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The aim of this paper is to compare some recent numerical schemes for solving
hyperbolic conservation laws. We consider the flux vector splitting finite volume
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1. Introduction

Hyperbolic conservation laws can be found in many practical problems

appearing in physics, biology or engineering. Among many applications

which can be modelled by them, phenomena in fluid dynamics, elastody-

namics, biomechanics, astrophysics, geophysics and traffic systems can be

mentioned. Although theoretical study of these complex systems is not yet

finished, we do not have a complete existence and uniqueness theory for mul-

tidimensional systems of hyperbolic conservation laws, for example, there

is an extensive literature on numerical schemes for solutions of hyperbolic

conservation laws, see, e.g., Feistauer et al.8, Cockburn et al.5, Kröner12,

LeVeque13, Toro25 and many others.

The goal of this paper is to present results of a comparative study of some re-

cent numerical schemes, which are commonly used in order to approximate

hyperbolic conservation laws. In particular, we have chosen the classical fi-

nite volume dimensional splitting scheme, finite volume evolution Galerkin
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scheme, which belongs to the class of genuinely multidimensional schemes

as well as the discontinuous Galerkin method. Except Dedner et al.6 we

have found no other systematic studies in the literature on the compari-

son between the finite volume-type schemes and the discontinuous Galerkin

schemes for multidimensional hyperbolic conservation laws.

The paper is organized as follows. We give brief descriptions of the methods

in Sections 1.-3. In Section 4 we present some numerical experiments for

two-dimensional shallow water equations. For further comparisons for scalar

nonlinear hyperbolic equations see also Baumbach1.

Let us consider a two-dimensional system of hyperbolic conservation laws

∂tu + ∂x1
f1(u) + ∂x2

f2(u) = 0, x = (x1, x2)
T ∈ Ω, (1)

where fk = fk(u), k = 1, 2, represent given physical flux functions and the

conservative variables are u = (u1, . . . , um)T ∈ R
m.

Divide a computational domain Ω into a finite number of regular finite vol-

umes Ωij = [xi − ∆x1/2, xi + ∆x1/2] × [yj − ∆x2/2, yj + ∆x2/2], i, j ∈ Z,

∆x1, ∆x2 are mesh steps. Further, we denote by Un
ij the piecewise constant

approximate solution on a mesh cell Ωij at time tn and start with initial

approximations obtained by the integral averages U0
ij =

∫

Ωij
U(·, 0).

The finite volume method (FVM) can be formulated as follows

Un+1 = Un −
∆t

∆xk

2
∑

k=1

δxk
gk, (2)

where ∆t is a time step, δxk
stays for the central difference operator in the

xk-direction, k = 1, 2, and gk represents an approximation to the edge flux,

the so-called numerical flux.

A large class of finite volume schemes can be found in literature. They

are constructed using different approximations of flux functions, e.g. flux-

vector splitting methods of Vijayasundaram, Van Leer, Steger-Warming,

Roe, as well as central schemes of Lax-Friedrichs, Lax-Wendroff, Tadmor,

Kurganov, and many others, see, e.g., Ref. 8 and the references therein.

In this paper we work with the numerical flux of Van Leer, which is given

in the following way. Let Ak be the Jacobian matrix of the flux function

fk having real eigenvalues λk,1, . . . , λk,m. Further, let |Ak| be the matrix

having eigenvalues |λk,1|, . . . , |λk,m|, k = 1, 2. Now, the numerical flux of

Van Leer reads

gV L
k := gV L

k (u,v) =
1

2

{

fk(u) + fk(v) −

∣

∣

∣

∣

Ak

(

u + v

2

)∣

∣

∣

∣

}

(3)
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with u,v being the neighbouring values of the approximate solution to

the cell interface; e.g., we have for the first order scheme u = Un
ij and

v = Un
i+1,j for the right vertical edge of the mesh cell Ωij . To obtain second

order schemes suitable bilinear recovery Rh has to be used. Higher order

FVM typically uses the Runge-Kutta time approximation, cf. Section 3. For

simplicity we present here results using only a regular rectangular mesh.

The generalization of the FVM on irregular meshes is standard, see, e.g.,

Refs. 8, 12, for further details.

2. Finite volume evolution Galerkin methods

The evolution (or characteristic) Galerkin schemes have been firstly intro-

duced by Bill Morton, Endre Süli and their collaborators for scalar problems

and one-dimensional systems; see, e.g., Refs. 14, 15. This research was mo-

tivated by the pioneering work of Butler2 and related works of Prasad22,23.

In 1997 Stella Ostkamp21 generalized these schemes to approximate the so-

lution of the wave equation system as well as the Euler equations of gas dy-

namics in two space dimensions. In 2000 Lukáčová, Morton and Warnecke16

derived first new EG-schemes with better accuracy and stability. In the

recent works of Lukáčová et al.17–19,11,20 a genuinely multidimensional

finite volume evolution Galerkin (FVEG) method has been devel-

oped, studied extensively from theoretical as well as experimental point of

view and applied to various applications. The method is based on the theory

of bicharacteristics, which is combined with the finite volume framework.

It can be also viewed as a predictor-corrector scheme; in the predictor step

data are evolved along the bichracteristics, or along the bicharacteristic

cone, in order to determine approximate solution on cell interfaces. In the

corrector step the finite volume update (2) is done. Thus, we do not use

here any one-dimensional approximate Riemann solver as it is done in the

classical FVM, cf. (3). Instead the intermediate solution on cell interfaces

is computed by means of an approximate evolution operator.

The cell interface fluxes are approximated using an approximate evolution

operator denoted by E∆t/2 and averaged along the cell interface denoted

by E . The approximate evolution operator E∆t/2 evolves approximately

solution up to the intermediate time step tn + ∆t/2, i.e.

gEG
k :=

1

|E|

∫

E

fk(E∆t/2U
n)dS. (4)

The key ingredient of the finite volume evolution Galerkin scheme is the

approximate evolution operator E∆t/2, which takes into account all of the
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infinitely many directions of wave propagations. It can be constructed for

any multidimensional system of hyperbolic conservation laws using the the-

ory of bicharacteristics. We refer the reader to Refs. 18, 19, 20 for examples

of such approximate evolution operators for the Euler equations, shallow

water equations as well as for the wave equation system, cf. also Section 4.

Note that in the case of one-dimensional systems as well as multidimen-

sional scalar equations the FVEG method reduces to classical upwind and

characteristic schemes, respectively. Generalization of the FVEG methods

on irregular triangular meshes has been done by Qurrat-ul-Ain26.

3. Discontinuous Galerkin methods

The discontinuous Galerkin (DG) methods are recently very popular meth-

ods to solve partial differential equations. The higher order DG method

has been applied to nonlinear hyperbolic conservation laws as early as in

1989 by Cockburn and Shu3. Afterwards the DG method enjoys a rapid de-

velopment, see, e.g. Cockburn et al.5,4, Feistauer et al.7,8, Houston, Süli et

al.9,10,24 and the references therein. The DG methods compromise the ideas

of numerical fluxes and limiters into a framework of finite element methods.

Like all finite element methods, the DG methods can handle complex ge-

ometries and incorporate naturally boundary conditions. Important practi-

cal advantage of the DG methods in comparison with the finite volume-type

schemes is the fact, that the DG methods have more compact stencils than

the FV methods.

Let us denote by h the mesh step, i.e. h = max(∆x1,∆x2), and let Xh be

a space of piecewise polynomials of degree p on a regular rectangular mesh

Ωh, Ωh =
{

Ωij

}

i,j∈Z
. Thus,

Xh =
{

vh ∈ BV (Ωh; Rm); vh|Ωij
∈ P p(Ωij) for all Ωij

}

, (5)

where BV denotes the space of functions with bounded variation and

P p(Ωij) is the set of all polynomials of degree p on the mesh cell Ωij .

In this paper we are interested in comparisons of second order methods,

which means that we set p = 1 and work with piecewise bilinear approxi-

mations. Furthermore, the following standard notation is introduced: [vh]
∣

∣

∣

E

denotes the jump of the function vh on the cell interface E . For example, if

E = Eij,i′j′ is the cell interface between the mesh cell Ωij and its neighbour

Ωi′j′ , then [vh]
∣

∣

∣

Eij,i′j′

:=
(

vij

∣

∣

∣

E

− vi′j′

∣

∣

∣

E

)

n, where n denotes the outer

normal on E .
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Derivation of the DG methods is based on the so-called variational formu-

lation of the hyperbolic system. The semi-discrete DG approximation

of (1) is given by the following initial value problem

Uh ∈ C1 ([0, T ] ;Xh) ,

d

dt
(Uh(t),ϕh) − (f(Uh(t)),∇ϕh) + (g(Uh(t)), [ϕh])E = 0, ∀ϕh ∈ Xh,

Uh(0) = U0
h.

(6)

Here (·, ·) represents the L2 scalar product, (·, ·)E denotes the L2 scalar

product on the set of all interfaces E , f = (f1,f2)
T , and g denotes the

numerical flux, which approximates physical fluxes along the cell interface

E . Thus, we have

g(Uh(t))
∣

∣

∣

Eij,i′j′

:= g
(

U ij

∣

∣

∣

E

,U i′j′

∣

∣

∣

E

)

. (7)

The system (6) can be equivalently rewritten in the so-called matrix form

using the standard piecewise bilinear basis of Xh having vertices as degrees

of freedom. Since the approximation is discontinuous, the mass matrix is

block diagonal and easily invertible. For the above choice of grid and basis

functions the entries of the mass matrix, which are the integrals of products

of bilinear basis functions, can be evaluated exactly.

We will now consider the integral terms in (6). If a second order conver-

gence has to be obtained a suitable choice of quadrature rules is necessary.

More precisely, in Ref. 4, Cockburn et al. state that for second order con-

vergence on a rectangular grid, the approximations of the volume integrals

have to be exact for polynomials of degree 4 and the approximations of the

cell interface integrals have to be exact for polynomials of degree 5. We will

use the Gauss quadratures for the approximation of integral terms. Using

k points, the Gauss quadrature is exact for polynomials of degree 2k − 1.

Consequently, on a rectangular grid we have to use the Gauss quadrature

with 3 points for the cell interface integrals and 3× 3 points for the volume

integrals.

Further, in order to obtain fully discrete DG method a suitable time dis-

cretization has to be applied. Since the above described numerical schemes,

FVM and FVEG schemes are explicit in time, we consider here only time ex-

plicit DG schemes, too. Following works of Cockburn et al.5 we use the sec-
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ond order Runge-Kutta discretization in time, also called the Heun method,

which is total variation diminishing.

Since the Runge-Kutta discretization is explicit in time a CFL stability

condition has to be imposed to guarantee the stability of the scheme. Ac-

cording to Cockburn5 it is known that using polynomials of degree p and

a p + 1-stage Runge-Kutta approximation of order p + 1 the von Neumann

analysis for a linear one-dimensional advection equation yields the following

stability condition

|a|
∆t

∆x
≤

1

2p + 1
, (8)

where a stays for the advection speed. In our case, p = 1 which implies the

CFL stability limit 0.33. This stability limit has been indeed confirmed by

our numerical experiments, too, cf. Section 4.3.

When approximating discontinuous solutions with piecewise polynomials of

higher order, local maxima and minima can arise in the numerical solution,

which are not physical. To avoid this effect a limiter has to be applied at

each time level. In the finite volume methods as well as in the finite volume

evolution Galerkin scheme we have applied the so-called minmod limiter,

cf. Ref. 13. In the DG methods a generalized minmod limiter, see Ref. 5,

has been applied.

4. Numerical experiments

In this section we illustrate behaviour of the methods described above on

several examples for the system of shallow water equations. We present

results for the discontinuous solution of circular dam break problem and

compare the accuracy and computational efficiency of the second order

FVM, FVEG and DG methods for a smooth solution. Further results of

extensive experimental study can be found in Baumbach1.

4.1. Shallow Water Equations

The shallow water equations play an important role in modelling of a variety

of free surface flows, such as oceanographic, atmospheric and geophysical

flows, flows in lakes and rivers. Such flows are all characterized by negligible

vertical scales in comparison to horizontal scales.

The homogeneous shallow water equations written in conservative variables

have the following form

∂tU + ∂x1
f1(U) + ∂x2

f2(U) = 0 (9)
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with

U =





h

hu

hv



 , f1 =





hu

hu2 + 1
2
gh2

huv



 , f2 =





hv

hvu

hv2 + 1
2
gh2



 . (10)

Here h denotes the water depth, u, v are vertically averaged velocity com-

ponents and g stays for the gravitational acceleration, we set g = 10 in our

computations.

As described in Section 2 the predictor step in the FVEG scheme is based

on the approximate evolution operator. In order to keep the paper self-

contained we present here the approximate evolution operator for the shal-

low water equations (9), (10).

The predicted solution at cell interfaces is obtained by a suitable combi-

nation of two operators Econst
∆ and Ebilin

∆ . We use Ebilin
∆ to evolve slopes

and Econst
∆ to evolve the corresponding constant part in order to preserve

conservativity, i.e.

E∆t/2U
n := Ebilin

∆t/2RhUn + Econst
∆t/2 (1 − µ2

xµ2
y)Un, (11)

where µ2
xUij = 1/4(Ui+1,j +2Uij +Ui−1,j); an analogous notation is used for

the y−direction. We have denoted by Rh a suitable bilinear recovery. Note

that RhU is a continuous bilinear function if no limiters are used. It has

been shown in Ref. 19 that the combination (11) yields the best results with

respect to accuracy as well as stability among other possible second order

FVEG schemes. Actually, the CFL stability limit of the FVEG is close to

a natural stability limit of 1, cf. Ref. 19. Using the theory of bicharacter-

istics the following approximate evolution operators for the shallow water

equations have been derived, cf. Refs. 17, 19.

For constant approximate functions the approximate evolution operator

Econst
∆ reads

h (P ) =
1

2π

∫ 2π

0

[

h (Q) −
c̃

g
u (Q) sgn(cos θ) −

c̃

g
v (Q) sgn(sin θ)

]

dθ,

u (P ) =
1

2π

∫ 2π

0

[

−
g

c̃

(

h (Q) sgn(cos θ) + u (Q)

(

cos2 θ +
1

2

)

+ v (Q) sin θ cos θ
]

dθ.

(12)
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If the piecewise bilinear functions are used the approximate evolution op-

erator Ebilin
∆ is given as follows

h (P ) = h(Q0) +
1

4

∫ 2π

0

(h(Q) − h(Q0))dθ −
1

π

2π
∫

0

[

c̃

g
u(Q) cos θ +

c̃

g
v(Q) sin θ

]

dθ,

u (P ) = u(Q0) −
1

π

∫ 2π

0

g

c̃
h(Q) cos θdθ

+
1

4

∫ 2π

0

[

3u(Q) cos2 θ + 3v(Q) sin θ cos θ − u(Q) −
1

2
u(Q0)

]

dθ.

(13)

The analogous equations hold for the second velocity component v. Here

P = (x, y, tn + ∆t/2) is the apex of the so-called bicharacteristic cone,

Q0 = (x − ũ∆t, y − ṽ∆t, tn) denotes the center of the sonic circle, Q =

(x − ũ∆t/2 + c̃∆t/2 cos θ, y − ṽ∆t/2 + c̃∆t/2 sin θ, tn) denotes a point at

the perimeter of the sonic circle at time tn. The local velocities, which have

been obtained by a suitable linearization, are denoted by ũ, ṽ, c̃ =

√

gh̃.

We refer a reader to Refs. 17, 18, 19 for more details on the derivation of

approximate evolution operators.

4.2. Dam break problem

Consider the dam break problem with the following initial data

h = 0.1, u = 0, v = 0, ||x|| ≥ 0.3,

h = 1, u = 0, v = 0, ||x|| < 0.3.
(14)

The computational domain [−1, 1]× [−1, 1] was divided into 100×100 mesh

cells. We set the CFL number to 0.45 and compute the solution until T =

0.25. Absorbing boundary conditions are implemented by extrapolation of

all solution components. We have used the Van Leer numerical flux for

the FVM as well as for the DG method, cf. (3),(7). In Ref. 1 other classical

one-dimensional numerical fluxes have been tested for the DG method, too.

Their influence on the resulting numerical solutions was only marginal.

Cell interface integrals (4) in the FVEG method have been approximated

by the Simpson rule, whereas we have used, according to Cockburn et al.5,

the 3-point Gauss quadrature rule for the DG method. In the second order

FVM a midpoint rule is used in order to approximate cell interface flux

integrals.

Figure 1 shows a 3D graph of the water surface h for the FVM, other

methods yield analogous 3D graphs. Graphs of the water surface h along
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the diagonal direction x = y are presented in Figure 2. Although the global

solution behaviour is similar, some differences can be noticed in the shock

resolution, see Figures 3 and 4 for zoom plots of the water surface for x = y

and y = 0 slices. The FVEG method yields the sharpest shock resolution

for both directions. Interestingly, for the diagonal direction it is, in fact,

comparable with the shock resolution of the FVM. The DG method is

slightly more dissipative on the shock. Note that the shock resolution is

influenced by the used limiters, too, see also Ref. 6 for other choices of

limiters.

4.3. Accuracy and efficiency tests

The aim of this experiment is to compare the accuracy and efficiency of the

second order FV, FVEG and DG methods. We consider the initial value

problem for the shallow water equations with smooth initial data

h = 0.25,

u = 1 + 0.5 sin(πy) + 0.25 cos(πx),

v = 1 + 0.25 sin(πx) + 0.5 cos(πy), [x, y] ∈ [−1, 1] × [−1, 1].

(15)

The computational domain [−1, 1] × [−1, 1] was consecutively divided into

20, 40, . . . , 320 mesh cells in each direction. We have implemented periodic

boundary conditions and computed the solution until T = 0.2. Note, that

due to the smooth solution no limiter has been used. In order to compare

accuracy of all methods we first set CFL=0.2, since the DG method starts to

be unstable from CFL= 0.3. This is in accordance with the stability analysis

for linear scalar equation, cf. (8) for p = 1. Tables 1-3 show the accuracy

study and the experimental order of convergence (EOC) for the DG, FVEG,

FV methods using CFL=0.2, respectively. Since the exact solution is not

known the global relative error is used in order to evaluate the experimental

order of convergence. This is computed in the following way using three

meshes of sizes N1, N2 := N1/2, N3 := N2/2, respectively

EOC = log2

‖Un
N2

− Un
N3

‖

‖Un
N1

− Un
N2

‖
.

Here Un
N is the approximate solution on the mesh with N × N cells.

We can clearly see that all methods yield second order accuracy. The FVEG

scheme yields the best accuracy among all three methods in both the L1

as well as L2 norms. In fact, it is twice as accurate as the FVM and the

DG scheme. Further, the relative error for the DG scheme is slightly better

than that of the FVM. Analogous results have been obtained for the DG
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and FV methods by Dedner et al. showing that for smooth solutions the

DG methods are more accurate than the FVM.

Further, we compare the accuracy of the FVEGM and FVM for higher CFL

numbers. In Tables 4 and 5 we present the EOC results for CFL= 0.6. No

results are presented for the DG scheme, which is unstable for CFL > 0.3.

The FVEG method is about 10 times more accurate than the standard

FVM. Note that we have obtained analogous results of accuracy study in

our recent paper on well-balanced schemes, see Ref. 20.

Table 6 gives the overview of the computational costs for all of the methods,

the DG, FVEG as well as classical FV method. We clearly see that the DG

method is the most expensive one, being about 4 times slower than the FV

method and about 3 times slower than the FVEG method. The CPU time of

the FVEG method is slightly worse than that of the classical FV methods.

Of course, the cell interface flux integration requires three quadrature points

for the DG and the FVEG methods, whereas there is only one quadrature

point, the midpoint, in the classical second order FVM.

Figure 5 illustrates the CPU/accuracy behaviour graphically. We use the

logarithmic scale on x−, y− axis. On the y− axis the L1 relative error

for the vector of conservative variables is depicted. Figure 5 indicates that

for smooth solutions the FVEG scheme is the most efficient in the class

of compared second order schemes. We should point out that no attempt

has been made in order to optimize the codes with respect to their CPU

performance.

5. Conclusion

In this paper we have compared three recent second order methods for

hyperbolic conservation laws, namely the classical flux-vector splitting fi-

nite volume schemes, the finite volume evolution Galerkin schemes and

the discontinuous Galerkin schemes. For smooth solution the finite volume

evolution Galerkin scheme yields the best accuracy and computational ef-

ficiency. Further, we have shown that all considered schemes approximate

discontinuous solutions in a correct way; the FV-type schemes yield sligthly

sharper shock resolution. The present study has been done only on regular

rectangular meshes. In future it will be interesting to extend this study

for irregular triangular meshes and (time implicit) higher order schemes

(e.g. third or fourth order), where the higher order discontinuous Galerkin

methods can demonstrate their flexibility.
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Fig. 1. 3D graph of the water surface obtained by the FVM using 100 × 100 cells.

Table 1. Convergence of the DG scheme, CFL = 0.2.

N × N cells
Un

N/2
− Un

N


L2

EOCL2

Un
N/2

− Un
N


L1

EOCL1

40 × 40 0.003399 0.008227

80 × 80 0.000841 2.014933 0.002039 2.012505

160 × 160 0.000208 2.015522 0.000506 2.010652

320 × 320 0.000052 2.000000 0.000126 2.005714

Table 2. Convergence of the FVEG scheme, CFL = 0.2.

N × N cells
Un

N/2
− Un

N


L2

EOCL2

Un
N/2

− Un
N


L1

EOCL1

40 × 40 0.001921 0.004640

80 × 80 0.000445 2.109484 0.001066 2.121560

160 × 160 0.000110 2.021743 0.000261 2.032406

320 × 320 0.000028 1.990744 0.000065 1.999932

Table 3. Convergence of the FV scheme, CFL = 0.2.

N × N cells
Un

N/2
− Un

N


L2

EOCL2

Un
N/2

− Un
N


L1

EOCL1

40 × 40 0.004143 0.009473

80 × 80 0.001009 2.037750 0.002313 2.034056

160 × 160 0.000258 1.967483 0.000595 1.958804

320 × 320 0.000066 1.966833 0.000152 1.968818
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Fig. 2. Graphs of the water surface h for x = y using 100 × 100 cells; FVEG scheme
(stars), the FVM (boxes) and the DG method (circles).
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Fig. 3. Zoom of the shock resolution in h for x = y using 100×100 cells; FVEG scheme
(stars), the FVM (boxes) and the DG method (circles).
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Fig. 4. Zoom of the shock resolution in h for y = 0 using 100×100 cells; FVEG scheme
(stars), the FVM (boxes) and the DG method (circles).

Table 4. Convergence of the FVEG scheme, CFL = 0.6.

N × N cells
Un

N/2
− Un

N


L2

EOCL2

Un
N/2

− Un
N


L1

EOCL1

40 × 40 0.000994 0.002290

80 × 80 0.000174 2.516154 0.000405 2.500354

160 × 160 0.000038 2.193481 0.000088 2.209174

320 × 320 0.000009 2.021754 0.000021 2.044111

Table 5. Convergence of the FV scheme, CFL = 0.6.

N × N cells
Un

N/2
− Un

N


L2

EOCL2

Un
N/2

− Un
N


L1

EOCL1

40 × 40 0.004790 0.010843

80 × 80 0.001268 1.917471 0.002851 1.927224

160 × 160 0.000332 1.933300 0.000746 1.934221

320 × 320 0.000085 1.965648 0.000192 1.958069

Table 6. CPU time in seconds, CFL = 0.2.

N × N cells DG scheme FVEG scheme FV scheme

20x20 0.27 0.11 0.08

40x40 2.14 0.85 0.53

80x80 18.47 6.85 4.41

160x160 151.57 53.01 37.2

320x320 1216.84 437,10 296.38

640x640 10660.43 3354.39 2560.55
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Fig. 5. Efficiency study: relative L1 error over CPU-time for the FVEG scheme (stars),
the FVM (boxes) and the DG method (circles).


