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Abstract. The idea of this work is to compare a new positive and entropy stable approximate
Riemann solver by Francois Bouchut with state-of the-art algorithms for astrophysical fluid
dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the
Prometheus code, and also made a version with a different, more theoretically grounded higher
order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and
forced turbulence simulations in three dimensions. We find subtle differences between the codes
in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann
solver increases the computational speed without significant loss of accuracy.

1. Introduction

In modern astrophysics the interplay between observations and numerical experiments plays a
central role. Typically hydrodynamical flows with high Reynolds numbers and Mach numbers are
studied, and they are modelled by the Euler equations

ρt + div(ρu) = 0

(ρu)t + div(ρuu) + px = ρf1

(ρv)t + div(ρvu) + py = ρf2

(ρw)t + div(ρwu) + pz = ρf3

Et + div((E + p)u) = ρf · u.(1.1)

Here ρ is the mass density, u = (u, v, w) is the velocity field, p is the pressure, and E is the
energy density E = 1

2
ρu2 + ρe with e the specific internal energy. External forces are given by

f = (f1, f2, f3). The system is closed by the equation of state that relates p to ρ and e. In this work
we consider ideal gases where ρe = p/(γ− 1) for some γ > 1, and isothermal gases. An isothermal
gas has constant temperature T , which implies p = a2ρ for a = RT

µ
, with R the gas constant and

µ the mean molecular weight. In a real astrophysical flow additional physical phenomena such
as magnetic fields, gravitational forces and electromagnetic radiation may be important, but this
paper is only concerned with the hydrodynamics. The specific physical entropy s is defined by the
relation

(1.2) de + pd
1

ρ
= Tds

with T = T (ρ, e) > 0 the temperature. The second law of thermodynamics implies that

(1.3) (ρφ(s))t + div(ρuφ(s)) ≤ 0

for any smooth, nonincreasing and convex φ. In high Mach number flows this condition is needed
to ensure the dissipativity of shocks, since the viscous forces are ignored in (1.1).

To numerically solve (1.1), shock-capturing finite volume schemes are widely used. In astro-
physics it is often done with the PPM algorithm described in [4], often with an iterative method
to approximate the exact midpoint value of the Riemann fan. This was implemented in the

Date: November 10, 2006.
1Departement of Mathematics, Würzburg University, Am Hubland 97074 Würzburg, Germany .

2Departement of Theoretical Physics, Würzburg University, Am Hubland 97074 Würzburg, Germany .
3Center of Mathematics for Applications, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway. Visitor to Würzburg

University, Germany. knut.waagan@cma.uio.no .

1



2 CHRISTIAN KLINGENBERG1, WOLFRAM SCHMIDT2, KNUT WAAGAN3

Riemann solver:

Higher order algorithm: Iterative of Prometheus HLLC-Bouchut

PPM reconstruction and back-tracing PPM PPM-HLLC

Piecewise linear in space, Runge-Kutta in time RK-exact RK-HLLC

Figure 1.1. The table summarises the four codes we tested. Along the horizontal
axis the Riemann solver changes, while vertically the higher order algorithm varies

Prometheus code in 1989, using the iterative Riemann solver of [3] with a fixed number of itera-
tions, see [8]. An efficient, parallelised version was then implemented in 2001, see [11] and [12].
Stochastic forcing for turbulence simulations was added later, see [15], [17]. Results produced by
the Prometheus code have been presented in many astrophysical publications, for example in [10],
[11], [12] and [14]. We used this code from 2001 as the basis for this work, and implemented our
changes into it.

First, we switched the Riemann solver to an HLLC solver with the signal speeds of Bouchut
([1], [2]). This Riemann solver has two good properties: a) It automatically ensures that a discrete
version of the entropy inequality (1.3) holds. b) The density and pressure stay positive. These
two statements are true in the first order case.

When using this Riemann solver in a higher order scheme these two properties are not au-
tomatically inherited. Hence, we introduced a piecewise linear reconstruction, and replaced the
characteristic backtracing with Runge-Kutta time integration. This was done in such a way that
positivity is preserved at one half the CFL-number required in the first order case. Such a second-
order scheme which also satisfies the entropy inequality is however impractical, see [5], but entropy
stability for first order schemes has so far seemed to be a good condition in practice. A different
notion of stability comes from scalar conservation laws, which have solutions with nonincreasing
total variation. This notion is also important in the design of higher order methods for systems.
The reconstruction algorithm and the Runge-Kutta integration we use ensure a nonincreasing
total variation when applied to scalar equations.

This gave rise to four codes as summarized in Figure 1.1. The codes RK-HLLC and PPM-HLLC
both run about 20% faster than PPM on the same data with the same resolution. However, the
difference between the algorithms might be larger, since only the original PPM-code was optimised.
The RK-exact code is the slowest, but it was of fundamental interest in this project to compare
its accuracy to the RK-HLLC code’s.

In the remainder of this introduction we will first sum up the main ideas of the underlying
PPM algorithm in the Prometheus code. Then we will describe the new Bouchut-HLLC solver
and its theoretical advantages. The second order algorithm is outlined next, and we show how it
preserves positivity. In chapters 2,3 and 4 the one-, two- and three-dimensional test comparisons
are presented. At the end there is a conclusion.

1.1. PPM and the Prometheus code. The basis of the Prometheus code is the one-dimensional
PPM-method of [4] with the iterative Riemann solver from [3]. Strang splitting is then used to
handle multidimensions. The crucial point of PPM is the so-called characteristic back-tracing.
This technique produces a second order approximation to the states at the cell interfaces at the
half time step, allowing the use of the midpoint method in time. These approximate states are
then used as input to the Riemann solver. Although the overall accuracy is second order, the
spatial reconstruction is piecewise parabolic, which is reported to give better resolution than
piecewise linear reconstruction. Furthermore, the accuracy at contact discontinuities is improved
by an algorithm that detects them, and then steepens the reconstructed density. There is also an
algorithm that adds artificial diffusion in order to avoid oscillations behind strong, slow-moving
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shocks without smearing out the solution much. The reconstruction is required to be monotocity
preserving. This means that the order of the scheme may drop locally at extremal points of a
reconstructed quantity, which means a primitive quantity in the case of PPM as in [4]. This drop
in order is also a feature of the second order reconstruction we use with the Runge-Kutta time
integration.

In order to resolve shocks and shock interactions a Riemann problem is solved with the data from
the back-tracing operation as input. For the Euler equations there is no general explicit formula
for the solution of the Riemann problem, so in Prometheus an iterative procedure provides instead
approximate values of the fluxes at cell interfaces. For efficiency the number of iterations is limited
to a fixed number.

1.2. The HLLC solver of Bouchut and stability. The notion of an approximate Riemann
solver goes back to the Roe solver, see [13], which is based on a local linearization of the fluxes
at the cell interface. We refer to [20] and [2] for a modern presentation of the basic ideas. The
basic idea is to replace the exact Riemann fans in Godunov’s method with something simpler that
still gives a numerical flux that is consistent and conservative. In addition entropy consistency
and positivity of density must be somehow ensured. For this linearized solvers require additional
treatment, a so-called entropy fix.

The simplest approximate Riemann solver is the HLL solver, where the Riemann fan is replaced
by a constant state separated by two discontinuities moving with constant speeds Cl and Cr. A
sufficient condition for stability is that the exact Riemann solution does not have waves with speed
outside the interval [Cl, Cr]. The main weaknesses of this approach is that material contact waves
are smeared out, and that the signal velocities Cl and Cr has to be guessed. A solution to the
first problem was hinted at already in [9], and was carried out in [19], see also [20], with the so
called HLLC-solver. The HLLC-solver consists of three discontinuities traveling with speeds Cl,
u∗ and Cr, where velocity and pressure are held constant across the middle wave, and u∗ is this
intermediate value of the velocity.

In [2] the HLLC-solver was improved by showing that it results from a relaxation system, which
established its entropy stability. Furthermore, sharp explicit formulas for the signal speeds that
ensure positivity and entropy stability could be given. We refer to these as Bouchut speeds, and
they are given by formula (2.133) and Proposition 2.18 of [2].

1.3. The new second order algorithm. When going to higher order, requiring the reconstruc-
tion to be entropy dissipative leads to impractical methods, but there is a way to preserve positivity
in a rigorous manner. In the rewritten version of Prometheus RK-HLLC and RK-exact we used
the following reconstruction, based on [2]

As a limiter we use

(1.4) minmod(al, ar) =

{

0, alar ≤ 0

sign(al) min
(

α|al|,
1
2
(|al| + |ar|), α|ar|

)

, alar > 0

with α set to 1.4. This is applied to produce the discrete differential

(1.5) Dρi =
1

h
minmod(ρi+1 − ρi, ρi − ρi−1),

and Dui, D(u⊥)i, D(ρe)i similarily. The positivity of the reconstructed density is guaranteed since
ρi−

h
2
|Dρi| > mink(ρk). Conservation of momentum dictates that we take the reconstruction slope

(1.6) D(ρu)i = ρiDui + uDρi −
h2

4
DρiDui,

and similarily for D(ρu⊥)i. Energy is conserved by replacing ei with

(1.7) ẽi = ei −
h2

8

(

1 −
h2

4ρ2
i

Dρ2
i

)

(

Du2
i + (Du⊥)2i

)

when computing the reconstructed internal energy. The extra terms cancel out the conservation
errors in kinetic energy caused by the linear reconstruction. Hence positivity means that ρiẽi −
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Figure 2.1. Results for Toro test 1.

h
2
|D(ρe)i| > 0, or in other words

(1.8)
h2

8

(

Du2
i + (Du⊥)2i

)

<
1

1 − h2

4ρ2

i

Dρ2
i

(

ρiei −
h

2
|D(ρe)i|

)

=̂Λ2
i

To ensure (1.8) in a consistent way we first restrict |D(u⊥)i| to less than or equal to Λi, and then
set Du2

i less than or equal to Λ2
i − |D(un)i|

2. Note that in practice we multiply Λi with a number
slightly less than one to ensure that the inequality (1.8) is strict.

We did not apply any special treatment of material contact waves in this code version, and no
articial diffusion was added at shocks.

The numerical time integration is a second order Runge-Kutta method. That is, one does two
full time steps, and then averages the resulting cell average with the initial one. This procedure
preserves positivity, and is total variation diminishing. Multidimensionality is taken care of by
Strang splitting just as in the PPM-codes.

2. One space dimension: Shock tube tests of Toro

A basic setup for testing these methods are onedimensional Riemann problems, or shock tube
tests. In [20] five very useful such test problems are given and subjected to several different
Riemann solvers. The problems are carefully devised to exhibit phenomena known to be hard to
reproduce numerically.

As reference solutions we simulated all tests with 100.000 grid cells using the original PPM-
code. In some cases this was not locally converged due to spurious oscillations etc., and we point
out these anomalies when they occur. In all the runs the CFL-number was 0.4, and we considered
x ∈ (0, 1) with a resolution of 100 grid cells.

2.1. Test 1. The first test is not the most severe, but it contains a transsonic rarefaction, which
nonentropic schemes have trouble with. The initial data are

(2.1) (ρ, u, p) =

{

(1, 0.75, 1), x < 0.5

(0.125, 0, 0.1), x > 0.5.

All schemes handle the transsonic rarefaction without any signs of a nonentropic glitch, but there
are differences in the resolution at the rear end of the rarefaction with the PPM doing the best
job. However PPM gives large oscillations behind the contact discontinuity compared to the other
codes. With the RK codes there is little difference between the Riemann solvers. We note the
undershoot in front of the contact, and the less sharp resolution of the contact compared to PPM.
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Figure 2.2. Results for Toro test 2. The results are symmetric around x = 0.5.
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Figure 2.3. Results for Toro test 2. The results are symmetric around x = 0.5.

2.2. Test 2. Test 2 has two rarefactions going apart creating a low density region. The initial
data are

(2.2) (ρ, u, p) =

{

(1,−2, 0.4), x < 0.5

(1, 2, 0.4), x > 0.5

The solver should be able to handle this without giving negative density or pressure. In particular,
linearized solvers have trouble with such cases. In the density plots, Figure 2.2, we note a bump in
the density at x = 0.5 with the RK-exact code. We see similar tendencies for the PPM simulation,
and in the PPM reference solution there is a deep narrow bump.

For the RK-HLLC-code positivity was automatically maintained, and it is interesting that we
get a better approximation of the density value in the middle compared to PPM-HLLC, and also
of the velocity, Figure 2.3. The front of the rarefaction is however best resolved by the PPM-codes.

Notice in Figure 2.3 that both PPM and RK-exact (which have the same Riemann solver)
has oscillations in the velocity near x = 0.5. The RK-exact code especially had problems with
this test, and positivity had to be artificially imposed for CFL-numbers larger than around 0.05.
Theoretically a CFL-number less than 0.25 should ensure positivity with an exact Riemann solver,
so this has to do with the iterative procedure in the Riemann solver not automatically ensuring
the positivity property. With the iterative solver as part of PPM however, this seemed not to
cause serious problems.
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Figure 2.4. Results for Toro test 3.
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Figure 2.5. Results for Toro test 3.

2.3. Test 3. Test 3 is a high Mach number shock tube with initial data

(2.3) (ρ, u, p) =

{

(1, 0, 1000), x < 0.5

(1, 0, 0.01), x > 0.5.

We found little difference between the codes here apart from the expected slightly sharper res-
olution of the PPM-codes, which was most prominent on the contact wave. All codes produced
spurious effects behind the rarefaction, as seen in the overshoot in the velocity plots, Figure 2.5.

2.4. Test 4. The solution of test 4 has a near stationary shock, that is, the shock speed is small
compared to the characteristic speeds, hence if the numerical diffusion applied to this shock is
high, it will be particularly pronounced. The initial data are

(2.4) (ρ, u, p) =

{

(5.99924, 19.5975, 460.894), x < 0.5

(5.99242,−6.19633, 46.0950), x > 0.5.

Also, oscillations behind such shocks is a well known phenomenon, and in the original PPM paper,
a so called ’flattening’ algorithm was introduced which essentially adds diffusion. This algorithm
was used in all the PPM simulations here, but for this test we also tried to switch it off, resulting
in oscillations in the density of magnitude around 5 percent of the postshock density both for
PPM and PPM-HLLC. The RK-codes only show small oscillation here, and no special treatment
was necessary. In the reference PPM solution there are pronounced oscillations both after the
near stationary shock as well as between the contact and the right moving shock. Both HLLC-
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Figure 2.6. Results for Toro test 4.
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Figure 2.7. Results for Toro test 5.

codes smear the near stationary shock out with 1-2 grid cells more in front of the shock, as seen
Figure 2.6 (We show the results from PPM with flattening). The difference of 1-2 grid cells was
maintained when refining to 200 and 400 grid cells. It is probably caused by the signal speeds
of HLLC-Bouchut slightly overestimating the shock speeds. Otherwise we only note the lower
resolution of the contact wave with the RK-codes compared to HLLC.

2.5. Test 5. Test 5 is like test 3 with a background velocity resulting in a near stationary contact
discontinuity. The initial data are

(2.5) (ρ, u, p) =

{

(1,−19.59745, 1000), x < 0.8

(1,−19.59745, 0.01), x > 0.8.

All codes handles this feature reasonably well, which was expected since both Riemann solvers
exactly resolves contact waves, see Figure 2.7. Note that in this case the RK-codes has comparable
resolution of the discontinuities to the PPM-codes, but it overshoots the right intermediate density
slightly. The oscillations occuring behind the rarefaction in the velocity, see Figure 2.8, is not
reported with the 1st order schemes tested by Toro, so it must have something to do with the higher
order algorithms. It is especially pronounced with PPM-HLLC, but visible in all simulations.

3. Two space dimensions: Mixing layers

We now look at transitions from laminar into unstable flows in two dimensions. By the nature of
the underlying unstable flows, although we observe differences in the output, we are not really able



8 CHRISTIAN KLINGENBERG1, WOLFRAM SCHMIDT2, KNUT WAAGAN3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

x

ve
lo

cit
y

 

 

Reference
PPM−HLLC
PPM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

x

ve
lo

cit
y

 

 

Reference
RK−HLLC
RK−exact

Figure 2.8. Results for Toro test 5.

to infer much about the quality of the respective codes. However, we observed that the instabilities
needed to be highly developed before any differences could be seen between the Riemann solvers.
In other words, at the onset of instability the Riemann solvers seemed to give the same results.
We recall from the onedimensional tests that changing the Riemann solver had only a small effect
on the numerical smearing. This indicates that the ’numerical viscosity’ varies little between
the different schemes, and the sensitivity of our instabilities to numerical viscosity seems to be
relatively small at their onset.

3.1. Kelvin-Helmholtz instability. Two layers of fluid moving with different parallel velocities
are always unstable in the absence of viscosity and external forces. This is referred to as a Kelvin-
Helmholtz instability, and seems to be an important source of turbulence in many applications. We
consider a grid-aligned jump in velocity here, and make a small periodic perturbation. The initial
data are ρ = 1, γ = 1.4, and we let p vary to allow different Mach numbers. The velocity is in the
y-direction with v = 0.5 for x < 0.5, and v = −0.5 for x > 0.5, however we moved the velocity
jump one grid cell to the left to break the symmetry. We perturb v with 2πe2πxcos(2πy)/100
for x < 0.5 and −2πe−2πxcos(2πy)/100 for x > 0.5. This means we can compute y ∈ (0, 1)
with periodic boundary conditions, and in the x-direction we consider x ∈ (0.1) with reflecting
boundary conditions. The CFL-number was 0.8 in all simulations.

First we take p = 1/γ, which means that the relative velocity between the layers equals the
sound speed. We consider the time history of the average of 1

2
ρu2, as this quantity is often used

as a measure of the growth of the instability. Figure 3.1 shows log 1
2
ρu2 as a function of time for

the different codes. We used three different resolutions, 1002, 2002 and 4002 points, and we see
here that the instability growth rate increases with resolution. This is plausible, since by linear
instability theory, the growth rate is inverse proportional to the perturbation wavelength. The
Riemann solver, however, seems to have no influence at all.

Figure 3.2 shows the time evolution of the velocity field with PPM-HLLC, illustrated by stream-
lines at times 0.25, 0.50 and 1.0. The streamlines were produced with the intrinsic Matlab routine
’streamslice’. Note that the density of streamlines plotted does not accurately reflect the numer-
ical resolution, but were chosen to give a clear representation of the observable topological flow
features. The plots from the original PPM looks very similar. Figure 3.3 shows the same but this
time with the RK-HLLC code. Also with these codes we see no significant differences between the
two Riemann solvers.

Differences between the schemes only become apparent at later times. Eventually all vortices
are swallowed by the domain-centered vortex, and we see some differences in at which time t1 this
happens. We used the streamline plots to find approximately when this change in flow topology
occurs. For example in Figure 3.4, we plotted the flow at time t = 20, since the PPM-simulation
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Figure 3.3. The same as Figure 3.2 with RK-HLLC.*
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Figure 3.4. Streamlines from simulations with 2002 cells at time t = 20. PPM-
HLLC is shown on the left, and PPM to the right.*

then still had two distinct vortices, while with PPM-HLLC we could only see one. In Figures 3.5-
3.7 we do the same with different resolutions and codes. Since the resolution and the underlying
code also influenced the time t1, we chose different plotting times in Figures 3.4-3.7. In all four
cases considered it is clear that the Riemann solver induces some difference in t1.

We also considered p = 1
100γ

, giving a relative Mach number of 10. Figure 3.8 shows the

growth of the average transversal kinetic energy component. The effect of the Riemann solver is
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Figure 3.5. Streamlines from simulations with 4002 cells at t = 18. PPM-HLLC
is shown on the left, and PPM to the right.*
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Figure 3.6. Streamlines from simulations with2002 cells at time t = 13. RK-
HLLC is shown on the left, and RK-exact on the right.*
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Figure 3.7. Streamlines from simulations with 4002 cells at time t = 16. RK-
HLLC is shown on the left, and RK-exact right.*
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Figure 3.8. Growth of transversal kinetic energy component with relative Mach
number 10. The codes with exact solver are represented with dotted lines, and
the HLLC version with solid coloured lines. They look the same.
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Figure 3.9. Density contours from Kelvin-Helmholtz instability with Mach num-
ber 10 at time t = 10. The resolution was 2002 cells. PPM-HLLC is shown on
the left, and PPM on the right. Density contours range from 0.4 to 1.4.*

indiscernible. Resolution had less influence here than with relative Mach number 1, so we only
show the data from the 2002-simulation. For the Mach 10 case differences are also very subtle.
In Figure 3.9, showing filled density contours at time t = 10, one can see slightly more small
scale structure with PPM than PPM-HLLC by careful inspection of the plots. The similar plots
from the RK-codes in Figure 3.10 clearly show more smeared out structures than the PPM-codes.
There is no noticeable difference between RK-HLLC and RK-exact, which means that any effect
of changing the Riemann solver is much less prominent than the smearing due the RK-algorithm.
The superimposed density contours in Figure 3.11 also illustrate the increased numerical diffusion
of the RK-algorithm, and that this suppresses the effect of changing the Riemann solver.

3.2. Richtmeyer-Meshkov instability. The Richtmeyer-Meshkov instability occurs when a pla-
nar shock hits a parallel, slightly perturbed density jump. We used the following setup to simulate
this. The domain was (x, y) ∈ (0, 16) × (0, 1) with periodic boundary conditions in y, and Neu-
mann boundary conditions in x. We set up a shock tube problem in the x-direction at x = 1.6
with density and pressure as in the first Toro test and constant velocity u = −1 in the x-direction.
We considered adiabatic gas γ = 1.4 so as to coincide with the three-dimensional runs rather

∗In the plots x is on x-axis, and y on the y-axis
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Figure 3.10. The same as in Figure 3.9, but with RK-HLLC on the left and
RK-exact on the right.*
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Figure 3.11. Superimposed density contours from Kelvin-Helmholtz instability
with Mach number 10 at time t = 10 at resolution 2002 cells. On the left PPM is
represented by green solid lines, and PPM-HLLC with dotted lines. On the right
RK-exact with green solid lines, and RK-HLLC with dotted lines.RK right.∗

than the shock tube tests. At the line x = f(y) = 3.2 + 0.2 cos(2πy), the density fell by a factor
of 2. When the shock goes through the initial density jump, the boundary f(y) evolves into a
mushroom-like structure. In Figure 3.12 we see a slice in x-direction of the density profile at time
t = 1.0. The shock has just hit the density jump, and we see a weaker shock going through, and
a reflected wave moving back towards the contact from the shock tube problem. This last wave
might cause some minor reflected waves, but otherwise the instability is not influenced by other
features. The boundary at x = 0 is transparent to the supersonic rarefaction, and we stop before
the shock reflection at x = 16 affects the instability. The CFL-number was 0.8. Again it is hard
to observe differences, see Figure 3.13, but it seems the original PPM resolves the ’extremities’ of
the high density region a bit sharper, at least they extend more.

We also illustrate the growth of the instability here by the time history of the transversal
component of kinetic energy in Figure 3.14. With RK-HLLC the density jump is more smeared
out before the shock hits it, which explains the less steep slope.

It is known that the contact wave steepening of PPM may artificially induce instabilities in cer-
tain cases. For the PPM-codes we observed small scale structures that we believe to be numerical
noise when repeating the simulation on finer grids. However, by switching off the steepening, we
got reasonable results. In Figures 3.15-3.16 we compare versions of PPM and PPM-HLLC without
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Figure 3.12. Slice of Richtmeyer-Meshkov instability at t = 1, y = 0.49, Com-
puted with PPM at resolution ∆x = ∆y = 0.02.
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Figure 3.13. Density contours from Richtmeyer-Meshkov instability at time t =
14. We show data from PPM to the left, and PPM-HLLC to the right. Density
contours range linearly from 0.1 to 0.22. Resolution ∆x = ∆y = 0.02.

steepening. With the highest resolution the density profiles differ strongly, but there is no way to
tell which code is better.

The RK-HLLC-code produces a more smeared out structure, see Figure 3.17.

4. Forced isotropic turbulence

In many real life flows turbulence is an important feature. Since we do not know how to infer
from simpler test cases how a numerical method will treat turbulence, we now consider simulations
of actual three-dimensional turbulence. Because of the three-dimensional nature of turbulence,
to get useful results one needs powerful computational resources, and we were able to perform
some parallel simulations on the Hitachi SR8000 at the Leibniz Computing Centre in Munich.
The simulations were part of a larger study on parameters in supersonic turbulence, see [16].
We considered the same type of forced isotropic turbulence experiments described in [17]. The
resolution here was 2563 equilateral grid cells, and the boundary conditions periodic as in [17].
We refer to [15] and [17] for details of the experiments and the analysis tools. In addition to [17],
compressible turbulence simulations with PPM have been investigated by Sytine et al. in [18].

The tests consisted of a constant, zero velocity initial state continuously subjected to a stochas-
tically varying force field f . The forcing was given by evolving its Fourier transform by a so called
Ornstein-Uhlenbeck process, which is a statistically stationary stochastic process, with parameters
such that the resulting force was statistically isotropic. Only the larger wavelengths were given a
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Figure 3.15. The same as in Figure 3.13, but with the contact wave steepening
turned off in both codes, and resolution ∆x = ∆y = 0.01.
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Figure 3.16. The same as in Figure 3.13, but with the contact wave steepening
turned off in both codes, and resolution ∆x = ∆y = 0.005.
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Figure 3.17. The same as in Figure 3.13 with RK-HLLC. On the left with
resolution as in Figure 3.13 and on the right with resolution as in Figure 3.15

nonzero contribution. Note that the Fourier transform of a periodic function can be understood
as a generalized function given by the coefficients in its Fourier series. By varying the magnitude
of the forcing, the characteristic velocity of the flow was varied correspondingly. The forcing also
had a free parameter ζ corresponding to a projection operator regulating the solenoidality of the
force field. For ζ = 1 the force field is divergence free, and for lower values we have progressively
stronger compressive force components. We will not study the influence of this parameter here,
just note that all flows considered were highly compressible. How a gas responds to this injection
of energy depends a lot on the equation of state, as we will show.

Since these flows are highly sensitive to perturbations, it makes no sense to compare the actual
solutions. Instead we will compare statistical properties of the simulated flows, since the statistical
approach has been relatively successful in quantitatively describing turbulence, see for example [7].
Note also that each simulation represented a different realisation of the stochastic forcing process.
One way to extract statistical information is to make a histogram of the different values assumed
by a scalar quantity at a fixed time. We can call this to make a probability distribution function
(PDF). We will consider PDFs for ρ and the absolute value of the vorticity ω.

As an indicator of numerical dissipation we will look at the energy spectra, that is, we will look
at the energy content in each Fourier mode of the velocity field. Parseval’s theorem says that the
total specific kinetic energy equals the integral over the square of the Fourier transformed velocity
field û(k, t),

(4.1)

∫

|u(x, t)|2dx =
∑

k

û(k, t) · û(k, t)∗.

where ·∗ denotes complex conjugation. In other words, it is given by integrating over the energy
spectrum function E(k, t), which is defined as the sum of the squares of the Fourier coefficients
corresponding to each mode where the three-dimensional wave number vector k has absolute value
k,

(4.2) E(k, t) =
∑

|k|=k

1

2
û(k, t) · û(k, t)∗

times a scaling factor. We refer to [15] and [17] for how this was done numerically.
It is intuitively clear that if the solution has a lot of small scale structure, it indicates low

numerical diffusion, although spurious oscillations could also play a role. The energy spectrum
function gives a way to quantify this idea for these highly complex flows, but it is also connected
to deeper ideas about turbulence, in particular Kolmogorov’s theory, see for example [7].

Typically a plot of k 7→ E(k, t) will show three different ranges. For the lowest wave numbers
the stochastic injection of mechanical energy dominates. Then comes what is called the inertial
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Figure 4.1. Time history of RMS (root mean squared) Mach number (left) and
momentum (right) for adiabatic runs. The curve from PPM is labelled ’ad’, and
the curve from RK-HLLC is labelled ’ad (RK)’.

range, where Kolmogorov’s theory predicts that E(k, t) drops off as k− 5

3 , due to the transfer of
energy from vortices of higher to lower length scales. This ’Kolmogorov cascade’ has been observed
for low enough Mach numbers both in experiments and numerical simulations. For the highest
wave numbers numerical dissipation becomes dominant, and E(k, t) drops off steeply. Between the
inertial range and the dissipation range, one tends to observe a flattening of E(k, t) in numerical
simulations. This is called the bottleneck effect and it is still debated whether it has physical
significance, or whether it is a purely numerical effect, see [6], [17] and the references in these.
With the resolution here of 2563 cells, the injection range goes straight into a bottleneck range.
Since the Kolmogorov theory is derived for incompressible flow, we also define the transversal
energy spectrum Etr(k, t) which only consist of the part of û(k, t) orthogonal to k, so that we only
take into account the divergence free part of the velocity.

Some dimensional quantities need to be defined first, but we choose not to go into detail about
the physical scales as they are not relevant to the code comparisons. The strength of the forcing
was determined by the characteristic velocity V which is close to the RMS (root mean squared)
velocity in the fully developed flow. With characteristic Mach number ’Ma’ we refer to the ratio of
V to the initial sound speed. The simulations were run for five integral time scales T = L

V
where

L is half the length l of the sides of the periodic box. The forcing is strongest at wave numbers k

such that |k| = k0 = 2π
L

, and zero for |k| ≥ 2k0. With α we refer to the integer k0l
2π

= 2, and the

initial density is denoted by ρ0. As scaling factor for E(k, t) we take αL
2π

.
The CFL-number was 0.8 in all simulations.

4.1. Adiabatic gas, characteristic Mach number 17.9, ζ = 0.1. We first compare PPM and
RK-HLLC on a set-up with an adiabatic equation of state, that is an ideal gas with γ = 1.4. Most
of our statistics reveal no signifant difference between the codes, but we see some clear trends in
the evolution of the energy spectra. The spectra imply that RK-HLLC is more dissipative than
PPM when the average Mach number is less than about 5. Furthermore the dissipative effects of
RK-HLLC appears to grow as the Mach number decreases, while the dissipative effects of PPM
is unaffected by Mach number.

In the case of an adiabatic gas, the Mach number initially grows sharply, and then falls off
because the injected kinetic energy dissipates into heat, hence increasing the sound speed, see
Figure 4.1. The velocity field behaves statistically as stationary isotropic turbulence after around
one integral time scale according to Figure 4.3, although even at the termination point t = 5T , an
equilibrium between the energy injection and dissipation was not reached, as that would imply a
constant RMS momentum in Figure 4.1.

Figure 4.2 shows energy spectra at the final time. The energy spectrum function for RK-HLLC
drops off significantly more sharply for the high wave numbers, and this is to be expected due to
the less sharp resolution of the RK-HLLC code. Also note the clear bottleneck effect, which is best
seen in the plot of the ’compensated’ transversal energy spectrum function Ψ(k, t) proportional
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Figure 4.2. Energy spectrum at the final time t = 5T for the adiabatic runs
(left), on the right the compensated transversal spectrum. The curves are labelled
as in Figure 4.1.

to Etr(k, t)k
5

3 in Figure 4.2. The Kolmogorov theory predicts that Ψ should be constant in the
inertial range, and then drop off in the dissipation range.

If we look at other times, however, things become more complicated: In Figure 4.3 we see the
evolution of the energy spectra.

The fact that in Figure 4.1, the curves differ up to time t = 2T , we attribute to the different
realisations of the stochastic forcing. Hence one should compare statistics from the different
codes only for times t > 2T . The RK-HLLC-code gave decreasing energy spectra in time (after
t = T ), while the energy spectra from PPM have no particular time dependency (after t = T ).
We interpret this as an increase in dissipativity of RK-HLLC in time, and we associate it with
the decrease in Mach number. The Mach number independence shown by PPM is reasonable, if
one makes the assumption that there is only local interaction between the different wave numbers
k. By this assumption it makes sense to associate a Mach number to each wave number. Since
the velocity fluctuations decrease in magnitude with increasing k, so will the corresponding Mach
number. This does not mean however that PPM is more accurate.

Figure 4.4 shows mass density PDF at different times. There are clear differences between
the simulations in both the high and low density regions, but this seems to be due to fluctuations
inherent in the stochastic process behind the forcing, as there is no clear trend. The vorticity PDF’s
in Figure 4.5 does not show any clear tendency either. Certainly there is no direct connection
between a shift in the vorticity PDF and the variations in dissipative behaviour evident from the
energy spectra, although it might be natural to expect so.

4.2. Isothermal gas. We also performed simulations with isothermal gas. Here the Mach number
stays near constant after the initial growth phase, as seen in Figures 4.6-4.7. For this reason, we
only analyse the data from the final time. We found no significant difference between RK-HLLC
and PPM, and there was even less difference between the two PPM codes. We show PDFs and
energy spectra from simulations with Mach numbers 2.1 and 21.1 in Figures 4.8-4.10. Again
bottleneck effects are seen in all simulations, see Figure 4.11.

It is a little surprising that the RK-HLLC code does not appear comparably more dissipative
in these isothermal runs as it did in the adiabatic case, and in the one- and two-dimensional tests.
For the isothermal test with characteristic Mach number 21.1, it is not so unexpected. This is
because the RMS Mach number was much higher than in the adiabatic runs, and from Figure
4.3 it seems that the difference is less for higher Mach numbers. For the test with characteristic
Mach number 2.1 however, the RMS Mach number is comparable to that of the adiabatic tests
at around t = 3T . Hence, in addition to Mach number, the equation of state must be taken into
account when comparing RK-HLLC and PPM. In chapter 2, we noted that the most significant
difference between the RK- and PPM-algorithms was that both RK-codes smeared out contact
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Figure 4.3. Time history of transversal energy spectra. Data from PPM are on
top, and from RK-HLLC underneath. Times are given in units of integral time
scale T .

discontinuities more. In the isothermal case contact waves are not present, which might explain
why the codes differ less here than in the adiabatic runs.

5. Summary

From our numerical experiments we have made the following observations:
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Figure 4.4. Time history of mass density PDF for adiabatic runs. The curves
are labelled as in Figure 4.1. Times are given in units of integral time scale T .

Figure 4.5. Time history of |ω| PDF for adiabatic runs. The curves are labelled
as in Figure 4.1.
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Figure 4.6. Time history of RMS (root mean squared) Mach number and mo-
mentum for isothermal run with characteristic Mach number 2.1. The curve from
PPM is labelled ’it’, from PPM-HLLC ’it (HLLC)’, and from RK-HLLC ’it (RK)’.

Figure 4.7. Time history of RMS (root mean squared) Mach number and mo-
mentum for isothermal run with characteristic Mach number Ma 21.1. The curves
are labelled as in Figure 4.6.

Figure 4.8. Density PDFs for isentropic runs from the final time t = 5T . On
the left Ma=2.1, and on the right Ma=21.1. The curves are labelled as in Figure
4.6.

• There is slightly more smearing of stationary shocks with HLLC-Bouchut compared to the
exact solver.

• The RK-codes smear out most features more than the PPM-codes, and especially contact
discontinuities.

• RK-HLLC handles small densities better than the other codes.
• All codes exhibit spurious oscillations. We see more of them with the PPM-codes, except

at the near stationary shock, where PPM has a specialised ’flattening’ procedure.
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Figure 4.9. Vorticity PDFs for isentropic runs from the final time t = 5T . On
the left Ma=2.1, and on the right Ma=21.1. The curves are labelled as in Figure
4.6.

Figure 4.10. Energy spectra for isentropic runs from the final time t = 5T . On
the left Ma=2.1, and on the right Ma=21.1. The curves are labelled as in Figure
4.6.

Figure 4.11. Compensated energy spectra for isentropic runs from the final
time t = 5T . On the left Ma=2.1, and on the right Ma=21.1. The vertical lines
represent the ’sonic wave number’. Integrating the curve to the left of his lin gives
c2
s. The curves are labelled as in Figure 4.6.
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• The growth of Kelvin-Helmholtz and Richtmeyer-Meshkov instabilities appears to be little
affected by which of the two Riemann solvers are used.

• In turbulence simulations of adiabatic gas, the dissipativity of RK-HLLC seems to be less
for higher than lower Mach numbers, while the dissipation with PPM is independent of
the Mach number.

• For turbulence in an adiabatic gas with an RMS (root mean squared) Mach number less
than about 5, RK-HLLC seems to be more dissipative than PPM.

• For turbulence with an RMS (root mean squared) Mach number of 2.5 and higher in an
isothermal gas, there were no significant differences between Riemann solvers or higher
algorithms.

The widespread use of PPM in the astrophysics community has lead to concern about how much
the results depend on this algorithm. We conclude that with respect to the Riemann solver their
results are accurate. However the efficiency of the HLLC Riemann solver of Bouchut suggests that
it may be used instead.
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