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1 Introduction

It is well known that there are “nonclassical” situations where, in contrast to
Lax’s and Glimm’s results,systems of conservation laws may admit singular
solutions (δ-shocks and singular shocks) such that their components contain
delta functions [ASh05], [B94], [DSh03]– [LW02], [S02]– [Sh04], [TZZ94]. The
exact structure of such type solutions is given below in (2), (7) and Defini-
tion 1. The theory of δ-shocks and singular shocks has been intensively devel-
oped in the last ten years. Moreover, in the recent papers [PSh06], [Sh06] the
theory of δ′-shocks was established, and a concept of δ(n)-shocks was intro-
duced, n = 2, 3, . . .. They are new type singular solutions such that their com-
ponents contain delta functions and their derivatives. In the δ-shock (singular
shock) and δ′-shock theories there are many open and complicated problems.
One of them is connected with the concept of singular shocks.

Some problems related with singular shocks were studied in [K99]– [KK90],
[S02], [S03]. A model system admitting a singular shock is the well-known
Keyfitz-Kranzer system

ut + (u2 − v)x = 0, vt +
(1

3
u3 − u

)
x

= 0 (1)

which was studied in [KK95], [KK90]. In the exellent paper [KK95], in order
to construct approximate solutions, the Colombeau theory approach as well as
the Dafermos–DiPerna regularization (under the assumption that Dafermos
profiles exist) and the box approximations are used. However the notion of
a singular solution has not been defined . Later, in [Sc04], the existence of
Dafermos profiles for singular shocks was proved. But it was not clear in
which sense a singular shock satisfies the system (1).

∗ The author was supported in part by DFG Projects 436 RUS 113/823 and 436
RUS 113/895, and Grant 05-01-00912 of Russian Foundation for Basic Research.



2 V. M. Shelkovich

In [KSS03], [KSZ04], [S02], [S03] for system of conservation laws wt +(
q(w)

)
x

= 0, x ∈ R, w(x, t) ∈ Rn, where q : Rn → Rn is a smooth function,
a singular shock solution is a measure of the form

w(x, t) = ω(x, t) +
∑

i

Miχi(t)δ(x− xi(t)), (2)

where ω is a classical weak solution away from the singularities, χi is the
characteristic function of interval [Ai, Bi); Mi ∈ W∞ and xi ∈ W 1,∞. The
function w is the weak limit of a sequence wε with wε(·, t) ∈ L1

loc uniformly
with respect to ε, pointwise in t; satisfying wε(·, t) → w(·, t)w(x, t) and

(
wε(·, t))

t
+

(
q(wε(·, t)))

x
− ε(A(wε(·, t))x)x → 0, ε → 0, (3)

weakly in the space of measures on R, pointwise with respect to t, for some
positive definite matrix A. In the above papers some modifications of this
definition are also used. Note that since wε → w weakly, Definition (2), (3)
can be used without the term ε(A(wε(·, t))x)x (this was done in [S02]). These
authors ([K99]– [KSZ04], [S02], [S03]) distinguish between δ− and singular
shocks. In fact, the main distinction of a singular shock is that its flux func-
tion is not defined. As said in [K99, p.106], “unlike the delta-shocks..., the
singular shocks which are needed to solve (1) are truly nonlinear objects
which cannot defined in the context of classical distribution theory.” Accord-
ing to [K99]– [KSZ04], [S02], [S03], some model problems for δ-shocks are
described in [B94], [ERS96], [LW02], [TZZ94]. Here for “zero-pressure gas
dynamics” the measure-valued solution approach is used, and flux-functions
ρu, ρu2 are well-defined measures.

It is the author’s opinion that Definition (2), (3) of a singular shock and
the other ones from [KSS03], [KSZ04], [S02], [S03] are obscure. Namely, Def-
inition (2), (3) does not connect the limiting function (2) with the system
wt +

(
q(w)

)
x

= 0; it only connects the regularizing function wε with the reg-
ularizing system (3). Thus it is not defined in which sense a singular shock
(2) satisfies to nonlinear system. In this way only approximating (viscosity)
solutions and their structure can be studied. Note that a more general and
strict definition of the type (2), (3) was introduced in [DSh03].

In order to deal with δ- and δ′-shocks, the weak asymptotics method
was developed in [DSh03]– [DSh06], [Sh03-1], [Sh04]. In [ASh05], [DSh03]–
[DSh06], [Sh03], [Sh03-1] the definition of δ-shock type solutions to systems
(8) (see Definition 1) and (9) were introduced, and the corresponding δ-shock
Rankine–Hugoniot conditions derived. These definitions give natural gener-
alizations of the classical definition of the weak L∞-solutions. According to
them, δ-shocks are Schwartz distributional solutions. In these papers some
Cauchy problems admitting (exact) δ-shocks were solved. In particular, the
Cauchy problems for the Keyfitz-Kranzer system (1) and its generalization

L21[u, v] = ut +
(
f(u)− v

)
x

= 0, L22[u, v] = vt +
(
g(u)

)
x

= 0, (4)
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were first solved in [Sh03], [Sh03-1] (see also [ASh05]), where f(u) and g(u)
are polynomials of degree n and n + 1, respectively, n is even.

In this paper, by using our results [ASh05], [DSh05], [DSh06], [Sh03] –
[Sh04], we show that both singular shock and δ-shock are solutions of the same
type (in the sense of Definition 1). To prove our assertion we compare singular
solutions which have δ-singularities for the systems (1), (4) and the system

L31[u] = ut +
(
f(u)

)
x

= 0, L32[u, v] = vt +
(
g(u)v

)
x

= 0. (5)

According to [K99]– [KSZ04], [S02], [S03], systems (1), (4) and (5) are model
problems for singular shocks and δ-shocks, respectively. For these systems we
consider the front-problem with the initial data of the form

u0(x) = u0
+(x) + [u0(x)]H(−x),

v0(x) = v0
+(x) + [v0(x)]H(−x) + e0δ(−x),

(6)

where [u0] = u0
− − u0

+, [v0] = v0
− − v0

+, and u0
±, v0

± are given smooth func-
tions, e0 is a given constant, H(x) is the Heaviside function, δ(x) is the delta-
function.

Our arguments are the following: (i) According to Theorems 2, 3 (from
the papers [ASh05], [DSh05], [DSh06], [Sh03]– [Sh04]), δ-shock wave type
solutions of the Cauchy problems (1), (6); (4), (6); (5), (6) have the form

u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)),
v(x, t) = v+(x, t) + [v(x, t)]H(−x + φ(t)) + e(t)δ(−x + φ(t)) (7)

(where u±(x, t), v±(x, t), e(t), φ(t) are desired functions, x = φ(t) is the
discontinuity curve) and satisfy corresponding systems of conservation laws
in the sense of the same Definition 1. (ii) According to Theorem 1, the
Rankine–Hugoniot conditions for the above δ-shock wave type solutions are
given by the identical formula (12). (iii) For these problems the flux-functions
of δ-shocks (15), (16) and (17), (18) are well-defined Schwartz distributions.

Nevertheless, flux-functions of δ-shocks for the Keyfitz-Kranzer system
(1) and its generalization have some specific and “strange” properties. The
point is that δ-shocks constitute the universe with unusual and “strange”
properties, and the Keyfitz-Kranzer system is an excellent model example
which demonstrates this. Note that it is impossible to construct δ-shocks for
systems (1) and (4) by using the nonconservative product [DLM95] as well as
the measure-valued solutions approach.

2 δ-Shocks and the Rankine–Hugoniot conditions

Consider two particular systems of conservation laws:

L1[u, v] = ut +
(
F (u, v)

)
x

= 0, L2[u, v] = vt +
(
G(u, v)

)
x

= 0, (8)
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L1[u, v] = vt +
(
G(u, v)

)
x

= 0, L2[u, v] = (uv)t +
(
H(u, v)

)
x

= 0, (9)

where F (u, v), G(u, v), H(u, v) are smooth functions, linear with respect to v;
u = u(x, t), v = v(x, t) ∈ R; x ∈ R. As far as we know, all one-dimensional
systems of conservation laws admitting δ-shocks are particular cases of systems
(8) and (9). Our model examples (1), (4), (5) are particular cases of (8); the
“zero-pressure gas dynamics” is a particular case of (9).

Suppose that Γ = {γi : i ∈ I} is a graph in the upper half-plane {(x, t) :
x ∈ R, t ∈ [0,∞)} ∈ R2 containing smooth arcs γi, i ∈ I, and I is a finite
set. Arcs of Γ have orientation corresponding to increasing of time t. By I0 we
denote a subset of I such that an arc γk for k ∈ I0 starts from points of the
x-axis. Let Γ0 = {x0

k : k ∈ I0} be the set of initial points of arcs γk, k ∈ I0.
Consider δ-shock type initial data

(u0(x), v0(x)), v0(x) = v̂0(x) + e0δ(Γ0), u0, v̂0 ∈ L∞
(
R;R

)
, (10)

where e0δ(Γ0)
def
=

∑
k∈I0

e0
kδ(x− x0

k), e0
k are constants, k ∈ I0.

Definition 1. ( [DSh05], [DSh06]) A pair of distributions (u(x, t), v(x, t)) and
a graph Γ , where v(x, t) has the form of the sum

v(x, t) = v̂(x, t) + e(x, t)δ(Γ ), u, v̂ ∈ L∞
(
R× (0,∞);R

)
,

e(x, t)δ(Γ )
def
=

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈ C(Γ ), i ∈ I, is called a δ-shock

wave type solution of the Cauchy problem (8), (10) if the integral identities
∫ ∞

0

∫ (
uϕt + F (u, v̂)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
v̂ϕt + G(u, v̂)ϕx

)
dx dt +

∑

i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+
∫

v̂0(x)ϕ(x, 0) dx +
∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

(11)

hold for all test functions ϕ(x, t) ∈ D(R × [0,∞)), where
∂ϕ(x, t)

∂l
is the

tangential derivative on the Γ ,
∫

γi
· dl is the line integral over the arc γi.

Suppose that the arcs of the graph Γ = {γi : i ∈ I} have the form
γi = {(x, t) : x = φi}, φi(t) ∈ C1(0, +∞), i ∈ I. In this case n = (ν1, ν2) =

(1,−φ̇i(t))√
1+(φ̇i(t))2

is the unit oriented normal to the curve γi, l = (−ν2, ν1). Here

∂ϕ(x,t)
∂l

∣∣
γi

= ϕt(φi(t),t)+φ̇i(t)ϕx(φi(t),t)√
1+(φ̇i(t))2

=
dϕ(φi(t),t)

dt√
1+(φ̇i(t))2

.

By using Definition 1 we derive the δ-shock Rankine–Hugoniot conditions.
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Theorem 1. ([Sh03-1], [Sh04]) Assume that Ω ⊂ R× (0, ∞) is some region
cut by a curve Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0, +∞) into left- and right-
hand parts Ω∓ = {(x, t) : ±(x−φ(t)) > 0}; (u, v), and Γ is a δ-shock solution
of the system (8), and (u, v) is smooth in Ω± and have one-sided limits u±,
v̂±, on Γ . Then the Rankine–Hugoniot conditions for the δ-shock

φ̇(t) = [F (u,v)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[G(u, v)]− [v] [F (u,v)]

[u]

)∣∣∣
x=φ(t)

,
(12)

hold along Γ , where
[
a(u, v)

]
= a(u−, v−)−a(u+, v+) is a jump of the function

a(u(x, t), v(x, t)) across the discontinuity curve Γ , e(t)
def
= e(φ(t), t).

The first equation in (12) is the standard Rankine–Hugoniot condition;
the right-hand side of the second equation in (12) is the Rankine–Hugoniot
deficit in v.

3 The Cauchy problems

The eigenvalues of the characteristic matrix of system (4) are λ±(u) =
1
2

(
f ′(u) ±

√(
f ′(u)

)2 − 4g′(u)
)
,
(
f ′(u)

)2 ≥ 4g′(u). For system (5) the eigen-
values of the characteristic matrix are λ−(u) = f ′(u), λ+(u) = g(u). Let
f ′′(u) > 0, g′(u) > 0, f ′(u) ≤ g(u). We assume that the “overcompression”
conditions are satisfied.

Theorem 2. ( [Sh03]– [Sh04], see also [ASh05]) Suppose that λ+(u0
+(0)) ≤

[f(u0)]−[v0]
[u0]

∣∣∣
x=0

≤ λ−(u0
−(0)). Then there exists T > 0 such that for t ∈ [0, T )

the Cauchy problem (4), (6) has a unique solution (7) which satisfies the in-
tegral identities (11) where Γ = {(x, t) : x = φ(t), t ∈ [0, T )}, and functions
u±(x, t), v±(x, t), φ(t), e(t) are defined by the system

L21[u±, v±] = 0, ±x > ±φ(t),
L22[u±, v±] = 0, ±x > ±φ(t),

φ̇(t) = [f(u)]−[v]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[g(u)]− [v] [f(u)]−[v]

[u]

)∣∣∣
x=φ(t)

,

(13)

with the initial data defined from (6), φ(0) = 0.

Theorem 3. ( [DSh05], [DSh06]) Let [u0(0)] > 0. Then there exists T > 0
such that for t ∈ [0, T ) the Cauchy problem (5), (6) has a unique solution (7),
which satisfies the integral identities (11), where Γ = {(x, t) : x = φ(t), t ∈
[0, T )}, and functions u±(x, t), v±(x, t), φ(t), e(t) are defined by the system
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L31[u±] = 0, ±x > ±φ(t),
L32[u±, v±] = 0, ±x > ±φ(t),

φ̇(t) = [f(u)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[vg(u)]− [v] [f(u)]

[u]

)∣∣∣
x=φ(t)

,

(14)

with the initial data defined from (6), φ(0) = 0.

The last two equations in (13) and (14) give the corresponding Rankine–
Hugoniot conditions. They are particular cases of (12).

Recall that OD′(εα), ε → +0 (α ∈ R) is a collection of distributions
(with respect to x) f(x, t, ε) ∈ D′(Rx), x ∈ R, t ∈ [0, T ], ε > 0 such that
〈f(·, t, ε), ψ(·)〉 = O(εα), ε → +0, for any test function ψ(x) ∈ D(R), x ∈ R;
〈f(·, t, ε), ψ(·)〉 is a continuous function in t; the estimate O(εα) is understood
in the standard sense, being uniform with respect to t. The notation oD′(εα)
is understood in a corresponding way.

According to [DSh03]– [DSh06], a pair of functions
(
uε(x, t), vε(x, t)

)
which

are smooth as ε > 0, t ∈ [0, T ] is called a weak asymptotic solution of
the Cauchy problem (8), (10) if L1[uε, vε] = oD′(1), L2[uε, vε] = oD′(1),
uε(x, 0) = u0(x) + oD′(1), vε(x, 0) = v0(x) + oD′(1), ε → +0, where the
first two estimates are uniform in t ∈ [0, T ]. Since within the vanishing viscos-
ity method a viscosity term admits an estimate of the form oD′(1), a viscosity
solution can be considered as a weak asymptotic solution.

Within the framework of the weak asymptotics method [ASh05], [DSh03]–
[DSh06], [Sh03] – [Sh04], we find a δ-shock wave type solution of the Cauchy
problem (4), (6) or (5), (6) as a weak limit u(x, t) = limε→+0 uε(x, t), v(x, t) =
limε→+0 vε(x, t) of the weak asymptotic solution to the Cauchy problem.

To prove Theorems 2, 3, constructing a weak asymptotic solution of the
Cauchy problem, multiplying the relations L1[uε, vε] = oD′(1), L2[uε, vε] =
oD′(1), by a test function ϕ(x, t) ∈ D(R× [0,∞)), integrating these relations
by parts and then passing to the limit as ε → +0, we will see that the pair
limit distributions (u, v) of the form (7) satisfy the integral identities (11).

4 Flux-functions of δ-shocks

Using a weak asymptotic solution (uε, vε) to the Cauchy problem (see Sec. 3)
one can define flux-functions of δ-shocks, i.e., construct explicit unique for-
mulas for the “right” singular superpositions: F (u, v)

def
= limε→+0 F (uε, vε),

G(u, v)
def
= limε→+0 G(uε, vε) (see [ASh05], [DSh06],[Sh03-1], [Sh04]). For the

solution (7) of the Cauchy problem (4), (6) we have

f
(
u(x, t)

)− v(x, t)
def
= lim

ε→+0

(
f(uε)− vε

)
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= f(u+)− v+ +
[
f(u)− v

]
H(−x + φ(t)), (15)

g
(
u(x, t)

) def
= lim

ε→+0

(
g(uε)

)

= g(u+) +
[
g(u)

]
H(−x + φ(t)) + e(t)

[
f(u)

]

[u]
δ(−x + φ(t)). (16)

For the solution (7) of the Cauchy problem (5), (6) we have

f
(
u(x, t)

) def
= lim

ε→+0
f
(
uε

)
= f(u+) +

[
f(u)

]
H(−x + φ(t)), (17)

v(x, t)g
(
u(x, t)

) def
= lim

ε→+0
vεg

(
uε)

)
= v+g(u+)

+
[
vg(u)

]
H(−x + φ(t)) + e(t)

[f(u)]
[u]

δ(−x + φ(t)). (18)

In fact, by (18) we define the unique “right” product of the Heaviside
function and the δ-function in the context of the Cauchy problem (5), (6). In
contrast to system (5), formulas (15), (16) do not define (!) the product of the
Heaviside function and the δ-function. Moreover, although (according to (7)),
u(x, t) does not depend (!) on the term e(t)δ(−x + φ(t)), the right-hand side
of the “right” singular superposition (16) does depend (!) on this term. Thus
one can say that the term e(t)δ(−x + φ(t)) “appears in (16) from nothing”.
Analogously, the left-hand side in (15) depends on e(t)δ(−x+φ(t)), while the
right-hand side does not depend on this term. Nevertheless, in the context of
solving the Cauchy problem, a flux-function is determined uniquely.
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