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Abstract. We describe δ-shock wave generation from continuous initial data
in the case of triangular conservation law system arising from ”generalized
pressureless gas dynamics model”. We use smooth approximations in the weak
sense that are more general than small viscosity approximations.

In this paper we investigate formation of δ-shock wave in the case of triangular
system of conservation laws:

ut + (f(u))x = 0, (1)

vt + (vg(u))x = 0. (2)

For the functions f and g we assume:

f ∈ C2([U0, U1]), g ∈ C1([U0, U1]),

f ′′ > 0 on [U0, U1],

g′ − f ′′ ≥ 0 on [U0, U1],

∃Û ∈ (U0, U1) such that g(Û) = f ′(Û).

(3)

As we will see in the next section, such conditions provide appearance of an admis-
sible δ-shock wave as a solution to (1), (2) (of course, in certain sense; see Definition
3).

In a matter of fact, we propose a method for constructing explicit formulas which
are smooth in t and represent global approximate solution to (1), (2), and whose
weak limit contains Dirac δ distribution. The procedure that we use here we call
the weak asymptotic method, because the above-mentioned approximate solution
satisfy system (1), (2) up to terms that are small in the weak sense.

We stress that in previous works on the subject no method providing construc-
tion of explicit formulas representing an approximate solution to the problem was
proposed. Another novelty is that, unlike usual and in principle simpler Riemann
initial data, we are dealing with continuous initial data. More precisely, we shall
show how (regularized) δ-shock wave naturally arises from continuous initial data
for system (1), (2). This actually means that we are able to describe smoothly in
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t ∈ R+ passage from the classical to the weak solution concept which is interesting
result in itself (compare with [17]). Further in the introduction, we will give more
detailed overview of known facts concerning system (1), (2).

The construction is based on the construction of an approximate solution to
equations (1), (2) with the following initial data:

u|t=0 = û(x) =





U1, x < a2

u0(x), a1 ≤ x ≤ a2

U0, a1 < x

, (4)

v|t=0 = v̂(x) =





V1, x < a2

v0(x), a1 ≤ x ≤ a2

V0, a1 < x

(5)

where u0 and v0 are continuous functions defined on [a2, a1] such that v0 is bounded
and u0 satisfies:

f ′(u0(x)) = −Kx + b, x ∈ [a2, a1],

and K and b are constants determined from the continuity conditions:

f ′(U1) = −Ka2 + b, f ′(U0) = −Ka1 + b

i.e.

K =
f ′(U1)− f ′(U0)

a1 − a2
, b =

f ′(U1)a1 − f ′(U0)a2

a1 − a2
. (6)

Initial data (4) correspond to the simplest version of shock wave formation for (1).
Such initial data provide the formation of the jump with nonzero value at the instant
of bifurcation. This phenomenon enables us to find approximate solution to the
considered problem by using a variant of the method of characteristics. Actually, we
find lines in the (x, t) plane along which the approximate solution uε of problem (1),
(4) remains constant. We introduced them in [10] and named ”new characteristics”
(compare Figure 1 and Figure 2). But unlike ordinary characteristics, the ”new
characteristics” never intersect, and thus, they define the approximate solution
along entire time axis. Knowing smooth global approximating solution to (1), (4),
we can replace it in (2) and then solve obtained equation by using ordinary method
of characteristics.

This approach can be extended to general initial data (u0(x), v0(x)) if we as-
sume finite number of bifurcation points for each instant of time. We give rough
description. Denote by {x0

1, ..., x
0
k} set of points which reach time of gradient

catastrophe (bifurcation time) in the moment t∗. Then, instead of given initial data
(u0(x), v0(x)) we put initial data (uε0(x), vε0(x)) which differs from (u0(x), v0(x))
only in the intervals (x0

i − εµ, x0
i + εµ), µ ∈ (0, 1), i = 1, ..., k. In that intervals

functions uε0 and vε0 have form (4) and (5), respectively. For system (1), (2) with
initial data (uε0, vε0) we can find global approximate solution by combining method
of standard characteristics (out of the intervals (x0

i − εµ, x0
i + εµ), i = 1, ..., k) with

the method to be presented here (in the intervals (x0
i − εµ, x0

i + εµ), i = 1, ..., k).
Obviously, the solution constructed in such manner will be an approximate solution
to the original problem (the one with initial data (u0(x), v0(x))).

It is well known that if the solution to equation (1) has a jump then unknown
function v contained in (2) can contain δ distribution (of course, in certain sense;
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see Definitions 2, 3 or 5 below). Such form of the function v is natural from the
viewpoint of applications.

It is clear that the function v is bounded (at least) Lipschitz continuous function
until a jump of the function u appears. After that, v has the Dirac δ function as a
summand propagating together with a jump (we repeat, in the sense of Definitions
2, 3 or 5, depending on the chosen concept of solution).

The main part of the text is dedicated to the construction of continuous ap-
proximation of solution to (1-(2)), ((4)-5) that contains both stages (regular one
and one containing δ distribution) of the above dynamics. This approximation is
understood in the following sense:

Definition 1. [6] By OD′(εα) ∈ D′(R), α ∈ R, we denote the family of dis-
tributions depending on ε ∈ (0, 1) and t ∈ R+ such that for any test function
η(x) ∈ C1

0 (R), the estimate

〈OD′(εα), η(x)〉 = O(εα), ε → 0,

holds, where the estimate on the right-hand side is understood in the usual sense
and locally uniformly in t, i.e., |O(εα)| ≤ CT εα for t ∈ [0, T ].

Now, we can give definition of our approximating solution:

Definition 2. The family of pairs of functions (uε, vε) = (uε(x, t), vε(x, t)), ε > 0,
is called a weak asymptotic solution of problem (1-(2)), ((4)-5) if

uεt + (f(uε))x = OD′(ε),
vεt + (vεg(uε))x = OD′(ε),

uε

∣∣∣∣
t=0

− û =OD′(ε), vε

∣∣∣∣
t=0

− v̂ = OD′(ε), ε → 0.

(7)

In [9] it is proven that passing to the limit in (7) we obtain solution of (1-(2)),
((4)-5) in the following sense.

Suppose that Γ = {γi : i ∈ I} is a graph in the upper half-plane {(x, t) : x ∈
R, t ∈ R+} containing smooth arcs γi, i ∈ I, where I is a finite set. By I0 we
denote a subset of I such that an arc γk for k ∈ I0 starts from the points of the
x-axis. The set Γ0 = {x0

k : k ∈ I0} is the set of initial points of arcs γk, k ∈ I0.
Consider δ-shock wave type initial data (u0(x), v0(x)), i.e. initial data of the

form:

v0(x) = V 0(x) + e0δ(Γ0),

where u0, V
0 ∈ L∞(R), and e0δ(Γ0) :=

∑
k∈I0

e0
kδ(x−x0

k) for constants e0
k, k ∈ I0.

Notice that in our case we have e0
k = 0 for every k ∈ I0.

Definition 3. [9] A pair of distributions (u, v) and the graph Γ = {γi : i ∈ I}, γi

parametrized by (t, xi(t)), t ∈ R+, where v is represented in the form of the sum

v(x, t) = V (x, t) + e(x, t)δ(Γ),

where u, V are piecewise smooth functions, and e(x, t)δ(Γ) :=
∑

i∈I ei(x, t)δ(γi),
ei(x, t) ∈ C1(γi), i ∈ I, is called a generalized δ-shock wave type solution of system
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(1), (2) with the initial data (u0(x), v0(x)) if the integral identities:
∫

R+

∫

R

(u∂tϕ + f(u)∂xϕ) dxdt +
∫

R

u0(x)ϕ(x, 0)dx = 0,

∫

R+

∫

R

(V ∂tϕ + g(u)V ∂xϕ) dxdt +
∑

i∈I

∫

γi

ei(x, t)
dϕ(x, t)

dt
dt

+
∫

R

v0(x)ϕ(x, 0)dx +
∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

(8)

hold for every test function ϕ ∈ D(R×R+), where d
dt = ∂t + dxi

dt ∂x is the tangential
derivative on the graph Γ, and

∫
γi

is a line integral over the arc γi.

As we shall see, in the case of problem (1-(2)), ((4)-5), the graph Γ will contain
only one arc {(x, t) : x = ct, t > t∗} for a constants c and t∗ > 0 (see (65) and
(66)).

Also, there exists another method for deducing integral equalities (7) (more pre-
cisely, the ones corresponding to equation (2)). To motivate this approach, notice
that the second equation of the system contains nonlinearity generally implying the
problem of defining the product of δ distribution with Heaviside function.

Of course, this problem appears only if we directly substitute functions contain-
ing mentioned singularities into the equation. In that case, the product of δ and
Heaviside function can be defined using measure theory [13, 14, 15, 16, 35]. For the
completeness, we give definition of measure valued solution.

Definition 4. Let BM(R) be the space of bounded Borel measures defined on R.
For a µ ∈ BM(R) by Lp

µ(R) we denote set of functions f : R → R such that
(∫

Ω

|f(x)|pdµ(x)
)1/p

< ∞.

Definition 5. A pair (u, v) where v(x, t) ∈ C(BM(R);R+) and
u(x, t) ∈ L∞(L∞v( · ,t)(R);R+) for almost all t ≥ 0 is said to be measure valued
solution of Cauchy problem (1-(2)), ((4)-5) if the integral identities

∫ ∞

0

∫

R

(u∂tϕ + f(u)∂xϕ) dxdt = 0,

∫ ∞

0

∫

R

(∂tϕ + g(u)∂xϕ) v(dx, t)dt = 0

hold for all ϕ ∈ D′(R× (0,∞)).

Within this framework, the following formulas representing the solution of system
(1), (2) with Riemann initial data are derived:

(u(x, t), v(x, t)) =





(uL, vL), x < φ(t)
(uσ, w(t)δ(x− φ(t)), x = φ(t),
(uR, vR), x > φ(t),

(9)

where δ is Dirac distribution and u−, u+ and uσ are values of the function u before
the discontinuity, after the discontinuity and on the discontinuity line, respectively.
The function φ(t) = ct, c is a constant, is the equation of the discontinuity line.

It is important to notice that after computing integrals in Definition 5 for func-
tions (9) we get known integral identities from Definition 3. For instance, if we
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assume that the graph Γ contains only the arc {(x, t) : x = ct, t > t∗} then we
will have e(t) = w(t) and uσ = c (see also [9] for the pressureless gas dynamics).

Furthermore, notice that in [9], integral equalities from Definition 3 are derived
without assumptions on the value of the function u on the discontinuity line. We
consider this fact first, more corresponding to generally accepted concept of weak
solutions as distributions over D(R+ ×R); and second, we consider unmotivated
from the viewpoint of application to define value of a function on a set of zero
Lebesgue measure.

Also, one can use regularization of δ and Heaviside distribution and define the
product as the weak limit of the product of the approximations [21, 22, 29]. Accord-
ing to such concept, the solution to the system is a family of functions representing
approximate solution to the system (see also [2, 27]). We follow this concept (see
Definition 2), but we also prove that our approximating solution tends to a solution
of the system in the sense of Definition 3 (see Theorem 14).

For other methods involving nonconservative products we address reader on [19,
20, 23, 28, 34].

According to all said above, we see that the problem of propagation of already
formed δ-shocks has been explored rather thoroughly.

But, the problem of δ-shock formation is much less studied. Even if it is studied,
it has been always done for Riemann problem and always using vanishing viscosity
approach. One of the first result on finding global smooth approximation to the
problem of type (1-(2)) with Riemann initial data can be found in [21] for the case
f(u) = u2/2 and g(u) = u. There, approximate solution uε to the first equation
of the system is found in explicit form by using vanishing viscosity approximation
and Hopf-Cole transformation. Then, substituting uε in the place of u in equation
(2), the equation becomes linear equation in v and it is solved by the method of
characteristics.

In [18] the situation with arbitrary f and g has been studied by using another
version of the vanishing viscosity approach. In that paper, the vanishing term was of
the form εt(u, v)xx. For the Riemann initial data author proves that system (1),(2)
with the vanishing viscosity admits solutions converging to δ type distribution.
Author obtains the result by using various relations which are satisfied by the
family of the approximate solutions. Still, no explicit form of the approximate
solution is given.

Another method for describing δ-shock wave formation in the case of similar
systems one can find in [2, 27]. There, so called vanishing pressure approach is
used (instead on the right hand side of a system as in vanishing viscosity approach,
here one adds perturbation inside the flux).

According to Definition 2, an approximation constructed by the means of the
vanishing viscosity or vanishing pressure is indeed weak asymptotic solution to
equation (1). In the case of the quadratic nonlinearity (i.e. when f(u) = u2) weak
asymptotic solution is constructed in [4], and in the case when f is arbitrary convex
function in [10]. In both of the latter papers Cauchy problems with special initial
data of type (4) are considered.

The same problem as in [21] is solved in [26] using the weak asymptotic method.
The approach used there is similar to one we will use here, i.e. approximate solution
is constructed along some kind of ”new characteristics”. The ”new characteristics”
used in [26] are the same for both components of solution u and v (which is not
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the case in this paper). Also, approach from [26] can be applied only in the case of
special initial data.

In the current paper, we consider more general initial conditions (continuous
initial conditions), and also give explicit formula for approximate solution to the
problem (see also [5]).

At the end of the Introduction, we expose the plan of the paper in more details.
In Section 1 we recall necessary conditions for appearance of admissible δ-shock

wave for system (1), (2). Then, we quote result in the framework of the weak
asymptotic method that we shall need.

In Section 2 we construct the weak asymptotic solution to problem (1), (4).
In Section 3 we construct the weak asymptotic solution to problem (2), (5).
Finally, in Section 4 we find weak limit of the constructed weak asymptotic

solution to problem (1-(2)), ((4)-5) and prove that it satisfies Definition 3.

1. Conditions for δ-shock wave appearance and some weak
asymptotic formulas

Consider system (1), (2) with Riemann initial data:

u|t=0 =

{
Ul, x < 0,

Ur, x ≥ 0,
, (10)

v|t=0 =

{
Vl, x < 0,

Vr, x ≥ 0.
(11)

Since the aim of the paper is to describe formation of δ-shock waves, we want to
determine sufficient condition on f and g which provides δ-shock wave formation
from initial data (10), (11). In other words, we want to determine conditions on f
and g such that Riemann problem (1), (2), (10), (11) admits solution of the type:

u(x, t) =

{
Ul, x < ct,

Ur, x ≥ ct,
(12)

v(x, t) =

{
Vl, x < ct,

V0, x ≥ ct
+ const. · t · δ(x− ct). (13)

The solution is understood in the sense of Definition 3.
As the admissibility conditions for δ-shocks we shall use overcompressivity con-

ditions (as in [18, 22, 25, 33]):

λi(Ur, Vr) ≤ c ≤ λi(Ul, Vl), i = 1, 2, (14)

where λi, i = 1, 2, are eigenvalues of system (1),(2), i.e.

λ1(u, v) = f ′(u), λ2(u, v) = g(u).

From (14) and expressions for λi, i = 1, 2 we have:

f ′(Ur) ≤ c ≤ f ′(Ul)

g(Ur) ≤ c ≤ g(Ul).
(15)

The following conditions were used in [18]:

g′ > 0, f ′′ > 0, f ′ < g.
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Still, such conditions will not necessarily give δ-shock even if the classical solution
u to (1), (4) blows up after certain time. Since in this paper we are interested only
in the δ-shock appearance phenomenon, we shall need more restrictive conditions.
The conditions which we shall derive below ensure δ-shock wave appearance if the
classical solution to (1), (4) blows up. We stress that in the case of special initial
data, the δ-shock wave can arise also in the case of less restrictive conditions on f
and g.

We proceed with deriving the necessary conditions. Initial assumption is con-
vexity of the function f , i.e. f ′′ > 0. We have to find conditions on g such that
(15) is satisfied. The following condition obviously implies (15):

g(Ur) ≤ f ′(Ur) ≤ c ≤ f ′(Ul) ≤ g(Ul). (16)

Since f ′ is increasing it is clear that it has to be Ul > Ur. If we assume that
F = g − f ′ is increasing in the interval [Ur, Ul] and that F attains zero in that
interval, obviously (16) will be satisfied (since F changes sign on [Ur, Ul] from
negative to positive). We can collect the previous considerations in the following
theorem:

Theorem 6. Assume that the functions f, g ∈ C2(R) satisfy conditions (3).
Then Riemann problem (1),(2), (10),(11) admits δ-shock wave type solution of

the form (12), (13) (in the sense of Definition 3).

Next, we give very important theorem in the framework of the weak asymptotic
method (sometimes called nonlinear superposition law):

Theorem 7. [10] Let ωi ∈ C∞(R), i = 1, 2, where lim
z→+∞

ωi(z) = 1,

lim
z→−∞

ωi(z) = 0 and dω(z)
dz ∈ S(R) where S(R) is the Schwartz space of rapidly

decreasing functions. For the bounded functions a, b, c defined on R+ × R and
bounded functions ϕi, i = 1, 2, defined on R+, we have

f

(
a + bω1(

ϕ1 − x

ε
) + cω2(

ϕ2 − x

ε
)
)

(17)

=f(a) + H(ϕ1 − x) (f(a + b + c)B1 + f(a + b)B2 − f(a + c)B1 − f(a)B2)

+ H(ϕ2 − x) (f(a + b + c)B2 − f(a + b)B2 + f(a + c)B1 − f(a)B1) +OD′(ε),

where H is the Heaviside function and Bi = Bi(ϕ2−ϕ1
ε ) is such that for every ρ ∈ R

we have

B1(ρ) =
∫

ω̇1(z)ω2(z + ρ)dz and B2(ρ) =
∫

ω̇2(z)ω1(z − ρ)dz, (18)

and

B1(ρ) + B2(ρ) = 1.

Furthermore, we have:

B1(ρ) = 1−B2(ρ) → 1, as ρ → +∞
B1(ρ) = 1−B2(ρ) → 0, as ρ → −∞ (19)
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2. Weak asymptotic solution to (1), (4)

In this section we shall find the weak asymptotic solution to problem (1), (4).
According to the concept of weak asymptotic method we replace the problem by
the family of problems

uεt + (f(uε))x = OD′(ε), (20)

uε|t=0 = û(x) +OD′(ε), (21)

where OD′(ε) will be determined in (30).
Before we pass on solving the problem, we introduce the notation that we shall

use (as usual x ∈ R, t ∈ R+):

u1 = u1(x, t, ε), Bi = Bi(ρ), ϕi = ϕi(t, ε),

Hi = H(ϕi − x), δi = δ(ϕi − x), i = 1, 2,

τ =
f ′(U1)t + a2 − f ′(U0)t− a1

ε
=

ψ0(t)
ε

,

t∗ =
a1 − a2

f ′(U1)− f ′(U0)
,

x∗ = f ′(U1)t∗ + a2 = f ′(U0)t∗ + a1 =
f ′(U0)a1 − f ′(U0)a2

f ′(U1)− f ′(U0)
,

where H is the Heaviside function and δ Dirac distribution.
The function τ is so-called ’fast variable’. It is equal to difference of standard

characteristics of equation (1) emanating from a2 and a1, respectively. Since a2 <
a1, when we are in the domain of existence of classical solution to (1), (4) we have
τ → −∞ as ε → 0, while when we are in the domain where solution to (1), (4) is
discontinuous (i.e. in the form of the shock wave) we have τ →∞ as ε → 0.

The point (t∗, x∗) is the point of blow up of the classical solution to (1), (4).
We explain the procedure we shall use before we formulate the theorem.
It is well known problem (1), (4) will have classical solution up to the moment

t∗ given by (we introduced it at the beginning of the section but we find convenient
to repeat since we shall use it often in the sequel):

t = t∗ = max
x∈(a2,a1)

− 1
f ′′(u0(x))u′0(x)

=
1
K

, (22)

where K is given by (6). The choice of our initial data is such that in the moment
of blow up of the classical solution the shock wave will be formed and it will not
change its shape for any t > t∗. This is because all the characteristics emanating
from [a2, a1] intersect in one point (t∗, x∗) (see Figure 1).

So, for t > t∗ we have to pass to the weak solution concept. In other words, in
the moment t = t∗ we stop the time and solve Riemann problem for equation (1).

Our aim is to solve the problem globally in time without changing solution
concept, i.e. to find globally defined approximate solution to (1), (4) which is at
least continuous. To do this we have to avoid intersection of characteristics.

Natural idea is to smear the discontinuity line, i.e. to take ε neighborhood of the
discontinuity line and to dispose characteristics in that neighborhood in a way that
they do not intersect and as ε → 0 all of them lump together into the discontinuity
line. Of course, this will not be the standard characteristics for problem (1), (4).
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6

-

discontinuity line (dash)y

characteristics (normal lines)I

a1a2 x

t

Figure 1. Standard characteristics for (1), (4). Dotted point in
(t, x) plane is (t∗, x∗).

Nevertheless, along them approximate solution to our problem will remain constant.
Such lines we call ’new characteristics’.

Another question that arises here is how to distribute ’new characteristics’ in
the ε neighborhood of the discontinuity line. The obvious way to accomplish this
is to distribute the ’new characteristics’ uniformly in the mentioned area, i.e. in a
way that every of them is parallel to the discontinuity line.

Since all the characteristics emanating from the interval [a2, a1] intersect in the
same point, roughly speaking, it is enough to find the way to dispose ’new charac-
teristics’ emanating from a2 and a1 so that they do not intersect.

We use Theorem 7 and ’switch’ functions Bi, i = 1, 2, appearing there.
Denote by ϕi, i = 1, 2, the new characteristics emanating from the points ai,

i = 1, 2, respectively. They are given by the following Cauchy problems:

d

dt
ϕ1(t, ε) = (B2(ρ)−B1(ρ))f ′(U0) + cB1(ρ), ϕ1(0, ε) = a1 + Aε

a1 − a2

2
, (23)

d

dt
ϕ2(t, ε) = (B2(ρ)−B1(ρ))f ′(U1) + cB1(ρ), ϕ2(0, ε) = a2 −Aε

a1 − a2

2
, (24)

for large enough constant A. As we shall see later, it will be necessary to extend
a little bit the interval [a2, a1] in order to prove that the ’new characteristics’ do
not mutually intersect. Therefore, we have Aεa1−a2

2 accompanying initial data in
(23) and (24). Furthermore, notice that the latter Cauchy problems are simple and
globally solvable since the unknown functions ϕi, i = 1, 2, are only on the left hand
side. Namely, the function ρ = ρ(τ(t)) appearing in (23) and (24) is defined as:

ρ =
ϕ2(t, ε)− ϕ1(t, ε)

ε
, (25)

and it is effectively given by Cauchy problem (35).
Characteristics given by (23) and (24) actually emanate from a1 + Aεa1−a2

2 and
a2 − Aεa1−a2

2 , respectively. Still, since this is perturbation of order O(ε) it does
not affect our weak asymptotic solution.
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According to what we said above, we expect that for every t > t∗ it should be
(since new characteristics should be ’close’ one to another for t > t∗):

ϕ1(t, ε)− ϕ2(t, ε) = O(ε), t > t∗,

and also:
d

dt
ϕiε(t, ε) =

f(U1)− f(U0)
U1 − U0

+O(ε), t > t∗, (26)

since the new characteristics should be ’close’ to the discontinuity line which is,
according to Rankine-Hugoniot conditions, given by equation (26).

This hints us that if we put c = 2 f(U1)−f(U0)
U1−U0

in (23) and (24), we can expect
that for t > t∗ the expression B2(ρ) − B1(ρ) is to zero thus eliminating nonlin-
earity f ′ appearing in the equations of new characteristics (23) and (24). Indeed,
according to Theorem 7 we have B2(ρ) + B1(ρ) = 1 which together with expected
B2(ρ) − B1(ρ) → 0 means that as τ → ∞ the functions B1 and B2 are close to
1/2. Due to our choice of c this implies that B1c from (23) and (24) is close to
f(U1)−f(U0)

U1−U0
(Rankine-Hugoniot conditions) which means that ϕiε, i = 1, 2, satisfy

(26) as expected.
Here we used the following simple observation.
Once the shock wave is formed, it continuous to move according to Rankine-

Hugoniot conditions and it does not change its shape along entire time axis. There-
fore, the linear equation:

∂u

∂t
+

c

2
∂u

∂x
= 0, c = 2

f(U1)− f(U0)
U1 − U0

, (27)

and equation (1) with the same initial condition:

u|t=0 =

{
U1, x < 0,

U0, x ≥ 0,

will have the same solutions. Clearly, it is much easier to solve linear equation
(27) then nonlinear equation (1). Still, the question is how to pass from nonlinear
equation (1) to linear equation (27) in the domains where they give the same solu-
tion (in the case of our initial data it will be after the shock wave formation). We
explain briefly how we do it.

Define the ’new characteristics’ as the solutions to the following Cauchy problem:

ẋ = (B2 −B1)f ′(u1) + cB1, u̇1 = 0,

u1(0) = u0(x0), x(0) = x0 + εA(x0 − a1 + a2

2
), x0 ∈ [a2, a1].

(28)

Thus, ϕi(t, ε) = x(ai, t, ε), i = 1, 2, where x is the solution to (28). We will show
later that it is possible to choose the constant A so that for x0 ∈ [a2, a1] every t > 0
we have

∂x

∂x0
> 0.

This means that ’new characteristics’ do not mutually intersect which in turn means
that there exists the solution x0 = x0(x, t, ε) of the implicit equation:

x(x0, t, ε) = x. (29)
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From here, it follows that OD′(ε) from (21) is given by

OD′(ε) =





U1, x < a2

u0(x + εA(x− a1−a2
2 )), a1 ≤ x < a2

U0, a2 ≤ x.

(30)

Bearing in mind that B1 = 1−B2 ∼ 0 before the interaction and B1 ∼ B2 after
the interaction, we see that, using the new characteristics, we have smoothly passed
from the characteristics of equation (1) to the characteristics of equation (28), i.e.
from equation (1) to equation (27).

6

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x0

u1 ≡ U1

u1 ≡ U0

t

x

ϕ2

ϕ1

z �

Figure 2. System of ’new characteristics’ for uε. Dashed lines
are standard characteristics emanating from a1 and a2. The points
a1 + Aεa1−a2

2 and a2 −Aεa1−a2
2 are dotted on the x axis.

We formalize the previous considerations in Theorem 8. The theorem is analogue
to the main result from [10]. The problem which we consider here, i.e. problem (1),
(4) can be solved in more elegant manner (see Theorem 10 below). Still, approach
used in Theorem 8 can be used on the case of arbitrary piecewise monotone initial
data [11]. Also, Theorem 8 represents motivation for Theorem 10.

Theorem 8. The weak asymptotic solution of problem (1), (4) has the form:

uε(x, t) = U0 + (u1(x, t, ε)− U0)ω1(
ϕ1(t, ε)− x

ε
)

+ (U1 − u1(x, t, ε))ω2(
ϕ2(t, ε)− x

ε
), (31)

where ωi, i = 1, 2, satisfy the conditions from Theorem 7.
The functions ϕi(t, ε), t ∈ R+, i = 1, 2, are given by (23) and (24), and the

function ρ is given by (25).
The function u1(x, t, ε) is given by

u1(x, t, ε) = u0(x0(x, t, ε))

where x0 is the inverse function to the function x = x(x0, t, ε), t > 0, ε > 0, of
’new characteristics’ defined through Cauchy problem (28).



12 V.G. DANILOV AND D. MITROVIC

Proof: We substitute ansatz (31) into (20):
(
U0 + (u1(x, t, ε)− U0) ω1(

ϕ1(t, ε)− x

ε
) + (U1 − u1(x, t, ε)) ω2(

ϕ2(t, ε)− x

ε
)
)

t

+
(
f(U0+(u1(x, t, ε)−U0)ω1(

ϕ1(t, ε)− x

ε
)+(U1−u1(x, t, ε)) ω2(

ϕ2(t, ε)− x

ε
))

)
x

= OD′(ε)
After using (17) we get (we remind u1 = u1(x, t, ε) and Bi = Bi(ρ) = Bi(ϕ2−ϕ1

ε )):
(
U0 + (u1 − U0) ω1(

ϕ1(t, ε)− x

ε
) + (U1 − u1)ω2(

ϕ2(t, ε)− x

ε
)
)

t
+

(
f(U0)

+ (f(U1)B1 + f(u1)B2 − f(U0 + U1 − u1)B1 − f(U0)B2) H1

+ (f(U1)B2 − f(u1)B2 + f(U0 + U1 − u1)B1 − f(U0)B1) H2

)
x

= OD′(ε)

Notice that (w− denotes distributional limit) w − lim
ε→0

ωi(ϕi−x
ε ) = Hi = H(ϕi − x)

and w− lim
ε→0

∂xωi(ϕi−x
ε ) = δi = δ(ϕi−x), i = 1, 2, for the Heaviside function H and

the Dirac distribution δ. Taking this into account, we get from the previous ex-
pression upon differentiating and collecting terms multiplying Hi and δi = −∂xHi:[

∂u1

∂t
+ B2f

′(u1)
∂u1

∂x
+ B1f

′(U1 + U0 − u1)
∂u1

∂x

]
H1

+
[
−∂u1

∂t
−B2f

′(u1)
∂u1

∂x
−B1f

′(U1 + U0 − u1)
∂u1

∂x

]
H2

+ ((u1 − U0)ϕ1t −B2 (f(u1)− f(U0))−B1 (f(U1)− f(U1 + U0 − u1))) δ1

+ ((U1 − u1)ϕ2t −B2 (f(U1)− f(u1))−B1 (f(U1 + U0 − u1)− f(U0))) δ2

= OD′(ε).
We rearrange this expression using the following simple formula CH1 + DH2 =
(C + D)H2 + C(H1 −H2):(

∂u1

∂t
+ [(B2 −B1)f ′(u1)]

∂u1

∂x

)
(H1 −H2)

+ B1[
d

dx
(f(U1 + U0 − u1) + f(u1))] (H1 −H2)

+ ((u1 − U0)ϕ1t −B2 (f(u1)− f(U0))−B1 (f(U1)− f(U1 + U0 − u1))) δ1

+ ((U1 − u1)ϕ2t −B2 (f(U1)− f(u1))−B1 (f(U1 + U0 − u1)− f(U0))) δ2 =OD′(ε).
For an unknown constant c we add and subtract the term cB1

∂u1
∂x in the coeffi-

cient multiplying (H1 −H2) and then we rewrite the last expression in the following
form:(

∂u1

∂t
+ [(B2 −B1)f ′(u1) + cB1]

∂u1

∂x

)
(H1 −H2)

+ B1[
d

dx
(f(U1 + U0 − u1) + f(u1)− cu1)] (H1 −H2)

+ ((u1 − U0)ϕ1t −B2 (f(u1)− f(U0))−B1 (f(U1)− f(U1 + U0 − u1))) δ1

+ ((U1 − u1)ϕ2t−B2 (f(U1)−f(u1))−B1 (f(U1 + U0 − u1)−f(U0))) δ2 =OD′(ε).
(32)
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We put
∂u1

∂t
+ [(B2 −B1)f ′(u1) + cB1]

∂u1

∂x
= 0, u1(x, 0, ε) = u0(x), x ∈ [a2, a1].

The system of characteristics for this problem reads:

ẋ = (B2 −B1)f ′(u1) + cB1, u̇1 = 0,

u1(0) = u0(x0), x(0) = x0 ∈ [a2, a1].
(33)

The aim is to prove that characteristics defined by the previous system do not
intersect. It appears that it is much easier to accomplish this if we perturb initial
data for x in the previous system for a parameter of order ε. More precisely, instead
of (33) we shall consider system (28) (the same is done in [10]).

It is clear that such perturbation changes the solution of (28) for OD′(ε) since
initial condition in (28) is continuous.

We pass to the proof that the characteristics given by (28) do not intersect. From
the second equation in (28) it follows u1 ≡ u0(x0). We substitute this into the first
equation of (28) and use f ′(u0(x0)) = −Kx0 + b, x0 ∈ [a2, a1]. We have:

ẋ = (B2 −B1)(−Kx0 + b) + cB1, x(0) = x0 + εA

(
x0 − a1 + a2

2

)
. (34)

Out of the segment [a2− εAa1−a2
2 , a1 + εAa1−a2

2 ] initial function is constant and
we define the solution u1 of problem (28) to be equal to U1 on the left-hand side
of the characteristic emanating from a2 − Aa1−a2

2 and to be equal to U0 on the
right-hand side of the characteristic emanating from a1 + Aa1−a2

2 (see Figure 1).
For the functions ϕ1 and ϕ2 as the characteristics emanating from a1 + Aa1−a2

2

and a2 −Aa1−a2
2 respectively, we have (23) and (24).

Now, we show how to effectively determine ρ given by (25). We apply standard
procedure (see [4, 6, 10])). Subtracting (23) from (24) we get:

(ϕ2 − ϕ1)t = ε

(
ϕ2 − ϕ1

ε

)

t

= ερt = (B2 −B1)ψ0(t).

Then, passing from the ”slow” variable t to the ”fast” variable τ we obtain (we also
use B2 + B1 = 1):

ρτ = 1− 2B1(ρ),
ρ

τ

∣∣∣
τ→−∞

= 1. (35)

We explain the condition lim
τ→−∞

ρ
τ = 1. We have from (23) and (24)

ρ

τ
=

∫ t

0
(f ′(U1)− f ′(U0))(B2 −B1)dt′ + a2 − a1

(f ′(U1)− f ′(U0))t + a2 − a1
.

Putting t = 0 in the previous relation we see that
ρ

τ

∣∣∣
t=0

= 1. (36)

For t = 0 we have τ → −∞ as ε → 0. Therefore, from (36) it follows
ρ

τ

∣∣∣
τ→−∞

= 1. (37)

This relation practically means that new characteristics emanating from ai, i = 1, 2,
coincides at least in the initial moment with standard characteristics up to some
small parameter ε. Still, since τ → −∞ as ε → 0 for every t < t∗ (which means



14 V.G. DANILOV AND D. MITROVIC

B1 → 0; see (19) and (37)) we see from (23) and (24) that new characteristics
coincides with standard ones for every t < t∗ up to some small parameter ε.

6

-

ρ

τ

ρ0

Figure 3. The curve represents solution of (35). Dot on the ρ
axis, denoted by ρ0, is the (smallest and in this case unique

Next, we analyze (35). From the standard theory of ODE we see that ρ → ρ0

as τ → +∞ where ρ0 is constant such that B1(ρ0) = B2(ρ0) = 1/2 (see Figure 3).
That means that after the interaction, i.e. for t > t∗, we have

ρ =
ϕ1 − ϕ2

ε
= ρ0 +O(ε) =⇒ ϕ1 = ϕ2 +O(ε), ε → 0,

or, after letting ε → 0, for t > t∗ we have shock wave concentrated at (see text in
front of theorem for notations):

ϕ(t) = lim
ε→0

ϕi(t, ε) =
c

2
(t− t∗) + x∗. (38)

Now, we can prove global solvability of Cauchy problem (28).
Problem (28) is globally solvable if characteristics emanating from the interval

[a2−Aεa1−a2
2 , a1 +Aεa1−a2

2 ] do not intersect. To prove that we will use the inverse
function theorem. We will prove that for every t ∈ R+ we have ∂x

∂x0
> 0 which

means that for every x = x(x0, t, ε), x0 ∈ [a2, a1], we have unique x0 = x0(x, t, ε)
and we can write u1(x(x0, t, ε), t) = u0(x0(x, t, ε)).

Differentiating (34) in x0 and integrating from 0 to t we obtain (we remind
B2 + B1 = 1):

∂x

∂x0
= 1 + εA−K

∫ t

0

(B2 −B1)dt′ = 1 + εA−K

∫ t

0

(1− 2B1)dt′. (39)

For t ∈ [0, t∗] we have (notice that 1−Kt∗ = 0):

∂x

∂x0
= 1 + εA−K

∫ t

0

dt + K

∫ t

0

2B1dt

≥ 1 + εA−K

∫ t∗

0

dt + K

∫ t

0

2B1dt = εA + K

∫ t

0

2B1dt > 0.
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So, everything is correct for t ≤ t∗.
To see what is happening for t > t∗, initially we estimate 1 − 2B1(ρ) when

τ → ∞. From equation (35) we have (we use Taylor expansion of B1 around the
point ρ = ρ0):

ρτ = 1− 2B1(ρ) = −2(ρ− ρ0)B′
1(ρ̃) ⇒ d

dτ
ln(ρ− ρ0) = −2B′

1(ρ̃),

for some ρ̃ belonging to the interval with endpoints ρ and ρ0. From here we see:

ρ− ρ0 = (ρ(τ0)− ρ0)exp(
∫ τ

τ0

−2B′
1(ρ̃)dτ ′) = (ρ(τ0)− ρ0)exp((τ0 − τ)2B′

1(ρ̃1))

for some fixed ρ0 ∈ R and ρ̃1 ∈ (ρ(τ0), ρ(τ)) ⊂ [ρ(τ0), ρ0]. We remind that
B′

1(ρ̃1)) ≥ c̃ > 0, for some constant c̃, since B1 is increasing function and ρ̃1

belongs to the compact interval [ρ(τ0), ρ0]. Letting τ → ∞ we conclude that for
any N ∈ N

ρ− ρ0 = O(1/τN ), τ →∞.

From here we have ρτ = O(1/τN ), τ →∞, since:

lim
τ→∞

ρτ

ρ− ρ0
= lim

τ→∞
1− 2B1(ρ)

ρ− ρ0
= lim

τ→∞
−2B′

1(ρ) = −2B′
1(ρ0) = const. < 0.

Accordingly, ρτ and ρ− ρ0 have the same growth rate with respect to τ .
This, in turn, means that for every N ∈ N and t > t∗ we have

1− 2B1(ρ) = ρτ = O(τ−N ) = O(εN ), ε →∞, (40)

since for fixed t > t∗ we have τ = ψ0(t)
ε →∞ as ε → 0.

Now we can prove that ∂x
∂x0

> 0 for t > t∗. We have

∂x

∂x0
= 1 + εA− 2K

∫ t

0

(1− 2B1)dt′ (41)

= 1 + εA− 2K

∫ t∗

0

(1− 2B1)dt′ − 2K

∫ t

t∗
(1− 2B1)dt′

= εA + 4K

∫ t∗

0

B1dt′ − 2K

∫ t

t∗
(1− 2B1)dt′ > εA− 2K

∫ t

t∗
(1− 2B1)dt′.

Recall that

B1 = B1(ρ(τ)) = B1(ρ(
ψ0(t)

ε
)).

Consider the last term in expression (41):

2K

∫ t

t∗
(1− 2B1)dt′ = 2K

∫ t

t∗
(1− 2B1(ρ(

ψ0(t′)
ε

)))dt′

=

(
ψ0(t

′)
ε = z =⇒ (f ′(U1)− f ′(U0))dt′ = εdz;

t∗ < t′ < t =⇒ 0 < z < ψ0(t)
ε

)

= ε
2K

f ′(U1)− f ′(U0)

∫ ψ0(t)
ε

0

(1− 2B1(ρ(z)))dz < ε2KC,

where

C =

∫∞
0

(1− 2B1(ρ(z)))dz

f ′(U1)− f ′(U0)
< ∞,

since from (40) we know 1− 2B1(ρ(z)) = O(z−N ), z →∞ and N ∈ N arbitrary.
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Therefore, from (41) it follows that for A large enough (more precisely for A > C)
we have

∂x

∂x0
> C̃ε > 0

for a constant C̃ > 0, what we wanted to prove.
Next step is to obtain the constant c. We multiply (32) by η ∈ C1

0 (R), integrate
over R with respect to x and use (28) (so, we remove the first term in (32)):

∫
B1[

d

dx
(f(U1 + U0 − u1) + f(u1)− cu1)] (H1 −H2) η(x)dx

+((u1 − U0)ϕ1t−B2 (f(u1)− f(U0))−B1 (f(U1)− f(U1 + U0 − u1))) δ1

+((U1 − u1)ϕ2t+B2 (f(u1)− f(U1))+B1 (f(U0)− f(U1 + U0 − u1))) δ2 =O(ε).

We apply partial integration on the first integral in the previous expression to
obtain: ∫

B1[f(U1 + U0 − u1) + f(u1)− cu1] (H1 −H2) η′(x)dx (42)

+
∫

((u1 − U0)ϕ1t −B2 (f(u1)− f(U0)) + B1 (f(u1) + f(U0)− cu1)) η(x)δ1dx

+
∫

((U1 − u1)ϕ2t+B2 (f(u1)− f(U1))−B1 (f(u1) + f(U1)− cu1)) η(x)δ2dx=O(ε).

Bearing in mind that ρ = ϕ2−ϕ1
ε and using definition of the Dirac δ distribution

together with the fact that u1 ≡ U1 for x ≥ ϕ1 and u1 ≡ U0 for x ≤ ϕ2:

ερB1

∫
[f(U1 + U0 − u1) + f(u1)− cu1]

H1 −H2

ϕ2 − ϕ1
η′(x)dx (43)

+ B1 (2f(U0)− cU0) η(ϕ1)−B1 (−2f(U1) + cU1) η(ϕ2) = O(ε).

To continue, notice that we have |ρB1| < ∞ for every τ ∈ R. Namely,

|ρB1(ρ)|→0 as τ→−∞ since in that case B1(ρ(τ))∼B1(τ)∼ 1
τN

∼ 1
ρN

,

|ρB1(ρ)|→ρ0B1(ρ0) as τ→∞ since in that case ρ→ρ0.
(44)

This fact reduces expression (43) to:

B1 (2f(U0)− cU0) η(ϕ1)−B1 (−2f(U1) + cU1) η(ϕ2) = O(ε). (45)

Rewrite this expression in the following manner:

B1 (2(f(U0)− f(U1))− c(U0 − U1)) η(ϕ1) + B1 (−2f(U1) + cU1) (η(ϕ2)− η(ϕ1))

= B1 (2(f(U0)− f(U1))− c(U0 − U1)) η(ϕ1)

+ ερB1(ρ) (−2f(U1)+cU1)
η(ϕ2)− η(ϕ1)

ϕ2 − ϕ1
=

=(44) B1 (2(f(U0)− f(U1))− c(U0 − U1)) η(ϕ1) = O(ε).

From here, we see that the last relation is satisfied for

c = 2
f(U1)− f(U0)

U1 − U0
. (46)

The theorem is proved. 2
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Remark 9. In the case such as our, when U0 and U1 are constants, is possible to
replace formula (31) by

uε(x, t) = û(x0(x, t, ε)),
where, as before, the function x0 is the solution to implicit equation (29) and û are
initial data (4).

The proof of this fact obviously follows after comparing trajectories on Figure 2
and Figure 4. We give precise formulation in the next theorem. We leave it without
proof since it is completely analogical to the proof of the previous theorem.

The difference between the previous and the next theorem is in the form of
characteristics along which we solve our problem.

In the previous theorem, for fixed ε, the weak asymptotic solution uε to (1),
(4) was generator of continuous semigroup of transformations (since characteristics
intersect along x = ϕi) and in the following theorem the weak asymptotic solution
uε to (1), (4) forms continuous group of transformation since appropriate charac-
teristics do not intersect (compare Figure 1 and Figure 2). Still, approach from the
next theorem can be used only in the case of special initial data.

6

-
x

t

t∗

Figure 4. System of characteristics for uε defined in Theorem 10.
The points a1 + εAa1−a2

2 and a2 − εAa1−a2
2 are dotted on the x

axis.

Theorem 10. The weak asymptotic solution uε, ε > 0, to Cauchy problem

ut + (f(u))x = 0, u|t=0 = û(x), (47)

is given by

uε(x, t) = û(x0(x, t, ε)), (48)

where x0 is inverse function to the function x = x(x0, t, ε), t > 0, ε > 0, of ’new
characteristics’ defined trough the Cauchy problem:

ẋ = f ′(uε)(B2(ρ)−B1(ρ)) + cB1(ρ), u̇ε = 0,

x(0) = x0 + εA

(
x0 − a1 + a2

ε

)
, uε(0) = û(x0), x0 ∈ R.

(49)
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where A is large enough so that
∂x

∂x0
> 0 for every x0 ∈ R and t ∈ R+.

The functions B1 and B2 are defined in Theorem 7, constant c is given in (27) and
ρ = ρ(ψ0(t)/ε) is the solution of Cauchy problem (25).

The following corollary is obvious. It claims that the weak asymptotic solution
defined in arbitrary of the previous theorems tends to the shock wave with the
states U1 on the left and U0 on the right (see (38)):

Corollary 11. With the notations from the previous theorems, for t > t∗ the weak
asymptotic solution uε to problem (1), (4) we have for every fixed t > 0:

uε(x, t) ⇀

{
U1, x < c

2 (t− t∗) + x∗,
U0, x > c

2 (t− t∗) + x∗,
in D′(R).

3. The weak asymptotic solution to (2), (5)

At the beginning of the section, we explain some general moments.
The plan is to substitute the weak asymptotic solution (uε) of problem (1), (4)

into (2). Thus, we obtain the family of equations:

vεt + (vεg(uε))x = 0, ε > 0. (50)

Augmented by initial data (5), this linear partial differential equation of the first
order has global differentiable solution.

The function uε is given by (31) or by simpler version (48) (both formulas give
the weak asymptotic solution to (1), (4)). For the simplicity we will substitute the
function given by (48) in the place of u appearing in (2).

Weak asymptotic solution to Cauchy problem (2), (5) we will solve separately in
five areas of (x, t) plane (see Figure 6).

In order to single out those domains we substitute (48) into (2) and use Leibnitz
rule for derivative of product:

vεt + g(uε)vεx = −(g(uε))xvε. (51)

The system of characteristics corresponding to (51), (5) is:

Ẋ =g(uε), X(0) = x0,

v̇ε =− vε(g(uε))x, vε(0) = v̂(x0).
(52)

We prove global resoluteness of this ODE system for x0 ∈ R. According to the
inverse function theorem it is enough to prove that along entire temporal axis we
have

∂X

∂x0
> 0.

Denote by J = ∂x̃
∂x0

where x̃ = x̃(x0, t, ε) is the solution of Cauchy problem (34).
We have seen in Theorem 10 that J > 0 for every t > 0 and x0 ∈ R. Recall that

uε(x, t) = û(x̃0(x, t, ε)),

where x̃0 is inverse function to the function x̃(x0, t, ε) with respect to x0. From
(52) we have (we write below g′(û) = g′(û(x̃0(X(x0, t, ε), t, ε))))

d

dt

∂X

∂x0
= g′(û)û′

∂x̃0

∂X

∂X

∂x0
= g′(û)û′J−1 ∂X

∂x0
,

∂X

∂x0

∣∣∣
t=0

= 1.
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After integrating this differential equation with respect to the unknown function
∂X
∂x0

we obtain:

∂X

∂x0
= exp(

∫ t

0

g′(û)û′J−1dt′) > 0, t > 0. (53)

Furthermore, the inverse derivative of ∂X
∂x0

has the form:

∂x0

∂x
= exp(−

∫ t

0

g′(û(x̃0(x, t)))û′(x̃0(x, t))J−1dt′) > 0, t > 0.

The subintegral function g′(û(x̃0(x, t)))û′(x̃0(x, t))J−1 has discontinuity only along
lines (ϕi(t), t), i = 1, 2, since x̃0(ϕi(t), t) = ai and û′(x0) has discontinuities only
for x0 = ai, i = 1, 2. But, since it it is integrated over t′ ∈ [0, t] we conclude that
∂x0
∂x is continuous, and, thus, ∂X

∂x0
from (53) is continuous as well.

Therefore, the inverse function theorem implies existence of inverse function x0 =
x0(X, t, ε) along entire temporal axis, which, in turn, implies global resoluteness of
problem (52).

Since for t < t∗ and ε = 0 the Jacobian J−1 is well defined for every x0 ∈ R
we see that for t < t∗ the function v is determined along characteristics. The
characteristics are non-intersecting and their form is plotted on Figure 5.

6

-
a2 a1

(x∗, t∗)

t

x

Figure 5. Standard characteristics for (2), (5) are plotted by nor-
mal lines. Dashed lines are characteristics for (1), (4) emanating
from a2 and a1, respectively.

Denote by ϕ∗i , i = 1, 2, solutions of the following Cauchy problems:

Ẋ =g(uε),

X(0) =ai, i = 1, 2.

Now, we can introduce domains in which we will separately solve Cauchy problem
(50), (5).
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We set

D1 = {(x, t)| x < ϕ2}, D2 = {(x, t)| x > ϕ1},
D3 = {(x, t)| ϕ2 < x < ϕ∗2}, D4 = {(x, t)| ϕ∗1 < x < ϕ1},

D5 = {(x, t)| ϕ∗2 < x < ϕ∗1}
Domains are plotted in Figure 6. Since the function vε is everywhere continuous
function (it is defined along nonintersecting characteristics; see (53)), it will be
classical solution to problem (50), (4).

On the beginning, we prove that those domains are disjunct. Accordingly, we
inspect relations between the functions ϕi and ϕ∗i , i = 1, 2. We have to prove the
following fact for every t ∈ R+:

ϕ2(t, ε) ≤ ϕ∗2(t, ε) < ϕ∗1(t, ε) ≤ ϕ1(t, ε), (54)

First, we prove that

ϕ2 ≤ ϕ∗2. (55)

In the moment t = 0 we have

(ϕ2)′t = f(U1)(B2 −B1) + cB1 and (ϕ∗2)
′
t = g(U1), (56)

and (see (16))

g(U1) > f ′(U1) > f ′(U1)(B2 −B1) + cB1,

since f ′(U1) > c/2. Using well known theorem from ODE-s (”who goes slower does
not reach further”, [1]) from (56) we see that in some neighborhood of t = 0 we have
ϕ2 < ϕ∗2. Assume now that t0 is the smallest t > 0 such that ϕ2 = ϕ∗2. In this case
we have the same situation as in the moment t = 0, i.e. there exists neighborhood
(t0, t0 + δ) such that ϕ2 < ϕ∗2 in (t0, t0 + δ). Continuing like this we see that we
indeed have (55).

In the completely same manner we prove that

ϕ∗1 ≤ ϕ1. (57)

It is remained to prove that:

ϕ∗2 < ϕ∗1. (58)

This directly follows from the fact that characteristics of problem (52) do not inter-
sect. That means that relation between two characteristics remains the same along
entire time axis. Therefore,

ϕ∗2 = X(a2, t, ε) < X(a1, t, ε) = ϕ∗1,

since a2 < a1. This proves (58).
Collecting (55), (57) and (58) we obtain (54). From (54) and the fact that for

t > t∗

lim
ε→0

ϕi(t, ε) =
c

2
(t− t∗) + x∗, i = 1, 2

it follows that for t > t∗ we have:

lim
ε→0

ϕ∗i (t, ε) =
c

2
(t− t∗) + x∗, i = 1, 2. (59)

We remind that the constants t∗ and x∗ are introduced in front of Theorem 8.
Next, we solve problem (51), (5) separately in domains Di, i = 1, ..., 5.
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6

-

t∗

6
D1 D2

D3 D4

D5

(x03,t03)
(x04,t04)

x

t

j

+

Figure 6. System of characteristics for vε (normal lines). Dashed
lines are x = ϕi(t), i = 1, 2, normal lines inside dashed ones are
x = ϕ∗i , i = 1, 2. The points a1 + εAa1−a2

2 and a2 − εAa1−a2
2 are

dotted on x axis.

In domains D1 and D2 we have uε ≡ const. and therefore the characteristics
corresponding to vε there are straight lines. More precisely, we have:

vε(x, t) ≡ V1, (x, t) ∈ D1,

vε(x, t) ≡ V0, (x, t) ∈ D2.

Another two domains are:

D3 = {(x, t)| ϕ2 < x < ϕ∗2}, D4 = {(x, t)| ϕ∗1 < x < ϕ1}.
In those domains we solve the following Cauchy problems:

vεt + g(uε)vεx = −(g(uε)xvε,

vε|x=ϕ1 = V0 (initial data for the Cauchy problem in D3),

vε|x=ϕ2 = V1 (initial data for the Cauchy problem in D4).

We use standard method of characteristics. Note that in this case characteristics
emanate from the lines x = ϕi, i = 1, 2, and not from x axis as usual (see Figure
6). The system of characteristics for ones emanating from the line ϕ1 has the form:

Ẋ =g(uε),

v̇ε =− vε(g(uε))x,

X(t0) =ϕ1(t0) = x0, vε(t0) = V0.

(60)

and for the characteristics emanating from the line ϕ2 has the form:

Ẋ =g(uε),

v̇ε =− vε(g(uε))x,

X(t0) =ϕ2(t0) = x0, vε(t0) = V1.

(61)

Global solvability of this system can be proved in the same way as the one for the
system (52).
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Next step is to solve the second equation from (60) (or analogically from (61)).
We have for problem (60):

v̇ε = (−g(uε))xvε =⇒

vε = V0exp(−
∫ t

0

(g(uε))xdt′) =⇒

vε = V0exp(−
∫ t

0

(
dX

dt′
)xdt′) =⇒

vε = V0exp(−
∫ t

0

∂

∂x0

dX

dt′
· ∂x̃0

∂X
dt′) =⇒

vε = V0exp(−
∫ t

0

d
dt′

∂X
∂x0

∂X
∂x0

dt′) =⇒

vε =
V0

∂X
∂x0

, (62)

and, similarly, for (61):

vε =
V1

∂X
∂x0

. (63)

The previous implies:

vε(x, t) = V1
∂x03

∂x
(x, t, ε), (x, t) ∈ D3,

vε(x, t) = V0
∂x04

∂x
(x, t, ε), (x, t) ∈ D4.

where x03 = x0(X, t, ε) = ϕ1(t01) and x04 = x0(X, t, ε) = ϕ2(t02) are inverse func-
tions to the function X determined by (60) and (61), respectively (for appropriate
t0i, i = 1, 2, depending on (X, t); see Figure 6, domains D3 and D4).

Finally, we solve problem (51), (5) in the domain:

D5 = {(x, t)| ϕ∗2 < x < ϕ∗1}.
We apply similar procedure as in the previous case. The solution in this domain is:

vε(x, t) = v0(x0(x, t, ε))
∂x05

∂x
(x, t, ε),

where x05 = x0(X, t, ε) is inverse function to the function X determined by (52)
(x0 restricted on [a2 − εAa1−a2

2 , a1 + εAa1−a2
2 ]).

So, we have proved the following theorem:

Theorem 12. The function:

vε(x, t) =





V0, , (x, t) ∈ D1,

V0
∂x03
∂x (x, t, ε), (x, t) ∈ D3,

v0(x0(x, t, ε))∂x05
∂x (x, t, ε), (x, t) ∈ D5,

V1
∂x04
∂x (x, t, ε), (x, t) ∈ D4,

V1, (x, t) ∈ D2.

(64)

represents classical solution to problem (51), (5) (and thus the weak asymptotic
solution as well).
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4. Weak limit of the solution

It remains to inspect the weak limit of the weak asymptotic solution (uε, vε)
of problem (2), (5) for t > t∗ (since for t < t∗ we have classical solution of the
considered problem).

We have already known from Corollary 11 that for t ≥ t∗ we have:

uε(x, t) ⇀ u(x, t) =

{
U1, x < c

2 (t− t∗) + x∗

U0, x ≥ c
2 (t− t∗) + x∗

in D′(R). (65)

So, we have to inspect weak limit of vε. ore precisely, in this section we will prove
the following theorem:

Theorem 13. For every fixed t > t∗ the function vε given by (64) satisfies as
ε → 0

vε(x, t) ⇀ v(x, t) =

{
V1, x < c

2 (t− t∗) + x∗,
V0, x ≥ c

2 (t− t∗) + x∗
(66)

+
[
V1(a2 + g(U1)t− c

2
(t− t∗)− x∗) + V0(

c

2
(t− t∗) + x∗ − a1 − g(U0)t)

+
∫ a1

a2

v0(x0)dx0

]
δ(x− c

2
(t− t∗)− x∗) in D′(R).

Proof: To begin, note that we can write function vε from (64) in the following
manner:

vε(x, t) = v̂(x0(x, t, ε))
∂x0

∂x
(x, t, ε),

where (see Figure 6):

x0(x, t, ε) =





x− g(U1)t, (x, t) ∈ D̄1,

x−1
03 (x, t, ε)− g(U1)ϕ−1

2 (x−1
03 (x, t, ε)), (x, t) ∈ D3

(here first we go by x−1
03 to the line ϕ2 so that x−1

03 (x, t, ε) = ϕ2(t03)
and then proceed to the line t = 0 along the straight line x− g(U1)t),

x−1
05 (x, t, ε), (x, t) ∈ D̄5,

x−1
04 (x, t, ε)− g(U0)ϕ−1

1 (x−1
04 (x, t, ε)), (x, t) ∈ D4,

(here first we go by x−1
04 to the line ϕ1 so that x−1

04 (x, t, ε) = ϕ1(t04)
and then proceed to the line t = 0 along the straight line x− g(U0)t),

x− g(U0)t, (x, t) ∈ D̄2,

(67)

and

∂x0

∂x
(x, t, ε) =





1, (x, t) ∈ D̄1,
∂x03
∂x , (x, t) ∈ D3,

∂x05
∂x , (x, t) ∈ D̄5,

∂x04
∂x , (x, t) ∈ D4,

1, (x, t) ∈ D̄2.
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We take η ∈ C1
0 (R) and write using (64):

∫
vε(x, t)η(x)dx =

∫ ϕ2−ε

−∞
vε(x, t)η(x)dx +

∫ ϕ∗2

ϕ2−ε

vε(x, t)η(x)dx

+
∫ ϕ∗1

ϕ∗2

vε(x, t)η(x)dx +
∫ ϕ1+ε

ϕ∗1

vε(x, t)η(x)dx +
∫ ∞

ϕ1+ε

vε(x, t)η(x)dx

=
∫ ϕ2−ε

−∞
V1η(x)dx +

∫ ϕ∗2

ϕ2−ε

V1
∂x04

∂x
η(x)dx +

∫ ϕ∗1

ϕ∗2

v0(x0(x, t, ε))
∂x05

∂x
η(x)dx

+
∫ ϕ1+ε

ϕ∗1

V0
∂x03

∂x
ηdx +

∫ ∞

ϕ1+ε

V0η(x)dx.

Here, we have written ϕi±ε in order to avoid complications due to possible ϕi = ϕ∗i .
Then, we use the change of variables x = X(x0, t, ε) where X is inverse function

of the function x0 = x0(X, t, ε) given by (67). We have:
∫

vε(x, t)η(x)dx =
∫ ϕ2−ε

−∞
vε(x, t)η(x)dx (68)

+
∫ a2

x0(ϕ2−ε,t,ε)

V1η(x(x0, t, ε))dx0 +
∫ a1

a2

v0(x0)η(X(x0, t, ε))dx0

+
∫ x0(ϕ1+ε,t,ε)

a1

V0η(x(x0, t, ε))dx0 +
∫ ∞

ϕ1+ε

V0η(x)dx,

and we remind that:

x0(ϕ1 + ε, t, ε) = ϕ1 + ε− g(U0)t, x0(ϕ2 − ε, t, ε) = ϕ2 − ε− g(U1)t.

Furthermore, for t > t∗ we have (see (23) and (24)):

x0(ϕ1 + ε, t, ε) → c

2
(t− t∗) + x∗ − g(U0)t, ε → 0,

x0(ϕ2 − ε, t, ε) → c

2
(t− t∗) + x∗ − g(U1)t, ε → 0.

Accordingly, for t > t∗ after letting ε → 0 we have from (68) exactly (66).
This concludes the theorem. 2

It remains to give a comment concerning admissibility of the singularities ap-
pearing in u and v, and to inspect weather u and v defined by (65) and (66),
respectively, represent solution of the system in the sense of Definition 3. We have
the following theorem:

Theorem 14. Delta shock wave appearing in the function v defined by (66) for
t > t∗ is overcompressive with respect to system (1),(2). Furthermore, the functions
u and v defined by

v = w − lim
ε→0

vε

u = w − lim
ε→0

uε,

are solutions to Cauchy problem (1-(2)), ( (4)-5) in the sense of Definition 3.

Proof: We recall that δ-shock is overcompresive with respect to system (1),(2) if
(15) holds. This follows directly from assumptions on f ′ and g quoted in Theorem
6 providing:

g(U1) < f ′(U1), f ′(U0) < g(U0). (69)
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Admissibility of the shock wave appearing in the solution to problem (1), (4) implies

f ′(U1) < c/2 < f ′(U0)

which together with (69) implies:

g(U1) < c/2 < g(U0),

which proves overcompressivity of the shock and δ-shock wave appearing in (65)
and (66).

We pass to the prove of the other statement of the theorem.
Recall that the functions u and v are defined along the ’new characteristics’ (see

(28) and (67)), which, for t < t∗ converge to standard characteristics as ε → 0.
Therefore, for t < t∗ the pair (u, v) is solution to problem (1-(2)), ((4)-5) along
characteristics. Taking this into account and substituting V = v and u in the
second equation of (8) we have for an arbitrary ϕ ∈ C1

0 (R+ ×R):
∫

R+

∫

R

(v∂tϕ + g(u)v∂xϕ) dxdt (70)

+
∫

{x= c
2 (t−t∗)+x∗, t>t∗}

e(t)
∂ϕ(x, t)

∂l
dl +

∫

R

v̂(x)ϕ(x, 0)dx

=
∫ ∞

t∗

∫

R

(v∂tϕ + g(u)v∂xϕ) dxdt

+
∫

{x= c
2 (t−t∗)+x∗, t>t∗}

e(t)
∂ϕ(x, t)

∂l
dl +

∫

R

v̂(x)ϕ(x, 0)dx = 0,

where (see (66))

e(t) =
[
V1(a2 + g(U1)t− c

2
(t− t∗)− x∗) + V0(

c

2
(t− t∗) + x∗ − a1 − g(U0)t)+

∫ a1

a2

v0(x0)dx0

]
δ(x− c

2
(t− t∗)− x∗)

Then, notice that for t > t∗ the functions u and v are given by (65) and (66),
respectively. Therefore, we have from (70) after parametrizing {x = c

2 (t − t∗) +
x∗, t > t∗}:

∫ ∞

t∗

∫

R

(v∂tϕ + g(u)v∂xϕ) dxdt

+
∫

{x= c
2 (t−t∗)+x∗, t>t∗}

e(t)
(

∂ϕ(x, t)
∂t

+
∂ϕ(x, t)

∂x

c

2

)
dt +

∫

R

v̂(x)ϕ(x, 0)dx

=
∫ ∞

t∗

∫ c
2 (t−t∗)+x∗

−∞
(V0∂tϕ + g(U0)V0∂xϕ) dxdt

+
∫ ∞

t∗

∫ ∞

c
2 (t−t∗)+x∗

(V1∂tϕ + g(U1)V1∂xϕ) dxdt

+
∫ ∞

t∗
e(t)∂t(ϕ(t,

c

2
(t− t∗) + x∗))dt

=
∫ ∞

t∗

(
−e′(t) + ([vg(u)]− [v]

f(u)
[u]

)
)

ϕ(t,
c

2
(t− t∗) + x∗)dt = 0



26 V.G. DANILOV AND D. MITROVIC

implying Rankine-Hugoniot conditions for δ-shock on the line x = c
2 (t− t∗) + x∗:

e′(t) =
(

[vg(u)]− [v]
f(u)
[u]

) ∣∣∣
x= c

2 (t−t∗)+x∗
, (71)

By direct substitution, it is trivial to check that (71) is satisfied.
2
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