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Abstract. We propose and analyze a finite volume scheme of the Godunov
type for conservation laws with source terms that preserve discrete steady

states. The scheme works in the resonant regime as well as for problems with

discontinuous flux. Moreover, an additional modification of the scheme is not
required to resolve transients, and solutions of non-linear algebraic equations

are not involved. Our well-balanced scheme is based on modifying the flux

function locally to account for the source term and to use a numerical scheme
especially designed for conservation laws with discontinuous flux. Due to the

difficulty of obtaining BV estimates, we use the compensated compactness

method to prove that the scheme converges to the unique entropy solution as
the discretization parameter tends to zero. We include numerical experiments

in order to show the features of the scheme and how it compares with a well-
balanced scheme from the literature.

1. Introduction

In this paper we study conservation laws with source terms, often referred to as
balance laws, a prototype of which is given by

(1.1)

{
ut + f(u)x = A(x, u) (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R,

where u is the (scalar) unknown, f is the flux function, and A is the source term.
Frequently the source term takes the form

(1.2) A(x, u) = z′(x)b(u),

in which case (1.1) can be seen as a model equation for the Saint-Venant (shallow
water) equations. We remark that the coefficient z in (1.2) can be discontinuous,
which would correspond to a discontinuous bottom topography.

Formally (1.1) with the source (1.2) is equivalent to

Ut + AUx = 0,

where U = (u, z) and the matrix A is given by

A =
(

f ′(u) −b
0 0

)
.
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The eigenvalues of the above matrix (wave speeds) are f ′(u) and 0, which can
coincide and thereby result in “resonance”.

If z(x) = x, then (1.2) reduces to

ut + (f(u))x = b(u),

which is the usual case of an autonomous source term. If b(u) ≡ 1, (1.2) reduces to

(1.3) ut + (f(u))x = z′(x).

In fact, (1.3) can be written in the following conservative form,

(1.4) ut + (f(u)− z(x))x = 0,

which is an example of a conservation law with a spatially varying coefficient.
These equations (1.4), in particular when the coefficients are discontinuous, have
been studied from a theoretical and numerical point of view in a large number of
papers, cf. [1, 2, 4, 9, 13, 17, 20, 26, 27] and references therein. The link between
(1.1) and (1.4) will be the basis for the numerical scheme introduced in this paper.

Solutions of (1.1) must be interpreted in the weak sense, and so-called entropy
conditions are used to select a unique weak solution to the initial-value problem;
This solution is referred to as an entropy solution. Weak and entropy solutions of
(1.2) are well defined when z′ ∈ L∞ (cf. Section 2) . Whenever b is independent of
u, one can interpret (1.4) in the sense of distributions, even for discontinuous z.

One of the key issues in designing numerical schemes for (1.1) is the resolution
of steady states. For the continuous problem, at a steady state ū = ū(x) the flux
function f and the source term A are balanced, i.e., ū satisfies

(1.5) f(u)x = A(x, u).

More detailed forms of (1.5) can be derived for (1.2) (cf. Section 2). The usual
strategy of devising numerical methods for (1.1) is to use a Godunov type numerical
flux in a finite volume method coupled with a centered differencing of the source
term. It is well known that this does not preserve discrete steady states [12].
Another alternative is provided by the so-called splitting or fractional steps method,
which is based on separating the updates for the flux and the source [18]. This
method is also deficient with regard to preserving discrete steady states.

Because of these difficulties, so-called well-balanced schemes have been proposed.
These schemes are designed specifically for preserving steady states. A variety of
well-balanced schemes can be found in literature, see [12, 10, 5, 6] and the references
cited therein. For a partial overview, see also the introductory part of [14].

Our aim in this paper is to devise a well-balanced scheme for (1.1). The key
element of our strategy will be a “local” transformation of the balance law (1.1) to
a conservation law with a space-time dependent discontinuous coefficient:

(1.6) ut + f̃(k(x, t), u))x = 0

where f̃ is the flux modified locally by the source. Equations of this type are by
now mathematically well-studied within a proper framework of entropy solutions
and various types of numerical methods have been devised and analyzed for these
equations (cf. the list of references given above and for (1.6) in particular reference
[15]). Thus, our strategy is to employ numerical schemes designed for conservation
laws with discontinuous coefficients (1.6) to approximate solutions of (1.1) (details
are presented in Section 3). This strategy is similar in spirit to that used in [5, 18].
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The finite volume scheme devised herein is designed to preserve discrete steady
states and can therefore be called well-balanced. The scheme is very simple to
implement and does not require solving algebraic equations or an addtional entropy
treatment for discontinuous steady states. It resolves the transients to first order
and the steady states are resolved to machine precision. The main features of
the scheme are demonstrated through a series of numerical experiments in Section
5. We believe that the approach of using a local discontinuous flux formulation
for designing well-balanced schemes will lead to alternative numerical schemes for
systems of conservation laws as well, including the shallow water equations with
bottom topography and the Euler equations for flow in a nozzle. We plan to address
the extension to systems in future works.

Regarding convergence analysis of well-balanced schemes, if f ′ 6= 0, it is possible
to work within the standard BV (bounded variation) framework, see, e.g., [10,
11]. When resonance occurs, i.e., if f ′(u) = 0 for some u, the situation becomes
more complicated. As with other problems (equations with discontinuous flux)
experiencing resonance phenomena, there is generally no spatial variation bound
for the conserved variable u itself. In order to show compactness of approximate
solutions, the so-called singular mapping approach has been used in the last twenty
years, in particular for conservation laws with discontinuous coefficients, cf. [1, 2,
9, 13, 17, 20, 26, 27]. More recently, alternative analytical tools have been utilized
for discontinuous flux problems, including compensated compactness [15, 16] and
entropy process solutions/kinetic solutions [4]. Regarding convergence analysis for
equations with source terms, very few of the papers deal with the resonant case
where BV estimates are not available. Indeed, we know only of [23, 6, 13]. In
[23, 13] the singular mapping technique is used prove the convergence of the Glimm,
Godunov, and front tracking methods, while the authors of [6] prove the convergence
of so-called equilibrium schemes using the method of kinetic solutions.

In the present paper we show that under suitable hypotheses on the flux function
and the source term, the approximate solutions generated by our well-balanced
scheme converge to the entropy solution of (1.2). The convergence proof utilizes
the compensated compactness method [24, 25]. Let u∆x denote the approximate
solution generated by the well-balanced scheme and let (S, Q) be an entropy-entropy
flux pair. Then the main step in the compensated compactness method is to prove
that the entropy production S (u∆x)t + Q (u∆x)x is compact in W−1,2

loc . We remark
that the W−1,2

loc compactness analysis is non-trivial; It relies on the properties of the
solution of the Riemann problem for a conservation law with discontinuous flux.

We have organized this paper as follows: In Section 2 we state our assumptions
and define the notion of solutions to be used later on. In Section 3 we present
our well-balanced scheme, while the convergence analysis is given in Section 4. In
Section 5 we report on a series of numerical examples and present a comparison
between our scheme and a well-balanced scheme found in the literature.

2. Preliminaries

2.1. Hypotheses. In this section we detail the hypotheses on f,A, u0 and recall
the notion of entropy solutions for conservation laws. We assume that f satisfies
the following assumptions:

A.1 f ∈ C1
loc(R).

A.2 f has finitely many points of extrema.
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A.3 u 7→ f(u) is genuinely non-linear. More precisely, f ′′(u) 6= 0 for a.e. u ∈ R.
A.4 There exist finite constants M,Cf such that

|u| > M implies |f(u)| > Cf log(|u|).

Next we state the assumptions on the source term A.
A.5 We have that A(x, 0) = 0, or A(x, u) = z′(x). The mapping u 7→ A(x, u)

is locally Lipschitz continuous in u for all x with a Lipschitz constant CA.
Regarding the initial data, we assume

A.6 u0(x) ∈ L∞(R).

2.2. Definition of solutions. We define weak solutions of (1.2) as follows:

Definition 2.1. Suppose (A.1) and (A.5) hold. A function u ∈ L∞(R × R+) is
called a weak solution of (1.2) if for all ϕ ∈ C∞c (R× [0,∞)),∫

R+

∫
R

uϕt + f(u)ϕx + A(x, u)ϕ dxdt +
∫

R
u(x, 0)ϕ(x, 0) = 0.

Next, we consider the special case
A.7 A(x, u) = z′(x) for some function z ∈ L∞(R) ∩BV (R),

in which case the following definition of a weak solution can be used:

Definition 2.2. Suppose (A.7) holds. A function u ∈ L∞(R×R+) is called a weak
solution of (1.1) if for all ϕ ∈ C∞c (R× [0,∞)),∫

R+

∫
R

uϕt + (f(u)− z(x))ϕx dxdt +
∫

R
u(x, 0)ϕ(x, 0) dx = 0.

Observe that this definition is meaningful even when z is discontinuous, which
is due to the conservative form of the source term (A.7).

Weak solutions are not uniquely determined by their initial data and have to
be supplemented with an entropy condition to achieve uniqueness. An entropy
solution of (1.2) is defined as follows:

Definition 2.3. Suppose A.5 holds. A function u ∈ L∞(R × R+) is called an
entropy solution of (1.2) if for all nonnegative ϕ ∈ C∞c (R × [0,∞)) and for all
entropy-entropy flux pairs (S, Q) the following inequality holds:
(2.1)∫

R+

∫
R

S(u)ϕt + Q(u)ϕx + S′(u)A(x, u)ϕ dxdt +
∫

R
S (u0(x))ϕ(x, 0) dx ≥ 0.

A pair of C2 functions (S, Q) is an entropy-entropy flux pair if S′′ ≥ 0, Q′ = S′f ′.

It is sufficient to establish (2.1) for the Kružkov entropy-entropy flux pairs

(2.2) Sc(u) := |u− c| , Qc(u) = sign (u− c) (f(u)− f(c)) , c ∈ R,

where the sign function sign (·) satisfies sign (0) = 0. It is well-known fact that there
exists a unique entropy solution u of (1.1) if u0 ∈ L∞(R) and A(x, u) is Lipshitz
continuous in x and locally Lipschitz continuous in u. Moreover, if u0 ∈ BV (R),
then u belongs to BV (R× (0, T )) for any T > 0.

Let us now turn to the singular case (A.7). For the sake of having a well-
posed problem at our disposal, we shall reinforce (A.7) by introducing the following
“piecewise smoothness” assumption:
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A.8 Condition (A.7) holds and z(x) is piecewise C1 with a finite number of
jump discontinuity points located at x0 < x1 < · · · < xM , M ≥ 0.

Under this condition we will employ a notion of entropy solution taken from [14].

Definition 2.4. Suppose (A.8) holds. A function u is said to be an entropy solution
of (1.3) if for all c ∈ R and for all 0 ≤ ϕ ∈ C∞c (R× [0,∞)),

(2.3)

∫
R

∫
R+

|u− c|ϕt + sign (u− c) (f(u)− f(c))ϕx dxdt

+
∫

R−D

∫
R+

sign (u− c) z′(x)ϕ dxdt

+
M∑

m=0

∫
R+

|z(xm+)− z(xm−)|ϕ(xm, t) dt +
∫

R
|u0 − c|ϕ dx ≥ 0,

where D = {x0, x1, . . . , xM}.

For various existence and uniqueness results for entropy solutions in the sense of
Definition 2.3 we refer to [13].

2.3. Convergence framework. We will use the compensated compactness method
[24, 25] to prove convergence of our approximate solutions. For simplicity, we will
use the Young measure independent version of this method [7, 19].

The following lemma, which contains the compensated compactness method as
we rely on it herein, is taken from [7, 19].

Lemma 2.1. Let {uε}ε>0 be a sequence of functions such that

(i) |uε| ≤ C for all ε > 0;
(ii) The two sequences

{S1(uε)t + Q1(uε)x}ε>0 and {S2(uε)t + Q2(uε)x}ε>0

are in a compact subset of W−1,2
loc (R× R+), where

(2.4)
S1(u) = u− c, Q1(u) = f(u)− f(c),

S2(u) = f(u)− f(c), Q2(u) =
∫ u

c

(fu(ξ))2 dξ,

for all c ∈ R.

Then there is a subsequence of {uε} converging a.e. to a function u ∈ L∞(R×R+).

We will also need the following technical result [22].

Lemma 2.2. Let Ω ⊂ Rd be an open set. If 1 < q < 2 < r < ∞, then{
compact set of W−1,q

loc (Ω)
}⋂ {

bounded set of W−1,r
loc (Ω)

}
⊂

{
compact set of W−1,2

loc (Ω)
}

.
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3. The numerical scheme

In this section we define our the well-balanced scheme for (1.1) and (1.2), which
is a Godunov type finite volume scheme.

Let ∆t and ∆x be the time step and mesh size respectively. Fix T > 0 and set

Cu = M exp(CT ),

where C is a constant to be determined later. Now set

Mf = max
[−Cu,Cu]

|f ′(u)| .

We assume that the time step and the mesh size satisfy the following CFL-condition:

2λMf ≤ 1, λ =
∆t

∆x
.

Let tn = n∆t, and xj = j∆x for n = 0, 1, 2, . . . and j = . . . ,−1,−1/2, 0, 1/2, 1, . . ..
Let Ij denote the interval [xj−1/2, xj+1/2) and In the interval [tn, tn+1). Set

1n
j (x, t) = 1Ij (x)1In(t),

where 1Ω denotes the characteristic function of the set Ω.
The initial data is defined by

u0
j =

1
∆x

∫ xj+1/2

xj−1/2

u(x, 0) dx.

Fixing a time level tn on which our approximate solution un
j is given, we describe

next how to construct the approximate solution un+1
j at the subsequent time level

tn+1. Let un(x) and Bn(x) be defined as

un(x) =
∑

j

un
j 1Ij

(x), Bn(x) =
∑

j

Bn
j 1Ij

(x)

and Bn
j −Bn

j−1 = q∆x (xj−1, xj , A(x, un(x))) ,

where q∆x is some approximate integration such that

q∆x(a, b, h(x)) →
∫ b

a

h(x) dx, as ∆x → 0,

for bounded functions h. For t ∈ [tn, tn+1) we solve the following conservation law
with a discontinuous coefficient:

(3.1) ut + (f(u)−Bn(x))x = 0, u (x, tn) = un(x),

and then define un+1
j as

un+1
j =

1
∆x

∫
Ij

u
(
y, tn+1

)
dy.

By the CFL-condition, waves emerging from the Riemann problems at x = xj+1/2

will not interact, and therefore we obtain

(3.2) un+1
j = un

j − λ
(
Fj+1/2 − Fj−1/2

)
,

where Fj+1/2 is the flux across x = xj+1/2.
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The flux Fj+1/2 is determined by solving the Riemann problem for a conservation
law with discontinuous flux:

(3.3)

{
ut +

(
f(u)−Bn

j

)
x

= 0, u(x, 0) = un
j , x < xj+1/2,

ut +
(
f(u)−Bn

j+1

)
x

= 0, u(x, 0) = un
j+1, x ≥ xj+1/2..

The Riemann problems (3.3) can be exactly solved [9, 3, 21]. These formulas
provide simple expressions for the Godunov flux to be used across each interface.
For example, if f has only one minimum for u = θ and no maxima, then we have
the following formula for the interface flux:

Fj+1/2 = max
{
f

(
max

{
un

j , θ
})

+ Bn
j , f

(
min

{
θ, un

j+1

})
+ Bn

j+1

}
For other flux functions, similar explicit formulas can be obtained.

For the convergence analysis, we define an approximate solution u∆x for t 6= tn

and x ∈ R by setting

u∆x(x, t) = u(x, t) tn ≤ t < tn+1, x ∈ R,

where u is the entropy solution of (3.1), cf. Definition 2.4
We are going to show in the subsequent section that (3.2) is a well-balanced

scheme (preserves discrete steady states exactly) and that u∆x converges as ∆x → 0
to an entropy solution of (1.2).

4. Convergence Analysis

In this section, we will carry out the convergence analysis for the well-balanced
Godunov type scheme (3.2). First, we show that the scheme preserves discrete
steady states. A discrete steady state for our scheme is defined by

(4.1) f
(
un

j+1

)
− f

(
un

j

)
= Bn

j+1 −Bn
j , j ∈ Z,

where we observe that

Bn
j+1 −Bn

j ≈
∫ xj+1

xj

A (y, un(y)) dy;

Under the form (1.2) we use the formula

Bn
j+1 −Bn

j =
(
z

(
xj+1/2−

)
− z (xj+)

)
b
(
un

j

)
+

(
z (xj+1−)− z

(
xj+1/2+

))
b
(
un

j+1

)
.

The well-balancing properties of the scheme are defined below.

Lemma 4.1. Let
{
un

j

}
j∈Z be a sequence such that

f(un
j+1)− f(un

j ) = Bn
j+1 −Bn

j , ∀j ∈ Z,

and

(4.2) f ′
(
un

j

)
f ′

(
un

j+1

)
< 0 =⇒ f ′

(
un

j

)
> 0 and f ′

(
un

j+1

)
< 0, ∀j ∈ Z.

Then
un+1

j = un
j , ∀j ∈ Z,

where
{
un+1

j

}
j∈Z is computed by the scheme (3.2).
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Proof. Since un
j satisfies both the Rankine-Hugoniot condition and the entropy

condition (4.2) across each interface xj+1/2, we have that

Fj+1/2 = f
(
un

j

)
+ Bn

j = f
(
un

j+1

)
+ Bn

j+1, ∀j ∈ Z.

Therefore, Fj+1/2 = Fj−1/2 and the lemma is proved. �

Remark 4.1. Lemma 4.1 says that a discrete steady state (4.1) satisfying condition
(4.2) is preserved by the well-balanced scheme (3.2). The additional constraint (4.2)
is an entropy condition essentially excluding under-compressive waves.

Next, we will show that the approximate solutions are bounded in L∞.

Lemma 4.2. There exists a constant σ, independent of ∆x, such that

|u∆x(x, tn)| ≤ Meσtn

, M := ‖u0‖L∞(R) .

Proof. Let M,CA, Cf be the constants defined in (A.4) and (A.5). Without loss
of generality we can assume that u0

j < M . Now either f(u) > Cf log(u) or f(u) <
−Cf log(u) for u > M . We assume that f(u) > Cf log(u), the other case being
similar. To start we assume inductively that un

j < Meσtn

=: Mn. Any Riemann
problem arising at t = tn will involve left and right flux functions whose difference
is bounded by

∆xCA ≤ λ−1∆tCA =: ∆.

Furthermore any left and right states are smaller than Mn. Therefore, any states
in the solution will be less than ū, where ū solves

f (ū) = f (Mn) + ∆.

Therefore
Cf (log (ū)− log (Mn)) ≤ ∆,

or
ū ≤ Mne∆/Cf = Meσtn+CA/(λCf )∆t.

Setting σ = CA/(λCf ) shows that un+1
j < Meσtn+1

. Showing the corresponding
lower bounds is similar. �

We will apply the compensated compactness Lemma 2.1 to the sequence {u∆x}.
To this end, we will need to establish certain entropy dissipation estimates to be
able to verify the W−1,2

loc compactness of the entropy production associated with
{u∆x}. To prove the dissipation estimates we will adapt an approach from [16]
developed for conservation laws with discontinuous coefficients.

As u∆x locally is the solution of Riemann problems for conservation laws with
discontinuous coefficients, we start by recalling some results relating to the problem{

ut + g (kl, u)x = 0, u(x, 0) = ul x < 0,

ut + g (kr, u)x = 0, u(x, 0) = ur x > 0,

where kl,r and ul,r are given constants. For the moment, we just assume that g is a
continuously differentiable function. The Rankine-Hugoniot condition tells us that
the values

u′l,r = lim
x→0∓

u(x, t),

satisfy
g0 := g (kl, u

′
l) = g (kr, u

′
r) .
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In general, this does not determine u′l,r uniquely, and we need an additional condi-
tion. We use here the so-called minimal jump entropy condition, which states that
among the possible choices we select u′l and u′r such that |u′l − u′r| is minimal. This
choice has the following consequences (see [9]):

u′l ≤ u′r =⇒

{
g (kl, u) ≥ g (kl, u

′
l) for all u ∈ [u′l, u

′
r], or

g (kr, u) ≥ g (kr, u
′
r) for all u ∈ [u′l, u

′
r],

u′r ≤ u′l =⇒

{
g (kl, u) ≤ g (kl, u

′
l) for all v ∈ [u′r, u

′
l], or

g (kr, u) ≤ g (kr, u
′
r) for all u ∈ [u′r, u

′
l].

(4.3)

Lemma 4.3 ([16]). If the values u′l and u′r are chosen according to the minimal
jump entropy condition, then for any constant c

Qr (u′r, c)−Ql (u′l, c) ≤ |g (kr, c)− g (kl, c)| ,

where Ql and Qr denote the Kružkov entropy fluxes

Ql(v, c) = sign (v − c) (g (kl, v)− g (kl, c)) ,

Qr(v, c) = sign (v − c) (g (kr, v)− g (kr, c)) .

Next we continue with the proofs of the entropy dissipation estimates. We shall
use the notation

[[α]](x, t) = lim
h→0

α(x + h, t)− α(x− h, t),

for any quantity α = α(x, t). Fix an entropy-entropy flux pair (S, Q). Then the
entropy dissipation of u∆x associated with (S, Q) is defined to be

(4.4) E(ϕ) =
∫∫

ΠX,T

S (u∆x)ϕt + Q (u∆x)ϕx dxdt, ϕ ∈ C∞c (R× R+),

where we let ΠX,T denote the set [−X, X] × [0, T ] and where ϕ ∈ C∞(ΠX,T ).
Without loss of generality, we can assume that X and T are such that X = xJ+1/2

and T = tN for some integers J and N .
By an integration by parts and the local Riemann solution structure of the

approximation u∆x, we can split E(ϕ) as

(4.5) E(ϕ) = I1(ϕ) + I2(ϕ) + I3(ϕ) + I4(ϕ) + I5(ϕ),

where

I1(ϕ) =

X∫
−X

S (u∆x(x, t))ϕ(x, t)
∣∣t=T

t=0
dx,

I2(ϕ) =
N−1∑
n=0

X∫
−X

[
S (u∆x(x, tn−))− S (u∆x(x, tn+))

]
ϕ(x, tn) dx,

I4(ϕ) =
J∑

j=−J

N−1∑
n=0

tn+1∫
tn

[
Q

(
un,−

j+1/2

)
−Q

(
un,+

j+1/2

)]
ϕ(xj , t) dt,
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I5(ϕ) =
N−1∑
n=0

tn+1∫
tn

(
Q

(
un

j−1/2

)
ϕ(xj , t)

) ∣∣∣j=J

j=−J
dt,

I3(ϕ) =
J∑

j=−J

N−1∑
n=0

∑
σ

tn+1∫
tn

[σ[[S]] + [[Q]]]ϕ(xj+1/2 + σt, t) dt,

where the summation over σ extends to all shocks with speeds σ in the solution of
the Riemann problem at the interface xj+1/2. We have also used the notation

un,±
j+1/2 = lim

x→xj+1/2±
u∆x (x, tn) .

We have the following lemma on the variation across each time level.

Lemma 4.4. Let u∆x and un
j be generated by the well-balanced scheme (3.2). There

exists a constant C = C(X, T ) independent of ∆x such that

(4.6)
N−1∑
n=1

J∑
j=−J

∫
Ij

(
u∆x(x, tn−)− un

j

)2
dx ≤ C.

Proof. In what follows we use the entropy-entropy flux pair

S(u) =
1
2
u2, Qu(u) = ufu(u).

Without loss of generality, we assume that the numerical solution u∆x has compact
support, so that we can use the test function ϕ = 1, which implies E(ϕ) = 0.

Since u∆x is bounded,

(4.7) |I1(ϕ)| ≤ C1(X, T ) and |I5(ϕ)| ≤ C5(X, T ).

Next we estimate I2. Writing un
− for u∆x(·, tn−) we find

I2(ϕ) =
∑
n,j

∫
Ij

S
(
un
−

)
− S

(
un

j

)
dx

=
1
2

∑
n,j

∫
Ij

(
un
−

)2 −
(
un

j

)2
dx

=
1
2

∑
n,j

∫
Ij

(
un
− − un

j

)2
dx−

∑
n,j

∫
Ij

un
j

(
un
− − un

j

)
dx

=
1
2

∑
n,j

∫
Ij

(
un
− − un

j

)2
dx,

as the second term in the third line above is zero since

(4.8) un
j =

1
∆x

∫
Ij

un
−(x) dx.

Regarding the term I3(ϕ), we use the fact that u∆x is the exact solution of a
Riemann problem. Thus, by the entropy condition,

σ[[S (u∆x)]] + [[Q (u∆x)]] ≥ 0,
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and consequently
I3(ϕ) ≥ 0.

For any convex C2 function S, we have using Lemma 4.3 and an approximation
argument (see [16] for details)

Q
(
un,+

j+1/2

)
−Q

(
un,−

j+1/2

)
≤

∣∣Bn
j+1 −Bn

j

∣∣
≤

∫ xj+1

xj

|A (y, un(y))| dy

≤ CA∆x,

where CA is specified in (A.5). If (A.7) holds, then we can bound the last term by
the total variation of z in the interval Ij+1/2. In both cases we have

I4(ϕ) ≥ −C,

where C = C(X, T ) is a positive constant independent of ∆x. This finishes the
proof of the lemma. �

Estimate (4.6) can be converted into an estimate of the variation of the approx-
imate solutions, which is the content of the subsequent lemma.

Lemma 4.5. Let un
j be defined by the well-balanced scheme (3.2). There exists a

constant C = C(X, T ) independent of ∆x such that

∆x

N−1∑
n=0

J∑
j=−J

(
un,−

j+1/2 − un,+
j+1/2

)2

+
(
un

j − un,−
j+1/2

)2

+
(
un

j+1 − un,+
j+1/2

)2

≤ C,

where J and N are such that T = tN and xJ+1/2 = X.

Proof. Equipped with (4.6), the proof follows along the lines of [8] (see estimate
(7.13) on page 67 in that paper). �

Now we prove the W−1,2
loc compactness of the entropy production associated with

the approximate solutions.

Lemma 4.6. Let u∆x be generated by the well-balanced scheme (3.2) and let
(Si, Qi), i = 1, 2, be the entropy-entropy flux pairs defined in Lemma 2.1. Define
the functional Ê by

Ê(ϕ) =
∫∫

ΠX,T

Si (u∆x) ϕt + Qi (u∆x)ϕx dxdt, i = 1, 2.

Then the sequence
{

Ê
}

∆x>0
is compact in W−1,2

loc (R× R+).

Proof. First we note that by the L∞ bounds on u∆x, we have that∣∣∣Ê(ϕ)
∣∣∣ ≤ C ‖ϕ‖W 1,∞(ΠX,T ) ,

so that Ê is bounded in W−1,r for any r ∈ (2,∞]. By using the bounds (4.7) and
Lemma 4.4 we conclude

|I1(ϕ)| |I5(ϕ)| |I3(ϕ)| ≤ C1 ‖ϕ‖L∞(ΠX,T ) .

To estimate the I2-term we split it as follows:

I2(ϕ) = I2,1(ϕ) + I2,2(ϕ),
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where

I2,1(ϕ) =
∑
n,j

∫
Ij

(
S

(
un
−

)
− S

(
un

j

))
ϕn

j dx,

I2,2(ϕ) =
∑
n,j

∫
Ij

(
S

(
un
−

)
− S

(
un

j

)) (
ϕn

j − ϕ(x, tn)
)

dx,

where ϕn
j = ϕ(xj , t

n). Next

S
(
un
−

)
− S

(
un

j

)
= Su

(
un

j

) (
un
− − un

j

)
+

1
2
Suu

(
θn

j

) (
un
− − un

j

)2
,

for some intermediate value θn
j (x). The integral of the first term above over the

interval (xj−1/2, xj+1/2) is zero. Therefore we can write

|I2,1(ϕ)| = 1
2

∣∣∣∑
n,j

ϕn
j

∫
Ij

Suu

(
θn

j

) (
un
− − un

j

)2
dx

∣∣∣
≤ C ‖ϕ‖L∞(ΠX,T ) ,

by Lemma 4.4. Let each term in I2,2 be denoted by Ij,n
2,2 . Then∣∣∣Ij,n

2,2 (ϕ)
∣∣∣ =

∣∣∣∫
Ij

(
S

(
un
−

)
− S

(
un

j

)) (
ϕn

j − ϕ(x, tn)
)

dx
∣∣∣

≤ ‖ϕ‖C0,α(ΠX,T ) ∆xα

∫
Ij

∣∣S (
un
−

)
− S

(
un

j

)∣∣ dx,

where α ∈ (0, 1) is to be chosen later. Then, by a weighted Young’s inequality,∣∣∣Ij,n
2,2 (ϕ)

∣∣∣ ≤ ‖ϕ‖C0,α(ΠX,T ) ∆xα ∆x2α+1

∆xδ

+ ‖ϕ‖C0,α(ΠX,T )

∫
Ij

∆xδ
(
S

(
un
−

)
− S

(
un

j

))2
dx.

Now, summing over j, n, and using Lemma 4.4 as when bounding I2,1 we arrive at

|I2,2(ϕ)| ≤ ‖ϕ‖C0,α(ΠX,T )

(
∆x2α−1−δ + C∆xδ

)
≤ C ‖ϕ‖C0,α(ΠX,T ) ∆xδ

(
∆x2(α−δ)−1 + 1

)
.

Therefore, if

α >
1
2

+ δ,

we have that
|I2,2(ϕ)| ≤ C ‖ϕ‖C0,α(ΠX,T ) ∆xδ.

Next we estimate the term I4 for the entropy-entropy flux pairs defined in (2.4).
We have, by the properties of the entropy solution of the Riemann problem for
conservation laws with discontinuous flux,∣∣∣[[Q1]]

n
j+1/2

∣∣∣ =
∣∣∣f (

un,−
j+1/2

)
− f

(
un,+

j+1/2

)∣∣∣
=

∣∣∣f (
un,−

j+1/2

)
+ Bn

j − f(un,+
j+1/2)−Bn

j+1 + Bn
j+1 −Bn

j

∣∣∣
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=
∣∣Bn

j+1 −Bn
j

∣∣ ≤ ∫ xj+1

xj

|A (y, un(y))| dy ≤ CA∆x,

from which the desired estimate follows:

(4.9) |I4(ϕ)| ≤ ∆t
∑
j,n

∣∣∣[[Q1]]
n
j+1/2

∣∣∣ ≤ C ‖ϕ‖L∞ .

Next we consider the entropy flux Q2(u). We have

[[Q2]]
n
j+1/2 =

∫ un,−
j+1/2

un,+
j+1/2

(fu(ξ))2dξ

By using the L∞ bounds on u∆x and the fact that |fu(u)| ≤ C for bounded u we
see that ∣∣∣[[Q2]]

n
j+1/2

∣∣∣ ≤ u+∫
u−

|fu(ξ)| dξ =: qn
j+1/2,

where we have introduced the notation

u− = min
{

un,−
j+1/2, u

n,+
j+1/2

}
u+ = max

{
un,−

j+1/2, u
n,+
j+1/2

}
.

If fu does not change sign in the interval (u−, u+) we can estimate the jump in Q2

as we estimated the jump in Q1, concluding that

(4.10) qj+1/2 ≤
∫ xj+1

xj

|A (y, un(y))| dy ≤ CA∆x.

Let us assume that u− < θ < u+ and that fu(θ) = 0. Then, by using a Taylor
expansion about ξ = θ,

qj+1/2 =

u+∫
u−

|fu(ξ)| dξ ≤ C

u+∫
u−

|ξ − θ| dξ

= C

 u+∫
θ

(ξ − θ) dξ −
θ∫

u−

(ξ − θ) dξ


≤ C

2
(
(u+ − θ)2 + (θ − u−)2

)
≤ C

(
u+ − u−

)2 = C
(
un,+

j+1/2 − un,−
j+1/2

)2

.

So by combining this estimate and (4.10) with (4.9) we conclude that∣∣∣[[Qi]]
n
j+1/2

∣∣∣ ≤ C

(
∆x +

(
un,+

j+1/2 − un,−
j+1/2

)2
)

, i = 1, 2,

and hence

|I4(ϕ)| ≤ C∆t ‖ϕ‖L∞(ΠX,T )

∑
j,n

∣∣∣[[Qi]]
n
j+1/2

∣∣∣
≤ C ‖ϕ‖L∞(ΠX,T )

T + ∆x
∑
j,n

(
un,+

j+1/2 − un,−
j+1/2

)2


≤ C(X, T ) ‖ϕ‖L∞(ΠX,T ) .
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Now we can use standard arguments (see [15, 16]) to conclude that
{

Ê
}

∆x>0
is

compact in W−1,q for some 1 < q < 2. Hence by Murat’s Lemma 2.2, we obtain
the W−1,2 compactness of the approximate solutions. �

To prove that any limit of {u∆x}∆x>0 is an entropy solution, we shall need the
two succeeding lemmas.

Lemma 4.7. Consider the Riemann problem{
ut + (f(u) + Bl)x = 0, u(x, 0) = ul, x < 0,

ut + (f(u) + Br)x = 0, u(x, 0) = ur, x ≥ 0,

where Bl,r are constants. Let u∓ denote the limits

u∓ = lim
x→0∓

u(x, t).

For each fixed c ∈ R,

Qc

(
u−

)
−Qc

(
u+

)
≥ sign (ũ− c) (Bl −Br) ,

where ũ = u− or ũ = u+ and Qc denotes the Kružkov entropy flux, cf. (2.2).

Proof. Assume first that sign (u− − c) = sign (u+ − c). Then

Qc

(
u−

)
−Qc

(
u+

)
= sign

(
u∓ − c

) (
f

(
u−

)
− f

(
u+

))
= sign

(
u∓ − c

)
(Bl −Br) .

Hence the lemma holds in this case. Next assume that sign (u− − c) 6= sign (u+ − c).
If u+ < u−, then we have that u+ < c < u−. By the minimal jump entropy
condition, in this case (4.3), either

f(c) ≤ f
(
u−

)
or f(c) ≤ f

(
u+

)
.

Assume now that the first of these inequalities hold. Then, using in addition the
Rankine-Hugoniot condition,

Qc

(
u−

)
−Qc

(
u+

)
= f

(
u−

)
− f(c) + f

(
u+

)
− f(c)

≥ f
(
u+

)
− f(c)

=
(
f

(
u+

)
+ Br

)
− (f(c) + Br)

=
(
f

(
u−

)
+ Bl

)
− (f(c) + Br)

≥ (f (c) + Bl)− (f(c) + Br)

= sign
(
u− − c

)
(Bl −Br) .

If f(c) ≤ f (u+), then we find similarly that

Qc

(
u−

)
−Qc

(
u+

)
≥ f

(
u−

)
− f(c)

≥ f
(
u−

)
− f

(
u+

)
=

(
f

(
u−

)
+ Bl

)
−

(
f

(
u+

)
+ Br

)
− (Bl −Br)

= sign
(
u+ − c

)
(Bl −Br) .

This concludes the case where u+ < c < u−. The analysis in the case where
u− < c < u+ is similar. �

To prove that a limit function of {u∆x}∆x is an entropy solution, we shall need
the following technical lemma.
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Lemma 4.8 ([14]). Let Ω ⊂ Rd be a bounded open set, g ∈ L1(Ω), and suppose
that {gν}ν>0 is a sequence such that gν → g a.e. in Ω as ν → 0. Then there exists
a set Θ, which is at most countable, such that for any c ∈ R \Θ,

sign (gν − c) → sign (g − c) a.e. in Ω as ν → 0.

Let c ∈ Θ and define Ec =
{
x ∈ Ω

∣∣ g(x) = c
}
. There exists sequences {cν} and

{cν} such that cν ↓ c and cν ↑ c as ν → 0, and cν and cν are in R \Θ, and

sign (g(c)− cν) → sign (g(x)− c) a.e. x ∈ Ω \ Ec,

sign (g(c)− cν) → sign (g(x)− c) a.e. x ∈ Ω \ Ec.

Now we are in a position to state our main convergence theorem.

Theorem 4.1. Suppose conditions (A.1)-(A.6) hold. Let u∆x be the approximate
solutions generated by the well-balanced Godunov type scheme (3.2). Then there
exists a limit function u ∈ L∞(R× R+) such that

u∆x
∆x→0−→ u in Lp

loc(R× R+) for p < ∞ and a.e. in R× R+.

Furthermore, u is an entropy solution of (1.2).

Proof. The claimed convergence of {u∆x}∆x>0 to a limit function u is a straight-
forward consequence of Lemmas 4.6 and 2.1.

Let us now prove that the limit function u is an entropy solution in the sense of
Definition 2.4. Fixing any constant c ∈ R, we consider in what follows the Kružkov
entropy-entropy flux pairs (Sc(·), Qc(·)) defined in (2.2). By (4.4) and (4.5),

(4.11)

∫∫
R×R+

Sc (u∆x) ϕt + Qc (u∆x) ϕx + S′c (u∆x)A (x, u∆x) ϕ dxdt

+
∫
R

Sc (u∆x(x, 0))ϕ(x, 0) dx ≥ I2(ϕ) + I3(ϕ) + I4(ϕ) + I5(ϕ),

for ϕ ∈ C∞c (R× [0,∞)). The term I3(ϕ) is non-negative, while I5(ϕ) is zero if we
choose J sufficiently large. We are left with I2 and I4.

By convexity of u 7→ Sc(u) and (4.8),

I2(ϕ) ≥ 0.

Regarding the term I4(ϕ), we use Lemma 4.7 and obtain

I4(ϕ) =
∑
n,j

tn+1∫
tn

[
Qc

(
un,−

j+1/2

)
−Qc

(
un,+

j+1/2

)]
ϕ(xj+1/2, t) dt

≥ −
∑
n,j

tn+1∫
tn

sign
(
ũn

j+1/2 − c
) xj+1∫

xj

A (x, u∆x (x, tn)) dx ϕ(xj+1/2, t) dt,

where ũn
j+1/2 equals either un,−

j+1/2 or un,+
j+1/2 according to Lemma 4.7. Defining the

piecewise constant functions ũ∆x, û∆x and ϕ∆x as

ũ∆x(x, t) =
∑
j,n

ũn
j+1/21

n
j+1/2(x, t),

û∆x(x, t) =
∑

n

un(x)1In(t),
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ϕ∆x(x, t) =
∑

j

ϕ
(
xj+1/2, t

)
1Ij+1/2(x),

we have
I4(ϕ) ≥ −

∫∫
ΠX,T

sign (ũ∆x − c) A (x, û∆x) ϕ∆x dxdt.

From their definitions and using Lemma (4.5), it follows that,

‖(ũ∆x − û∆x)‖L2([0,T ]×(−X,X)) ≤ C∆t∆x
N−1∑
n=0

J∑
j=−J

(
un,−

j+1/2 − un,+
j+1/2

)2

+
(
un

j − un,−
j+1/2

)2

+
(
un

j+1 − un,+
j+1/2

)2

= 0(∆t)

Similarly,

‖(u∆x−û∆x)‖L2([0,T ]×(−X,X)) ≤ C∆t∆x
N−1∑
n=0

J∑
j=−J

(
un

j − un,−
j+1/2

)2

+
(
un

j+1 − un,+
j+1/2

)2

= 0(∆t)

Hence, it follows that

lim
∆x→0

ũ∆x = lim
∆x→0

û∆x = lim
∆x→0

u∆x = u in L1
loc(R× R+).

We also have that ϕ∆x → ϕ for all (x, t) as ∆x → 0. Hence, using Lemma 4.8,

lim
∆x→0

I4(ϕ) ≥ −
∫∫

ΠX,T

S′(u)A(x, u)ϕ dxdt,

for any c ∈ R\Θ. Comparing this with the last term in the double integral in (4.11)
and repeating the argument from [14] to extend the set of permissible c’s to R, we
conclude that the limit u is an entropy solution in the sense of Definition 2.3 �

Finally, we consider briefly the singular case (A.8). Combing the above chain of
arguments with those found in [14] we can prove

Theorem 4.2. Suppose conditions (A.1)-(A.4), (A.6), and (A.7) hold. Let u∆x

be the approximate solutions generated by the well-balanced Godunov type scheme
(3.2). Then there exists a limit function u ∈ L∞(R× R+) such that

u∆x
∆x→0−→ u in Lp

loc(R× R+) for p < ∞ and a.e. in R× R+.

Furthermore, u is an entropy solution of (1.3) in the sense of Definition 2.4.

5. Numerical Experiments

In this section we report several numerical experiments with our scheme (3.2),
and compare it with the well-balanced scheme of [6] as well as with a standard
centered source scheme. The well-balanced scheme of [6], which is formulated for
the case (1.2), can be written as

(5.1) vn+1
j = vn

j − λ
(
F

(
vn

j , vn,+
j+1/2

)
− F

(
vn,−

j−1/2, v
n
j

))
,

where F is a consistent and monotone numerical flux function. Moreover, vn,±
j±1/2

solve the algebraic equations

D
(
vn,±

j±1/2

)
− zj = D

(
vn

j±1

)
− zj±1,
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where we define D next. A steady state is a solution of (1.5). For the simpler
case of (1.2), we have a more explicit representation of the flux-source balance. If
b(u) 6= 0, we can formally write (1.5) as

(5.2) D(u)− z(x) = C, D(u) =
∫ u

0

f ′(s)
b(s)

ds,

for some constant C. It is clear that (5.2) constitutes a non-linear algebraic equation
from which a steady state can be calculated. In the more specific case (1.2), equation
(5.2) takes on the form f(u)− z = C.

In our computations, we take F in (5.1) to be the standard Godunov flux. We
will refer to (3.2) as the AWBS scheme and (5.1) as the BPV scheme. The standard
centered source scheme defined as

wn+1
j = wn

j − λ

(
F

(
wn

j , wn
j+1

)
− F

(
wn

j−1, w
n
j

)
− 1

2
(b(wn

j )(zj+1 − zj))
)

,

where F is any consistent and monotone numerical flux function. We will refer the
above scheme as the CS scheme.

Example 1. We start with an experiment that involves a non-linear flux and a
non-trivial bottom topography. Consider (1.1), (1.2) with

f(u) =
1
2
u2, b(u) = u − z(x) =

{
cos(πx), 4.5 < x < 5.5,

0, Otherwise.

In analogy with the shallow water equations, we refer to z as the bottom topography.
The topography z is continuous in this case. This example is taken from [6]. We
compute on the domain [0, 10] with initial data u0 ≡ 0 and boundary data u|x=0 = 2
to enforce the steady state. It is easy to see that the steady state is given by
u(x) = 2 + z. The steady state is reached once the shock front has passed the
domain. The results at the steady state are shown in Figure 1.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

AWBS:−−−−−−−−−−−−−−−
BPV:................................
CS  :−  −   −  −  −   − −
BT: o o o o o o o o o o  o

Figure 1. Discrete steady states computed by the three schemes
for Example 1. The results of the AWBS and BPV schemes are
indistinguishable. (BT refers to the bottom topography.)

Note that the AWBS and BPV schemes resolve the steady state accurately even
at this course mesh resolution, whereas the CS scheme does not resolve the steady
state well. The errors at steady state are shown in Table 1.
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L∞ L1

CS 0.1652 0.4824
AWBS 4.37× 10−14 2.22× 10−13

BPV 8.45× 10−14 2.26× 10−13

Table 1. Errors at the steady state for the CS, AWBS, and BPV
schemes with ∆x = 0.1 in Example 1.

Next we focus on the transients and show the contour plots of the results with
the AWBS and BPV schemes in Figure 2.

Figure 2. Contour plots in (x, t) plane of the solutions computed
by the AWBS and BPV schemes with ∆x = 0.1 in Example 1.

Observe that although both the AWBS and BPV schemes converge to the same
steady state, their behavior in resolving transients is very different. In particular,
when the right-moving shock is coming in from the boundary and has yet to reach
the non-trivial dip in the bottom topography, the BPV scheme produces a traveling
hump which appears to be non-physical. On the other hand, as soon as the shock
hits the dip, the BPV scheme closely resembles the solution computed by the AWBS
scheme. To check whether the hump is a numerical artifact and disappears as
∆x → 0, we display the solutions computed by the BPV scheme ∆x = 0.1, 0.01
in Figure 3. From Figure 3 it is clear that while one part of the hump seems
to disappear in the limit, the part to the right seems to remain (and is in fact
amplified) as the mesh is refined. Hence, the BPV scheme appears to converge to
a different solution than the AWBS scheme in the transient phase of the flow.

Example 2. We consider the same problem as in Example 1, except that we replace
the bottom topography z(x) by the the discontinuous function

−z(x) =

{
− cos(πx) 5 < x < 6,

0, Otherwise.

This topography is similar to the one given in [6] but with the opposite sign. The
steady states are shown in Figure 4 and the transients are shown in Figure 5.

In this case, both the steady states as well as the transient solutions given by
the AWBS and BPV schemes are different. The steady state of the AWBS scheme
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0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

BPV(Delta x =0.1):−  −  −  −   −

BPV(Delta x=0.01):−−−−−−−−−

  t  =  3

Figure 3. The two solutions computed by the BPV scheme with
∆x = 0.1, 0.01 at time t = 3 for Example 1.

0 2 4 6 8 10

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

AWBS:−−−−−−−−−−−−−−−

BPV:−   −   −   −   −   −   −
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Figure 4. The discrete steady states computed by the AWBS and
BPV schemes with ∆x = 0.1 for Example 2.

Figure 5. Contour plots in (x, t) plane of the solutions computed
by the AWBS and BPV schemes with ∆x = 0.1 in Example 2.
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is the entropy satisfying steady state as it satisfies the relation u(x) = 2 + z(x),
whereas the steady state given by the BPV does not satisfy this relation and hence
is not the entropy solution. As in the previous experiment, the BPV scheme gen-
erates traveling waves almost instantaneously due to the effect of topography and
converges to the the wrong steady state. Despite the discontinuities in the bottom
topography z(x), the AWBS scheme resolves the steady state almost to machine
precision and correctly resolves the transient.

Example 3. In our third example we specify the relevant functions as follows:

f(u) =
2
3
u3, b(u) = u, u0(x) = 1,

−z(x) =

{
cos(πx), 4.5 < x < 5.5,

0, otherwise.

In this case, D(u) = u2 and solutions to the steady state equation (5.2) may not
exist or may be multi-valued. Extra care is required to define the BPV scheme (see
[6] for details), whereas the AWBS scheme is well-defined. In fact, it is very easy to
implement as the flux function is monotone in this case. The transient and steady
state solutions computed by the AWBS scheme are shown in Figure 6.

0 2 4 6 8 10
0.5

1

1.5

AWBS;−−−−−−−−−−

t = 3

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

AwBS:−−−−−−−−−

BT:−   −   −   −    −

t  =  10

Figure 6. Solutions computed by the AWBS scheme at t = 3, 10
with ∆x = 0.1 for Example 3. (BT refers to bottom topography.)

We observe that the resolution of the steady state, which in this example is given
by u(x) =

√
1 + z(x), is resolved to almost machine precision. Additionally, the

transients are resolved very well on this coarse mesh as well.

Example 4. In our final example we specify the data as follows:

f(u) =
1
2
u2, A(x, u) = sin(2πxu2),

u0(x) = 0, u(0, t) = 1.

In this example the structure of the source term is very general and well-balancing
based on the non-linear transformation D and (5.2) is not possible, whereas the
AWBS scheme is well defined. We have computed solutions on the domain [0, 5]
and determined the steady state by solving the ODE

(u2)x = A(x, u)
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by a high-order Runge-Kutta method. The steady state and transient solutions are
shown in Figure 7.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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RK4 :o  o  o  o  o  o  o

Figure 7. Solutions computed by the AWBS scheme at t = 20
with ∆x = 0.02 for Example 3.

The steady state is resolved quite well with the AWBS scheme. It is not imme-
diately clear how to modify other well-balanced schemes (like the BPV scheme) so
that they can be applied to present problem. We remark that in this particular
example it was easy to determine the solution of the ODE for the steady state as
it turned out to be a smooth function. In general, however, it may not be possible
to obtain entropy satisfying steady states from ODE solvers without first build-
ing the entropy condition into the solver, whereas AWBS scheme by construction
automatically captures the entropy solution.
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