect to X2. They are both
nonnegative since their sum |b|2 + c2b + c2a and their product c2ac

2
b are both nonnegative, thus P

has two nonnegative and two nonpositive roots (which are opposite). Now, define 0 ≤ cs ≤ cf to
be the two nonnegative roots of P , i.e.

(2.32) c2s + c2f = |b|2 + c2b + c2a, c2sc
2
f = c2ac

2
b .

Then since P (ca) ≤ 0 and P (cb) ≤ 0, we have

(2.33) cs ≤ ca ≤ cf , cs ≤ cb ≤ cf .

Notice that if b = 0 we get cs = min(ca, cb), cf = max(ca, cb). The eigenvalues of the relaxation
system are finally

(2.34) u, u± cs
ρ
, u± ca

ρ
, u± cf

ρ
,

the central one u having multiplicity 8. For further reference we notice the identity

(2.35) c2a|b|2 = (c2f − c2a)(c2a − c2s).

We notice this very nice property of the relaxation system: when taking for ca, cb, b their reference
values (ca =

√
ρ|Bx|, cb = ρ

√
p′, b = sign(Bx)

√
ρB⊥), the eigenvalues (2.34) of the relaxation

system reduce to the ones of the MHD system (1.11). One can check the hyperbolicity of the
relaxation system, and also that all the eigenvalues (2.34) are linearly degenerate. Thus one needs
not specify the sense of the nonconservative products in (2.9), (2.10), (2.11), and the solution to the
Riemann problem is made of constant states separated by discontinuities, one for each eigenvalue.
This solution is characterized by the relations at each discontinuity, saying that 14−m independent
weak Riemann invariants attached to the eigenvalue do not jump (m being the multiplicity).
However there can be a collapse between the eigenvalues if either b = 0, ca = 0 or cb = 0. This
leads to several formulas for the solution to the Riemann problem according these limit cases. We
have to mention that since cs and cf are functions of b, ca and cb which are advected according



10 FRANÇOIS BOUCHUT1, CHRISTIAN KLINGENBERG2, KNUT WAAGAN2

to (2.11), cs and cf are also advected, (cs)t + u(cs)x = 0, (cf )t + u(cf )x = 0. Thus we have left
and right values for all these parameters, namely csl, cal, cbl, cfl, bl and csr, car, cbr, cfr, br.

2.6. The 3-wave solver. A simple choice we can make for the parameters is to take b = 0 and
cs = ca = cb = cf = c, which leads to only two parameters cl, cr. Then the eigenvalues of
the relaxation system are u − c/ρ, u, u + c/ρ, and it gives an approximate Riemann solver with
three waves. This can be understood as a generalization of the HLLC solver for gas dynamics,
except that here there remains quite a lot of diffusion. Indeed, the stability condition (2.23) from
the Chapman-Enskog analysis gives here that c must be greater than the fast speed of the MHD
system, and thus the diffusion matrix D(U) is not small. Also, the solver cannot exactly solve
isolated Alfven contact waves, because the stability condition prevents c to be taken

√
ρ|Bx| in

this case (see Subsection 2.2). Indeed, only the fast waves are resolved with good accuracy, while
the Alfven and slow waves are diffused.

For the 3-wave solver, the left and right waves have multiplicity 3. There are 8 strong Riemann
invariants associated to the central wave (i.e. quantities that lie in the kernel of ∂t + u∂x), which
are ca, cb, b, and

1

ρ
+
π

c2
,

B⊥
ρ

+
Bx

c2
π⊥, e+

|B|2
2ρ

− π2

2c2
− |π⊥|2

2c2
.(2.36)

These quantities are thus weak Riemann invariants for the left and right waves. They must be
completed with 3 weak Riemann invariants, that are found to be π + cu, π⊥ + cu⊥ for the left
wave, and π − cu, π⊥ − cu⊥ for the right wave. For the central wave, 6 weak Riemann invariants
are u, u⊥, π, π⊥. We deduce that the solution has two intermediate states denoted l∗ and r∗
separated by speeds σ1 < σ2 < σ3,

(2.37) σ1 = ul −
cl
ρl
, σ2 = u∗l = u∗r ≡ u∗, σ3 = ur +

cr
ρr
.

The values of ca, cb, b are the left values for the l∗ state, and the right values for the r∗ state. The
intermediate values for ρ, B⊥, e are deduced from the fact that the quantities in (2.36) do not
jump through the left and right waves. It remains to determine the values u∗, u∗⊥, π∗, π∗

⊥ (which
are common for the l∗ and r∗ states). They are determined by the relations

(2.38)
(π + cu)∗l = (π + cu)l, (π − cu)∗r = (π − cu)r,

(π⊥ + cu⊥)∗l = (π⊥ + cu⊥)l, (π⊥ − cu⊥)∗r = (π⊥ − cu⊥)r.

Hence we get the intermediate values

u∗ =
clul + crur + πl − πr

cl + cr
,

π∗ =
crπl + clπr − clcr(ur − ul)

cl + cr
,(2.39)

u∗⊥ =
clu

l
⊥ + cru

r
⊥ + πl

⊥ − πr
⊥

cl + cr
,

π∗
⊥ =

crπ
l
⊥ + clπ

r
⊥ − clcr(u

r
⊥ − ul

⊥)

cl + cr
.(2.40)

Notice the relations σ2 − σ1 = cl/ρ
∗
l , σ3 − σ2 = cr/ρ

∗
r , which show that to have the right ordering

σ1 < σ2 < σ3 is equivalent to having positivity of the intermediate densities ρ∗l , ρ
∗
r . We remark

that the characteristic speeds and the intermediate values of ρ, u and π are formally the same as
for the case of Euler equations (the equilibria of course differ, since πl/r and (π⊥)l/r are initialized
according to (2.12)). Notice also the symmetry between u, π on one hand, and u⊥, π⊥ on the
other hand.
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2.7. The 7-wave solver. We now consider the general case with 7 waves. Thus we assume that
b 6= 0 and ca, cb > 0. Still, 6 weak Riemann invariants attached to the central wave are u, u⊥, π,
π⊥, while 8 strong Riemann invariants (i.e. quantities that lie in the kernel of ∂t + u∂x) are ca,
cb, b, and

(2.41)

1

ρ
+

1

c2b
(π +

b

ca
· π⊥),

B⊥
ρ

+
Bx

c2a
π⊥ +

1

c2b
(π +

b

ca
· π⊥)

b

ca
Bx,

e+
|B|2
2ρ

− 1

2c2b
(π +

b

ca
· π⊥)2 − |π⊥|2

2c2a
.

These are consequently weak Riemann invariants for all the noncentral waves, and for each non-
central wave one has to complete them with 5 more weak Riemann invariants, that are obtained
from the following list of six Wj by eliminating the one attached to the wave considered:

Ws = π + csu+
ca

c2a − c2s
b · (π⊥ + csu⊥),

W−s = π − csu+
ca

c2a − c2s
b · (π⊥ − csu⊥),

Wf = π + cfu− ca
c2f − c2a

b · (π⊥ + cfu⊥),

W−f = π − cfu− ca
c2f − c2a

b · (π⊥ − cfu⊥),

Wa = π⊥ + cau⊥ − (π⊥ + cau⊥) · b b

|b|2 ,

W−a = π⊥ − cau⊥ − (π⊥ − cau⊥) · b b

|b|2 .(2.42)

Note that Wa and W−a are two-dimensional vectors, but each one represents only one independent
scalar function since they are orthogonal to b (their components are not independent). It is useful
to write the inverse relations from (2.42),

π =
c2a − c2s

2(c2f − c2s)
(Ws +W−s) +

c2f − c2a

2(c2f − c2s)
(Wf +W−f ),

u =
c2a − c2s

2cs(c2f − c2s)
(Ws −W−s) +

c2f − c2a

2cf (c2f − c2s)
(Wf −W−f ),

π⊥ =
1

2
(Wa +W−a) +

(c2f − c2a)(c2a − c2s)

2ca(c2f − c2s)
(Ws +W−s −Wf −W−f )

b

|b|2 ,

u⊥ =
1

2ca
(Wa −W−a) +

(c2f − c2a)(c2a − c2s)

2ca(c2f − c2s)
(
Ws −W−s

cs
− Wf −W−f

cf
)
b

|b|2 .(2.43)

In order to find the intermediate states, we can argue as follows. First, the values of ca, cb, b are
taken left or right respectively on the left and on the right of the central wave. Next, observe that
given the intermediate values of u, u⊥, π, π⊥, the intermediate values of ρ, B⊥, e are obtained by
writing that the quantities (2.41) only jump through the central wave. Thus we only need to find
the intermediate values of u, u⊥, π, π⊥. They are determined with the identities (2.42) or (2.43),
knowing that for each noncentral j−wave, only Wj jumps; together with the fact that u, u⊥, π,
π⊥ do not jump through the central wave, and thus have common values u∗, u∗⊥, π∗, π∗

⊥ on each
side. More explicitly, two methods are possible for this resolution.

The first method to solve it, is to write the relations

(W−s)
r∗ = (W−s)

r, (W−f )r∗ = (W−f )r, (W−a)r∗ = (W−a)r,

(Ws)
l∗ = (Ws)

l, (Wf )l∗ = (Wf )l, (Wa)l∗ = (Wa)l,(2.44)
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where (W−s)
r∗ represents W−s evaluated to the right of the middle wave, etc. This gives six linear

equations in the six unknowns u∗, u∗⊥, π∗, π∗
⊥. Once the linear system (2.44) is solved, all the

values of Wj at l∗ and r∗ are deduced from (2.42), and the values of u, u⊥, π, π⊥ follow from
(2.43).

The second method is to define the main jumps as
(2.45)

∆W−s = (W−s)
l∗ − (W−s)

l, ∆W−f = (W−f )l∗ − (W−f )l, ∆W−a = (W−a)l∗ − (W−a)l,
∆Ws = (Ws)

r∗ − (Ws)
r, ∆Wf = (Wf )r∗ − (Wf )r, ∆Wa = (Wa)r∗ − (Wa)r.

Then from (2.43) and taking into account (2.44), we can express the values of u, u⊥, π, π⊥ on the
states l∗ and r∗, linearly in terms of the ∆Wj . Writing the equality between the l∗ and r∗ values,
we get a system of six linear equations in the six unknowns ∆Wj ,

(2.46)

πl +
c2fl − c2al

2(c2fl − c2sl)
∆W−f +

c2al − c2sl

2(c2fl − c2sl)
∆W−s

= πr +
c2fr − c2ar

2(c2fr − c2sr)
∆Wf +

c2ar − c2sr

2(c2fr − c2sr)
∆Ws,

ul −
c2fl − c2al

2cfl(c2fl − c2sl)
∆W−f − c2al − c2sl

2csl(c2fl − c2sl)
∆W−s

= ur +
c2fr − c2ar

2cfr(c2fr − c2sr)
∆Wf +

c2ar − c2sr

2csr(c2fr − c2sr)
∆Ws,

π⊥l −
cal

2(c2fl − c2sl)
∆W−f bl +

1

2
∆W−a +

cal

2(c2fl − c2sl)
∆W−sbl

= π⊥r −
car

2(c2fr − c2sr)
∆Wfbr +

1

2
∆Wa +

car

2(c2fr − c2sr)
∆Wsbr,

u⊥l +
cal

2cfl(c2fl − c2sl)
∆W−f bl −

1

2cal
∆W−a − cal

2csl(c2fl − c2sl)
∆W−sbl

= u⊥r −
car

2cfr(c2fr − c2sr)
∆Wfbr +

1

2car
∆Wa +

car

2csr(c2fr − c2sr)
∆Wsbr.

Once it is solved, the values of u, u⊥, π, π⊥ follow from (2.43).
Finally, the wave speeds σ−f , σ−a, σ−s, σ0, σs, σa, σf of the Riemann solution (corresponding

to the eigenvalues u− cf/ρ, u− ca/ρ, u− cs/ρ, u, u+ cs/ρ, u+ ca/ρ, u+ cf/ρ) can be computed
using the relations

(2.47)

σ−f = (u − cf/ρ)l = (u − cf/ρ)∗afl,
σ−a = (u− ca/ρ)∗afl = (u− ca/ρ)∗asl,
σ−s = (u− cs/ρ)∗asl = (u− cs/ρ)∗l,

σ0 = ul∗ = ur∗,
σs = (u+ cs/ρ)∗r = (u + cs/ρ)∗asr,
σa = (u+ ca/ρ)∗asr = (u+ ca/ρ)∗afr,
σf = (u+ cf/ρ)∗afr = (u + cf/ρ)r,

where the intermediate states are denoted from left to right by l, ∗afl, ∗asl, l∗, r∗, ∗asr, ∗afr, r.
Noticing that ρ∗afl = ρ∗asl ≡ ρ∗al and ρ∗afr = ρ∗asr ≡ ρ∗ar, we deduce the identities

(2.48)

σ−a − σ−f =
cfl − cal

ρ∗al
,

σ−s − σ−a =
cal − csl

ρ∗al
,

σ0 − σ−s =
csl

ρ∗l
,

σs − σ0 =
csr

ρ∗r
,

σa − σs =
car − csr

ρ∗ar
,

σf − σa =
cfr − car

ρ∗ar
.
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Therefore, again, to have the right ordering σ−f < σ−a < σ−s < σ0 < σs < σa < σf is equivalent
to having positive intermediate densities.

3. Entropy analysis

In this section we analyze the entropy stability of the approximate Riemann solver defined by
the relaxation system (2.4)-(2.11).

3.1. Local entropy condition. We use first an argument introduced in [9] for gas dynamics,
which is based on switching the role of the energy equation and the entropy inequality, thus
reducing to the isentropic case. It leads to a condition written for each intermediate state.

Let us extend the system (2.4)-(2.11) with an additional unknown ŝ solving

(3.1) (ρŝ)t + (ρuŝ)x = 0,

which initial data at equilibrium, ŝ = s(ρ, e). In other words, ŝ is advected, and in the Riemann
solution, ŝ just takes the left and right values sl = s(ρl, el), sr = s(ρr, er) on each side of the
central wave.

Proposition 3.1. Assume that in the Riemann solution to the relaxation system (2.4)-(2.11),
each intermediate state U∗ ≡ (ρ∗, ρ∗u∗, ρ∗u∗⊥, ρ

∗((u∗)2 + (u∗⊥)2)/2 + ρ∗e∗ +B2
x/2 + (B∗

⊥)2/2, B∗
⊥)

has positive density ρ∗ > 0, and satisfies

(3.2) e∗ ≥ e(ρ∗, ŝ∗).

Then the approximate Riemann solver preserves the positivity of density and internal energies,
and satisfies all entropy inequalities related to the entropies ρφ(s) with φ convex nonincreasing.

Proof. The positivity of internal energy is obvious from (3.2) since e(ρ∗, ŝ∗) ≥ 0. Then, consider
an entropy η = ρφ(s), which has entropy flux G = ρuφ(s). Because of (3.1), one has

(3.3) (ρφ(ŝ))t + (ρuφ(ŝ))x = 0,

and let us denote Gc(Ul, Ur) = (ρuφ(ŝ))x/t=0. In order to get the entropy inequality (1.18), we
are going to prove that

(3.4) Gr(Ul, Ur) ≤ Gc(Ul, Ur) ≤ Gl(Ul, Ur),

where Gl and Gr denote respectively the left-hand side and the right-hand side of (1.18). This will
not only prove (1.18), but also that Gc(Ul, Ur) can be used as numerical entropy flux. Denoting
by ξ = x/t the self-similar variable, we notice that

(3.5)
Gc(Ul, Ur) = G(Ul) −

∫ 0

−∞
(ρφ(ŝ)(ξ) − η(Ul)) dξ

= G(Ur) +

∫ ∞

0

(ρφ(ŝ)(ξ) − η(Ur)) dξ.

Therefore, in order to get (3.4), it is enough to prove that for a.e. ξ, η(U(ξ)) ≤ ρφ(ŝ)(ξ). This
means equivalently that for any intermediate state U∗,

(3.6) ρ∗φ(s(ρ∗, e∗)) ≤ ρ∗φ(ŝ∗).

But since ρ∗ > 0 and φ is nonincreasing, we thus only have to prove that s(ρ∗, e∗) ≥ ŝ∗. Recalling
that according to (1.6), at ρ fixed, e(ρ, s) is an increasing function of s, this inequality is equivalent
to e∗ ≥ e(ρ∗, ŝ∗), which proves the claim. �
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3.2. Sufficient stability conditions for a fixed intermediate state. In this subsection we
derive sufficient conditions for (3.2) to hold, for a fixed intermediate state U∗. The state U∗ is
described by ρ∗, u∗, u∗⊥, e∗, B∗ = (Bx, B

∗
⊥), and we also have the associated relaxation pressures

π∗ and π∗
⊥. We shall denote by Ul/r the initial state on the same side as U∗ with respect to the

central wave, and we shall use the same convention for sl/r (indeed sl/r = ŝ∗ with the notation
of the previous paragraph). The values of cs, ca, cb, cf , b, are evaluated also locally, i.e. on the
same side as U∗ (even if we do not write explicitly the index l/r), in accordance with (2.11). We
use finally the short-hand notations

(3.7) e(ρ∗) ≡ e(ρ∗, sl/r), p(ρ∗) ≡ p(ρ∗, sl/r).

The desired inequality (3.2) then becomes e∗ ≥ e(ρ∗).
We first write a decomposition into elementary entropy dissipation terms, similarly as in [3].

The main one D0 is related to the central wave, and we just group the ones related to the other
waves into a longitudinal part and a transverse part.

Lemma 3.2. We have the identity

(3.8)
e(ρ∗) − e∗ = D0(U

∗, Ul/r) −
1

2c2b

(

p(ρ∗) +
|B∗

⊥|2
2

− B2
x

2
− π∗ +

b

ca
· (−BxB

∗
⊥ − π∗

⊥)

)2

− 1

2c2a
|−BxB

∗
⊥ − π∗

⊥|2 ,

where

(3.9)

D0(U
∗, Ul/r) = e(ρ∗) − e(ρl/r) + p(ρ∗)

(

1

ρ∗
− 1

ρl/r

)

+
1

2c2b

(

p(ρ∗) +
|B∗

⊥|2
2

−Bx
b

ca
· B∗

⊥ − p(ρl/r) − |Bl/r
⊥ |2
2

+Bx
b

ca
· Bl/r

⊥

)2

−
(

1

ρl/r
− B2

x

c2a

)

1

2
|B∗

⊥ −B
l/r
⊥ |2.

This identity can be verified using that the weak Riemann invariants (2.41) take the same value
at the intermediate state and on the initial data l/r. Note that this is true also for the 3-wave
solver since the weak Riemann invariants (2.36) are obtained formally as the one in (2.41) where
we set cs = ca = cb = cf = c, b = 0.

In order to analyze D0(U
∗, Ul/r), let us recall the following inequality, that was proved in [3]

or [4].

Lemma 3.3. As soon as ρ∗ > 0, one has

(3.10) e(ρ∗) − e(ρl/r) + p(ρ∗)

(

1

ρ∗
− 1

ρl/r

)

+
1

2

1

(ρ2p′)∗,l/r

(

p(ρ∗) − p(ρl/r)
)2

≤ 0,

with

(3.11) (ρ2p′)∗,l/r ≡ sup
ρ
ρ2p′(ρ, sl/r),

where the supremum is taken over all ρ between ρl/r and ρ∗.

Proof. Since in the inequality, the specific entropy s takes a fixed value sl/r, one can consider that

e and p are functions of ρ only. Recall that according to (1.6), one has then e′(ρ) = p(ρ)/ρ2.
Consider an interval I ⊂ (0,∞) and a constant c > 0 such that for all ρ ∈ I, one has ρ2p′(ρ) ≤ c2.

Then, for a fixed ρl/r ∈ I, define for ρ∗ ∈ I

(3.12) Φ(ρ∗) = e(ρ∗) − e(ρl/r) + p(ρ∗)

(

1

ρ∗
− 1

ρl/r

)

+
1

2c2

(

p(ρ∗) − p(ρl/r)
)2

.

One computes

(3.13) Φ′(ρ∗) = p′(ρ∗)

(

1

ρ∗
− 1

ρl/r
+
p(ρ∗) − p(ρl/r)

c2

)

.



RIEMANN SOLVER FOR MHD 15

Now, since p′ > 0 and by assumption 1/ρ+p(ρ)/c2 is a nonincreasing function of ρ ∈ I, we deduce
that Φ′(ρ∗) has the sign of ρl/r − ρ∗, and therefore that Φ has a maximum at ρl/r. Thus for all
ρ∗ ∈ I, Φ(ρ∗) ≤ Φ(ρl/r) = 0. Finally, for any given ρl/r, ρ∗ > 0, one can take for I the closed
interval [ρl/r, ρ∗] and c2 = (ρ2p′)∗,l/r. This gives the result. �

The main estimate on D0(U
∗, Ul/r) is the following.

Lemma 3.4. If ρ∗ > 0, then

(3.14)

D0(U
∗, Ul/r) −

1

2c2b

(

p(ρ∗) +
|B∗

⊥|2
2

− B2
x

2
− π∗ +

b

ca
· (−BxB

∗
⊥ − π∗

⊥)

)2

≤ −1

2

(

c2b − (ρ2p′)∗,l/r

)

(

1

ρl/r
− 1

ρ∗

)2

+

(

1

ρl/r
− 1

ρ∗

)

(
B

l/r
⊥ +B∗

⊥
2

−Bx
b

ca
) · (B∗

⊥ −B
l/r
⊥ ) −

(

1

ρl/r
− B2

x

c2a

)

1

2
|B∗

⊥ −B
l/r
⊥ |2.

Proof. Since 1/ρ+ 1
c2

b
(π + b

ca
· π⊥) is a strong Riemann invariant for the central wave, it has the

same value at U∗ and Ul/r. Substituting the equilibrium values for πl/r and π
l/r
⊥ gives

(3.15) π∗ +
b

ca
· π∗

⊥ = p(ρl/r) +
|Bl/r

⊥ |2
2

− B2
x

2
−Bx

b

ca
·Bl/r

⊥ + c2b

(

1

ρl/r
− 1

ρ∗

)

.

Therefore, the left-hand side of (3.14) can be rewritten as

(3.16)

LHS = D0(U
∗, Ul/r) −

1

2c2b

(

p(ρ∗) +
|B∗

⊥|2
2

−Bx
b

ca
· B∗

⊥

−p(ρl/r) − |Bl/r
⊥ |2
2

+Bx
b

ca
·Bl/r

⊥ − c2b

(

1

ρl/r
− 1

ρ∗

)

)2

.

Subtracting the last term from the second line in (3.9) and using the identity α2/2 − β2/2 =
(α− β)(α + β)/2, we deduce

(3.17)

LHS = e(ρ∗) − e(ρl/r) + p(ρ∗)

(

1

ρ∗
− 1

ρl/r

)

+

(

1

ρl/r
− 1

ρ∗

)

(

p(ρ∗) +
|B∗

⊥|2
2

−Bx
b

ca
·B∗

⊥

−p(ρl/r) − |Bl/r
⊥ |2
2

+Bx
b

ca
·Bl/r

⊥ − c2b
2

(

1

ρl/r
− 1

ρ∗

)

)

−
(

1

ρl/r
− B2

x

c2a

)

1

2
|B∗

⊥ −B
l/r
⊥ |2.

Combining the inequality
(

1

ρl/r
− 1

ρ∗

)

(

p(ρ∗) − p(ρl/r)
)

≤ 1

2

1

(ρ2p′)∗,l/r

(

p(ρ∗) − p(ρl/r)
)2

+
1

2
(ρ2p′)∗,l/r

(

1

ρl/r
− 1

ρ∗

)2

(3.18)

with (3.17), and then applying (3.10) gives the Lemma. �

We now introduce the following notation. For θ ∈ R, take

(3.19) Bθ
⊥ =

1 − θ

2
B∗

⊥ +
1 + θ

2
B

l/r
⊥ ,

1

ρθ
=

1 − θ

ρl/r
+

θ

ρ∗
.
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By this definition,

(3.20)

(

B
l/r
⊥ +B∗

⊥
2

−Bθ
⊥

)

· (B∗
⊥ −B

l/r
⊥ ) = θ

1

2
|B∗

⊥ −B
l/r
⊥ |2.

Therefore, since 1/ρθ − 1/ρl/r = θ(1/ρ∗ − 1/ρl/r), we have

(3.21)

(

1

ρl/r
− 1

ρ∗

)

(

B
l/r
⊥ +B∗

⊥
2

−Bθ
⊥

)

· (B∗
⊥ −B

l/r
⊥ ) =

(

1

ρl/r
− 1

ρθ

)

1

2
|B∗

⊥ −B
l/r
⊥ |2.

This identity enables us to express the last line in (3.14) in terms of Bθ
⊥ and ρθ,

(3.22)

(

1

ρl/r
− 1

ρ∗

)

(
B

l/r
⊥ +B∗

⊥
2

−Bx
b

ca
) · (B∗

⊥ −B
l/r
⊥ ) −

(

1

ρl/r
− B2

x

c2a

)

1

2
|B∗

⊥ −B
l/r
⊥ |2

=

(

1

ρl/r
− 1

ρ∗

)

(Bθ
⊥ −Bx

b

ca
) · (B∗

⊥ −B
l/r
⊥ ) −

(

1

ρθ
− B2

x

c2a

)

1

2
|B∗

⊥ −B
l/r
⊥ |2.

We deduce the following stability criterion.

Proposition 3.5. In order to have e(ρ∗)− e∗ ≤ 0 (ensuring the discrete entropy inequality), it is
enough that ρ∗ > 0 and that there exists some θ ∈ R such that

(3.23) (ρ2p′)∗,l/r ≤ c2b ,
1

ρθ
− B2

x

c2a
≥ 0,

and

(3.24)

(

1

ρl/r
− 1

ρ∗

)

(Bθ
⊥ −Bx

b

ca
) · (B∗

⊥ −B
l/r
⊥ ) ≤

(

1

ρl/r
− 1

ρ∗

)

|B∗
⊥ −B

l/r
⊥ |Υ,

for some Υ satisfying

(3.25) Υ2 ≤
(

c2b − (ρ2p′)∗,l/r

)

(

1

ρθ
− B2

x

c2a

)

.

Proof. Starting from (3.8), we neglect the last term and use Lemma 3.4 for the two first terms,
and also use the identity (3.22). Then we use (3.24), and apply the estimate

(3.26)

(

1

ρl/r
− 1

ρ∗

)

|B∗
⊥ −B

l/r
⊥ |Υ ≤ 1

2

(

c2b − (ρ2p′)∗,l/r

)

(

1

ρl/r
− 1

ρ∗

)2

+
1

2

1

c2b − (ρ2p′)∗,l/r
|B∗

⊥ −B
l/r
⊥ |2Υ2.

With (3.25) this gives the result. �

Remark Taking θ = 0 gives Bθ
⊥ = (B∗

⊥ +B
l/r
⊥ )/2 and ρθ = ρl/r . Another special choice is θ = 1,

that gives Bθ
⊥ = B

l/r
⊥ and ρθ = ρ∗. This yields our most simple sufficient condition for entropy

stability, that is a discrete version of (2.23).

Proposition 3.6. The approximate Riemann solver defined by the relaxation system (2.4)-(2.11)
is positive and satisfies all discrete entropy inequalities whenever for all intermediate states U∗,
one has ρ∗ > 0 and

(3.27)

(ρ2p′)∗,l/r ≤ c2b ,
1

ρ∗
− B2

x

c2a
≥ 0,

∣

∣

∣

∣

B
l/r
⊥ −Bx

b

ca

∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗,l/r

)

(

1

ρ∗
− B2

x

c2a

)

,

where (ρ2p′)∗,l/r is defined by (3.11).
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This condition is useful for the 3-wave solver, as it will be shown in a follow-up paper. However,
it does not allow exact resolution of isolated Alfven waves since by the discussion of Subsection
2.2, in this case one should have a vanishing right-hand side in (3.27), which sets a value of b

colinear to B
l/r
⊥ , which is not colinear to B⊥l + B⊥r in general. Therefore, we provide a more

precise analysis, adapted to the 7-wave solver, that allows the exact resolution of isolated Alfven
waves.

Lemma 3.7. Assume b 6= 0 and define the projections parallel and orthogonal to b

(3.28) P ‖X =
X · b
|b|2 b, P⊥X = X − X · b

|b|2 b.

Consider again Bθ
⊥ and ρθ as in (3.19) for any θ ∈ R. Then for any θ‖, θ⊥ ∈ R we have

(3.29)

D0(U
∗, Ul/r) −

1

2c2b

(

p(ρ∗) +
|B∗

⊥|2
2

− B2
x

2
− π∗ +

b

ca
· (−BxB

∗
⊥ − π∗

⊥)

)2

≤ −1

2

(

c2b − (ρ2p′)∗,l/r

)

(

1

ρl/r
− 1

ρ∗

)2

+

(

1

ρl/r
− 1

ρ∗

)

P ‖(Bθ‖

⊥ −Bx
b

ca
) · P ‖(B∗

⊥ −B
l/r
⊥ ) −

(

1

ρθ‖

− B2
x

c2a

)

1

2
|P ‖(B∗

⊥ −B
l/r
⊥ )|2

+

(

1

ρl/r
− 1

ρ∗

)

P⊥(Bθ⊥

⊥ −Bx
b

ca
) · P⊥(B∗

⊥ −B
l/r
⊥ ) −

(

1

ρθ⊥

− B2
x

c2a

)

1

2
|P⊥(B∗

⊥ −B
l/r
⊥ )|2.

Proof. We use Lemma 3.4, and decompose the vectors in their components parallel and orthogonal
to b,
(3.30)
(

1

ρl/r
− 1

ρ∗

)

(
B

l/r
⊥ +B∗

⊥
2

−Bx
b

ca
) · (B∗

⊥ −B
l/r
⊥ ) −

(

1

ρl/r
− B2

x

c2a

)

1

2
|B∗

⊥ −B
l/r
⊥ |2

=

(

1

ρl/r
− 1

ρ∗

)

P ‖(
B

l/r
⊥ +B∗

⊥
2

−Bx
b

ca
) · P ‖(B∗

⊥ −B
l/r
⊥ ) −

(

1

ρl/r
− B2

x

c2a

)

1

2
|P ‖(B∗

⊥ −B
l/r
⊥ )|2

+

(

1

ρl/r
− 1

ρ∗

)

P⊥(
B

l/r
⊥ +B∗

⊥
2

−Bx
b

ca
) · P⊥(B∗

⊥ −B
l/r
⊥ ) −

(

1

ρl/r
− B2

x

c2a

)

1

2
|P⊥(B∗

⊥ −B
l/r
⊥ )|2.

We have an identity similar to (3.21),

(3.31)

(

1

ρl/r
− 1

ρ∗

)

P

(

B
l/r
⊥ + B∗

⊥
2

−Bθ
⊥

)

· P (B∗
⊥ −B

l/r
⊥ ) =

(

1

ρl/r
− 1

ρθ

)

1

2
|P (B∗

⊥ − B
l/r
⊥ )|2,

for any θ and any projection P = P ‖ or P = P⊥. In the part parallel to b of the right-hand side
of (3.30), use (3.31) with P = P ‖ and θ = θ‖, while in the part orthogonal to b, use (3.31) with
P = P⊥ and θ = θ⊥. This gives (3.29). �

We shall use Lemma 3.7 in the following way. Assume that (B
l/r
⊥ − Bx

b
ca

) · b = 0. Then take

θ‖ = 1. Provided 1/ρ∗ − B2
x/c

2
a ≥ 0, the second line on the right-hand side of (3.29) gives a

nonpositive contribution. To the remaining first and last line we can apply the Cauchy-Schwarz
inequality as in Proposition 3.5, to deduce that we only need

(3.32)

∣

∣

∣

∣

P⊥(Bθ⊥

⊥ −Bx
b

ca
)

∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗,l/r

)

(

1

ρθ⊥

− B2
x

c2a

)

for some θ⊥.

4. Stability conditions on each intermediate state

Let us now examine more precisely the stability conditions for each intermediate state U∗. We
shall give sufficient conditions for the seven wave solver, thus we assume that b 6= 0 and ca, cb > 0.
We recall that we use the same convention as in the previous section: the index l/r mean that we
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take l if U∗ is on the left of the central wave, and r if U∗ is on the right of the central wave. The
parameters ca, cb, b are evaluated in the same way (according to (2.11)).

We shall assume that

(4.1) B
l/r
⊥ −Bx

b

ca
= µZ,

where µ ≡ µl/r ∈ R, Z ≡ Zl/r satisfies

(4.2) Z · b = 0,

and Z is an approximation of the strength of the Alfven wave. At least, one should have that
when the data are that of a left isolated Alfven wave one has Zl = −(Br

⊥ − Bl
⊥)/2, µl = 1, and

when the data are that of a right isolated Alfven wave, Zr = (Br
⊥ −Bl

⊥)/2, µr = 1.

Since we aim to resolve isolated Alfven waves, we shall consider as ’small’ any term proportional
to ∆W∓f , ∆W∓s, and

(4.3)
1

4

ρl/rBx

c2a
∆W∓a − Z,

where the notation ∆W∓a means that we take ∆W−a if U∗ is on the left of the central wave, and
∆Wa if it is on the right. Indeed, from the assumptions on Z, this term vanishes on the left for an
isolated left Alfven wave (not necessarily for a right Alfven wave), and on the right for an isolated
right Alfven wave.
Example 1. Define

(4.4)
Wl =

1

4

ρlBxl

c2al

2cal

cal + car

[

π⊥r − π⊥l + car(u⊥l − u⊥r)
]

,

Wr =
1

4

ρrBxr

c2ar

2car

cal + car

[

π⊥l − π⊥r + cal(u⊥l − u⊥r)
]

,

and

(4.5) µl = min

(

1,
|Bl

⊥|
|Wl|

)

, µr = min

(

1,
|Br

⊥|
|Wr|

)

.

In other words, µlWl = proj
|Bl

⊥|
Wl, µrWr = proj

|Br
⊥|
Wr with

(4.6) proj
ν
X =







X if |X | ≤ ν,
X

|X |ν if |X | > ν.

Then, define

(4.7)
Vl = Bl

⊥ − µlWl,
Vr = Br

⊥ − µrWr,

and assume that Vl 6= 0, Vr 6= 0 (otherwise one should take bl = 0 or br = 0). This implies
Vl · Bl

⊥ > 0, and Vr ·Br
⊥ > 0. Thus we can define

(4.8)
Bxb

ca
= V + µ

W · V
|V |2 V =

B
l/r
⊥ · V
|V |2 V.

We have that b is colinear to V , and

(4.9)
Bxb

ca
= B

l/r
⊥ − µW + µ

W · b
|b|2 b,

i.e. (4.1)-(4.2) hold with Z = W − W ·b
|b|2 b.

In this example, all ∆W∓f , ∆W∓s and (4.3) are expressed linearly in terms of

(4.10) πr − πl, ur − ul, bl · [π⊥l − π⊥r + car(u⊥r − u⊥l)], br · [π⊥l − π⊥r − cal(u⊥r − u⊥l)],

which are small for any left or right isolated Alfven wave.
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Example 2. Colinear bl and br. Assume that Bl
⊥ 6= 0, Br

⊥ 6= 0, and that Bl
⊥/|Bl

⊥|+Br
⊥/|Br

⊥| 6= 0.
Take µl = µr = 1,

(4.11)

Zl =
1

2
Bl

⊥ − 1

2

Br
⊥

|Br
⊥|

|Bl
⊥|,

Zr =
1

2
Br

⊥ − 1

2

Bl
⊥

|Bl
⊥|

|Br
⊥|,

and

(4.12)

Bxlbl
cal

=
1

2
Bl

⊥ +
1

2

Br
⊥

|Br
⊥|

|Bl
⊥|,

Bxrbr
car

=
1

2
Br

⊥ +
1

2

Bl
⊥

|Bl
⊥|

|Br
⊥|.

Then conditions (4.1) and (4.2) are satisfied, and bl and br are colinear with the same direction.
The interest of this choice is that it simplifies the calculation of the intermediate states, since the
system (2.44) (or (2.46)) decouples into a part colinear to b and a part normal to b, leading to a
linear system of four equations and a system of two equations instead of one of six equations.

4.1. Fast intermediate states. We first consider the state between the waves corresponding to
ca and cf , which we denote with the superscript ’*af’ or with ’*a’ for quantities that are constant
across the ca-wave. From the Riemann invariants relations we get

(4.13)

1

ρl/r
− 1

ρ∗a
=

1

2

c2f − c2a

c2f (c2f − c2s)
∆W∓f ,

B∗af
⊥
ρ∗a

=
B

l/r
⊥
ρl/r

+
1

2

ca
c2f (c2f − c2s)

∆W∓fBxb =
B

l/r
⊥
ρl/r

+

(

1

ρl/r
− 1

ρ∗a

)

c2a
c2f − c2a

Bxb

ca
,

and

(4.14) B∗af
⊥ − B

l/r
⊥ = ρ∗a

(

1

ρl/r
− 1

ρ∗a

)

[

B
l/r
⊥ +

c2a
c2f − c2a

Bxb

ca

]

.

We use Lemma 3.7 with θ‖ = 1 and also θ⊥ = 1. The second line gives a nonpositive contribution
as soon as 1/ρ∗a −B2

x/c
2
a ≥ 0. For the third line, we compute

(4.15)
P⊥(B∗af

⊥ −B
l/r
⊥ ) = ρ∗a

(

1

ρl/r
− 1

ρ∗a

)

µZ,

P⊥(Bθ⊥

⊥ − Bxb

ca
) = µZ.

Here we take also into account the last term in the decomposition (3.8), which involves

(4.16) BxB
∗af
⊥ +π∗af

⊥ = Bxρ
∗a

(

1

ρl/r
− 1

ρ∗a

)

(

B
l/r
⊥ +

c2a
c2f − c2a

Bxb

ca

)

−
(

1

ρl/r
− 1

ρ∗a

)

c2f
c2f − c2a

cab.

Its orthogonal projection is given by

(4.17) P⊥(BxB
∗af
⊥ + π∗af

⊥ ) = Bxρ
∗a

(

1

ρl/r
− 1

ρ∗a

)

µZ.

In order to get e(ρ∗)− e∗ ≤ 0, it is enough to estimate the first and last line in the right-hand side

of (3.29), to which we add −|P⊥(BxB
∗af
⊥ + π∗af

⊥ )|2/(2c2a). Thus the inequality reduces to

(4.18)

−1

2

(

c2b − (ρ2p′)∗a,l/r

)

(

1

ρl/r
− 1

ρ∗a

)2

+

(

1

ρl/r
− 1

ρ∗a

)2

ρ∗a|µZ|2 −
(

1

ρ∗a
− B2

x

c2a

)

1

2
(ρ∗a)2

(

1

ρl/r
− 1

ρ∗a

)2

|µZ|2

−B
2
x(ρ∗a)2

2c2a

(

1

ρl/r
− 1

ρ∗a

)2

|µZ|2

≤ 0.
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Dividing by ( 1
ρl/r − 1

ρ∗a )2, this gives the sufficient condition

(4.19) c2b − (ρ2p′)∗a,l/r − ρ∗a|µZ|2 ≥ 0.

4.2. Middle intermediate states. Next, we move on to the states between the waves associated
with cs and ca, which we denote by the superscript ’*as’, or just ’*a’ if there is no jump at the

ca-wave. We have B∗as
⊥ = B∗af

⊥ − 1
2

ρ∗aBx

c2
a

∆W∓a, thus

(4.20)

B∗as
⊥ −B

l/r
⊥ = B∗af

⊥ −B
l/r
⊥ − 1

2

ρ∗aBx

c2a
∆W∓a

= ρ∗a

(

1

ρl/r
− 1

ρ∗a

)

(

B
l/r
⊥ +

c2a
c2f − c2a

Bxb

ca

)

− 1

2

ρ∗aBx

c2a
∆W∓a.

Next, we have for any θ

(4.21)

Bθ
⊥ − Bxb

ca

=
1 − θ

2
(B∗as

⊥ −B
l/r
⊥ ) +B

l/r
⊥ − Bxb

ca

=
1 − θ

2
ρ∗a

(

1

ρl/r
− 1

ρ∗a

)

(

B
l/r
⊥ +

c2a
c2f − c2a

Bxb

ca

)

+(1 − θ)
ρ∗a

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

+

(

µ− (1 − θ)
ρ∗a

ρl/r

)

Z

=
1 − θ

2
ρ∗a

(

1

ρl/r
− 1

ρ∗a

)

c2f
c2f − c2a

Bxb

ca

+(1 − θ)
ρ∗a

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

+

(

µ− (1 − θ)
ρ∗a

ρl/r
+

1 − θ

2
µ

(

ρ∗a

ρl/r
− 1

))

Z.

We apply Lemma 3.7 with θ‖ = 1. For θ⊥, a useful choice is to make the last term in (4.21)
vanish, since it is large for isolated Alfven wave data, hence

(4.22) 1 − θ⊥ =
2µ

ρ∗a

ρl/r (2 − µ) + µ
.

This gives

(4.23) P⊥
(

Bθ⊥

⊥ − Bxb

ca

)

=
2µ ρ∗a

ρl/r

ρ∗a

ρl/r (2 − µ) + µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

,

to which we need only to require the inequality (3.32). As soon as 0 ≤ µ ≤ 1 and ρ∗a/ρl/r ≥
µ/(2 − µ) this gives the natural bounds 0 ≤ θ⊥ ≤ 1, and we get the sufficient condition

(4.24)

∣

∣

∣

∣

2µ

2 − µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗a,l/r

)

(

1

ρθ⊥

− B2
x

c2a

)

.

Otherwise, still for 0 ≤ µ ≤ 1, another possible choice is

(4.25) θ⊥ =
4(1 − µ)

(

ρ∗a

ρl/r

)2

(

ρ∗a

ρl/r (2 − µ) + µ
)2

which satisfies 0 ≤ θ⊥ ≤ 1, and

(4.26)

P⊥
(

Bθ⊥

⊥ − Bxb

ca

)

= (1 − θ⊥)
ρ∗a

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

+
1

2

1 −
(

ρ∗a

ρl/r

)2

ρ∗a

ρl/r (2 − µ) + µ
µ2Z.
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Then, the last term in (4.26) can be grouped in (3.29) with the term in (1/ρl/r − 1/ρ∗)2. Using
the Cauchy-Schwarz inequality this gives the sufficient condition

(4.27)

∣

∣

∣

∣

(1 − θ⊥)
ρ∗a

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗a,l/r +
1 + ρ∗a

ρl/r

ρ∗a

ρl/r (2 − µ) + µ
ρ∗aµ2Z · P⊥(B∗as

⊥ −B
l/r
⊥ )

)

(

1

ρθ⊥

− B2
x

c2a

)

,

where

(4.28)
P⊥(B∗as

⊥ −B
l/r
⊥ ) = ρ∗a

(

1

ρl/r
− 1

ρ∗a

)

µZ − 1

2

ρ∗aBx

c2a
∆W∓a

= −
(

ρ∗a

ρl/r
(2 − µ) + µ

)

Z + 2
ρ∗a

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

.

This is especially interesting when ρ∗a/ρl/r ≤ µ/(2 − µ), where we get the sufficient condition

(4.29)

∣

∣

∣

∣

µ

2 − µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗a,l/r −
(

1 +
ρ∗a

ρl/r

)

ρ∗aµ2

(

|Z|2 +

∣

∣

∣

∣

Z ·
(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

))

×
(

1

ρθ⊥

− B2
x

c2a

)

.

4.3. Internal intermediate states. The intermediate states between the middle wave and the
slow wave will be denoted by ’*i’. We have similarly as for fast intermediate states

(4.30)

1

ρ∗a
− 1

ρ∗i
=

1

2

c2a − c2s
c2s(c

2
f − c2s)

∆W∓s,

B∗i
⊥
ρ∗i

=
B∗as

⊥
ρ∗a

− 1

2

ca
c2s(c

2
f − c2s)

∆W∓sBxb =
B∗as

⊥
ρ∗a

−
(

1

ρ∗a
− 1

ρ∗i

)

c2a
c2a − c2s

Bxb

ca
,

B∗i
⊥ −B∗as

⊥ = ρ∗i

(

1

ρ∗a
− 1

ρ∗i

)[

B∗as
⊥ − c2a

c2a − c2s

Bxb

ca

]

.

Using that B⊥

ρ + Bx

c2
a
π⊥ − Bxb

ca

1
ρ is a Riemann invariant for the central wave, we have

(4.31)

(

B∗i
⊥ − Bxb

ca

)

1

ρ∗i
+
Bx

c2a
π∗i
⊥ =

(

B
l/r
⊥ − Bxb

ca

)

1

ρl/r
+
Bx

c2a
π

l/r
⊥ .

Then, we decompose

(4.32)

π∗i
⊥ − π

l/r
⊥ = (π∗i

⊥ − π∗as
⊥ ) + (π∗as

⊥ − π∗af
⊥ ) + (π∗af

⊥ − π
l/r
⊥ )

=
c2s

c2a − c2s

(

1

ρ∗a
− 1

ρ∗i

)

cab+
1

2
∆W∓a −

c2f
c2f − c2a

(

1

ρl/r
− 1

ρ∗a

)

cab,

and from (4.31) we get

(4.33)

B∗i
⊥ − Bxb

ca
=

(

B
l/r
⊥ − Bxb

ca

)

ρ∗i

ρl/r
+ ρ∗i

[

− c2s
c2a − c2s

(

1

ρ∗a
− 1

ρ∗i

)

Bxb

ca

−1

2

Bx

c2a
∆W∓a +

c2f
c2f − c2a

(

1

ρl/r
− 1

ρ∗a

)

Bxb

ca

]

.
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Then, we compute

(4.34)

Bθ
⊥ − Bxb

ca
=

1 − θ

2

(

B∗i
⊥ − Bxb

ca

)

+
1 + θ

2

(

B
l/r
⊥ − Bxb

ca

)

=
1 − θ

2
ρ∗i

[

− c2s
c2a − c2s

(

1

ρ∗a
− 1

ρ∗i

)

+
c2f

c2f − c2a

(

1

ρl/r
− 1

ρ∗a

)

]

Bxb

ca

+ (1 − θ)
ρ∗i

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

+

[

µ− (1 − θ)
ρ∗i

ρl/r
+

1 − θ

2
µ

(

ρ∗i

ρl/r
− 1

)]

Z.

As for the middle intermediate states, apply Lemma 3.7 with θ‖ = 1. Then, the first choice of θ⊥

is to make the last term in (4.34) vanish,

(4.35) 1 − θ⊥ =
2µ

ρ∗i

ρl/r (2 − µ) + µ
.

This gives

(4.36) P⊥
(

Bθ⊥

⊥ − Bxb

ca

)

=
2µ ρ∗i

ρl/r

ρ∗i

ρl/r (2 − µ) + µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

,

to which we need only to require the inequality (3.32). As soon as 0 ≤ µ ≤ 1 and ρ∗i/ρl/r ≥
µ/(2 − µ) this gives the natural bounds 0 ≤ θ⊥ ≤ 1, and we get the sufficient condition

(4.37)

∣

∣

∣

∣

2µ

2 − µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗i,l/r

)

(

1

ρθ⊥

− B2
x

c2a

)

.

Otherwise, still for 0 ≤ µ ≤ 1, the other possible choice is

(4.38) θ⊥ =
4(1 − µ)

(

ρ∗i

ρl/r

)2

(

ρ∗i

ρl/r (2 − µ) + µ
)2

which satisfies 0 ≤ θ⊥ ≤ 1, and

(4.39)

P⊥
(

Bθ⊥

⊥ − Bxb

ca

)

= (1 − θ⊥)
ρ∗i

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

+
1

2

1 −
(

ρ∗i

ρl/r

)2

ρ∗i

ρl/r (2 − µ) + µ
µ2Z.

Again, the last term in (4.39) can be grouped in (3.29) with the term in (1/ρl/r − 1/ρ∗)2. Using
the Cauchy-Schwarz inequality this gives the sufficient condition

(4.40)

∣

∣

∣

∣

(1 − θ⊥)
ρ∗i

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤



c2b − (ρ2p′)∗i,l/r +
1 + ρ∗i

ρl/r

ρ∗i

ρl/r (2 − µ) + µ
ρ∗iµ2Z · P⊥(B∗i

⊥ − B
l/r
⊥ )





(

1

ρθ⊥

− B2
x

c2a

)

,

where according to (4.33)

(4.41)
P⊥(B∗i

⊥ −B
l/r
⊥ ) =

(

ρ∗i

ρl/r
− 1

)

µZ − 1

2

ρ∗iBx

c2a
∆W∓a

= −
(

ρ∗i

ρl/r
(2 − µ) + µ

)

Z + 2
ρ∗i

ρl/r

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)

.
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This gives when ρ∗i/ρl/r ≤ µ/(2 − µ) the sufficient condition

(4.42)

∣

∣

∣

∣

µ

2 − µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗i,l/r −
(

1 +
ρ∗i

ρl/r

)

ρ∗iµ2

(

|Z|2 +

∣

∣

∣

∣

Z ·
(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

))

×
(

1

ρθ⊥

− B2
x

c2a

)

.

4.4. Summary of sufficient conditions. From subsections 4.1-4.3 we deduce the following suf-
ficient conditions for entropy inequalities on each side (left or right) for the 7-wave solver.

Proposition 4.1. The approximate Riemann solver is entropy stable if all intermediate densities
are positive, (4.1)-(4.2) hold,

(4.43) 0 ≤ µ ≤ 1,

and

(4.44)

∣

∣

∣

∣

2µ

2 − µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗a,l/r −
2

2 − µ
ρ∗aµ2

(

|Z|2 +

∣

∣

∣

∣

Z ·
(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

))

×
(

1

max(ρ∗a, ρl/r)
− B2

x

c2a

)

,

(4.45)

∣

∣

∣

∣

2µ

2 − µ

(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

2

≤
(

c2b − (ρ2p′)∗i,l/r −
2

2 − µ
ρ∗iµ2

(

|Z|2 +

∣

∣

∣

∣

Z ·
(

Z − 1

4
ρl/rBx

c2a
∆W∓a

)∣

∣

∣

∣

))

×
(

1

max(ρ∗i, ρl/r)
− B2

x

c2a

)

,

where in both inequalities the two factors on the right-hand side must be nonnegative.

Remark. If we want to exactly resolve an isolated, say left, Alfven discontinuity, the above con-
ditions impose that either bl and br are not colinear, or cal 6= car. Indeed, if cal = car = |Bx|

√
ρ,

the right-hand sides of (4.44)-(4.45) vanish. However, since ∆Wa = 0, we deduce that µrZr = 0,
and from (4.1) that Bxbr/ca = Br

⊥, which is not colinear to Bl
⊥ +Br

⊥ in general.

Even in the Euler case, the nonlinearity of the subcharacteristic condition is too complicated to
directly give values of the relaxation parameters. One has to make a bit of analysis to find them,
see [4]. In contrast to that case where there is only one speed c, here there are four parameters
ca, cb, b ∈ R2 to be chosen (on each left and right side), and the simplifications we can make are
limited due to the previous remark. The issue of finding good relaxation velocities for this scheme
can nevertheless be rather well resolved, using Proposition 4.1 and lower bounds for 1/ρ∗ for any
intermediate density ρ∗. This will be presented in a follow-up paper.
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