
ON THE DELTA-SHOCK FRONT PROBLEM
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Abstract. In this paper the δ-shock front problem is studied. For some classes
of hyperbolic systems of conservation laws (in several space dimension, too) we
introduce the definitions of a δ-shock wave type solution relevant to the front
problem. The Rankine–Hugoniot conditions for δ-shocks are analyzed from both
geometrical and physical points of view. δ-Shock balance relations connected
with area and mass transportation are derived. The geometric aspect of δ-
shock formation from sufficiently smooth compactly supported initial data is
considered. We study the propagation of δ-shocks in two hyperbolic systems of
conservation laws. In the one-dimensional case, we consider the system

ut +
`
f(u)− v

´
x

= 0, vt +
`
g(u)

´
x

= 0,

where f(u) and g(u) are polynomials of degree n and n + 1, respectively, n is
even. The well-known Keyfitz–Kranzer system

ut + (u2 − v)x = 0, vt + (u3/3− u)x = 0

is a particular case of the last system. In the multidimensional case a non-
conservative form of zero-pressure gas dynamics system

ρt +∇ · (ρU) = 0, Ut + (U · ∇)U = 0,

is studied. This system has been used to describe the formation of large-scale
structures of the universe. Both systems have several “bad” properties (see
below). As far as we know, δ-shock wave type solutions for them have never
been constructed.

1. Introduction

1.1. Singular solutions of hyperbolic systems. Consider the following hyper-
bolic systems of conservation laws

L1[u, v] = ut +
(
F (u, v)

)
x

= 0,

L2[u, v] = vt +
(
G(u, v)

)
x

= 0,
(1.1)

L1[u, v] = vt +
(
G(u, v)

)
x

= 0,

L2[u, v] = (uv)t +
(
H(u, v)

)
x

= 0,
(1.2)

where F (u, v), G(u, v), H(u, v) are smooth functions, linear with respect to v; u =
u(x, t), v = v(x, t) ∈ R; x ∈ R.

As is well known, hyperbolic systems of conservation laws, even in the case of
smooth (and, certainly, in the case of discontinuous) initial data (u0(x), v0(x)),
may have discontinuous solutions. In this case, it is said that a pair of functions
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(
u(x, t), v(x, t)

) ∈ L∞
(
R× (0,∞);R2

)
is a generalized solution of the Cauchy prob-

lem (1.1) with the initial data
(
u0(x), v0(x)

)
if the integral identities

∫ ∞

0

∫ (
uϕt + F (u, v)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
vϕt + G(u, v)ϕx

)
dx dt +

∫
v0(x)ϕ(x, 0) dx = 0

(1.3)

hold for all compactly supported test functions ϕ(x, t) ∈ D(R×[0, ∞)), where
∫ · dx

denotes an improper integral
∫∞
−∞ · dx. A definition of a generalized solution of

system (1.2) can be introduced in the same way as for system (1.1).
The theory of nonlinear hyperbolic systems usually assumes systems to be strictly

hyperbolic with genuinely nonlinear or linear degenerate characteristic field, and to
be in conservative form. General results on the existence of entropy weak solutions
are obtained only for initial values with small total variation [20], [28]. On the other
hand, it is recognized that most of the physical systems do not fit into the standard
theory of conservation laws [25], [29]. The Riemann problem in this “nonclassical”
situation does not possess a weak L∞-solution except for some particular initial data
even if they are assumed to be small [29]. In contrast to the standard cases, here
the second (linear) component v may contain Dirac measures and must be sought
in the space of measures, while the first component u has bounded variation. That
is the reason to introduce a new type of generalized solutions called δ-shocks.

In particular, it is well known (see below), that for some cases of systems (1.1),
(1.2) the Cauchy problem with the initial data

u0(x) = u0 + u1H(−x), v0(x) = v0 + v1H(−x), (1.4)

where u0, u1, v0, v1 are constants and H(ξ) is the Heaviside function, may admit a
δ-shock wave type solution, i.e., a generalized solution of the form

u(x, t) = u0 + u1H(−x + ct),
v(x, t) = v0 + v1H(−x + ct) + e(t)δ(−x + ct), (1.5)

where e(t) is a smooth function such that e(0) = 0 and δ(ξ) is the Dirac delta
function.

Recently, the theory of δ-shock type solutions for systems of conservation laws
has attracted intensive attention. In particular, there are large number of papers
where the system of zero-pressure gas dynamics is studied.

Several approaches to constructing δ-shock type solutions are known. An appar-
ent difficulty in defining such solutions arises due to the fact that, to introduce a
definition of the δ-shock type solution, we need to define singular superpositions of
distributions (for example, the product of the Heaviside function and the δ-function).
We also need to define in which sense a distributional solution (for example, (1.5))
satisfies nonlinear systems.

In what follows, we present a short review of well-known methods used to solve
problems close to those studied in this paper.

In [23], a δ-shock wave type solution of the system

ut + (u2/2)x = 0, vt + (uv)x = 0

(here F (u, v) = u2/2, G(u, v) = vu) with the initial data (1.4), is defined as a weak
limit of the solution (u(x, t, ε), v(x, t, ε)) of the parabolic regularization

ut + (u2/2)x = εuxx, vt + (uv)x = εvxx

with the initial data (1.4), as ε → +0.
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In [21], in order to construct a δ-shock wave type solution of the system

ut +
(
f(u)

)
x

= 0, vt +
(
g(u)v

)
x

= 0, (1.6)

(here F (u, v) = f(u), G(u, v) = vg(u)) it is reduced to a system of Hamilton–Jacobi
equations, and then the Lax formula is used. In [18], a δ-shock wave type solution
of system (1.6) is constructed as self-similar viscosity limit.

In [29], to construct a δ-shock wave type solution of system (1.6) for the case
g(u) = f ′(u), the problem of multiplication of distributions is solved by using the
definition of Volpert’s averaged superposition [58]. In [42], a general framework for
nonconservative product

g(u)
du

dx
(1.7)

was introduced, where g : Rn → Rn is locally bounded Borel function and u :
(a, b) → Rn is a discontinuous function of bounded variation. In the framework
of this approach the Cauchy problems for nonlinear hyperbolic systems in non-
conservative form can be considered [29], [30], [31]. Note that in [30], [31], for non-
conservative systems the notion of generalized solution does depend on the specific
family of paths, which can not be derived from the hyperbolic system only .

The system

ut + (u2 − v)x = 0, vt +
(1

3
u3 − u

)
x

= 0 (1.8)

(here F (u, v) = u2 − v, G(u, v) = 1
3u3 − u) with the initial data (1.4) is studied

in [27], [26]. In [26], in order to construct approximate solutions, the Colombeau
theory approach, as well as the Dafermos–DiPerna regularization (under the as-
sumption that Dafermos profiles exist), and the box approximations are used. But
the notion of a singular solution has not been defined . It is unclear in which sense
δ-shock solution (1.5) satisfies the system (1.8). In [48], the existence of Dafermos
profiles for singular shocks is proved. A generalization of Keyfitz–Kranzer system ( 1

3
replace by γ

3 , 0 < γ ≤ 1) is discussed in [47]. In [50], a class of problems for which
the lowest-order asymptotic approximations to Dafermos profiles can be constructed
is identified. System (1.8) is an example of a system satisfying general hypotheses
of paper [50].

In [56], for the system

ut + (u2)x = 0, vt + (uv)x = 0,

in [7] for the system of “zero-pressure gas dynamics”

vt +
(
vu

)
x

= 0, (vu)t +
(
vu2

)
x

= 0, (1.9)

(here G(u, v) = uv, H(u, v) = vu2), in [60] for the system

vt +
(
vf(u)

)
x

= 0, (vu)t +
(
vuf(u)

)
x

= 0, (1.10)

(here G(u, v) = vf(u), H(u, v) = vuf(u)) with the initial data (1.4), the δ-shock
wave type solution is defined as a measure-valued solution.

Recall the definition of a measure-valued solution. Let BM(R) be the space
of bounded Borel measures. A pair (u, v), where u(x, t) ∈ L∞

(
L∞(R), [0, ∞)

)
,

v(x, t) ∈ C
(
BM(R), [0,∞)

)
, and u is measurable with respect to v at almost all

t ≥ 0, is said to be a measure-valued solution of the Cauchy problem (1.10), (1.4) if
the integral identities ∫ ∞

0

∫ (
ϕt + f(u)ϕx

)
v(dx, t) = 0,

∫ ∞

0

∫
u
(
ϕt + f(u)ϕx

)
v(dx, t) = 0,

(1.11)



4 S. ALBEVERIO AND V. M. SHELKOVICH

hold for all ϕ(x, t) ∈ D(R × [0, ∞)). Within the framework of this definition the
following formula for δ-shock wave type solution was derived

(u(x, t), v(x, t)) =





(
u−, v−

)
, x < φ(t),(

uδ, w(t)δ(x− φ(t))
)
, x = φ(t),(

u+, v+
)
, x > φ(t).

(1.12)

Here u−, u+ and uδ are the velocities before the discontinuity, after the discontinuity,
and at the point of discontinuity, respectively, and φ(t) = σδt is the equation for the
discontinuity line.

The same type of definition of δ-shock wave type solution is used in [32], [33],
[34] [55], to solve the Riemann problem for multidimensional system of “zero-pressure
gas dynamics”

ρt +∇ · (ρU) = 0, (ρU)t +∇ · (ρU ⊗ U) = 0, (1.13)

where ρ = ρ(x, t) ≥ 0 is the density, U = (u1(x, t), . . . , un(x, t)) ∈ Rn is the velocity,
x = (x1, . . . , xn) ∈ Rn, ∇ =

(
∂

∂x1
, . . . , ∂

∂xn

)
, · is the scalar product of vectors,

⊗ is the usual tensor product of vectors. Here the case of planar multidimensional
δ-shock was only considered.

In [17], for system (1.9) the global δ-shock wave type solution in the sense of
Radon measures was obtained. In [22], for this system the uniqueness of the weak
solution is proved for the case when the initial value is a Radon measure.

In [45], [46], for a 2-D system of “zero-pressure gas dynamics” the notion of
generalized solutions in terms of Radon measures is introduced, and the problem
of the propagation of δ-shock waves is considered. The existence of a global weak
solution for the multidimensional system of “zero-pressure gas dynamics” is obtained
in [49].

There is the singular-front problem: for a system of conservation laws (or for
nonlinear equation) to describe the propagation and interaction of singular fronts
starting from the initial positions. We recall that the classical singular-front problem
for shocks was solved by A. Majda [36]– [38] (see also G. Métivier [43]). Note that
physically interesting processes usually occur on the wave front.

In [9], [10]– [15], [53], [54], a new approach to solving the singular-front problem
was developed. This approach is called the weak asymptotics method . The key role
in the method is played by the definition of a weak asymptotic solution of the Cauchy
problem, which admits passing to the limit in the weak sense as ε → 0, where ε is the
regularization parameter. Using V. P. Maslov’s idea, this method permits to derive
the Rankine–Hugoniot conditions directly from the differential equations considered
in the weak sense. V. P. Maslov’s algebras of singularities are also contained in the
basis of our method [39], [40], [41], [8], [52].

By using the techniques of the weak asymptotics method in the above mentioned
papers the dynamics of propagation and interaction of different nonlinear waves
(infinitely narrow δ-solitons, shocks, δ-shocks) of nonlinear equations and hyperbolic
systems of conservation laws is studied.

In the framework of the weak asymptotics method , in [13]– [15] new Defini-
tions 2.1, 2.2 of a δ-shock wave type solution for systems (1.1), (1.2) were introduced.
These definitions are close to the standard Definition (1.3) of a weak L∞-solution
and relevant to the δ-shock front problem. Using the weak asymptotics method , the
propagation of δ-shock waves in systems (1.8), (1.9) is described. Formulas describ-
ing the propagation and interaction of δ-shock waves are constructed for system
(1.6).
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1.2. Contents of the paper. In Subsec. 1.3 a brief sketch scheme of the weak
asymptotics method is given. Definitions 2.1, 2.2 of a δ-shock wave type solution
for systems (1.1), (1.2) are given, and corresponding Rankine–Hugoniot conditions
for δ-shocks are derived in Subsec. 2.1. We stress that the cases of systems (1.1)
and (1.2) are studied separately. The Cauchy problem and the Rankine–Hugoniot
conditions for system (1.2) are essentially different from the Cauchy problem and
the Rankine–Hugoniot conditions for system (1.1) (see Remark 2.1 and [14]).

Next, the geometrical and physical sense of the Rankine–Hugoniot conditions
for systems (1.1), (1.2) and the geometric aspect of δ-shock formation from suffi-
ciently smooth compactly supported initial data are considered in Subsec. 2.2. We
recall that the geometric aspect of shock formation was considered in [59, 2.8.]. In
Subsec. 2.2 δ-shock balance relations for the area and mass transportation are also
derived.

In Subsec. 2.3 we introduce the notion of a weak asymptotic solution of the Cauchy
problem, which is one of the most important notions in the weak asymptotics method .

In Sec. 3 we study the problem of the propagation of a δ-shock in system

L11[u, v] = ut +
(
f(u)− v

)
x

= 0,

L12[u, v] = vt +
(
g(u)

)
x

= 0,
(1.14)

where f(u) =
∑n

k=0 Akuk, An 6= 0, g(u) =
∑n+1

k=0 Bkuk, Bn+1 6= 0, are polynomials,
n is an even integer, u = u(x, t), v = v(x, t) ∈ R, x ∈ R. The Keyfitz–Kranzer
system (1.8) is a well known particular case of system (1.14). We solve the Cauchy
problem for system (1.14) with the δ-shock front initial data

u0(x) = u0
0(x) + u0

1(x)H(−x),
v0(x) = v0

0(x) + v0
1(x)H(−x) + e0δ(−x),

(1.15)

where u0
k(x), v0

k(x), k = 0, 1 are given smooth functions, e0 is a given constant.

Remark 1.1. The system (1.14) and its particular case (1.8) differ from above systems
(1.6), (1.9) and have a specific “strange” property. Namely, they have no balance
of singularities. Let (u, v) be a δ-shock type solution (1.5) of system (1.8). Hence,
u contains the Heaviside function H, and v contains the Heaviside function H and
δ-function (see (1.5). Thus, u2 − v contains the distributions H, δ, and 1

3u3 − u

contains the distribution H. It is easily seen that the term (u2 − v)x contains the
distributions H, δ, δ′, while the term ut contains only the distributions H and δ.
Analogously, the term vt contains the distributions H, δ, δ′, but the term (u3/3−u)x

contains only the distributions H, δ. Seemingly, it is impossible to obtain δ-shock
type solutions for systems (1.14), (1.8). Nevertheless, we prove by Theorems 3.2, 3.3
that there are exact solutions of this type.

δ-Shock wave type solutions for specific “strange” systems (1.14), (1.8) were first
constructed in [53] for piecewise constant initial data. Namely, in this paper we
prove that δ-shock wave type solutions satisfy the integral identities (2.1).

We shall seek a δ-shock wave type solution of the Cauchy problems (1.14), (1.15)
and (1.8), (1.15) in the form

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)), (1.16)

where u0(x, t), u1(x, t), v0(x, t), v1(x, t), e(t), φ(t) are desired functions.
As in [18], [26], [56], we use the “overcompression” condition (see [35])

λ1(u+, v+) ≤ φ̇(t) ≤ λ1(u−, v−),
λ2(u+, v+) ≤ φ̇(t) ≤ λ2(u−, v−)

(1.17)
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as the admissibility condition for the δ-shocks. Here λ1(u, v), λ2(u, v) are eigenvalues
of the characteristic matrix of a hyperbolic system of conservation laws, φ̇(t) is the
velocity of propagation of δ-shock wave, i.e., the velocity of motion of the δ-shock
front, and u−, v− and u+, v+ are the respective left- and right-hand values of u,
v on the discontinuity curve. It means that all characteristics on both sides of the
discontinuity are in-coming.

A δ-shock wave type solution (1.16) is defined as a weak limit of a weak asymptotic
solution of the Cauchy problem (1.14), (1.15). In the framework of our approach, we
will construct a weak asymptotic solution as a sum of the singular ansatz regularized
with respect to singularities H(−x + φ(t)) and δ(−x + φ(t)), and corrections:

u(x, t, ε) = ũ(x, t, ε) + Ru(x, t, ε),
v(x, t, ε) = ṽ(x, t, ε) + Rv(x, t, ε),

where a pair of functions
(
ũ(x, t, ε), ṽ(x, t, ε)

)
is a regularization of the singular

ansatz (1.16), and the corrections Ru(x, t, ε), Rv(x, t, ε) are the desired functions,
which must admit the estimates:

Rj(x, t, ε) = oD′(1),
∂Rj(x, t, ε)

∂t
= oD′(1), ε → +0, j = u, v. (1.18)

In order to construct a regularization f(x, ε) of the distribution f(x) ∈ D′(R) we
use the representation

f(x, ε) = f(x) ∗ 1
ε
ω

(
x

ε

)
, ε > 0, (1.19)

where ∗ is a convolution, and a mollifier ω(η) has the following properties: (a)
ω(η) ∈ C∞(R), (b) ω(η) has a compact support or decreases sufficiently rapidly
as |η| → ∞, (c)

∫
ω(η) dη = 1, (d) ω(η) ≥ 0, (e) ω(−η) = ω(η). We have

lim
ε→+0

〈
f(ξ, ε), φ(ξ)

〉
=

〈
f, φ

〉
for all φ ∈ D(R).

Thus, we will seek a weak asymptotic solution in the form

u(x, t, ε) = u0(x, t) + u1(x, t)Hu(−x + φ(t), ε)
+Ru(x, t, ε),

v(x, t, ε) = v0(x, t) + v1(x, t)Hv

(− x + φ(t), ε
)

+e(t)δ
(− x + φ(t), ε

)
+ Rv(x, t, ε),

(1.20)

where the corrections are defined by (3.1), and according to (1.19),

δ(x, ε) =
1
ε
ωδ

(
x/ε

)
(1.21)

is a regularization of the δ-function,

Hj(x, ε
)

= ω0j

(x

ε

)
=

∫ x/ε

−∞
ωj(η) dη, j = u, v (1.22)

are regularizations of the Heaviside function H(x). Here the mollifiers ωu(η), ωv(η),
ωδ(η) have properties (a)–(e). It is clear that ω0j(η) ∈ C∞(R), limη→+∞ ω0j(η) = 1,
limη→−∞ ω0j(η) = 0, j = u, v.

A weak asymptotic solution of the Cauchy problem (1.14), (1.15) is constructed in
Theorem 3.1. Note, if e0 = 0, and the initial data are piecewise constant, according
to Corollary 3.2 and Remark 3.1, our results on a weak asymptotic solution of system
(1.8) coincide with the main statements of [26]. In particular, the Rankine–Hugoniot
deficit ė(t) = [u3]

3 − [u]− [v] [u
2]−[v]
[u] is positive.

By Theorems 3.2, 3.3 a weak limit of a weak asymptotic solution (1.20) of the
Cauchy problem (1.14), (1.15) satisfies the integral identities (2.1). Thus a δ-shock
wave type solution of the Cauchy problem (1.14), (1.15) is constructed.
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The results of Secs. 2 on the geometrical and physical sense of the Rankine–
Hugoniot conditions for δ-shocks were first published in [54]. The results of Secs. 3 on
the propagation of δ-shocks in systems (1.14), (1.8) were first published in [53], [54].

In Secs. 4 and 5 we study the problem of propagation of δ-shock waves for a
multidimensional system of “zero-pressure gas dynamics” in non-conservative form

L1[ρ, U ] = ρt +∇ · (ρU) = 0,
L2[U ] = Ut + (U · ∇)U = 0.

(1.23)

Thus, we solve the Cauchy problem for system (1.23) with the δ-shock front initial
data

ρ0(x) = ρ0
0(x) + ρ0

1(x)H
(− S0(x)

)
+ ê 0(x)δ

(
S0(x)

)
,

U0(x) = U0
0 (x) + U0

1 (x)H
(− S0(x)

)
,

(1.24)

where U0 = (u0
1, . . . , u

0
n), U0

k = (u0
k1, . . . , u

0
kn), ρ0

k ≥ 0, k = 0, 1, u0
j = u0

0j +
u0

1jH
(
S0(x)

)
, ê 0 ≥ 0, S0 are given smooth functions, j = 1, . . . , n, x ∈ Ω0, Ω0 is

a compact in Rn; H(S0) is the Heaviside function, δ(S0) is the Dirac delta function.
The facts related to distributions concentrated on the surfaces are fully explained in
Sec. 6.2.

We assume that∇S0(x)
∣∣
S0=0

6= 0, i.e., Γ0 =
{
x : S0(x) = 0

}
is a smooth compact

initial hypersurface of codimension 1 in the space Rn. Denote by Ω−0 = {x : S0(x) <
0} and Ω+

0 = {x : S0(x) > 0} the domains on the one side and on the other side
of the hypersurface Γ0. Here ρ0 = ρ0− = ρ0

0 + ρ0
1, U0− = U0

0 + U0
1 if x ∈ Ω−0 ,

and ρ0 = ρ0+ = ρ0
0, U0+ = U0

0 if x ∈ Ω+
0 . In a neighborhood of any point of the

surface Γ0, one can introduce local coordinates (τ, τ̃), where τ = S0(x) and the
other coordinates τ̃ = (τ̃2, . . . , τ̃n) can be chosen so that the formulas relating x and
(τ, τ̃) are determined by infinitely differentiable functions with positive Jacobian. It
is clear that in local coordinates the function ê 0(x) depends only on the variable τ̃ .

In addition to (1.24), we assume that the geometric entropy condition

U0+(x) · ν
∣∣∣
Γ0

< U0−(x) · ν
∣∣∣
Γ0

(1.25)

is satisfied for the initial data, where ν = ∇S0(x)
|∇S0(x)| is the unit space normal of Γ0

oriented from Ω−0 to Ω+
0 . Thus, U1

0 (x) · ν
∣∣∣
Γ0

> 0. Condition (1.24) implies that all

characteristics on both sides of initial discontinuity Γ0 must overlap (see below).
Thus, we shall solve the classical multidimensional singular-front problem for δ-

shocks.
For smooth solutions, system (1.23) can be rewritten in conservative form (1.13).

Systems (1.23), (1.13) are obtained from the isentropic Euler equations

ρt +∇ · (ρU) = 0,
(ρU)t +∇ · (ρU ⊗ U) +∇p(ρ) = 0,

where the pressure term p(ρ) is set to be equal to zero.
Let us mention that system (1.13) has its origin in the theory of kinetic equations

ft + V · ∇f = 0. If we look for solutions of the form

f(x, t, V ) = ρ(x, t)δ
(
V − U(x, t)

)
,

using Lemma 6.3, we obtain (1.13) for (ρ, U) (see [17], [32]).
The second equation Ut + (U · ∇)U = 0 in system (1.23) is the inviscid Burgers

equation which was used in [61], [1] to describe the formation of large-scale structures
of the universe. Further, in [51], the whole system (1.23) was used as a model to
describe the formation of large-scale structures of the universe. The models of “zero-
pressure gas dynamics” (1.23) and (1.13) (called the “sticky particle dynamics”) can
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be described at a discrete level by a finite collection of particles. These models are
used to describe the motion of free particles which stick under collision. In [16],
propagation chaos for the multidimensional viscous “zero-pressure gas dynamics” is
studied.

In Sec. 4, the Definition of a δ-shock wave type solution of non-conservative
system (1.23) is given.

In Sec. 5, we shall seek a δ-shock wave type solution of the Cauchy problem (1.23),
(1.24), (1.25) in the form

ρ(x, t) = ρ0(x, t) + ρ1(x, t)H
(− S(x, t)

)
+ ê(x, t)δ

(
S(x, t)

)
,

U(x, t) = U0(x, t) + U1(x, t)H
(− S(x, t)

)
,

(1.26)

where vector-functions U = (u1, . . . , un), Uk = (uk1, . . . , ukn) and functions ρk ≥ 0,
ê ≥ 0, S, k = 0, 1, are to be found, Γt =

{
x : S(x, t) = 0

}
is the δ-shock wave front.

We shall construct a weak asymptotic solution of the Cauchy problem (1.23),
(1.24) in the form of the smooth ansatz :

ρ(x, t, ε) = ρ̃(x, t, ε), U(x, t, ε) = Ũ(x, t, ε),

where a pair
(
ρ̃(x, t, ε), Ũ(x, t, ε)

)
is a regularization of the singular ansatz (1.26)

with respect to the singularities H(x) and δ(x). Thus a weak asymptotic solution
has the form

ρ(x, t, ε) = ρ0(x, t) + ρ1(x, t)Hρ

(− S(x, t), ε
)

+ ê(x, t)δ
(
S(x, t), ε

)
,

uj(x, t, ε) = u0j(x, t) + u1j(x, t)Hj

(− S(x, t), ε
)
, j = 1, . . . , n,

(1.27)

where a regularization of the δ-function δ(ξ, ε) is given by formula (1.21), and regu-
larizations of the Heaviside function H(ξ)

Hρ(ξ, ε) = ω0ρ

(ξ

ε

)
=

∫ x
ε

−∞
ωρ(η) dη, Hj(ξ, ε) = ω0j

(ξ

ε

)
=

∫ x
ε

−∞
ωj(η) dη (1.28)

are given by formula (1.22). Here functions ω0j ∈ C∞(R), limz→+∞ ω0j(z) = 1,
limz→−∞ ω0j(z) = 0, and mollifiers ωρ, ωj , ωδ have properties (a)–(e), j = 1, . . . , n.

In Theorem 5.1, a weak asymptotic solution of the Cauchy problem (1.23), (1.24)
is constructed. In Theorem 5.2, we construct a δ-shock type solution of the Cauchy
problem as a weak limit of a weak asymptotic solution (1.27).

In Theorem 5.3, the δ-shock balance relation for the mass transportation is de-
rived. According to Theorems 5.2, 5.3, on the δ-shock wave front Γt the concentration
process is going on.

By Corollary 5.1 we obtain a solution of the Cauchy problem in the case of
piecewise constant initial data. The Cauchy problem (1.23), (1.24), (1.25) has only
a δ-shock wave type solution (see Remark 5.2).

Just like system (1.14), our system (1.23) has “bad” properties. It is non-
conservative linear degenerate hyperbolic system with repeated eigenvalues which
has n linearly independent corresponding eigenvectors.

Note that the initial data (1.15) and (1.24) may contain a δ-function, but as
a rule, in the well-known papers on δ-shocks, initial data without a δ-function is
considered, because the technical base of these papers is connected with self-similar
solutions.

1.3. The scheme of the weak asymptotics method. We solve the above men-
tioned Cauchy problems using the weak asymptotics method .

a. To study the propagation of a solitary δ-shock wave, we seek a δ-shock wave
type solution of the Cauchy problem (1.14), (1.15) or (1.23), (1.24), (1.25) in the
form of the singular ansatz (1.16) or (1.26), which preserves the structure of the
initial data (1.15) or (1.24).
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b. Next, we construct a weak asymptotic solution of the problem in the form of
the smooth ansatz (1.20) or (1.27). This smooth ansatz is the sum of the singular
ansatz regularized with respect to singularities and corrections. Let us note that
choosing the corrections is an essential part of the “right” construction of the weak
asymptotic solution [12]– [15], [53], [54].

c. The next step is to substitute the smooth ansatz (1.20) or (1.27) into system
(1.14) or (1.23) and calculate the weak asymptotics of the left-hand side of this sys-
tem up to oD′(1), as ε → +0. The definition of oD′(1) is introduced in Subsec. 2.3
and Sec. 4. We stress that in the framework of the weak asymptotics method, the
discrepancy is assumed to be small in the sense of the space of functionals D′x over
test functions depending only on the “space” variable x. The weak asymptotics of
the left-hand side of the system can be represented as linear combinations of the
singularities H, δ, δ′ with smooth coefficients. That is why we can “separate” the
singularities and find a system of equations (in particular, the Rankine–Hugoniot
conditions), which describes the dynamics of singularities and defines the desired
functions. The weak asymptotic solutions of our problems are constructed in Theo-
rems 3.1, 5.1.

d. Generalized δ-shock wave type solutions of the Cauchy problems are con-
structed in Theorems 3.2, 5.2 by using weak asymptotic solutions. We stress that
generalized solutions are independent of either mollifiers or corrections.

The problem of defining δ-shock wave type solutions is connected with the con-
struction of singular superpositions (products) of distributions. In this paper we omit
the algebraic aspects of our technique which are given in detail in [8], [9], [52]. The
“right” singular superpositions of distributions can be obtained only in the context of
constructing a weak asymptotic solution to the Cauchy problems. The explicit for-
mulas for the “right” singular superpositions are given and discussed in Subsec. 3.4
and Subsec. 5.4.

If we knew in advance the “right” singular superpositions constructed by (3.22),
(3.23) and (5.43)–(5.45) then Theorem 3.2 and Theorem 5.2 could be proved explic-
itly by substituting these superpositions into systems (1.14) and (1.23), respectively.

2. One-dimensional δ-shock wave type solutions

2.1. Generalized solutions. Rankine–Hugoniot conditions. Suppose that
Γ = {γi : i ∈ I} is a connected graph in the upper half-plane {(x, t) : x ∈ R, t ∈
[0,∞)} ∈ R2 containing smooth arcs γi, i ∈ I, and I is a finite set. By I0 we denote
a subset of I such that an arc γk for k ∈ I0 starts from the points of the x-axis;
Γ0 = {x0

k : k ∈ I0} is the set of initial points of arcs γk, k ∈ I0.
Let (u0(x), v0(x)) be δ-shock wave type initial data, where

v0(x) = V 0(x) + e0δ(Γ0),

u0, V 0 ∈ L∞
(
R;R

)
, and e0δ(Γ0)

def
=

∑
k∈I0

e0
kδ(x− x0

k), e0
k are constants, k ∈ I0.

Let us introduce the definition of a δ-shock wave type solution for system (1.1).

Definition 2.1. ( [13]– [15]) A pair of distributions
(
u(x, t), v(x, t)

)
and graph Γ,

where v(x, t) is represented in the form of the sum

v(x, t) = V (x, t) + e(x, t)δ(Γ),

u, V ∈ L∞
(
R×(0, ∞);R

)
, e(x, t)δ(Γ)

def
=

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈ C1(Γ), i ∈ I,

is called a generalized δ-shock wave type solution of system (1.1) with the initial data



10 S. ALBEVERIO AND V. M. SHELKOVICH

(u0(x), v0(x)) if the integral identities
∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt +

∑

i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+
∫

V 0(x)ϕ(x, 0) dx +
∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

(2.1)

hold for all test functions ϕ(x, t) ∈ D(R × [0, ∞)), where ∂ϕ(x,t)
∂l is the tangential

derivative on the graph Γ,
∫

γi
· dl is a line integral over the arc γi.

Theorem 2.1. Let us assume that Ω ⊂ R× (0, ∞) is some region cut by a smooth
curve Γ into a left- and right-hand parts Ω∓, (u(x, t), v(x, t)) and Γ is a generalized
δ-shock wave type solution of system (1.1) and (u(x, t), v(x, t)) is smooth in Ω±.
Then the Rankine–Hugoniot conditions for δ-shocks[

F (u, v)
]
Γ
ν1 +

[
u
]
Γ
ν2 = 0,[

G(u, v)
]
Γ
ν1 +

[
v
]
Γ
ν2 = ∂e(x,t)|Γ

∂l ,
(2.2)

hold along Γ, where n = (ν1, ν2) is the unit normal to the curve Γ pointing from Ω−
into Ω+, [

h(u, v)
]∣∣∣

Γ
=

(
h(u−, v−)− h(u+, v+)

)∣∣∣
Γ

is a jump in function h(u(x, t), v(x, t)) across the discontinuity curve Γ, (u∓, v∓)
are respective left- and right-hand values of (u, v) on the discontinuity curve.

If Γ = {(x, t) : x = φ(t)}, Ω± = {(x, t) : ±(x−φ(t)) > 0} then relations (2.2) can
be rewritten as

φ̇(t) = [F (u,v)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[G(u, v)]− [v] [F (u,v)]

[u]

)∣∣∣
x=φ(t)

,
(2.3)

where e(t)
def
= e(x, t)

∣∣
x=φ(t)

, and ˙(·) = d
dt (·).

Proof of Theorem 2.1. Selecting the test function ϕ(x, t) with compact support in
Ω±, we deduce from (2.1) that (1.1) hold in Ω±, respectively. Now, choosing a test
function ϕ(x, t) with support in Ω, we deduce from the second identity (2.1) that

0 =
∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt

=
∫ ∫

Ω−

(
V ϕt + G(u, V )ϕx

)
dx dt +

∫ ∫

Ω+

(
V ϕt + G(u, V )ϕx

)
dx dt.

Next, integrating by parts, we obtain∫ ∫

Ω±

(
V ϕt + G(u, V )ϕx

)
dx dt

= −
∫ ∫

Ω±

(
Vt +

(
G(u, V )

)
x

)
ϕdx dt∓

∫

Γ

(
ν2v± + ν1G(u±, v±)

)
ϕdl

= ∓
∫

Γ

(
ν2v± + ν1G(u±, v±)

)
ϕ dl,

owing to (1.1). Adding the last relations, we have
∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt =

∫

Γ

([
G(u, v)

]
ν1 +

[
v
]
ν2

)
ϕ(x, t) dl (2.4)
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for all ϕ(x, t) ∈ D(Ω).
Now, integrating by parts, we can easily see that

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl = −

∫

Γ

∂e(x, t)
∂l

ϕ(x, t) dl, (2.5)

where
∂

∂l
e(x, t)|Γ =

∂

∂t
e(x, t)

∣∣
Γ
ν1 − ∂

∂x
e(x, t)

∣∣
Γ
ν2, l = (−ν2, ν1).

Adding (2.4) and (2.5), we deduce
∫

Γ

([
G(u, v)

]
ν1 +

[
v
]
ν2 − ∂e(x, t)

∂l

)
ϕ(x, t) dl = 0

for all ϕ(x, t) ∈ D(Ω). Thus the second relation (2.2) holds.
We obtain the proof of the first relation (2.2) using formula (2.4).
If Γ = {(x, t) : x = φ(t)} then n = (ν1, ν2) = 1√

1+(φ̇(t))2

(
1,−φ̇(t)

)
and

∂ϕ(x, t)
∣∣
Γ

∂l
=

1√
1 + (φ̇(t))2

(
∂ϕ(φ(t), t)

∂t
+ φ̇(t)

∂ϕ(φ(t), t)
∂x

)

=
1√

1 + (φ̇(t))2

dϕ(φ(t), t)
dt

. (2.6)

In view of (2.6), relations (2.2) imply (2.3). ¤

The first equation (2.2) (or (2.3)) is the standard Rankine–Hugoniot condition.
The left-hand side of the second equation (2.2) (or (2.3)) is called the Rankine–
Hugoniot deficit .

Now we introduce a definition of a δ-shock wave type solution for system (1.2).
This definition for the case of “zero-pressure gas dynamics system” was first pre-
sented in [13]. Suppose that arcs of the graph Γ = {γi : i ∈ I} have the form
γi = {(x, t) : x = φi(t)}, i ∈ I.

Definition 2.2. A pair of distributions
(
u(x, t), v(x, t)

)
and graph Γ from Defini-

tion 2.1 is called a generalized δ-shock wave type solution of system (1.2) with the
initial data

(
u0(x), v0(x); φ̇k(0), k ∈ I0

)
if the integral identities

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt +

∑

i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+
∫

V 0(x)ϕ(x, 0) dx +
∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

∫ ∞

0

∫ (
uV ϕt + H(u, V )ϕx

)
dx dt

+
∑

i∈I

∫

γi

ei(x, t)φ̇i(t)
∂ϕ(x, t)

∂l
dl

+
∫

u0(x)V 0(x)ϕ(x, 0) dx +
∑

k∈I0

e0
kφ̇k(0)ϕ(x0

k, 0) = 0,

(2.7)

hold for all ϕ(x, t) ∈ D(R× [0, ∞)).

Theorem 2.2. Let us assume that Ω ⊂ R× (0, ∞) is some region cut by a smooth
curve Γ into a left- and right-hand parts Ω∓, (u(x, t), v(x, t)) and Γ is a generalized
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δ-shock wave type solution of system (1.2) and (u(x, t), v(x, t)) is smooth in Ω±.
Then the Rankine–Hugoniot conditions for δ-shocks

ė(t) =
(
[G(u, v)]− [v]φ̇(t)

)∣∣∣
x=φ(t)

,

d
(
e(t)φ̇(t)

)

dt
=

(
[H(u, v)]− [uv]φ̇(t)

)∣∣∣
x=φ(t)

,
(2.8)

hold along Γ.

Theorem 2.2 is proved similarly to Theorem 2.1.

Remark 2.1. As was first pointed out in [13], the Cauchy problem for system (1.2) is
well-posed if in addition to the initial data (u0(x), v0(x)) we add the initial velocities
φ̇k(0), k ∈ I0. This modification is a direct consequence of the fact that in this
case, according to (2.8), the trajectory of a singularity x = φ(t) and the coefficient
of the δ-function e(t) are determined by a system of second-order equations. For
one-dimensional system of “zero-pressure gas dynamics” (1.9) this problem was con-
sidered in detail in [13]. In particular, the results [13, Theorem 4.4, Corollary 4.5.]
related to system (1.9) coincide with the analogous statement from [7], [32], [55] if
we identify the velocity on the discontinuity line x = φ(t) in formula (1.12) with the
phase velocity of nonlinear wave:

uδ(t) = φ̇(t).

Let us note that the Rankine–Hugoniot conditions (2.8) are analogous to the
Rankine–Hugoniot conditions [60, (3.7)].

The systems of δ-shocks integral identities (2.1) and (2.7) are natural generaliza-
tion of the usual system of integral identities (1.3). The integral identities (2.1)
differ from integral identities (1.3) by an additional term

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∑

i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

in the second identity. This term appears due to the Rankine–Hugoniot deficit . The
integral identities (2.7) differ from integral identities (1.3) by additional terms

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl,

∫

Γ

e(x, t)φ̇(t)
∂ϕ(x, t)

∂l
dl =

∑

i∈I

∫

γi

ei(x, t)φ̇i(t)
∂ϕ(x, t)

∂l
dl.

2.2. Geometrical and physical sense of δ-shock Rankine–Hugoniot con-
ditions. It is well known that if a pair of functions

(
u(x, t), v(x, t)

) ∈ L∞
(
R ×

(0,∞);R2
)

compactly supported with respect to x is a generalized solution of sys-
tem (1.1) then integrals of the solution on the whole space

∫
u(x, t) dx =

∫
u0(x) dx,

∫
v(x, t) dx =

∫
v0(x) dx, t ≥ 0 (2.9)

(that is, the total area, mass, momentum, energy, etc.) are independent of time,
where (u0(x), v0(x)) is initial data (see Fig. 1.).

For a δ-shock wave type solution this fact does not hold . However, there is a
“generalized” analog of conservation laws (2.9).
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Denote by

Su(t) =
∫ φ(t)

−∞ u(x, t) dx +
∫ +∞

φ(t)
u(x, t) dx,

Sv(t) =
∫ φ(t)

−∞ v(x, t) dx +
∫ +∞

φ(t)
v(x, t) dx,

Suv(t) =
∫ φ(t)

−∞ u(x, t)v(x, t) dx +
∫ +∞

φ(t)
u(x, t)v(x, t) dx,

Su(0) =
∫ 0

−∞ u0(x) dx +
∫ +∞
0

u0(x) dx,

Sv(0) =
∫ 0

−∞ v0(x) dx +
∫ +∞
0

v0(x) dx,

Suv(0) =
∫ 0

−∞ u0(x)v0(x) dx +
∫ +∞
0

u0(x)v0(x) dx,

(2.10)

the areas under the graphs y = u(x, t), y = V (x, t), y = u(x, t)V (x, t), and y = u0(x),
y = V 0(x), y = u0(x)V 0(x), respectively, where x = φ(t) is a line in the upper half-
plane {(x, t) : x ∈ R, t ∈ [0,∞)} issued from φ(0) = 0.

Theorem 2.3. ( [54]) Let the pair of distributions
(
u(x, t), v(x, t)

)
be a generalized

δ-shock wave type solution of the Cauchy problem (1.1) with δ-shock wave type initial
data, where v(x, t) = V (x, t) + e(t)δ(Γ), Γ = {(x, t) : x = φ(t)} is the discontinuity
line, and u(x, t), V (x, t) are compactly supported functions with respect to x. Then
the following balance relations hold:

Ṡu(t) = 0, Ṡv(t) = −ė(t), (2.11)

where

ė(t) =
(
[G(u, v)]− [v]

[F (u, v)]
[u]

)∣∣∣
x=φ(t)

is the Rankine–Hugoniot deficit. Thus,
∫ φ(t)

−∞
u(x, t) dx +

∫ +∞

φ(t)

u(x, t) dx

=
∫ 0

−∞
u0(x) dx +

∫ +∞

0

u0(x) dx,

∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

=
∫ 0

−∞
v0(x) dx +

∫ +∞

0

v0(x) dx + e0,

(2.12)

where e0 is an initial amplitude of the δ-function.

Proof of Theorem 2.3. Let us prove the second relation (2.11). We denote v± =
limx→φ(t)±0 v(x, t). Differentiating the second relation (2.10) and using the second
equation of system (1.1), we obtain

Ṡv(t) = v−φ̇(t)− v+φ̇(t) +
∫ φ(t)

−∞
vt(x, t) dx +

∫ +∞

φ(t)

vt(x, t) dx

= [v]
∣∣∣
x=φ(t)

φ̇(t)−
∫ φ(t)

−∞

(
G(u, v)

)
x

dx−
∫ +∞

φ(t)

(
G(u, v)

)
x

dx

= [v]
∣∣∣
x=φ(t)

φ̇(t)− [G(u, v)]
∣∣∣
x=φ(t)

+G
(
u(−∞, t), v(−∞, t)

)−G
(
u(+∞, t), v(+∞, t)

)
.

Taking into account that

G
(
u(−∞, t), v(−∞, t)

)
= G

(
u(+∞, t), v(+∞, t)

)
= G(0, 0) = 0
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and using the Rankine–Hugoniot conditions (2.3), we obtain

Ṡv(t) =
(

[v]
[F (u, v)]

[u]

∣∣∣
x=φ(t)

− [G(u, v)]
)∣∣∣∣

x=φ(t)

.

The first relation (2.11) is the well-known relation for ∈ L∞-generalized solutions
of conservation laws. The proof of this relation is carried out in the same way.
Integrating expressions (2.11), we obtain (2.12). ¤

From the second relation (2.12), we can see that the sense of amplitude e(t) of δ
function is the “area” of the discontinuity line. Moreover, the “total area” Sv(t)+e(t)
is independent of time.

Consider the geometric aspect of δ-shock formation from sufficiently smooth com-
pactly supported initial data (u0, v0) for system (1.1).

It is well known that the solution u and v must become multivalued at finite time.
Any multivalued part of the wave profile must be replaced by an appropriate discon-
tinuity. Construction for the position of shock in a breaking wave was considered
in [59, 2.8.]. Construction for the position of δ-shock in a breaking wave will be
given below. Let Au(t), Av(t) be the areas of the lobes to the left of discontinuity,
and Bu(t), Bv(t) be the areas of the lobes to the right of discontinuity.

Let t = t∗ be the time of δ-shock formation. Then, according to (2.12) (for
t = t∗) the correct initial positions for δ-shock discontinuities in u and v are such
that these discontinuities must cut off lobes of equal area, as on Fig. 1.. If t > t∗,
according to (2.12), the correct positions for δ-shock discontinuities in u and v are
such that the discontinuity in u must cut off lobes of equal area Bu(t) = Au(t)
(see Fig. 1.), while the discontinuity in v must cut off lobes whose areas satisfy the
relation Bv(t) = Av(t) + e(t) (see Fig. 2.).

It remains to note that at the time t = t∗ of δ-shock wave formation the area
Sv(t) is a continuous function with respect to t but its derivative has a jump.
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Figure 1. Equal area construction for the position of δ-shock in
breaking wave u(x, t).
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Figure 2. Nonequal area construction for the position of δ-shock
in breaking wave v(x, t).

Repeating the proof of Theorem 2.3 almost word for word, we obtain the following
assertion.

Theorem 2.4. ( [54]) Let the pair of distributions
(
u(x, t), v(x, t)

)
be a generalized

δ-shock wave type solution of the Cauchy problem (1.2) with δ-shock wave type initial
data, where v(x, t) = V (x, t) + e(t)δ(Γ), Γ = {(x, t) : x = φ(t)} is the discontinuity
line, and u(x, t), V (x, t) are compactly supported functions with respect to x. Then
the following balance relations hold:

Ṡv(t) = −ė(t), Ṡuv(t) = −d
(
e(t)φ̇(t)

)

dt
, (2.13)
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where ė(t),
d
(
e(t)φ̇(t)

)
dt are defined by system (2.8). Thus,

∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

=
∫ 0

−∞
v0(x) dx +

∫ +∞

0

v0(x) dx + e0,

∫ φ(t)

−∞
u(x, t)v(x, t) dx +

∫ +∞

φ(t)

u(x, t)v(x, t)v(x, t) dx + e(t)φ̇(t)

=
∫ 0

−∞
u0(x)v0(x) dx +

∫ +∞

0

u0(x)v0(x) dx + e0φ̇(0),

(2.14)

where e0 is the initial amplitude of δ-function, φ̇(0) is the initial velocity of δ-shock.

According to Theorem 2.4, the “total areas” Sv(t)+e(t) and Suv(t)+e(t)φ̇(t) are
independent of time.

The geometric aspect of δ-shock wave formation for system (1.2) can be considered
in the same way as that for system (1.1) above.

Consider the case of “zero-pressure gas dynamics” system (1.9). This system is
a particular case of system (1.2), where G(u, v) = uv, H(u, v) = vu2. In this case
v(x, t) ≥ 0 is density, and u(x, t) is velocity and hence, the area Sv(t) = M(t) is
mass, and the area Suv(t) = p(t) is momentum.

As has already been pointed in [54],

ė(t) > 0. (2.15)

Indeed, according to (2.8), the Rankine–Hugoniot conditions have the following form

ė(t) = [uv]− [v]φ̇(t)
∣∣∣
x=φ(t)

,

d
(
e(t)φ̇(t)

)

dt
= [u2v]− [uv]φ̇(t)

∣∣∣
x=φ(t)

.
(2.16)

System (1.9) has a double eigenvalue λ1(u) = λ2(u) = u, and in this case the entropy
“overcompression” condition (1.17) is

u+ ≤ φ̇(t) ≤ u−. (2.17)

Taking (2.15) and (2.16) into account, we see that

ė(t) = v−
(
u− − φ̇(t)

)
+ v+

(
φ̇(t)− u+

)
,

i.e., the inequality (2.15) holds.
According to Theorem 2.4, if (u, v) is compactly supported generalized δ-shock

wave type solution of “zero-pressure gas dynamics” system, we have the following
mass and momentum balance relations

ė(t) = −Ṁ(t),
d
(
e(t)φ̇(t)

)
dt = −ṗ(t), (2.18)

and
M(t) + e(t) = M(0) + e0,

p(t) + e(t)φ̇(t) = p(0) + e0φ(0),
(2.19)

where M(0) = Sv(0), p(0) = Suv(0) are initial mass and momentum, respectively.
In addition, equations (2.18) and (2.15) imply

Ṁ(t) < 0, (2.20)

i.e., the mass under the graph y = V (x, t) is a monotonically decreasing function.
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From formulas (2.19), we can see that the sense of amplitude e(t) of δ function is
the “mass” of discontinuity line, and the sense of the term e(t)φ̇(t) is the “momen-
tum” of discontinuity line. Moreover, the “total mass” M(t) + e(t) and the “total
momentum” p(t) + e(t)φ̇(t) are independent of time.

In the special case of the initial data M(0) = −e0, p(0) = −e0φ(0), from (2.19)
we can readily see that the discontinuity point x = φ(t) moves at the velocity

φ̇(t) =
p(t)
M(t)

, (2.21)

i.e., in such a way as if the total mass were concentrated at the point x = φ(t). Thus
the point x = φ(t) can be in a sense considered as the system barycenter.

In view of (2.20) and (2.19), it is clear that in the finite time interval t̃ the whole
mass M(0) + e0 will be concentrated at the point x = φ(t̃) of the discontinuity line
x = φ(t). After that we have vacuum states v− = v+ = 0 everywhere except for the
discontinuity line, and according to (2.16), the above mentioned point of the mass
e(t̃) = M(0) + e0 will move with the velocity φ̇(t̃) along the straight line

x = φ(t) = φ̇(t̃)
(
t− t̃

)
+ φ(t̃).

The model of “zero-pressure gas dynamics” can be described at a discrete level by
a finite collection of particles. In view of (2.15) and (2.20), the mass transportation
from area Sv(t) to the discontinuity curve is going on. Thus, the particles stick more
and more as the time increases, i.e., the concentration process on the discontinuity
curve x = φ(t) is going on. Thus at collision the colliding particles get stuck together
and form a new massive particle.

2.3. Weak asymptotic solutions. Now we introduce a definition of a weak asymp-
totic solution, which is one of the most important notions in the weak asymptotics
method .

Denote by OD′(εα) the collection of distributions f(x, t, ε) ∈ D′(Rx) such that

〈f(x, t, ε), ψ(x)〉 = O(εα),

for any test function ψ(x) ∈ D(Rx). Moreover, 〈f(x, t, ε), ψ(x)〉 is a continuous
function in t, where the estimate O(εα) is understood in the standard sense and is
uniform with respect to t. The relation oD′(εα) is understood in a corresponding
way.

Definition 2.3. ( [13], [14]) A pair of functions
(
u(x, t, ε), v(x, t, ε)

)
smooth as ε > 0

is called a weak asymptotic solution of systems (1.1) or (1.2) with the initial data
(u0(x), v0(x)) if

∫
L1[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),

∫
L2[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),

∫ (
u(x, 0, ε)− u0(x)

)
ψ(x) dx = o(1),

∫ (
v(x, 0, ε)− v0(x)

)
ψ(x) dx = o(1), ε → +0,

for all ψ(x) ∈ D(Rx), i.e.,

L1[u(x, t, ε), v(x, t, ε)] = oD′(1),
L2[u(x, t, ε), v(x, t, ε)] = oD′(1),

u(x, 0, ε) = u0(x) + oD′(1),
v(x, 0, ε) = v0(x) + oD′(1), ε → +0,

(2.22)
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where the first two estimates are uniform in t.

Within the framework of the weak asymptotics method , we find the generalized
δ-shock wave type solution (u(x, t), v(x, t)) to the Cauchy problem as the limit

u(x, t) = lim
ε→+0

u(x, t, ε), v(x, t) = lim
ε→+0

v(x, t, ε), (2.23)

of the weak asymptotic solution (u(x, t, ε), v(x, t, ε)) to this problem, where limits
are understood in the weak sense (in the sense of the space of distributions D′(R×
[0, ∞))). Constructing the weak asymptotic solution and multiplying the first two
relations (2.22) by a test function ϕ(x, t) ∈ D(R×[0, ∞)), integrating these relations
by parts and then passing to the limit as ε → +0, we see that the pair of distributions
(2.23) satisfy integral identities (2.1) or (2.7). Thus, we will prove that the left-hand
sides of the following relations

lim
ε→+0

∫ ∞

0

∫
L1[u(x, t, ε), v(x, t, ε)]ϕ(x, t) dx dt = 0,

lim
ε→+0

∫ ∞

0

∫
L2[u(x, t, ε), v(x, t, ε)]ϕ(x, t) dx dt = 0,

coincide with the left-hand sides of relations (2.1) or (2.7) for all test functions
ϕ(x, t) ∈ D(R× [0, ∞)).

3. Propagation of δ-shocks in system (1.14)

3.1. Choosing corrections. Let us consider the propagation of a single δ-shock
wave of system (1.14), i.e., consider the Cauchy problem (1.14), (1.15). In this case
the graph Γ contains only one arc. Suppose this arc has the form Γ = {(x, t) : x =
φ(t)}, and hence e(x, t)

∣∣
Γ

= e(t).
The eigenvalues of the characteristic matrix of system (1.14) are

λ1,2(u) =
1
2

(
f ′(u)±

√(
f ′(u)

)2 − 4g′(u)
)
,

(
f ′(u)

)2 ≥ 4g′(u).

We assume that the “overcompression” condition (1.17) is satisfied.
In the framework of our approach, we will seek a δ-shock wave type solution in

the form of the singular ansatz (1.16) and construct a weak asymptotic solution in
the form of the smooth ansatz (1.20).

Since a generalized δ-shock wave type solution is defined as a weak limit (2.23) of
(1.20), in view of the estimates (1.18), the corrections Ru(x, t, ε), Rv(x, t, ε) do not
make a contribution to the generalized solution of the problem. However, according
to (3.9), (3.10), these terms make a contribution to the weak asymptotics of the su-
perposition f

(
u(x, t, ε)

)−v(x, t, ε) and g
(
u(x, t, ε)

)
, and hence play an essential role

in the construction of the generalized solution to the problem. Without introducing
these terms, we cannot solve the Cauchy problem with arbitrary initial data (see
Remark 3.1 below).

Here we choose the corrections in the special form

Ru(x, t, ε) = P (t)
1

ε1/n
ΩP

(−x + φ(t)
ε

)

+Q(t)
1

ε1/(n+1)
ΩQ

(−x + φ(t)
ε

)
,

Rv(x, t, ε) = 0,

(3.1)

where P (t), Q(t) are the desired functions, 1
εΩn

P

(
x/ε

)
, 1

εΩn+1
Q

(
x/ε

)
are regulariza-

tions (1.21) of the delta function, mollifiers ΩP (η), ΩQ(η) have properties (a)–(c).
Consequently, the estimates (1.18) hold.
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It is clear that we can construct the weak asymptotic solution, using the correc-
tions of a different structure.

In addition to (3.1), we can choose mollifiers ΩP (η), ΩQ(η) such that
∫

Ωk
P (η)Ωn+1−k

Q (η) dη = 0, k = 1, 2, . . . n + 1,
∫

Ωn+1
Q (η) dη 6= 0,

∫
Ωn

P (η) dη 6= 0.
(3.2)

In particular, for Keyfitz–Kranzer system (1.8) f(u) = u2, g(u) = 1
3u3 − u and

relations (3.2) have the form
∫

Ω3
P (η) dη = 0,

∫
Ω2

P (η)ΩQ(η) dη = 0,

∫
ΩP (η)Ω2

Q(η) dη = 0.

In this case, for example, we can choose ΩP (η) = ηe−η2
, ΩQ(η) =

(
1 − 2η2

)
e−η2

.
This example was proposed by V. I. Polischook.

3.2. A weak asymptotic solution. The first step of our approach is to find a
weak asymptotic solution of the Cauchy problem (1.14), (1.15).

Theorem 3.1. ( [54]) Let

λ+(u0
+(0)) ≤ [f(u0)]− [v0]

[u0]

∣∣∣∣
x=0

≤ λ−(u0
−(0)), (3.3)

(u0
+ = u0

0, u0
− = u0

0 + u0
1) then there exists T > 0 such that, for t ∈ [0, T ), the

Cauchy problem (1.14), (1.15) has a weak asymptotic solution (1.20), (3.1), (3.2) if
and only if

L11[u+, v+] = 0, x > φ(t),
L11[u−, v−] = 0, x < φ(t),
L12[u+, v+] = 0, x > φ(t),
L12[u−, v−] = 0, x < φ(t),

φ̇(t) = [f(u)]−[v]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[g(u)]− [v] [f(u)]−[v]

[u]

)∣∣∣
x=φ(t)

,

(3.4)

P (t) =
( e(t)

aAn

)1/n

,

Q(t) =
{

e(t)
cBn+1

(
[f(u)]− [v]

[u]
− 1

An

(
Bn

+
((

1− b

a

)
u+ +

b

a
u−

)
(n + 1)Bn+1

))∣∣∣∣
x=φ(t)

}1/(n+1)

,

(3.5)

where u+ = u0, v+ = v0, u− = u0 + u1, v− = v0 + v1,

a =
∫

Ωn
P (η) dη > 0,

b =
∫

ω0u(η)Ωn
P (η) dη,

c =
∫

Ωn+1
Q (η) dη 6= 0.

(3.6)
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The initial data for system (3.4), (3.5) are defined from (1.15), and

e(0) = e0, φ(0) = 0,

P (0) =
( e0

aAn

)1/n

,

Q(0) =
{

e0

cBn+1

(
[f(u0)]− [v0]

[u0]
− 1

An

(
Bn

+
((

1− b

a

)
u0

+ +
b

a
u0
−

)
(n + 1)Bn+1

))}1/(n+1)∣∣∣∣
x=0

.

Proof of Theorem 3.1. With the help of (3.2), (3.6) and the fifth and sixth relations
(6.36) from Lemma 6.3, we find the following weak asymptotics

Rk(x, t, ε) = oD′(1), k ≤ n− 1,
Rn(x, t, ε) = aPn(t)δ(−x + φ(t)) + oD′(1),

Rn+1(x, t, ε) = cQn+1(t)δ(−x + φ(t)) + oD′(1),
H(−x + φ(t), ε)Rn(x, t, ε) = bPn(t)δ(−x + φ(t)) + oD′(1),

(3.7)

where a, b, c are defined by (3.6).
Using the first, fifth and sixth relations (6.36) from Lemma 6.3, one can calculate

(
u(x, t, ε)

)k = uk
0 +

(
(u0 + u1)k − uk

0

)
H(−x + φ(t))

+oD′(1), k ≤ n− 1,(
u(x, t, ε)

)n = un
0 +

(
(u0 + u1)n − un

0

)
H(−x + φ(t))

+Rn(x, t, ε) + oD′(1),(
u(x, t, ε)

)n+1 = un+1
0

+
(
(u0 + u1)n+1 − un+1

0

)
H(−x + φ(t))

+(n + 1)
(
u0 + u1H(−x + φ(t), ε)

)
×Rn(x, t, ε) + Rn+1(x, t, ε) + oD′(1).

(3.8)

In particular, we have
(
u(x, t, ε)

)2 = u2
0 +

(
(u0 + u1)2 − u2

0

)
H(−x + φ(t))

+aP 2(t)δ(−x + φ(t)) + oD′(1),(
u(x, t, ε)

)3 = u3
0 +

(
(u0 + u1)3 − u3

0

)
H(−x + φ(t))

+
(
3(au0 + bu1)P 2(t) + cQ3(t)

)
δ(−x + φ(t))

+oD′(1), ε → +0.

Taking into account relations (3.7), (3.8), we obtain the following weak asymp-
totics

f
(
u(x, t, ε)

)
= f(u0) +

(
f(u0 + u1)− f(u0)

)
H(−x + φ(t))

+aAnPn(t)δ(−x + φ(t)) + oD′(1), (3.9)

g
(
u(x, t, ε)

)
= g(u0) +

(
g(u0 + u1)− g(u0)

)
H(−x + φ(t))

+
{

aBnPn(t) + (n + 1)
(
au0 + bu1

)
Bn+1P

n(t)

+cBn+1Q
n+1(t)

}
δ(−x + φ(t)) + oD′(1), ε → +0. (3.10)

Substituting the smooth ansatz (1.20) and relations (3.9), (3.10) into the left-hand
side of system (1.14), we obtain, up to oD′(1), the following relations

L11[u(x, t, ε), v(x, t, ε)]

= L11[u+, v+] +
{∂[u]

∂t
+

∂

∂x

[
f(u)− v

]}
H(−x + φ(t))
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+
{

[u]φ̇(t)− [
f(u)− v

]}
δ(−x + φ(t))

+
{

e(t)− aAnPn(t)
}

δ′(−x + φ(t)) + oD′(1), (3.11)

L12[u(x, t, ε), v(x, t, ε)]

= L22[u+, v+] +
{∂[v]

∂t
+

∂

∂x

[
g(u)

]}
H(−x + φ(t))

=
{

[v]φ̇(t) + ė(t)−
[
g(u)

]}
δ(−x + φ(t))

+
{

e(t)φ̇(t)− aBnPn(t)− (n + 1)
(
au+ + b[u]

)
Bn+1P

n(t)

−cBn+1Q
n+1(t)

}
δ′(−x + φ(t)) + oD′(1), ε → +0. (3.12)

Here we take into account estimates (1.18).
Setting the left-hand side of (3.11), (3.12) equal to zero, we obtain the necessary

and sufficient conditions for the first two equalities (2.22), i.e., systems (3.4), (3.5).
Consider the Cauchy problem

L11[u, V ] = 0, u(x, 0) = u0(x),
L12[u, V ] = 0, V (x, 0) = V 0(x) = v0

0(x) + v0
1(x)H(−x), (3.13)

assuming that condition (3.3) holds. The last condition means that (u0(x), V 0(x))
is entropy initial data.

According to [38, Ch.4.2.], we extend a pair of functions
(
u0

+(x) = u0
0(x), V 0

+(x) = v0
0(x)

)
, x ≤ 0,(

u0
−(x) = u0

0(x) + u0
1(x), V 0

−(x) = v0
0(x) + v0

1(x)
)
, x ≥ 0,

in a bounded C1 fashion and continue to denote the extended pair of functions by(
u0
±(x), V 0

±(x)
)
. By

(
u±(x, t), V±(x, t)

)
we denote the C1 solutions of the problems

L11[u, V ] = 0, u±(x, 0) = u0
±(x),

L12[u, V ] = 0, V±(x, 0) = V 0
±(x),

which, according to [38, Ch.2.1.], [44, Ch.I,§8.], exist for small enough time interval
[0, T1]. The pair

(
u±(x, t), V±(x, t)

)
determines a two-sheeted covering of the plane

(x, t). Next, we define the function x = φ(t) as a solution of the problem

φ̇(t) =
f(u−(x, t))− f(u+(x, t))− V−(x, t)) + V+(x, t)

u−(x, t)− u+(x, t)

∣∣∣∣
x=φ(t)

,

φ(0) = 0. It is clear that there exists a unique function φ(t) for sufficiently short
times [0, T2]. Therefore, for T = min(T1, T2) we define the shock solution by

(u(x, t), V (x, t)) =
{

(u+(x, t), V+(x, t)), x > φ(t),
(u−(x, t), V−(x, t)), x < φ(t).

Thus the first five equations of system (3.4) define a unique solution of the Cauchy
problem (3.13) for t ∈ [0, T ). Solving this problem, we obtain u(x, t), V (x, t), φ(t).

Then, substituting these functions into (3.4), (3.5), we obtain e(t), v(x, t) =
V (x, t) + e(t)δ(−x + φ(t)), and P (t), Q(t). It is clear that mollifiers ΩP (η), ΩQ(η)
can be chosen to satisfy relations (3.2). ¤
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3.3. A generalized solution. At the second step, using the weak asymptotic so-
lution constructed by Theorem 3.1, we obtain a generalized solution of the Cauchy
problem (1.14), (1.15).

Theorem 3.2. There exists T > 0 given by Theorem 3.1 such that the Cauchy
problem (1.14), (1.15), (3.3) for t ∈ [0, T ) has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (2.1):
∫ T

0

∫ (
uϕt +

(
f(u)− V

)
ϕx

)
dx dt

+
∫

u0(x)ϕ(x, 0) dx = 0,
∫ T

0

∫ (
V ϕt + g(u)ϕx

)
dx dt +

∫
V 0(x)ϕ(x, 0) dx

+
∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl + e0ϕ(0, 0) = 0,

(3.14)

where Γ = {(x, t) : x = φ(t), t ∈ [0, T )},
∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

e(t)
dϕ(φ(t), t)

dt
dt,

V (x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)), functions uk(x, t), vk(x, t), φ(t), e(t) are
defined by system (3.4), and (see (2.6)) dϕ(φ(t),t)

dt = ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t).

Proof of Theorem 3.2. According to Eqs. (3.9), (3.10), (1.20), (3.1),

f
(
u(x, t, ε)

)− v(x, t, ε) = f(u0)− v0 +
[
f(u)− v

]
H(−x + φ(t))

+
{

aAnPn(t)− e(t)
}

δ(−x + φ(t)) + oD′(1), (3.15)

g
(
u(x, t, ε)

)
= g(u0) +

[
g(u)

]
H(−x + φ(t))

+
{

aBnPn(t) + (n + 1)
(
au0 + bu1

)
Bn+1P

n(t)

+cBn+1Q
n+1(t)

}
δ(−x + φ(t)) + oD′(1), ε → +0. (3.16)

where the correction functions P (t), Q(t) are given by (3.5). Substituting P (t), Q(t)
into expressions (3.15), (3.16) we have

f
(
u(x, t, ε)

)− v(x, t, ε)

= f(u0)− v0 +
[
f(u)− v

]
H(−x + φ(t)) + oD′(1), (3.17)

g
(
u(x, t, ε)

)
= g(u0) +

[
g(u)

]
H(−x + φ(t))

+e(t)

[
f(u)

]

[u]
δ(−x + φ(t)) + oD′(1), ε → +0. (3.18)

By Theorem 3.1 we have the following estimates:

L11[u(x, t, ε)v(x, t, ε)] = oD′(ε), L12[u(x, t, ε), v(x, t, ε)] = oD′(ε).
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Let us apply the left-hand and right-hand sides of these relations to an arbitrary test
function ϕ(x, t) ∈ D(R × [0, T )). Since for ε > 0 the functions u(x, t, ε), v(x, t, ε)
are smooth, we obtain, integrating by parts,

∫ T

0

∫ (
u(x, t, ε)ϕt(x, t) +

(
f(u(x, t, ε))− v(x, t, ε)

)
ϕx(x, t)

)
dxdt

+
∫

u(x, 0, ε)ϕ(x, 0) dx = o(1),

∫ T

0

∫ (
v(x, t, ε)ϕt(x, t) + g(u(x, t, ε))ϕx(x, t)

)
dxdt

+
∫

v(x, 0, ε)ϕ(x, 0) dx = o(1), ε → +0.

Passing to the limit as ε → +0, and taking into account (1.20), (3.1), (3.17),
(3.18), and the fact that

lim
ε→+0

∫ T

0

∫ ∞

−∞
e(t)δ

(− x + φ(t), ε
)
ϕ(x, t) dxdt =

∫ T

0

e(t)ϕ(φ(t), t) dt,

lim
ε→+0

∫ ∞

−∞
e(0)δ

(− x, ε
)
ϕ(x, 0) dx = e(0)ϕ(0, 0),

we obtain the integral identities (3.14).
In view of the above remark, system (3.4) has a unique solution. ¤

The fifth and sixth equations of systems (3.4) are the Rankine–Hugoniot con-
ditions of δ-shocks, and the right-hand side of the sixth equation is the Rankine–
Hugoniot deficit.

If An > 0, e0 ≥ 0, according to (3.5), the amplitude e(t) of δ-function is positive.

Corollary 3.1. ( [53]) For t ∈ [0, ∞), the Cauchy problem (1.14), (1.15), (3.3),
with piecewise constant initial data u0

0 = u0, u0
1 = u1, v0

0 = v0, v0
1 = v1 has a unique

generalized solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
φ(t) = [f(u)]−[v]

[u] t,

e(t) = e0 +
(
[g(u)]− [v] [f(u)]−[v]

[u]

)
t.

Applying Theorem 3.2 to Keyfitz–Kranzer system (1.8), we have the following
statement.

Theorem 3.3. ( [54]) There exists T > 0 given by Theorem 3.1 such that the Cauchy
problem (1.8), (1.15),

u0
0(0) + 1 ≤ [(u0)2]− [v0]

[u0]

∣∣∣∣
x=0

≤ u0
0(0) + u0

1(0)− 1, (3.19)

for t ∈ [0, T ) has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (3.14), where f(u) = u2, g(u) = 1
3u3 − u, and

functions uk(x, t), vk(x, t), φ(t), e(t) are defined by system (3.4).
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Corollary 3.2. ( [53], [54]) For t ∈ [0, ∞), the Cauchy problem (1.8), (1.15), (3.19),
with piecewise constant initial data u0

0 = u0, u0
1 = u1, v0

0 = v0, v0
1 = v1 has a unique

generalized solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
φ(t) = [u2]−[v]

[u] t,

e(t) = e0 +
(

[u3]
3 − [u]− [v] [u

2]−[v]
[u]

)
t.

Moreover, if e0 = 0, the Rankine–Hugoniot deficit is positive:

ė(t) =
[u3]
3
− [u]− [v]

[u2]− [v]
[u]

> 0

(as in [26]).

Here ė(t) > 0, according to the seventh equation (3.5).

Remark 3.1. To find a generalized solution of the Cauchy problem (1.14), (1.15) and
(1.8), (1.15) we construct a weak asymptotic solution of problem (1.20), where the
functions uk(x, t), vk(x, t), φ(t), e(t), k = 0, 1 are determined by relations (3.4), and
the functions ω0u(η), ΩP (η), ΩQ(η), P (t), Q(t) are determined by relations (3.2),
(3.5), (3.6).

In view of estimate (1.18) (see also formulas (3.17), (3.18)), the generalized so-
lution (1.16) of the Cauchy problem does not depend on correction functions P (t),
Q(t). However, the correction term

P (t)
1

ε1/n
ΩP

(−x + φ(t)
ε

)
+ Q(t)

1
ε1/(n+1)

ΩQ

(−x + φ(t)
ε

)
,

plays an important role in constructing δ-shock solution.
According to (3.5), we can see that if we introduce only the first term, we can

construct a weak asymptotic solution of the Cauchy problem only if the following
the relation

[f(u)]− [v]
[u]

∣∣∣∣
x=φ(t)

=
1

An

(
Bn +

(
u+

(
1− b

a

)
+

b

a
u−

)∣∣∣
x=φ(t)

(n + 1)Bn+1

)
, (3.20)

holds, where the constants a, b are defined by (3.6). In the general case, relation
(3.6) makes the Cauchy problem (1.14), (1.15) overdetermined.

In [26], in the framework of the Colombeau theory, an approximate solution of
the Cauchy problem for system (1.8) with piecewise constant initial data (1.15) was
constructed. It is a particular case of a weak asymptotic solution (1.20), where only
a term of the type

P (t)
1√
ε
ΩP

(−x + φ(t)
ε

)

is used. In this case relation (3.20) has the following form

u0 + u1 − v1
u1

u1
=

b

a
,

where a =
∫

Ω2
P (η) dη, b =

∫
ω0u(η)Ω2

P (η) dη. This relation can be rewritten as

u0 − v1
u1

u1
=

φ̇(t)− u−
u1

=
b− a

a
, (3.21)



ON THE DELTA-SHOCK FRONT PROBLEM 25

where u− = u0 + u1. In [26] the parameter a =
∫

Ω2
P (η) dη was set to be 1. Hence

(see (3.6))

−1 <
b− a

a
=

∫ (
ω0u(η)− 1

)
Ω2

P (η) dη < 0.

Here relation (3.21) coincides with the second relation of [26, Proposition 2] and
the last inequality coincides with the statement of Lemma 1 from [26]. However,
according to [26, Proposition 2], in this case relation (3.21) still leaves one degree of
freedom, to connect u− = u0 + u1 and u+ = u0.

If we set in (3.5) P (t) = 0 then e(t) = 0, i.e., the Cauchy problem (1.14), (1.15)
cannot have δ-shock solutions. Moreover, in this case the Cauchy problem (1.14),
(1.15) can be solved only if the relation

(
[g(u)]− [v]

[f(u)]− [v]
[u]

)∣∣∣∣
x=φ(t)

= 0

holds. Thus, without introduction δ-shocks, we have the overdetermined Cauchy
problem.

3.4. On singular superpositions (products) of distributions. Let F (u, v) be
a smooth function, and let u(x, t), v(x, t) be distributions. It seems natural to in-
troduce a singular superposition (product) of distributions F (u(x, t), v(x, t)) as the
weak limit of F (u(x, t, ε), v(x, t, ε)), as ε → 0, where u(x, t, ε), v(x, t, ε) are regu-
larizations of distributions u(x, t), v(x, t). If we construct singular superpositions
f
(
u(x, t)

)− v(x, t), g
(
u(x, t)

)
by using relations (3.15), (3.16), these superpositions

depend on the regularizations of the Heaviside function, delta function, and the
correction functions P (t), Q(t).

Substituting P (t), Q(t) from (3.5) into (3.15), (3.16), we obtain relations (3.17),
(3.18). Now the weak limits of (3.17), (3.18) do not depend on the regularizations
of the Heaviside function, or delta function, or the correction functions P (t), Q(t).
Using formulas (3.17), (3.18), we can introduce the “right” singular superpositions
by the following definition:

f
(
u(x, t)

)− v(x, t)
def
= lim

ε→+0

(
f
(
u(x, t, ε)

)− v(x, t, ε)
)

= f(u0)− v0 +
[
f(u)− v

]
H(−x + φ(t)), (3.22)

g
(
u(x, t)

) def
= lim

ε→+0

(
g
(
u(x, t, ε)

))

= g(u0) +
[
g(u)

]
H(−x + φ(t)) + e(t)

[
f(u)

]

[u]
δ(−x + φ(t)), (3.23)

where distributions u(x, t), v(x, t) are defined in (1.16) and the limits are understood
in the weak sense.

Note that in (3.15), (3.16) the pair u(x, t, ε), v(x, t, ε) is understood in the sense
of regularizations of distributions (1.16), while in (3.17), (3.18) and (3.22), (3.23)
this pair is understood in the sense of the weak asymptotic solution of the Cauchy
problem (1.14), (1.15). It is clear that the unique “right” singular superpositions
(3.22), (3.23) can be obtained only by the construction of a weak asymptotic solution
of the Cauchy problem (1.14), (1.15).

As was already mentioned above, systems (1.14) and (1.8) have a specific prop-
erty. We stress that, in contrast to systems (1.6), (1.9), in the case of systems (1.14),
(1.8) we do not define (!) the product of the Heaviside function and the δ-function.
Moreover, although (according to (1.16)), u(x, t) does not depend (!) on the term
e(t)δ(−x+φ(t)), the “right” singular superposition g

(
u(x, t)

)
determined by (3.23),
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does depend (!) on this term. Thus one can say that the term e(t)δ(−x + φ(t)) “ap-
pears from nothing”, and the “right” singular superposition g

(
u(x, t)

)
is determined

in the context of solving the Cauchy problem.
It remains to note that, since according to (3.22), (3.23), in the “specific” sys-

tems (1.14), (1.8) there are no terms of the type of (1.7), it is impossible to con-
struct a δ-shock wave type solution for them by using the nonconservative prod-
uct [30], [31], [42].

4. δ-Shocks in multidimensional “zero-pressure gas dynamics” system

Let us consider the propagation of a single δ-shock wave of system (1.23), i.e.,
consider the Cauchy problem (1.23), (1.24), (1.24).

The system (1.23) can be represented as

L[W ] =
∂W

∂t
+

n∑

j=1

Aj(W )
∂W

∂xj
= 0, (4.1)

where W = (ρ, U)T ,

A1(W ) =




u1 ρ 0 · · · 0
0 u1 0 · · · 0
0 0 u1 · · · 0
· · · · · · ·
· · · · · · u1




, . . . , An(W ) =




un 0 0 · · · ρ
0 un 0 · · · 0
0 0 un · · · 0
· · · · · · ·
· · · · · · un




.

Since in the direction ν = (ν1, . . . , νn) the characteristic equation of L[W ] is
∣∣∣∣∣∣∣∣

∑n
j=1 νjuj − λ ν1ρ · · · νnρ

0
∑n

j=1 νjuj − λ · · · 0
· · · · · ·
0 0 · · · ∑n

j=1 νjuj − λ

∣∣∣∣∣∣∣∣
= 0,

this system is an extremely degenerate hyperbolic system with repeated eigenvalues
λ =

∑n
j=1 νjuj . The right eigenvectors of L[W ] corresponding to the eigenvalue λ

are
r1 = (1, 0, 0, . . . , 0, 0, 0)T ,
r2 = (0, νn, 0, . . . , 0, 0, −ν1)T ,
· · · · · . . . · · ·,

rn = (0, 0, 0, . . . , 0, νn, −νn−1)T ,

and
∇W λ · rj = 0, j = 1, . . . , n.

Thus system (4.1) is linear degenerate.
Since (1.23) is extremely degenerate and has non-conservative form, the Cauchy

problem for this system is a nonclassical problem. It is known that the solutions to
systems (1.23), (1.13) are not always bounded for bounded and smooth initial condi-
tion (ρ(x, 0), u(x, 0)). Namely, there are two kinds of blowup mechanisms. The den-
sity ρ itself and the gradient of the velocity ∇U may become singular measures [2].
Hence, even if ê 0(x) = 0, in order to solve the Cauchy problem (1.23), (1.24), (1.25),
it is natural to introduce a delta function into the density ρ. Physically, such so-
lutions can be interpreted as trajectories of concentrated particles (galaxies in the
universe, in the above application), the surface of which carries discontinuities.

As in the one-dimensional case (see Subsec. 2.3.), by f(x, t, ε) = OD′(εα) we
denote the collection of distributions f(x, t, ε) ∈ D′(Rn) (depending on t and ε as
on parameters) such that for any test function ψ ∈ D(Rn) satisfies the relation

〈f(·, t, ε), ψ(·)〉 = O(εα),
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where the estimation O(εα) is treated in the usual sense and is uniform with respect
to t. The relation oD′(εα) is understood in a corresponding way.

Just as in Sec. 3, we will seek a δ-shock wave type solution of the Cauchy problem
(1.23), (1.24) in the form of the singular ansatz (1.26).

We assume that ∇S(x, t)
∣∣
S=0

6= 0, ∇S(x, t) = (Sx1 , . . . , Sxn) for all t ∈ [0, T ), i.e.,
the δ-shock wave front Γt =

{
x : S(x, t) = 0

}
is a smooth surface of codimension 1 in

the space Rn×R. That is, in a neighborhood of any point of the surface Γt, one can
introduce local coordinates (τ, τ̃ , t), where τ = S(x, t), while the other coordinates
τ̃ = (τ̃2, . . . , τ̃n) can be chosen so that the formulas relating (x, t) and (τ, τ̃ , t) are
determined by infinitely differentiable functions with positive Jacobian. It is clear
that in local coordinates the function ê(x, t) depends only on (τ̃ , t).

We shall seek a δ-shock wave type solution of the Cauchy problem (1.23), (1.24),
(1.25) in the form (1.26), and a weak asymptotic solution in the form 1.27).

In contrast to the case of system (1.14), we shall construct a weak asymptotic
solution (1.27) of systems (1.23) without introducing corrections.

Definition 4.1. The smooth ansatz (1.27) (ρ(x, t, ε), U(x, t, ε)), ε > 0, is called
a weak asymptotic solution of the Cauchy problem (1.23), (1.24) in the domain
Ω× [0, T ) ⊂ Rn × R if

∫

Ω

L1[ρ(x, t, ε), U(x, t, ε)]ψ(x) dx = o(ε),
∫

Ω

L2[U(x, t, ε)]ψ(x) dx = o(ε),
∫

Ω

(
ρ(x, 0, ε)− ρ0(x)

)
ψ(x) dx = o(ε),

∫

Ω

(
U(x, 0, ε)− U0(x)

)
ψ(x) dx = o(ε), ε → +0,

for all ψ ∈ D(Ω), where the first two estimates are uniform with respect to t ∈ [0, T ).

The last relations can be rewritten as

L1[ρ(x, t, ε), U(x, t, ε)] = oD′(1)(ε),
L2[U(x, t, ε)] = oD′(1)(ε),

ρ(x, 0, ε)− ρ0(x) = oD′(1)(ε),
U(x, 0, ε)− U0(x) = oD′(1)(ε), ε → +0,

(4.2)

Since system (1.23) has a non-conservative form, the definition of a generalized
solution is not given in the form of integral identities. We introduce the generalized
solution (ρ(x, t), U(x, t)) of the Cauchy problem as a weak limit (in D′(Rn+1)) of a
weak asymptotic solution (ρ(x, t, ε), U(x, t, ε)) as ε → +0.

Definition 4.2. Let (ρ(x, t, ε), U(x, t, ε)) be a weak asymptotic solution of the
Cauchy problem (1.23), (1.24). A pair of distributions

(
ρ(x, t), U(x, t)

)
is called

a generalized δ-shock wave type solution of the Cauchy problem in the domain
Ω× [0, T ) if

∫ T

0

∫

Ω

ρ(x, t)ϕ(x, t) dxdt = limε→+0

∫ T

0

∫

Ω

ρ(x, t, ε)ϕ(x, t) dxdt,
∫ T

0

∫

Ω

U(x, t)ϕ(x, t) dxdt = limε→+0

∫ T

0

∫

Ω

U(x, t, ε)ϕ(x, t) dxdt

for all ϕ ∈ D(Ω× [0, T )).

Definitions 4.1, 4.2 are similar to those introduced in [10]– [12] for the case n = 1.
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Remark 4.1. In this paper we use Definition 4.2, but a δ-shock wave type solution
can be introduced by the following definition in form of integral identities.

Let Ω be a bounded domain in Rn. A singular ansatz (1.26) and the hypersurface
Γt =

{
x : S(x, t) = 0

} ⊂ Ω× [0, T ) is called a generalized δ-shock wave type solution
of the Cauchy problem (1.23), (1.24) in the domain Ω×[0, T ) if the integral identities
hold: ∫

Ω×[0, T )\Γt

(
ρϕt + ρU · ∇ϕ

)
dx dt +

∫

Γt

ê
Dϕ

Dt
σ(x, t) = 0,

∫

Ω×[0, T )\Γt

(
Ut + (U · ∇)U

)
ϕdx dt−

∫

Γt

[U ]
DS

Dt
ϕσ(x, t) = 0,

(4.3)

for all ϕ ∈ D(Ω × (0, T )). Here σ(x, t) = dS(x,t)
|∇(x,t)S| is the Leray measure with

respect to the spacetime variables x1, . . . , xn, t, D
Dt = ∂

∂t + Uδ · ∇ is the operator of
differentiation with respect to t (so-called Lagrangian derivative), where Uδ is the
velocity of a moving surface Γt.

As we will see in Sec. 6, Uδ = U−+U+

2 , where U± is the velocity behind the
δ-shock wave front and ahead of it, respectively.

5. Propagation of δ-shocks in multidimensional “zero-pressure gas
dynamics” system

5.1. A weak asymptotic solution. Let Ω−t = {(x, t) : S(x, t) < 0} and Ω+
t =

{(x, t) : S(x, t) > 0} denote the domains behind the δ-shock wave front and ahead
of it, and let ρ±, U± be the states of pressureless gas in the domains Ω±t . Obviously,
ρ− = ρ0 + ρ1, U− = U0 + U1 for (x, t) ∈ Ω−t and ρ+ = ρ0, U+ = U0 for (x, t) ∈ Ω+

t .
The stability condition for the δ-shock front is

U+(x, t) · ν∣∣
Γt

< Uδ(x, t) · ν∣∣
Γt

< U−(x, t) · ν∣∣
Γt

, (5.1)

where Uδ is the velocity of motion of the δ-shock front, ν is the unit space normal to
the surface Γt pointing from Ω−t to Ω+

t . This condition means that all characteristics
on two sides of a δ-shock wave front Γt are incoming. The inequality (5.1) implies

[U ] · ∇S
∣∣
Γt

> 0. (5.2)

The direction of the vector ∇S
|∇S| coincides with the direction in which the function

S increases, i.e., inward the domain Ω+
t . The above reasoning allows us to choose

the normal as ν = ∇S
|∇S| .

Denote by N = (ν,−G)√
1+G2 = ∇(x,t)S

|∇(x,t)S| the unit spacetime normal to the surface Γt,

where G = − St

|∇S| , ∇(x,t) =
(

∂
∂x1

, . . . , ∂
∂xn

, ∂
∂t

)
(see Subsec. 6.2.).

Now, we will construct a weak asymptotic solution of the problem (1.23), (1.24),
(1.25).

Theorem 5.1. Let condition (1.25) be satisfied. Then there exists a sufficiently
short-time T > 0 and a compact K ⊂ Rn such that, for (x, t) ∈ K × [0, T ), there
exists a weak asymptotic solution (1.27) of the Cauchy problem (1.23), (1.24), (1.25)
(in the sense of Definition 4.1) if and only if the vector-functions U0 = U+, U1 =
U− − U+, and the functions ρ0 = ρ+, ρ1 = ρ− − ρ+, ê, S, are satisfy the following
systems

ρ−t +∇ · (ρU−) = 0,
U−

t + (U− · ∇)U− = 0, (x, t) ∈ Ω−t ,
(5.3)

ρ+
t +∇ · (ρU+) = 0,

U+
t + (U+ · ∇)U+ = 0, (x, t) ∈ Ω+

t ,
(5.4)
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{
St + Uδ · ∇S

}∣∣∣
Γt

= 0, (5.5)

δê

δt
+ divΓt

(êUδ) =
(
[ρU ]− [ρ]Uδ

) · ∇S
∣∣∣
Γt

, (5.6)

where

Uδ =
U− + U+

2
=

( [(u1)2/2]
[u1]

, . . . ,
[(un)2/2]

[un]

)
(5.7)

is the velocity of motion of the δ-shock front,

[f(ρ, U)]
∣∣
Γt

=
(
f(ρ−, U−)− f(ρ+, U+)

)∣∣
Γt

is, as usual, a jump in the quantity f(ρ, U) across the δ-shock front Γt =
{
x :

S(x, t) = 0
}
, divΓt is a surface (tangent) divergence (6.7), δ-derivatives are defined

by (6.5), (6.6). Here mollifiers ωj, ωδ are such that∫
ω0r(η)ωj(η) dη =

∫
ω0j(η)ωδ(η) dη =

1
2
, r, j = 1, . . . , n. (5.8)

The initial data for above systems are defined from (1.24), and S(x, 0) = S0(x).

Proof of Theorem 5.1. 1. With the help of Lemma 6.3, we find the following asymp-
totics for ε → +0:

ρ(x, t, ε)uj(x, t, ε) = ρ0u0j +
[
ρuj

]
H(−S)

+ê
(
u0j + aju1j

)
δ(S) + OD′(ε), (5.9)

(
uj(x, t, ε)

)2

=
(
u0j

)2 +
[
(uj)2

]
H(−S) + OD′(ε), (5.10)

ur(x, t, ε)
∂ur(x, t, ε)

∂xr

=
(
u0r + u1rHr(−S, ε)

)(∂u0r

∂xr
+

∂u1r

∂xr
Hr(−S, ε) + u1r

dHr(−S, ε)
dS

(−Sxr )
)

= u0r
∂u0r

∂xr
+

[
ur

∂ur

∂xr

]
H(−S)− u1r

(
u0r +

1
2
u1r

)
Sxrδ(S) + OD′(ε), (5.11)

ur(x, t, ε)
∂uj(x, t, ε)

∂xr

=
(
u0r + u1rHr(−S, ε)

)(∂u0j

∂xr
+

∂u1j

∂xr
Hj(−S, ε) + u1j

dHj(−S, ε)
dS

(−Sxr )
)

= u0r
∂u0j

∂xr
+

[
ur

∂uj

∂xr

]
H(−S)

−u1j

(
u0r + cjru1r

)
Sxrδ(S) + OD′(ε), ε → +0, (5.12)

where, according to Lemma 6.3, we have

aj =
∫

ω0j(η)ωδ(η) dη, cjr =
∫

ω0r(η)ωj(η) dη = 1− crj , r 6= j, (5.13)

where cjr ∈ (0, 1], r, j = 1, . . . , n.
Taking into account formulas (6.30), (6.31), we can readily calculate the deriva-

tives of the relations (1.27), (5.9) as follows:

∂uj(x, t, ε)
∂t

=
∂u0j

∂t
+

∂[uj ]
∂t

H(−S)− [
uj

]
Stδ(S) + OD′(ε), (5.14)
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∂ρ(x, t, ε)
∂t

=
∂ρ0

∂t
+

∂[ρ]
∂t

H(−S)− [
ρ
]
Stδ(S)

+
δê

δt
δ(S) + ê

∂

∂t
δ(S) + OD′(ε)

=
∂ρ0

∂t
+

∂[ρ]
∂t

H(−S) +
{
− [

ρ
]
St +

δê

δt
+ 2H êSt

|∇S|
}

δ(S)

+
êSt

|∇S|dν δ̂(S) + OD′(ε), (5.15)

∂ρ(x, t, ε)uj(x, t, ε)
∂xj

=
∂(ρ0u0j)

∂xj
+

∂[ρuj

]

∂xj
H(−S)− [

ρuj

]
Sxj

δ(S)

+
δ

δxj

(
ê
(
u0j + aju1j

))
δ(S) + ê

(
u0j + aju1j

)∣∣∣
Γt

∂

∂xj
δ(S) + OD′(ε)

=
∂(ρ0u0j)

∂xj
+

∂[ρuj

]

∂xj
H(−S) +

{
− [

ρuj

]
Sxj

+
δ

δxj

(
ê
(
u0j + aju1j

))

+2H ê
(
u0j + aju1j

)
Sxj

|∇S|
}

δ(S) +
ê
(
u0j + aju1j

)
Sxj

|∇S| dνδ(S) + OD′(ε), (5.16)

where H is the mean curvature (6.10) of the surface Γt.
Substituting expressions (5.10)–(5.12) and (5.14)– (5.16) into the left-hand side

of system (1.23), we obtain

L1[ρ(x, t, ε), U(x, t, ε)] =
∂ρ(x, t, ε)

∂t
+

n∑
r=1

∂
(
ρ(x, t, ε)ur(x, t, ε)

)

∂xr

=
∂ρ0

∂t
+

n∑
r=1

∂(ρ0u0r)
∂xr

+
{

∂[ρ]
∂t

+
n∑

r=1

∂[ρur]
∂xr

}
H(−S)

+
{
− [

ρ
]
St +

δê

δt
+ 2H êSt

|∇S| +
n∑

r=1

(
− [

ρur

]
Sxr

+
δ

δxr

(
ê
(
u0r + aru1r

))
+ 2H ê

(
u0r + aru1r

)
Sxr

|∇S|
)}

δ(S)

+
ê

|∇S|
{

St +
n∑

r=1

(
u0r + aru1r

)
Sxr

}
dνδ(S) + OD′(ε), (5.17)

L2[uj(x, t, ε)] =
∂uj(x, t, ε)

∂t
+

n∑
r=1

ur(x, t, ε)
∂uj(x, t, ε)

∂xr

=
∂u0j

∂t
+

n∑
r=1

u0r
∂u0j

∂xr
+

{
∂[uj ]
∂t

+
n∑

r=1

[
ur

∂uj

∂xr

]}
H(−S)

−u1j

{
St +

n∑
r=1

(
u0r + cjru1r

)
Sxr

}
δ(S) + OD′(ε), ε → +0, (5.18)

where the coefficients cjr for r 6= j are defined by formula (5.13), and cjj = 1
2 ,

r, j = 1, . . . , n.
Next, using Lemma 6.2, and setting equal to zero the smooth coefficients of the

distributions H(S), δ̂(S), dν δ̂(S) of the left-hand sides of relations (5.17), (5.18), we
find the following system of necessary and sufficient conditions for

L1[ρ(x, t, ε), U(x, t, ε)] = OD′(ε), L2[U(x, t, ε)] = OD′(ε).
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∂ρ0

∂t
+

n∑
r=1

∂(ρ0u0r)
∂xr

= 0,

∂u0j

∂t
+

n∑
r=1

u0r
∂u0j

∂xr
= 0, S > 0,

(5.19)

∂(ρ0 + ρ1)
∂t

+
n∑

r=1

∂
(
(ρ0 + ρ1)(u0r + u1r)

)

∂xr
= 0,

∂(u0j + u1j)
∂t

+
n∑

r=1

(u0r + u1r)
∂(u0j + u1j)

∂xr
= 0, S < 0,

(5.20)

{
St +

n∑
r=1

(
u0r + cjru1r

)
Sxr

}∣∣∣
Γt

= 0, (5.21)

{
St +

n∑
r=1

(
u0r + aru1r

)
Sxr

}∣∣∣
Γt

= 0, (5.22)

{
δê

δt
+

n∑
r=1

δ

δxr

(
ê
(
u0r + aru1r

))

+
2Hê

|∇S|
(
St +

n∑
r=1

(
u0r + aru1r

)
Sxr

)

−
([

ρ
]
St +

n∑
r=1

[
ρur

]
Sxr

)}∣∣∣∣
Γt

= 0, (5.23)

where j = 1, . . . , n.
2. According to (5.19)–(5.23), two smooth functions U− and U+, defined on

respective domains Ω−t and Ω+
t on either side of hypersurface Γt so that

L2[U±] = 0, (x, t) ∈ Ω±t . (5.24)

The boundary values of U− and U+ restricted to the hypersurface Γt satisfy the
following overdetermined system of n + 1 Rankine–Hugoniot type conditions (5.21),
(5.22):

{
St +

n∑
r=1

(
u0r + aru1r

)
Sxr

}∣∣∣
Γt

= 0,

{
St +

n∑
r=1

(
u0r + cjru1r

)
Sxr

}∣∣∣
Γt

= 0, j = 1, . . . , n.

(5.25)

The initial data of problem (5.24), (5.25) are

U0(x) = U0
0 (x) + U0

1 (x)H
(− S0(x)

)
, S(x, 0) = S0(x), (5.26)

defined from (1.24) under assumption (1.25).
Note that we construct the asymptotic solution (1.27) of the Cauchy problem

(1.23), (1.24), (1.25) which is suitable for any entropy initial data. To this end, the
solution of problem (5.24), (5.25), (5.26) must be suitable for any entropy initial data
(5.26). Now, let us consider the case of the piecewise constant initial data (5.26),
where

u0
1k 6= 0, u0

1j = 0, j 6= k, S0(x) = ν0 · x, |ν0| = 1, ν0
k 6= 0,
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and k is a certain integer, (k = 1, . . . , n), x ∈ Rn. In this case, the solution of
problem (5.24), (5.25), (5.26) is given by system (5.25), where U0

1 is described above.
Subtracting one of the Rankine–Hugoniot conditions (5.25) from the other, we obtain

(cjk − cik)u0
1kSxk

= 0, i 6= j, i, j = 1, . . . , n.

Since u0
1k 6= 0, if cjk − cik 6= 0 then Sxk

= 0. Taking ν0
k 6= 0 into account, we cannot

solve the Cauchy problem with an arbitrary initial surface S0(x). Thus we must set
cjk = cik, i 6= j, i, j = 1, . . . , n. Since crr = 1

2 , for all r = 1, . . . , n, we obtain
cjr = ar = 1

2 , for all j, r = 1, . . . , n.
Thus, instead of system (5.25), we obtain the Rankine–Hugoniot condition

St +
n∑

r=1

(
u0r +

1
2
u1r

)
Sxr

, (x, t) ∈ Γt = 0,

i.e., (5.5).
Using (5.22), (5.5), we can rewrite relation (5.23) in the form

δê

δt
+ divΓt(êUδ) =

[
ρ
]
St +

n∑
r=1

[
ρur

]
Sxr , (x, t) ∈ Γt = 0. (5.27)

Using the Rankine–Hugoniot condition (5.5), we readily see that relation (5.27) can
be reduced to relation (5.6).

3. It remains to study the problem of existence of entropy weak solution of system
(5.3)–(5.6).

Since Uδ = 1
2

(
U− + U+

)
, then in view of the fact that the initial data satisfy the

entropy condition (1.25), relation (5.1) holds for t = 0.
The pair of vector-functions U−, U+ and the space-time hypersurface Γt =

{S(x, t) = 0} form the solution of the classical shock-front problem [38, 4.2.]

L2[U±] = 0, (x, t) ∈ Ω±t ,

St

∣∣∣
Γt

= −∑n
j=1

[(uj)
2/2]

[uj ]
Sxj

∣∣∣
Γt

,
(5.28)

with the initial data (5.26), (1.25).
The boundary values U− and U+ restricted to the hypersurface Γt are not ar-

bitrary but satisfy the Rankine–Hugoniot condition of shocks (5.5), i.e., the second
equation in (5.28). Thus system (5.28) describes a classical “free boundary” problem
for a nonlinear hyperbolic system of equations. A classical idea in free boundary
problems is to introduce the equation of the front as one of the unknowns and use
a change of variables to reduce the problem to a fixed domain [36]– [38], [43].

Using the well-known works [36]– [38], [43] we conclude that under assumption
(1.25) for the piecewise-smooth initial data (5.26), in view of the theorem of the
existence of shock fronts [37, p.8], for a sufficiently short-time T > 0 and for some
compact K there is a shock front solution of the problem (5.28), (5.26), (1.25), where
(x, t) ∈ K × [0, T ).

Solving problem (5.28), we find U±, S. Then substituting U±, S into the system

L1[ρ−, U−] = 0, S < 0,
L1[ρ+, U+] = 0, S > 0,

we obtain ρ±. Next, from (5.6) we find ê.
Thus, after finding the functions ρk, Uk, ê, S, k = 1, 2, we construct a weak

asymptotic solution (1.27) of the Cauchy problem (1.23), (1.24), (1.25). ¤
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5.2. A generalized solution. Using the weak asymptotic solution constructed in
Theorem 5.1, we obtain a generalized solution in the sense of Definition 4.2.

Theorem 5.2. There is a compact K and T > 0, such that the Cauchy problem
(1.23), (1.24), (1.25) for (x, t) ∈ K × [0, T ) has a unique generalized solution (1.26)
(in the sense of Definition 4.2)

ρ(x, t) = ρ0(x, t) + ρ1(x, t)H
(− S(x, t)

)
+ ê(x, t)δ

(
S(x, t)

)
,

U(x, t) = U0(x, t) + U1(x, t)H
(− S(x, t)

)
,

where
ρ±t +∇ · (ρU±) = 0, (x, t) ∈ Ω±t ,

U±
t + (U± · ∇)U± = 0, (x, t) ∈ Ω±t ,

(5.29)

St

∣∣
Γt

= −Uδ · ∇S
∣∣
Γt

,
δê

δt
+ divΓt

(êUδ) =
(
[ρU ]− [ρ]Uδ

) · ∇S
∣∣
Γt

.
(5.30)

Here K, T > 0 are given by Theorem 5.1. The initial data for above systems are
defined from (1.24), and S(x, 0) = S0(x).

Moreover,
δê

δt
+ divΓt(êUδ) > 0, (5.31)

i.e., the mass flows into the surface Γt and, therefore, the concentration process on
the surface is going on.

Proof of Theorem 5.2. In view of the above remarks in the proof of Theorem 5.1,
system (5.29)–(5.30) has a unique solution and, consequently, the Cauchy problem
(1.23), (1.24), (1.25) has a unique generalized solution (1.26).

A δ-shock wave type solution of the Cauchy problem is constructed as a weak
limit of the weak asymptotic solution (1.27), where mollifiers ωj , ωδ satisfy relations
(5.8). But the solution itself, i.e., the weak limit of (1.27), does not depend on these
relations.

The pair of equations (5.30) of system (5.29)–(5.30) is the Rankine–Hugoniot
conditions for δ-shocks, where the first equation in (5.30) is the standard Rankine–
Hugoniot condition. The right-hand side of the second equation in (5.30) is the
Rankine–Hugoniot deficit . The Rankine–Hugoniot conditions can be rewritten as

St

∣∣∣
Γt

= −U · ∇S
∣∣∣
Γt

,

δê

δt
+ divΓt(êUδ) = ρ [U ] · ∇S

∣∣∣
Γt

,
(5.32)

where ρ = 1
2

(
ρ− + ρ+

)
and U = 1

2

(
U− + U+

)
represent the average density and the

δ-shock velocity on the two sides of the δ-shock wave front Γt, respectively. Thus
the δ-shock velocity and the average velocity on both sides of Γt coincide. Since
ρ± > 0 and ν = ∇S

|∇S| is the space normal pointing from Ω−t to Ω+
t , it follows from

(5.2) that inequality (5.31) is satisfied. ¤

Taking into account formulas (6.5), (6.6), the second condition (5.30) readily
implies the equation

δê

δt
+ divΓt(êUδ) = |∇(x,t)S|

(
[ρU ], [ρ]

) ·N, (5.33)

where N is the unit spacetime normal to the surface Γt.
If points x of a moving surface Γt are indexed smoothly by the time t as x = x(t)

then the velocity of motion of the δ-shock front is dx
dt = Uδ.
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Thus we calculate

Dê

Dt
=

∂ê

∂t
+

n∑

j=1

∂ê

∂xj

dxj

dt
=

∂ê

∂t
+ Uδ · ∇ê, (5.34)

where D
Dt = ∂

∂t +Uδ ·∇ is the operator of differentiation with respect to t (Lagrangian
derivative). By using (6.5), (6.6), and the last relation, the second condition (5.32)
is represented in the form

Dê

Dt
+ ê divΓt Uδ = ρ [U ] · ∇S

∣∣
Γt

. (5.35)

Remark 5.1. Taking into account the fact that L1[ρ(x, t, ε), U(x, t, ε)] = OD′(ε) and
L2[U(x, t, ε)] = OD′(ε), where

(
ρ(x, t, ε), U(x, t, ε)

)
is the weak asymptotic solution

(1.27) constructed in Theorem 5.1, and repeating the constructions of the proof
of Theorem 3.2), we can prove that (1.26) is a generalized solution of the Cauchy
problem (1.23), (1.24), (1.25) in the sense of Definition (4.3).

Namely, applying the left-hand and right-hand sides of relation (5.17) to an ar-
bitrary test function ϕ(x, t) ∈ D(Ω × [0, T )), integrating by parts with the help of
Lemma 6.1, and then passing to the limit as ε → +0, we obtain the first integral
identity of Definition (4.3). Applying the left-hand and right-hand sides of relation
(5.18) to an arbitrary test function ϕ(x, t) ∈ D(Ω× [0, T )), and then passing to the
limit as ε → +0, we obtain the second integral identity of Definition (4.3).

Remark 5.2. Setting ê 0(x) = ê(x, t) = 0, from the second relation in (5.32) we have

[U ] · ∇S
∣∣
Γt

= 0. (5.36)

Comparing these two formulas, as well as (5.2) and (5.36), we readily see that the
Cauchy problem (1.23), (1.24), (1.25) in the case of piecewise constant initial data
has not been solved .

However, in this case δ-shock Rankine–Hugoniot conditions (5.30) formally imply
the relation

[ρ(Uδ − U)] · ν
∣∣
Γt

= 0,

which coincides with the first shock Rankine–Hugoniot condition for gas dynamics
system in conservative form [9, (4.4)].

Let us construct a planar δ-shock in system (1.23). To this end, consider the case
of piecewise constant initial data (1.24), where U0

k = Uk, ρ0
k = ρk are constants,

k = 0, 1, Γ0 =
{
x : S0(x) = 0

}
, S0(x) = ν0 · x, |ν0| = 1, x ∈ Rn.

Corollary 5.1. The Cauchy problem (1.23), (1.24), (1.25) with the piecewise con-
stant initial data for (x, t) ∈ Rn × [0,∞) has a unique generalized solution (1.26):

ρ(x, t) = ρ0
0 + ρ0

1H
(− ν0 · (x− Uδt)

)
+ ê(t)δ

(
ν0 · (x− Uδt)

)
,

U(x, t) = U0
0 + U0

1 H
(− ν0 · (x− Uδt)

)
,

where Uδ = U0
0 + 1

2U0
1 = 1

2 (U− + U+), and

t = ν0·x
ν0·Uδ

,

ê(t) = ê 0 + ν0 ·
(
[ρU ]− [ρ]Uδ

)
t.

(5.37)

In this case system (5.29), (5.30) is reduced to the system of PDEs

St

∣∣
Γt

= −Uδ · ∇S
∣∣
Γt

,
Dê

Dt
= ρ [U ] · ∇S

∣∣
Γt

,
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with constant coefficients. By solving the first linear PDE of this system, we obtain
the first relation in (5.37). Since in this case Uδ and ∇S are constants, integrating
the second equation of this system, we obtain the second relation in (5.37).

Note that in this case the Rankine–Hugoniot condition (5.33) coincides with the
second Rankine–Hugoniot condition [34, (2.11)], [33, (16a)].

5.3. Geometrical and physical sense of δ-shock Rankine–Hugoniot condi-
tions. Let us assume that a moving surface Γt permanently separates Rn

x into two
parts V −

t = {x ∈ Rn : S(x, t) < 0} and V +
t = {x ∈ Rn : S(x, t) > 0}. Let (U, ρ) be

compactly supported with respect to x. Denote by

M(t) =
∫

V −t
ρ(x, t) dx +

∫
V +

t
ρ(x, t) dx,

M(0) =
∫

V −0
ρ0(x) dx +

∫
V +
0

ρ0(x) dx,

m(t) =
∫
Γt

ê(x, t)σ(x) =
∫
Γt

ê(x, t) dS(x)
|∇S| ,

m(0) =
∫
Γ0

ê 0(x)σ(x) =
∫
Γ0

ê 0(x) dS(x)
|∇S|

(5.38)

the masses of the domains V −
t ∪ V +

t , V −
0 ∪ V +

0 and the “masses” of the surfaces Γt,
Γ0, respectively, where σ(x) is the Leray measure defined in Subsec. 6.2..

Theorem 5.3. Let (U, ρ) be a generalized δ-shock wave type solution (1.26) of the
Cauchy problem (1.23), (1.24), (1.25), compactly supported with respect to x. Then
the following balance relation holds:

Ṁ(t) = −ṁ(t), ṁ(t) > 0, (5.39)

i.e., the mass transportation process from the volume into the discontinuity surface Γt

is going on. Thus,∫

V −t

ρ(x, t) dx +
∫

V +
t

ρ(x, t) dx +
∫

Γt

ê(x, t)
dS(x)
|∇S|

=
∫

V −0

ρ0(x) dx +
∫

V +
0

ρ(x, t) dx +
∫

Γ0

ê 0(x)
dS(x)
|∇S| .

(5.40)

Proof of Theorem 5.3. Let us assume that the support of U(x, t) and ρ(x, t) with
respect to x is a compact K ∈ Rn

x bounded by ∂K. Let K±
t = V ±

t ∩K. By ν we
denote the space normal to Γt pointing from V −

t to V +
t . Differentiating the first

relation (5.38) and using the volume transport Theorem 6.1, we obtain

Ṁ(t) =
∫

K−
t

∂ρ−

∂t
dx +

∫

K+
t

∂ρ+

∂t
dx

+
∫

∂K−
t

Gρ− dS(x) +
∫

∂K+
t

Gρ+ dS(x).

Next, taking into account the first equation of system (5.29), the first Rankine–
Hugoniot condition (5.30), and applying Gauss’s divergence theorem, we transform
the last relation to the form

Ṁ(t) = −
∫

K−
t

div(ρ−U−) dx−
∫

K+
t

div(ρ+U+) dx +
∫

Γt

G[ρ] dS(x)

= −
∫

Γt

ρ−U− · ν dS(x) +
∫

Γt

ρ+U+ · ν dS(x) +
∫

Γt

G[ρ] dS(x)

= −
∫

Γt

(
[ρU ]− [ρ]Uδ

) · ν dS(x), (5.41)

where G = Uδ · ν on Γt. Here we use the fact that the vector U± and function ρ±

are equal to zero on the surface ∂K±
t except Γt.
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According to the second Rankine–Hugoniot condition (5.30), relation (5.41) can
be rewritten as

Ṁ(t) = −
∫

Γt

(δê

δt
+

n∑
r=1

δ(êuδr)
δxr

) dS(x)
|∇S| . (5.42)

Using the surface transport Theorem 6.2, we see that the right-hand side of (5.42)
coincides with −ṁ(t). The inequality (5.31) implies ṁ(t) > 0. To complete the
proof of the theorem, it remains to integrate (5.39) with respect to t. ¤

According to Theorem 5.3, the rate at which the mass in V −
t ∪V +

t decreases must
be equal to the rate at which the mass flows into the surface Γt. But we see that
the total mass M(t) + m(t) is independent of time.

The quantity ê(x, t) is the surface density of the mass. Now, taking into account
the geometrical sense of the Leray measure [19, ch.III,§1.2.] (see also Subsec. 6.2.),
we can also explain the sense of the quantity ê(x, t)σ(x). Suppose that in a neigh-
borhood of the point of the surface S(x, t) = 0 we have Sxj 6= 0. Let us pass to
coordinates τ1 = x1, . . . , τj = S, . . . , τn = xn. Consider the surfaces S(x, t) = 0,
S(x, t) = h, where h = dS is small. Let us take a small area dπ on the surface
S(x, t) = 0 and transfer this area onto the surface S(x, t) = h by the coordinate
lines τ1 = x1, . . . , τj−1, τj+1, . . . , τn = xn. Thus we obtain a cylindrical volume ∆v
with the mass ∆M = ρ∆v. In view of formula (6.13), we see that the quantity
ê(x, t)σ(x) is the velocity of changing elementary mass with respect to changing the
quantity S, i.e.,

ê(x, t)σ(x) =
dM

dS
= lim

h→0

∆M

h
.

5.4. On multiplication of distributions. The problem of multiplication of dis-
tributions is very important to define δ-shock type solutions. This problem arises
due to the fact that system (1.23) has a non-conservative form (see [30], [31]). In the
background of relations (5.10)–(5.12) is the construction of multiplication of distri-
butions. Namely, we can define singular compositions of the Heaviside function and
the delta function by the following definitions:

(a) ρ(x, t)U(x, t)
def
= lim

ε→+0
ρ(x, t, ε)U(x, t, ε)

= ρ+U+ + [ρU ]H(−S) + ê
U− + U+

2
δ(S), (5.43)

(b)
(
uj(x, t)

)2 def
= lim

ε→+0

(
uj(x, t, ε)

)2 =
(
u+

j

)2 +
[
u2

j ]H(−S), (5.44)

(c) ur(x, t)
∂uj(x, t)

∂xr

def
= lim

ε→+0
ur(x, t, ε)

∂uj(x, t, ε)
∂xr

= u+
r

∂u+
j

∂xr
+

[
ur

∂uj

∂xr

]
H(−S) +

(
u−j − u+

j

)u−r + u+
r

2
Sxrδ(S), (5.45)

where ρ±, U±, ê, S are given by (5.29), (5.30), and the limits are understood in the
weak sense, r, j = 1, . . . , n.

6. Some auxiliary formulas

6.1. Moving surfaces of discontinuity. Now we present some results concerning
moving surfaces from [24, 5.2.], [3], [4]. Let Γt be a moving smooth surface of
codimension 1 in the space Rn. Such a surface can be represented locally either
in the form Γt =

{
x ∈ Rn : S(x, t) = 0

}
, or in terms of the curvilinear Gaussian

coordinates s = (s1, . . . , sn−1) on the surface:

xj = xj(s1, . . . , sn−1, t), s ∈ Rn−1.



ON THE DELTA-SHOCK FRONT PROBLEM 37

It should be remarked that Γt could be considered as a submanifold of the spacetime
Rn × R. We shall assume that ∇S(x, t)

∣∣
Γt
6= 0 for all fixed values of t, where

∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
. Let ν be the unit space normal to the surface Γt pointing in

the positive direction such that ∂S
∂xj

= |∇S|νj , j = 1, . . . , n.

Let f(x, t) be a function defined on the surface Γt, and let δf
δt to denote the

derivative with respect to time as it would be computed by an observer moving with
the surface. This derivative has the following geometrical interpretation. Let M0 be
a point on the surface at time t = t0. Construct the normal line to the surface at
M0. At time t = t0 + ∆t, ∆t an infinitesimal, this normal meets the surface Γt+∆t

at the point M = M(t + ∆t). Then the δ-derivative is defined as

δf(M0, t0)
δt

= lim
∆t→0

f(M)− f(M0)
∆t

. (6.1)

If ∆s is the distance between M0 and M , then

G = lim
∆t→0

∆s

∆t
(6.2)

is the velocity (normal velocity Uδ · ν) of the moving surface Γt and

δxj

δt
= lim

∆t→0

∆xj

∆t
= lim

∆t→0

∆s

∆t

∆xj

∆s
= Gνj , j = 1, . . . , n, (6.3)

where Uδ is the velocity of Γt.
Since the essential feature of δ-derivative is that it is computed on the surface,

and S remains constant on the surface then δS
δt = 0. Thus we have

0 =
δS

δt
=

∂S

∂t
+

n∑

j=1

δS

δxj

δxj

δt
=

∂S

∂t
+

n∑

j=1

G|∇S|ν2
j ,

i.e.,
St = −G|∇S|. (6.4)

From this formula we can see that −G = St

|∇S| can be interpreted as the component
of the normal vector in the time direction.

Let f(x, t) be a function defined only on Γt. Then the first order derivatives of f
with respect to the space and time variables are defined by the following formulas [24,
5.2.(15),(16)]:

δf

δt
=

∂f̃

∂t
+ G

df̃

dν
, (6.5)

δf

δxj
=

∂f̃

∂xj
− νj

df̃

dν
, (6.6)

where f̃ is any smooth extension of f to a neighborhood of Γt in Rn×R, j = 1, . . . , n,
and

df̃

dν
= ν · ∇f̃ =

n∑

j=1

∂f̃

∂xj
νj =

∂f̃

∂S
|∇S|

is a normal derivative. In the sequel we shall drop tilde from f . Thus the gradient
along a direction normal to the surface and the gradient tangent to the surface are
defined as

∇ν = ν
(
ν · ∇)

, ∇Γt = ∇−∇ν =
( δ

δx1
, . . . ,

δ

δxn

)
,
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respectively. For a vector A(x, t) = (A1(x, t), . . . , An(x, t)) defined only on Γt, we
introduce a surface (tangent) divergence by the following formula

divΓt
A = ∇Γt

·A =
n∑

j=1

δAj

δxj
. (6.7)

Note that δf
δxj

and δf
δt depend only on the value of f on Γt, i.e., if f = 0 on Γt

then δf
δxj

and δf
δt on Γt, j = 1, . . . , n. Indeed, let (x0, t0) ∈ Γt. If ∇(x,t)f(x0, t0) = 0

then ∇Γtf(x0, t0) = 0 and δf
δt (x0, t0). If ∇f(x0, t0) 6= 0 then in a neighborhood of

the point (x0, t0) the surface Γt has the unit space normal ν = ∇f
|∇f | and G = −

∂f
∂t

|∇f | .

Consequently, ∇Γt
f(x0, t0) = 0 and δf

δt (x0, t0) = 0.
The quantities

µij =
δνi

δxj
, i, j = 1, . . . , n (6.8)

are components of the second fundamental form of the surface Γt. Observe that µij

is a symmetric surface tensor, that is

µij = µji,

n∑

j=1

µijνj = 0, i, j = 1, . . . , n. (6.9)

The trace of the matrix µij is equal to −2H, where

H = −1
2

divΓt(ν) = −1
2

n∑

j=1

δνj

δxj
(6.10)

is called the mean curvature of the surface Γt.
Let A(x, t) = (A1(x, t), . . . , An(x, t)) be a smooth vector defined only on a surface

Γt. Using (6.6), (6.7), (6.10), it is easy to calculate

divΓt(A) = −2HA · ν + div(A)−
n∑

j,k=1

νj
∂(Ajνk)

∂xk

= −2HA · ν +
n∑

j,k=1

νj

(
∂(Akνj)

∂xk
− ∂(Ajνk)

∂xk

)
. (6.11)

If n = 3 then divΓt(A) = −2HA · ν + ν · curl(ν ×A).

6.2. Distributions related to a moving surface. Consider some statements
about distributions related to a moving surface [24, 5.2.], [3], [4].

Let us suppose for a moment that time t is absent from our analysis. According
to [19, ch.III,§1.], we introduce the distributions related to the surface Γ =

{
x :

P (x) = 0
}
, x = (x1, . . . , xn) ∈ Rn. We assume that P ∈ C∞(Rn), ∇P (x)

∣∣
P=0

6= 0
for x ∈ Ω ⊂ Rn, i.e., Γ is a smooth surface of codimension 1 in the space Rn, x ∈ Ω.

The Heaviside function H(P ) is introduced by the following definition:
〈
H(P ), ψ

〉
=

∫

P≥0

ψ(x) dx,

for all ψ(x) ∈ D(Rn).
The delta function on the surface Γ is defined as a functional acting by the rule [19,

ch.III,§1.3.]:
〈
δ(P ), ψ

〉
=

∫

P=0

ψ(x)σ =
∫

Γ

ψ(x)
|∇P | dP, (6.12)
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for all ψ(x) ∈ D(Rn), where the 1-form σ = σ(x) is the Leray measure with respect
to the space variables x1, . . . , xn. This form is a solution of the equation dP ∧ σ =
dx1 ∧ · · · ∧ dxn, where ∧ is the exterior product. According to [19, ch.III,§1.2.],
the Leray measure is the velocity of changing elementary volume with respect to
changing the quantity P , i.e.,

σ =
dv

dP
. (6.13)

The distribution δ′(P ) is defined by the relation [19, ch.III,§1.5.]:
〈
δ′(P ), ψ

〉
= −

∫

P=0

σ1(ψ(x)) (6.14)

for all ψ(x) ∈ D(Rn), where the form σ1(ψ) is a solution of the equation dP∧σ1(ψ) =
dσ0(ψ), σ0(ψ) = ψ ∧ σ.

In particular, if in a neighborhood of the point x we have Pxj 6= 0 then, according
to [19, ch.III,§1.2.,§1.5.], we can pass to coordinates τ1 = x1, . . . , τj−1 = xj−1, τj =
P, τj+1 = xj+1, . . . , τn = xn. Since the Jacobian can be rewritten as

∂(x)
∂(τ)

=
∂(x1, . . . , xn)
∂(τ1, . . . , τn)

=
1

∂(τ)
∂(x)

=
1

∂P
∂xj

, (6.15)

we have [19, ch.III,§1.2.]:

σ = (−1)j−1 dτ1 ∧ · · · d̂τj · · · ∧ dτn

∂P
∂xj

, (6.16)

and [19, ch.III,§1.5.]:

σ1(ψ) = (−1)j−1 ∂

∂τj

(
ψ̃

∂(x)
∂(τ)

)
dτ1 ∧ · · · d̂τj · · · ∧ dτn, (6.17)

where ψ̃(τ) = ψ(x). The hat ̂ over dτj denotes deletion of that factor from the
product dτ1 ∧ · · · ∧ dτn.

The relations δ(P ) = H ′(P ) and δ′(P ) =
(
δ(P )

)′ are understood in the sense
that

∂H(P )
∂xj

= Pxj δ(P ),
∂δ(P )
∂xj

= Pxj δ
′(P ), j = 1, . . . , n. (6.18)

According to [24, 5.3.(1)], we now introduce the delta function δ̂(S) on the surface
Γt =

{
x : S(x, t) = 0

}
, whose action on a test function ϕ(x, t) ∈ D(Rn ×R) is given

by
〈
δ̂(S), ϕ

〉
=

∫ ∞

−∞

∫

Γt

ϕ(x, t) dS(x) dt, (6.19)

where dS(x) is the surface measure on Γt. Here the integration with respect to
the space variables is surface integration while that with respect to time is ordinary
integration. If time t is treated as an ordinary variable, we shall introduce a different
delta function δ̃(S), which is related to δ̂(S) by the following formula:

δ̃(S) =
√

1 + G2 δ̂(S), (6.20)

because in this case the spacetime unit normal to the surface Γt is given by N =
(ν,−G)√

1+G2 , where
√

1 + G2 = |∇(x,t)S|
|∇S| , ∇(x,t) =

(
∂

∂x1
, . . . , ∂

∂xn
, ∂

∂t

)
. Consequently,

(6.19) can be rewritten as

〈
δ̂(S), ϕ

〉
=

∫

Γt

ϕ(x, t)
|∇S|

|∇(x,t)S|
dS(x, t), ϕ ∈ D(Rn × R). (6.21)
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The relation between δ(S) defined by (6.12) and δ̂(S) is

δ(S) =
δ̂(S)
|∇S| . (6.22)

Now we introduce the normal derivative of the delta function [24, 5.3.(7)], [57,
2.,§6.5] dνδ(S) whose action is given by the formula

〈
dνδ(S), ϕ

〉
= −

〈
δ(S),

dϕ

dν

〉
= −

∫

Γt

dϕ(x, t)
dν

dS(x, t)
|∇(x,t)S|

(6.23)

for any ϕ ∈ D(Rn × R), where dϕ
dν = ν · ∇ϕ is the normal derivative of ϕ. Let

f(x, t) be a continuous function defined on Γt. Then the distribution dν(fδ(S)) (the
so-called double layer) is a functional acting by the rule

〈
dν

(
fδ(S)

)
, ϕ

〉
= −

〈
δ(S), f

dϕ

dν

〉
= −

∫

Γt

f
dϕ(x, t)

dν

dS(x, t)
|∇(x,t)S|

(6.24)

for any ϕ ∈ D(Rn × R).
Owing to (6.18), we have [24, 5.5.(11)]

Sxi

∂

∂xj
δ(S) = Sxi

Sxj
δ′(S) = Sxj

∂

∂xi
δ(S),

St
∂

∂xj
δ(S) = StSxj δ

′(S) = Sxj

∂

∂t
δ(S).

(6.25)

Multiplying (6.25) by νi and summing over i, we obtain relations [24, 5.5.(8),(8)]

∂

∂xj
δ(S) = Sxj δ

′(S) = νj

n∑

i=1

νi
∂

∂xi
δ(S),

∂

∂t
δ(S) = Stδ

′(S) = −G

n∑

i=1

νi
∂

∂xi
δ(S),

(6.26)

and

δ′(S) =
1

|∇S|
n∑

i=1

νi
∂

∂xi
δ(S). (6.27)

Note that |∇S|δ′(S) is not a normal derivative operator.
Now we readily calculate [24, 5.3.(9); 5.5.(8),(9)]

|∇S|δ′(S) =
n∑

i=1

νi
∂

∂xi
δ(S) = 2Hδ(S) + dνδ(S), (6.28)

where the mean curvature is given by (6.10). Indeed,
〈 n∑

i=1

νi
∂

∂xi
δ(S), ϕ

〉
= −

n∑

i=1

〈
δ(S),

∂

∂xi

(
νiϕ

)〉

= −
n∑

i=1

〈
δ(S), ϕ

∂νi

∂xi
+ νi

∂ϕ

∂xi

〉
= −

〈
δ(S), −2Hϕ +

dϕ

dν

〉

=
〈
2Hδ(S) + dνδ(S), ϕ

〉
.

Thus, as it follows from (6.26), (6.28),

∂

∂xj
δ(S) = νj

(
2Hδ(S) + dνδ(S)

)
,

∂

∂t
δ(S) = −G

(
2Hδ(S) + dνδ(S)

)
.

(6.29)
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With the help of relations (6.5), (6.6), (6.29), for a differentiable function f(x, t)
defined on Γt we have [24, 12.6.(15),(16)]

∂

∂xj

(
fδ(S)

)
=

δf

δxj
δ(S) + Sxj fδ′(S)

=
( ∂f

∂xj
− νj

df

dν
+ 2Hνjf

)
δ(S) + νjfdνδ(S), (6.30)

where j = 1, . . . , n,
∂

∂t

(
fδ(S)

)
=

δf

δt
δ(S) + Stfδ′(S)

=
(∂f

∂t
+ G

df

dν
− 2HGf

)
δ(S)−Gfdνδ(S). (6.31)

It is clear that the following relation holds:

dν(νjδ(S)) = νjdν(δ(S)) +
n∑

k=1

δνj

δxk
νkδ(S) = νjdν(δ(S)). (6.32)

Indeed, according to (6.23), we have
〈
dν(νjδ(S)), ϕ

〉
= −

〈
νjδ(S),

dϕ

dn

〉

= −
〈
νjδ(S),

n∑

k=1

∂ϕ

∂xk
νk

〉
=

n∑

k=1

〈 ∂

∂xk

(
νjνkδ(S)

)
, ϕ

〉

for any ϕ(x, t) ∈ D(Rn × R). By formulas (6.29), (6.30), we readily obtain
〈
dν(νjδ(S)), ϕ

〉
=

〈
νj

n∑

k=1

∂δ(S)
∂xk

νk +
δ

δxk

(
νjνk

)
δ(S), ϕ

〉

=
〈
νj

(
2Hδ(S) + dνδ(S)

)
+

n∑

k=1

( δνj

δxk
νk + νj

δνk

δxk

)
δ(S), ϕ

〉
.

Using (6.9), (6.10), we calculate〈
dν(νjδ(S)), ϕ

〉
=

〈
νj

(
2Hδ(S) + dνδ(S)

)− 2Hνjδ(S), ϕ
〉

=
〈
νjdνδ(S), ϕ

〉
.

Lemma 6.1. (see [24, 5.2.(25),(26)]) Let f(x, t), g(x, t) be compactly supported
smooth functions defined only on a surface Γt. Then the formulas for integration by
parts hold: ∫

Γt

f
δg

δxj
σ(x, t) = −

∫

Γt

δ∗f
δxj

gσ(x, t),
∫

Γt

f
δg

δt
σ(x, t) = −

∫

Γt

δ∗f
δt

gσ(x, t),
(6.33)

where δ∗
δxj

and δ∗
δt are the adjoint operators defined as δ∗f

δxj
= δf

δxj
+ 2Hνjf and

δ∗f
δt = δf

δt − 2HGf , respectively, and σ(x, t) is the Leray measure with respect to the
spacetime variables x, t.

Proof of Lemma 6.1. According to (6.6), (6.12), (6.23), (6.24), (6.29), (6.32), we
have ∫

Γt

f
δg

δxj
σ(x, t) =

∫

Γt

f
δg

δxj

dS(x, t)
|∇(x,t)S|

=
〈
fδ(S),

δg

δxj

〉

=
〈
fδ(S),

∂g

∂xj
− νj

dg

dn

〉
= −

〈 ∂

∂xj

(
fδ(S)

)
, g

〉
+

〈
dν

(
νjfδ(S)

)
, g

〉
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= −
〈 δf

δxj
δ(S) + fνj

(
2Hδ(S) + dνδ(S)

)
, g

〉

+
〈
νjδ(S)

n∑

k=1

δf

δxk
νk + fνjdνδ(S), g

〉
.

To complete the proof of the first relation (6.33), note that
∑n

k=1
δf
δxk

νk = 0.
In order to prove the second relation (6.33), it is necessary to repeat the proof of

the first relation (6.33) almost word for word. Elementary calculations show that∫

Γt

f
δg

δt
σ(x, t) =

〈
fδ(S),

δg

δt

〉
=

〈
fδ(S),

∂g

∂t
+ G

dg

dn

〉

= −
〈 ∂

∂t

(
fδ(S)

)
, g

〉
−

〈
dν

(
Gfδ(S)

)
, g

〉

= −
〈δf

δt
δ(S)− fG

(
2Hδ(S) + dνδ(S)

)
, g

〉

−
〈
δ(S)

n∑

k=1

δ(Gf)
δxk

νk + fGdνδ(S), g
〉

= −
〈δf

δt
δ(S)− 2HGfδ(S), g

〉
.

Here we take into account the relation
∑n

k=1
δ(Gf)
δxk

νk = 0. ¤

By formulas (6.30), (6.31), it is easy to prove the following almost obvious state-
ment.

Lemma 6.2. Let A(x, t), B(x, t), C(x, t), D(x, t), E(x, t), and S(x, t) be smooth
functions, ∇S

∣∣
Γt
6= 0. Then

A(x, t) + B(x, t)H(S) + C(x, t)δ(S) + D(x, t)
∣∣∣
Γt

∂δ(S)
∂xj

+ E(x, t)
∣∣∣
Γt

∂δ(S)
∂t

= 0

if and only if
A = 0, for S < 0,

A + B = 0, for S > 0,
C = 0, for S = 0,

DSxj + ESt = 0, for S = 0.

6.3. Transport theorems. Here we give the following transport theorems.

Theorem 6.1. ([24, 12.8.(3)], [3], [5], [6]) Let f(x, t) be a sufficiently smooth function
defined in a moving solid V (t) and let a moving hypersurface ∂V (t) be its boundary.
Let ν be the outward unit space normal to the surface ∂V (t) and W (x, t) be the
velocity of a point x in V (t). Then the volume transport theorem holds:

d

dt

∫

V (t)

f(x, t) dx =
∫

V (t)

∂f

∂t
dx +

∫

∂V (t)

fW · ν dS(x)

=
∫

V (t)

(∂f

∂t
+ div(fW )

)
dx. (6.34)

Using (6.11) and transport theorems from [24, 12.8.(9)], [5], [6], it is easy to prove
the following assertion.

Theorem 6.2. If f(x, t) is a quantity defined only on the moving surface Γt then
the surface transport theorem holds:

d

dt

∫

Γt

f(x, t)
dS(x)
|∇S| =

∫

Γt

(δf

δt
+ divΓt(fUδ)

) dS(x)
|∇S| , (6.35)

where Uδ is the velocity of Γt.
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6.4. Some weak asymptotic expansions. To construct δ-shock type solutions
to systems (1.14) and (1.23) we need to calculate the weak asymptotics of some
products of regularizations of distributions (1.21), (1.22).

In order to find a weak asymptotic solution of the Cauchy problem (1.14), (1.15)
we need to construct the weak asymptotics of the products of regularizations of
distributions given by the following formulas.

Lemma 6.3. Let

δ(x, ε) =
1
ε
ωδ

(x

ε

)
,

1
ε
ω
(x

ε

)

be regularizations (1.21) of the delta function, and

Hj(ξ, ε) = ω0j

(ξ

ε

)
=

∫ x
ε

−∞
ωj(η) dη, j = 1, 2

be a regularization (1.22) of the Heaviside function H(x), x ∈ R. Then we have the
following weak asymptotic expansions:

(
Hj(ξ, ε)

)r = H(ξ) + OD′(ε),
H1(ξ, ε)H2(ξ, ε) = H(ξ) + OD′(ε),

Hj(ξ, ε)
dHj(ξ, ε)

dξ
= 1

2δ(ξ) + OD′(ε),

Hj(ξ, ε)
dHk(ξ, ε)

dξ
= ckjδ(ξ) + OD′(ε), j 6= k,

(
Hj(x, ε)

)r

δ(x, ε) = Bj,rδ(x) + OD′(ε),

δ(x, ε)
(
ω
(x

ε

))r

= Arδ(x) + OD′(ε), ε → +0,

(6.36)

where

ckj =
∫

ω0j(η)ωk(η) dη ∈ (0, 1], ckj = 1− cjk,

Bj,r =
∫

ωr
0j(η)ωδ(η) dη, Ar =

∫
ωδ(η)ωr(η) dη,

r = 1, 2, . . . , j, k = 1, 2.

Proof of Lemma 6.3. From (1.22), we obviously have the first two relations in (6.36).
Consider the asymptotics of the product Hj(ξ, ε)

dHj(ξ,ε)
dξ . Making the change of

variables ξ = εη, we have
〈
Hj(·, ε)dHj(·, ε)

dξ
, ψ(·)

〉
=

∫
ω0j(η)ωj(η)ψ(εη) dη,

where ωj(η) = ω′0j(η). Since ωj(η) decreases sufficiently rapidly as |η| → ∞ and
limη→+∞ ω0j(η) = 1, limη→−∞ ω0j(η) = 0, we obtain

〈
Hj(·, ε)dHj(·, ε)

dξ
, ψ(·)

〉
=

1
2
ψ(0) + O(ε), ε → +0,

for all ψ ∈ D(R), j = 1, 2.
Analogously, making the change of variables ξ = εη, we obtain the fourth relation

〈
Hj(·, ε)dHk(·, ε)

dξ
, ψ(·)

〉
=

∫
ω0j(η)ωk(η)ψ(εη) dη = ckjψ(0) + O(ε), ε → +0,

j 6= k. Since ωj = ω′0j , the integration by parts gives

ckj =
∫

ω0j(η)ωk(η) dη = ω0j(η)ω0k(η)
∣∣∣
∞

−∞
−

∫
ω0k(η)ωj(η) dη = 1− cjk.
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Making the change of variables x = εη, we obtain
〈1

ε
ωδ

(x

ε

)(
ω0j

(x

ε

))r

, ψ(x)
〉

=
∫

ωr
0j(η)ωδ(η)ψ(εη) dη = Bj,rψ(0) + O(ε), ε → +0,

for all ψ(x) ∈ D(R), i.e., the fifth relation is proved.
Since ωδ(η)ωr(η) decreases sufficiently rapidly as |η| → ∞, then following the

same reasoning, we obtain
〈1

ε
ωδ

(x

ε

)(
ω
(x

ε

))r

, ψ(x)
〉

=
∫

ωδ(η)ωr(η)ψ(εη) dη = Arψ(0) + O(ε), ε → +0,

for all ψ(x) ∈ D(R), r = 1, 2, . . . . ¤
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