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Abstract. We consider the macroscopic model for traffic flow proposed by Aw
and Rascle in 2000. The model is a 2×2 system of hyperbolic conservation laws,
or, when the model includes a relaxation term, a 2 × 2 system of hyperbolic
balance laws. The main difficulty is the presence of vacuum, which makes us
unable to control the total variation of the conservative variables. We allow
vacuum to appear and prove existence of a weak entropy solution to the Cauchy
problem.

1. Introduction

In [2] Aw and Rascle introduced a new macroscopic model for traffic flow,

(1)
ρt + (ρv)x = 0

(ρw)t + (ρwv)x = 0

}
where w = v + p(ρ),

the functions ρ(x, t) and v(x, t) are the density and the velocity of cars on the road-
way and x ∈ R and t ∈ R+ are the Eulerian space and time variable, respectively.
For simplicity we write the system as

ut + f(u)x = 0,

where u = (ρ, y) = (ρ, ρw) ∈ U ⊂ R2. The function p(ρ) is smooth and strictly
increasing and it satisfies

(2) p(0) = 0, lim
ρ→0

ρp′(ρ) = 0 and ρ p′′(ρ) + 2 p′(ρ) > 0 for ρ > 0.

The last assumption ensures strict hyperbolicity for ρ > 0. The prototype of the
function p(ρ) is

(3) p(ρ) ∝ ργ , γ > 0.

The eigenvalues of the system are

λ1 = v − ρp′(ρ) and λ2 = v.

For ρ > 0 the first wave family is genuinely nonlinear and the second family is
linearly degenerate. Moreover, for ρ = 0 the eigenvalues coincide and the system is
only hyperbolic. In [2] Aw and Rascle solve the Riemann problem for this model
and they include the vacuum state. For a discussion of the model, see also [1], [5],
[6], [8], [9], [10], [11], [12] and [15].

The model is of Temple class, i.e., the shock and rarefaction curves coincide. The
Riemann invariants are w and v, and the wave curves are given by w = const. and
v = const., respectively. A solution of the Riemann problem that does not include
vacuum consists of at most two waves, one of each family. Thus, any subdomain
D ⊂ U defined by

(4) D = {u ∈ U : w− ≤ w(u) ≤ w+, 0 ≤ v− ≤ v(u) ≤ v+} ,
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Figure 1. The domains (a) D and (b)-(c) DV .

where w− > v+, is invariant for the Riemann problem. Further, for a solution of
the Riemann problem with initial data in D, the total variation of the Riemann
invariants is nonincreasing. The domain D is shown in figure 1(a). If we pick initial
values u0(x) in D, vacuum will not appear in the solution of the Cauchy problem.
Thus the function (p−1)′ is bounded, and it is possible to obtain a bound on the
total variation of (ρ, y) from the total variation of the Riemann invariants. By using
this property and the Glimm scheme [7], it can be shown that the Cauchy problem,
with u(x, 0) = u0(x) ∈ BV(R)2, has a weak entropy solution. This argument is
given in Serre [16, Chapter 5].

As long as we must exclude the vacuum state, our choice of an invariant domain
is severely limited. If we, for example, want to increase the maximal velocity v+,
we also have to increase w− in order to stay away from vacuum. When including
the vacuum state, the available invariant domains are given by (4) requiring w(u) ≥
v(u) instead of w− > v+. All these regions are subdomains of

(5) DV = {u ∈ U : 0 ≤ v(u) ≤ w(u) ≤ v+} .

The domain DV is depicted in figure 1(b)–1(c). Note that we now can include any
nonnegative value of the car density ρ0 and velocity v0 in DV by choosing a larger
value of v+.

A Riemann problem with left state uL and right state uR produces a vacuum
state at time t = 0+ if and only if

(6) vR ≥ wL.

When the Riemann data satisfies this condition, the solution consists of a rarefac-
tion wave that connects uL to a vacuum state given by w = v = wL, and a contact
wave that connects the vacuum state given by v = w = vR to the right state uR.
Hence the total variation of the Riemann invariants is still nonincreasing. So, if
p′(ρ) > ε > 0, it is in general possible to obtain a bound on the total variation of
(ρ, y) from the total variation of the Riemann invariants, and the Glimm scheme
yields existence of a weak entropy solution.

In [19] it is shown for the p-system that, unless vacuum is present initially or
appears immediately, the solution will not reach a vacuum state in finite time.
This is not the case for the Aw–Rascle model. In order to show this, assume initial
Cauchy data consisting of three constant states denoted by uL, uM and uR such
that vL = vM , wM = wR and wL ≤ vR. Further, assume that the Cauchy data
does not include vacuum. Thus, at time t = 0+ the solution consists of a contact
discontinuity separating the leftmost state uL and the middle state uM , and a
rarefaction wave connecting uM and the rightmost state uR. The solution, as a
function of time and space, is shown in figure 2(a), and figure 2(b) gives the states in
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Figure 2. A contact discontinuity and a rarefaction wave collide
and a vacuum state uV appears in the solution. The state along
the dashed characteristic in figure (a) is the state denoted by u∗
in figure (b).

the (w, v)-plane. The contact travels faster than the rarefaction, and the two waves
will collide at time t1. Since wL ≤ vR, the resultant state once the incoming waves
have passed through each other includes vacuum. Across the incoming rarefaction
wave the velocity v increases. Thus, as the contact discontinuity transverses the
rarefaction, the velocity of the contact increases. Since the velocity of the rightmost
part of the incoming rarefaction is λ1(uR) < λ2(uR), the contact travels through
the rarefaction in finite time and leave the rarefaction at time t = t3. Thus, vacuum
will appear in the solution at some time t2. Further, several waves can collide at
the same time. Then vacuum appears if and only if (6) is satisfied for L denoting
the leftmost wave and R the rightmost wave.

We want to show existence of a weak entropy solution of the Cauchy problem
for system (1), with initial data u0(x) taking values in DV . Assume

(7) p′(0) = 0, p′(ρ) > 0 for ρ > 0, and |p(ρ1)− p(ρ2)| ≤ L |ρ1 − ρ2| ,
for some constant L, which is satisfied for the prototype function given by (3) with
γ > 1. Since we allow vacuum states and p′(0) = 0, we are unable to control the
total variation of the conservative variables, and thus we can not use the Glimm
scheme to show existence. However, we consider slightly modified systems for which
we can control the total variation and show existence of weak entropy solutions.
The Riemann invariants have nonincreasing total variation and they are Lipschitz
continuous in time as functions into L1

loc(R). Thus, by introducing a cut-off function
and using a compactness argument, we show convergence of a sequence of weak
entropy solutions of the slightly modified systems. It turns out that the limit is
a weak solution of the original system. However, when we include vacuum the
system has no strictly convex entropy η(ρ, y). We relax the assumptions on the
entropy function and assume only that η(ρ, y) is strictly convex in ρ. For this choice
of entropy functions we show that admissible, in the sense of Lax, discontinuous
solutions of the Riemann problem for (1) satisfy the entropy inequality, and that
it fails for inadmissible discontinuities. Finally, we show that the weak solution
obtained for the Cauchy problem for (1) satisfies the entropy inequality. In Section
2 we prove the following theorem:

Theorem 1. Let the initial Riemann invariants (w0(x), v0(x)) be in BV(R)2 and
take values in DV . Assume p(ρ) satisfies (2) and (7). Then there exists a weak
entropy solution u(x, t) in L1

loc(R × R+)2 of system (1) with initial data u0(x).
Further, the total variation of the Riemann invariants w(x, t) and v(x, t) is nonin-
creasing.
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We expect our proof technique to work also for the network model [5], [12],
provided that the junctions do not cause the total variation of v and w to blow up.
It should also prove useful in overcoming any difficulty arising from loss of control
of the total variation of ρ near vacuum for related traffic models.

An improved version of the model (1) includes a relaxation term in the second
equation,

ρt + (ρv)x = 0

yt + (yv)x = ρR(ρ, y).
(8)

We assume the relaxation term satisfies

(9) R(ρ, y)

{
≥ 0 for v = 0, w ≤ w+,

≤ 0, for v ≤ v+, w = w+,

and is Lipschitz in v and w,

(10) |R(ρ1, y1)−R(ρ2, y2)| < L (|v1 − v2|+ |w1 − w2|) .

By using operator splitting and Theorem 1 we obtain approximate solutions of the
above system. The approximate Riemann invariants have bounded total variation
and are Lipschitz continuous in time. Thus, by using the same technique as used
to achieve Theorem 1, we prove, see Section 3, the following theorem:

Theorem 2. Assume the conditions of Theorem 1 are satisfied. Furthermore,
assume R(ρ, y) satisfies (9)–(10). Then there exists a weak entropy solution u(x, t)
in L1

loc(R×R+)2 of system (8) with initial data u0(x). Further, the total variation
of the Riemann invariants w(x, t) and v(x, t) is bounded.

Remark. The operator splitting technique, as used in the proof of Theorem 2, also
yields existence of a weak entropy solution of the Cauchy problem for strictly hyper-
bolic Temple systems with a source term. Consider the strictly hyperbolic Temple
system ut + f(u)x = g(u), where u, f and g are vectors in Rn and (x, t) ∈ R×R+.
Assume the initial Riemann invariants, r0(x) ∈ Rn, have bounded total variation.
We split the system into a homogenoues hyperbolic part, ut + f(u)x = 0, and a
system of ordinary differential equations, ut = g(u). Consider the homogeneous
hyperbolic system. From the theory of Temple systems there exists a bounded in-
variant domain D, and the Riemann invariants, r ∈ Rn, have nonincreasing total
variation and are Lipschitz continuous in time as function into L1

loc(R)n. If the map
r 7→ u(r) is a diffeomorphism, there exists a weak entropy solution of the Cauchy
problem for the system. Consider the system of ordinary differential equations,
and assume that the domain D is an invariant domain for the system. Denote
r = R(u) and u = U(r). Thus, by a change of variables the system transforms to
rt = dR(U(r))g(U(r)). If g, U and dR are Lipschitz, Grönwall’s inequality yields
TV(r(t)) ≤ eCt TV(r0), for a constant C, and Lipschitz continuity in time of r.
Finally, the same operator splitting technique as used to prove Theorem 2, yields
existence of a weak entropy solution u(x, t) of the inhomogeneous hyperbolic sys-
tem, and the solution has bounded total variation. In [4] Colombo and Corli prove
well-posedness for a class of strictly hyperbolic Temple systems with a source, as-
suming the eigenvalues of the system are separated on every compact subset of D.
The above proof holds for more general systems, but we only obtain existence of a
weak entropy solution. In particular, the eigenvalues of the Aw–Rascle model are
not separated on DV (5), so [4] is not directly applicable.

A specific choice of the relaxation term, as given in [15], is

(11) R(ρ, v) =
1
τ

(V (ρ)− v) = R̃(w, v) =
1
τ

(
V ◦ p−1(w − v)− v

)
,
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where the constant τ is the relaxation time and the smooth function V (ρ) is an
equilibrium velocity. Further, assume the subcharacteristic condition, see [15],

(12) −p′(ρ) ≤ V ′(ρ) ≤ 0

is satisfied.
We want to show that (9)–(10) are satisfied with this particular choice of R(ρ, v)

under these extra conditions: There is some density ρ0 > 0 so that

(13) w+ ≥ p(ρ0) and V (ρ)

{
> 0, 0 ≤ ρ < ρ0,

= 0, ρ > ρ0.

The top half of (9) is trivially satisfied. As to the bottom half, note that (12) implies
R̃v ≤ 0 and w+ ≥ p(ρ0) implies p−1(w+) ≥ ρ0. Thus R̃(v, w+) ≤ R̃(0, w+) =
τ−1V ◦ p−1(w+) = 0. The domain DV and a curve V (ρ) are shown in figure 3.

The Lipschitz condition (10) follows too, since (12) implies −τ−1 ≤ R̃v ≤ 0 and
−τ−1 ≤ R̃w ≤ 0, and (10) is satisfied with L = τ−1. In conclusion, if we assume
(12)–(13), the assumptions in Theorem 2 hold for R(ρ, v) given by (11). Thus there
exists a weak entropy solution including vacuum for system (8) with this specific
choice of relaxation term.

In [17] Siebel and Mauser introduce another source term ρR(ρ, v) to the second
equation in the Aw–Rascle model. Their function R(ρ, v) satisfies (9)–(10), and
by Theorem 2 there exits a weak entropy solution of the system. The source term
is motivated by experimental data and the system gives an unstable regime for
intermediate densities. For the unstable region the equilibrium density curves in
the fundamental diagram is shifted towards an inverse-λ shape. This feature is
observed in traffic dynamics, as discussed in [14]. Another approach for modeling
this instability using the Aw–Rascle model is given in [8].

Before proving the theorems we introduce some notation. Let Ω denote any
bounded subset of R. The purpose is to compute in L1(Ω) and tacitly draw con-
clusions about L1

loc(R). The norm on L1(Ω) is denoted by ‖ · ‖. Further, we will
usually omit subscripts on subsequences and let any subsequence of the sequence
uδ be denoted by uδ. In particular, whenever speaking of convergence of uδ, we
really mean convergence of some subsequence. For simplicity, we write u(t) instead
of u(·, t). Finally, let a ∨ b denote max(a, b).

2. Proof of Theorem 1.

In order to prove Theorem 1, we first define an appropriate approximation of
(1). For δ > 0, consider

ρt + (ρv)x = 0[
ρ

(
v + pδ(ρ)

)]
t
+

[
ρv

(
ρ + pδ(ρ)

)]
x

= 0,
(14)
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where

(15) pδ(ρ) =


p(δ)
δ

ρ, ρ ≤ δ

p(ρ), ρ > δ,

and w = v + pδ(ρ). The initial Riemann invariants v0(x) and w0(x) are in BV (R)
and take values in DV . Further, we take them to be independent of δ. The initial
data uδ

0(x) depends on δ since w0 = v0 + pδ(ρδ). Assume δ < ρ+, where ρ+ =
(pδ)−1(w+) = p−1(w+) is the maximal density. We denote the solution of the
conservative problem by (ρδ, yδ) and the Riemann invariants by (vδ, wδ). The
modified system is also of Temple class. As discussed in the previous section, the
total variation of the Riemann invariants, even when including the vacuum state,
is nonincreasing,

(16) TV
(
wδ(t), vδ(t)

)
≤ TV (w0, v0) ≤ C,

where C is a constant. For δ > 0 the function pδ(ρ) satisfies

(17) Cδ

∣∣pδ(ρ1)− pδ(ρ2)
∣∣ ≥ |ρ1 − ρ2| ,

where Cδ =
∥∥1/(pδ)′

∥∥
∞. From pδ(ρδ) = wδ − vδ we find

TV
(
ρδ(t)

)
≤ Cδ TV

(
wδ(t), vδ(t)

)
≤ Cδ C,(18)

which implies

TV
(
yδ(t)

)
≤ ρ+ TV

(
wδ(t)

)
+ w+ TV

(
ρδ(t)

)
≤ ρ+C + w+Cδ C.

Thus, for some constant Mδ depending on δ, we have

(19) TV
(
ρδ(t), yδ(t)

)
≤ Mδ.

Notice that Mδ increases without bound as δ → 0, because the same is true for Cδ.
For initial Riemann data taking values in DV , there exists a solution to the

Riemann problem for (14)–(15) with δ > 0, see [2]. The domain DV is an in-
variant region in the sense that if the initial data lies in DV , then so does the
solution. Consider the Cauchy problem for (14)–(15) with initial Riemann invari-
ants (v0(x), w0(x)) in BV (R)2 taking values in DV and initial Cauchy data uδ

0(x).
Since DV is bounded, the Glimm approximate solutions can be defined for all times
t, and they are bounded. Further, the total variation of the Glimm approximations
are bounded. Thus, by Serre [16, Theorem 5.4.1], the Glimm scheme yields exis-
tence of a weak entropy solution uδ(x, t) of the Cauchy problem. The solution is
bounded in L∞(R × [0, T ])2 and the total variation is given by (19). Further, the
solution is Lipschitz continuous in time,

‖uδ(t)− uδ(s)‖ ≤ 2 TV
(
uδ(t)

)
|t− s| ≤ Mδ|t− s|,

for s ≤ t ≤ T .
In order to show that the Riemann invariants are Lipschitz in time independently

of δ, we consider the Glimm scheme as given in [16, Chapter 5]. We denote by
uδ

h(t) and
(
wδ

h(t), vδ
h(t)

)
the approximate solution and the approximate Riemann

invariants of (14) given by the Glimm scheme at time t. Let h = ∆x = c∆t,
where ∆x and ∆t are the space and time step, respectively, and c is some constant.
For a fixed t in [0, T ], it is shown that uδ

h(t) converges to uδ(t) in L1
loc(R)2 as

h → 0. Further, since the Riemann invariants are bounded in L∞(R) and have
bounded total variation independently of h, Helly’s theorem yields the existence of
a subsequence converging to some limit (wδ(t), vδ(t)) in L1

loc(R)2. The limits should
satisfy wδ = vδ + pδ(ρδ) and yδ = ρδwδ. Since pδ is Lipschitz in its argument and
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wδ
h = vδ

h + pδ(ρδ
h), the first equality is satisfied. Further, since yδ

h = ρδ
hwδ

h, the
second equality is satisfied.

A diagonal argument gives us a subsequence (wδ
h(t), vδ

h(t)) converging for all t
in S, where S is a countable and dense subset of [0, T ]. By the same technique as
used in [16, Chapter 5.4] when proving that uδ

h(t) is Lipschitz continuous in time,
it can be shown, for any s ≤ t in [0, T ], that∥∥wδ

h(t)− wδ
h(s)

∥∥ +
∥∥vδ

h(t)− vδ
h(s)

∥∥ ≤ 2 TV
(
wδ

h(t), vδ
h(t)

)
(|t− s|+ h)

≤ C (|t− s|+ h).
(20)

Notice by (16) that the constant C is independent of δ. Assume t ∈ [0, T ] and
t /∈ S. Let tk be a sequence in S such that tk → t as k →∞. Finally,∥∥vδ

hm
(t)− vδ

hn
(t)

∥∥ ≤ ∥∥vδ
hm

(t)− vδ
hm

(tk)
∥∥ +

∥∥vδ
hm

(tk)− vδ
hn

(tk)
∥∥

+
∥∥vδ

hn
(tk)− vδ

hn
(t)

∥∥ .

By the Lipschitz continuity of vδ
h in time, the first and last terms can be made

arbitrary small by choosing k large. Fixing such a k, if m and n are large, the
middle term is small. Thus, the sequence vδ

h is Cauchy in L1
loc(R× R+). Further,∥∥vδ(t)− vδ(s)

∥∥ ≤
∥∥vδ(t)− vδ

h(t)
∥∥ +

∥∥vδ
h(t)− vδ

h(s)
∥∥

+
∥∥vδ

h(s)− vδ(s)
∥∥ .

Apply (20) to the middle term and let h → 0. The same arguments hold for wδ

and therefore the Riemann invariants are Lipschitz in time,∥∥wδ(t)− wδ(s)
∥∥ +

∥∥vδ(t)− vδ(s)
∥∥ ≤ C |t− s|.(21)

Since the Riemann invariants wδ(t) and vδ(t) are bounded in L∞(R) and have
bounded total variation independently of δ, Helly’s theorem yields the existence
of a subsequence (wδ, vδ) converging to some limit in L1

loc(R)2. Using the same
argument as for the convergence when h → 0, we end the above discussion by the
following conclusion:

Lemma 1. (wδ, vδ) converges to some limit (w, v) in L1
loc(R×R+)2 as δ → 0 and

the limit (v, w) satisfies

(22) TV
(
w(t), v(t)

)
≤ TV (w0, v0) ≤ C,

and

(23) ‖w(t)− w(s)‖+ ‖v(t)− v(s)‖ ≤ C |t− s|.

The above properties of the limit (w, v) follows directly from (16) and (21).
We are going to prove convergence of a subsequence uδ(t) to some limit in L1

loc(R)
by using the following result:

Lemma 2. Let K be a set of nonnegative functions uniformly bounded in L∞(R).
If, for any ε > 0, there is a constant Mε so that TV(u ∨ ε) ≤ Mε for all u ∈ K,
then the set K is precompact in L1

loc(R).

Proof. For a fixed ε > 0, let Kε = {u ∨ ε : u ∈ K}. We have u ∨ ε bounded in
L∞(R) and TV(u ∨ ε) ≤ Mε. Thus, by Helly’s theorem, the set Kε is precompact
in L1

loc(R). Since u is bounded in L∞(R), we have K ⊂ L1
loc(R). Further, since

‖u− u ∨ ε ‖ < ε |Ω| for all u ∈ K, we find dist(u, Kε) < ε |Ω| for all u in K. By [13,
Lemma A.4], K is precompact in L1

loc(R). �



8 M. GODVIK AND H. HANCHE-OLSEN

Fix t ∈ [0, T ] and define the set K =
{
ρδ(t)

}
δ>0

. The solution ρδ(t) takes values
in DV , and hence K ⊂ L∞(R). Consider the total variation of ρδ ∨ ε. Since

(24)
1

(pδ)′ (ρ ∨ ε)
≤

{
1/p′(ε), δ ≤ ε

1/ (pε)′ (ε), δ > ε,

where pε is defined by (15) replacing δ by ε, the constant Cδ given in inequality
(17) now depends on ε instead of δ. Thus, the same argument as used to obtain
(18) yields

(25) TV(ρδ ∨ ε) ≤ Mε, for all δ ≥ 0.

By Lemma 2 the set K is precompact in L1
loc(R). Thus ρδ(t) converges in L1

loc(R) to
some limit as δ → 0. A diagonal argument gives us a subsequence ρδ(t) converging
for all t ∈ S.

Lemma 3. (ρδ, yδ) converges to some limit (ρ, y) in L1
loc(R× R+) as δ → 0.

Proof. It remains to show convergence of uδ(t) for all t in [0, T ]. Let

ρδ
ε = ε ∨ ρδ, yδ

ε =
(
ε ∨ ρδ

)
wδ, for all ε > 0.(26)

Denote uδ
ε = (ρδ

ε , y
δ
ε ). Notice that uδ

ε converges uniformly to uδ as ε → 0. From
the previous paragraph we have ρδ

ε(t) converging to some limit ρε(t) for all t in S.
Then, yδ

ε → yε = ρεw, as the factors converge in L1
loc and are uniformly bounded

in L∞. Hence we can conclude that the sequence uδ
ε(t) converges to some limit

uε(t) in L1
loc(R)2 for all t ∈ S. The Lipschitz continuity in time of wδ and vδ yields

Lipschitz continuity in time for pδ(ρδ) = wδ − vδ,∥∥pδ
(
ρδ(t)

)
− pδ

(
ρδ(s)

)∥∥ ≤ C |t− s|.(27)

By using (17), (24) and the above inequality we can show that ρδ
ε(t) is Lipschitz

continuous in time for all t, s in [0, T ],∥∥ρδ
ε(t)− ρδ

ε(s)
∥∥ ≤ ∥∥∥∥ 1

(pδ)′ (ρδ
ε)

∥∥∥∥
∞

∥∥pδ
(
ρδ

ε(t)
)
− pδ

(
ρδ

ε(s)
)∥∥

≤ Cε |t− s|,
(28)

where the constant Cε depends on ε. Also, yδ
ε (t) is Lipschitz continuous in time,∥∥yδ

ε (t)− yδ
ε (s)

∥∥ ≤ ∥∥ρδ
ε(t)

(
wδ(t)− wδ(s)

)∥∥ +
∥∥(

ρδ(t)− ρδ
ε(s)

)
wδ(s)

∥∥
≤ (ρ+C + w+Cε) |t− s|.

(29)

Now, assume t ∈ [0, T ] and t /∈ S and let tk be a sequence in S such that tk → t as
k →∞. Consider

(30)
∥∥uδm

ε (t)− uδn
ε (t)

∥∥ ≤ ∥∥uδm
ε (t)− uδm

ε (tk)
∥∥ +

∥∥uδm
ε (tk)− uδn

ε (tk)
∥∥

+
∥∥uδn

ε (tk)− uδn
ε (t)

∥∥ .

Since uδ
ε is Lipschitz continuous in time with a Lipschitz constant independent of

δ, the first and third term can be made small by choosing k large, i.e. the term
|t− tk| is small. For a fixed k, the middle term is small for m and n large. Hence
the sequence is Cauchy in L1

loc(R)2, and uδ
ε(t) converges to uε(t) for all t ∈ [0, T ].

Finally, consider the sequence uδ(t) and some t in [0, T ]. We have

(31)
∥∥uδm(t)− uδn(t)

∥∥ ≤ ∥∥uδm(t)− uδm
ε (t)

∥∥ +
∥∥uδm

ε (t)− uδn
ε (t)

∥∥
+

∥∥uδn
ε (t)− uδn(t)

∥∥ .

Since ε is arbitrary, the first and third term can be made small by choosing ε small.
Then, by choosing m and n large, the middle term is small. Hence the sequence
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is Cauchy in L1
loc(R)2, and there exists a sequence uδ(t) converging to some limit

u(t) in L1
loc(R)2 as δ → 0. �

The function uδ(x, t) is a weak solution of the approximate problem (14) with
initial data uδ

0(x). Thus, for all test functions φ(x, t) ∈ C∞0 (R× R+),∫
R

∫
R+

(
uδφt + fδ(uδ) φx

)
dt dx +

∫
R

uδ
0 φ(x, 0) dx = 0

where
fδ(u) =

(
y − ρpδ(ρ), y(w − pδ(ρ))

)
.

The function fδ converges uniformly to f . Since uδ and (wδ, vδ) are bounded,
fδ(uδ) converges in L1

loc to f(u) as δ → 0. Thus Lebesgue’s dominated convergence
theorem yields∫

R

∫
R+

(u φt + f(u) φx) dt dx +
∫

R
u0(x)φ(x, 0) dx = 0.

For all t ∈ [0, T ], the weak solution uδ(t) of system (14) converges in L1
loc(R) to a

weak solution u(t) of system (1). Further, the convergence is in C([0, T ];L1
loc(R)2).

The limits satisfy w = v + p(ρ) and y = ρw and thus w(x, t) and v(x, t) are the
Riemann invariants of system (1).

It remains to prove that the limit u(x, t) is a weak entropy solution of (1) with
initial data u0. An entropy/entropy flux pair (η, q) for a hyperbolic system is an
entropy η : U → R and a flux q : U → R satisfying

∇uq = ∇uη df,

where df is the Jacobian matrix of f(u). By [16] we know that uδ is a weak entropy
solution of (14),∫

R

∫
R+

(
ηδ(uδ)φt + qδ(uδ) φx

)
dt dx +

∫
R

ηδ(uδ
0)φ(x, 0) dx ≥ 0,(32)

for all nonnegative test functions φ(x, t) ∈ C∞0 (R× R) and all convex entropies ηδ

with corresponding flux qδ. Consider system (1). Using the transformation given
by Wagner [18, Theorem 1],

∂X

∂x
= ρ,

∂y

∂t
= −ρv,

where X(x, t) is the Lagrangian mass coordinate, we rewrite system (1) as

τt + (p̃(τ)− w)X = 0
wt = 0,

(33)

where τ = 1/ρ and p̃(τ) = p(ρ). For 0 < ρ ≤ ρ+, system (1) is equivalent to
the above system and the relation between the entropy/entropy flux pairs (η, q), in
Eulerian coordinates, and (η̃, q̃), in Lagrangian coordinates, is

η̃(τ, w) =
1
ρ
η(ρ, y)

q̃(τ, w) = q(ρ, y)− ρv η̃(τ, w).
(34)

Moreover, the entropy η is convex if and only if η̃ is convex.
Any entropy/entropy flux pair (η, q) of (33) must satisfy

q̃τ − p̃′(τ) η̃τ = 0
η̃τ + q̃w = 0.
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Solving this system yields
q̃(τ, w) = g (v) ,

η̃(τ, w) = h(w)−
∫ τ

τ0

g′
(
w − p̃(ξ)

)
dξ,

where τ0 is a constant value and h = h(w) and g = g(v) are smooth functions in
L∞(R) having continuous second and third order derivatives, respectively. In order
to obtain strict convexity of η we compute

η̃ττ = g′′ (v) p̃′(τ),

η̃τw = η̃wτ = −g′′ (v) ,

η̃ww = h′′(w)−
∫ τ

τ0

g′′′
(
w − p̃(ξ)

)
dξ.

The Hessian matrix of η̃ is positive definite if η̃ττ > 0 and η̃ττ η̃ww > (η̃τw)2. Since
(p̃)′ < 0, we require g′′ < 0 and

(35) p̃′(τ)
(

h′′(w)−
∫ τ

τ0

g′′′
(
w − p̃(ξ)

)
dξ

)
< g′′ (v) .

For fixed τ and w, the above inequality is satisfied for h′′ big enough. However,
when w is fixed and τ →∞ the left hand side of inequality (35) is asymptotically
equal to −p̃′(τ)τg′′′(w), which goes to 0 as τ → ∞. Thus we have to require
g′′ = 0, and we conclude that there are no strictly convex entropies when vacuum
is included.

We now define a semiconvex entropy η with corresponding flux q as a an entropy
satisfying ηρρ > 0 for ρ > 0. Further, an entropy solution is a weak solution which
satisfies an entropy inequality for all such entropy/entropy flux pairs. The relation
between η and η̃ yields ηρρ = τ3η̃ττ . Thus, for ρ > 0 we have ηρρ > 0 if and only
if η̃ττ > 0. Since h(w)t = h′(w)wt = 0 in Lagrangian coordinates and we now
have a weaker assumption on η, we can, for simplicity, choose h(w) = 0. Thus the
semiconvex entropy/entropy flux pairs of system (33) are

q̃(τ, w) = g (w − p̃(τ)) , η̃(τ, w) = −
∫ τ

τ0

g′
(
w − p̃(ξ)

)
dξ,(36)

where g(v) is a smooth function such that g′′(v) < 0. A calculation of the above
entropy/entropy flux pairs is also done in [3].

Lemma 4. The admissible discontinuities satisfy the entropy inequality for all
semiconvex entropies with corresponding entropy fluxes and the entropy inequality
fails for the inadmissible discontinuities.

Proof. Discontinuous solutions u satisfy the Rankine–Hugionot condition,

s(uR − uL) = f(uR)− f(uL),

where s is the speed of the discontinuity and L and R denote the left and right
state, respectively. Further, by Lax’ admissibility condition a shock of the first
family is admissible if

λ1(uR) ≤ s ≤ λ1(uL).
Consider the Riemann problem for system (33) in Lagrangian coordinates. The
eigenvalues are

λ̃1 = p̃′(τ) and λ̃2 = 0.

For τ < ∞ the first family is genuinely nonlinear and the second family is linearly
degenerate. Moreover, at the vacuum state λ̃1 = λ̃2 = 0. The wave curves are given
by w = const. and v = const., respectively. Then, consider a point on an isolated
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discontinuity and a test function φ(x, t) whose support lies entirely inside a small
neighborhood of this point. By Green’s theorem an entropy inequality as given in
(32) is satisfied for ũ if

s
(
η̃(ũR)− η(ũL)

)
≥ q̃(ũR)− q̃(ũL).

Across contact discontinuities of the second wave family the velocity v is preserved
and s equals 0. Thus, for contact discontinuities the above inequality is satisfied
with equality. Consider admissible shock solutions. Since w is constant across a
shock, both τ and v should decrease across the jump, i.e. vL > vR and τL > τR.
In order to show that the admissible shocks do satisfy the entropy inequality, we
insert the expressions of η̃ and q̃ into the above inequality, with the result,

s

∫ τL

τR

g′
(
w − p̃(ξ)

)
dξ ≥ g(vR)− g(vL),

where w = wL = wR. Further, inserting the expressions of s given by the Rankine–
Hugionot condition into the above inequality yields

1
τL − τR

∫ τL

τR

g′
(
w − p̃(ξ)

)
dξ


≤ g(vR)− g(vL)

v
R
− vL

, vL > vR,

≥
g(vR)− g(vL)

vR − vL
, vL < vR,

where w = wL = wR. Consider the left hand side in the above inequality. By the
substitution ξ = tτL + (1 − t)τR and using the strict convexity of p̃ and the fact
that g′ is decreasing, we get

1
τL − τR

∫ τL

τR

g′
(
w − p̃(ξ)

)
dξ =

∫ 1

0

g′
(
w − p̃ (tτL + (1− t)τR)

)
dt

<

∫ 1

0

g′
(
w − tp̃(τL) + (1− t)p̃(τR)

)
dt

=
∫ 1

0

g′ (tvL + (1− t)vR) dt

=
g(vR)− g(vL)

vR − vL
.

Thus, the admissible shocks will satisfy, and the inadmissible shocks will violate, the
entropy inequality (32) for all semiconvex entropies η̃ and corresponding entropy
fluxes q̃. �

By the previous lemma the solution of the Riemann problem for (14) satisfies
(32) for all semiconvex entropy/entropy flux pairs (ηδ, qδ), and then so does the
solution uδ(x, t) of the Cauchy problem, see [16, Chapter 5.4].

By equation (34) and (36) the entropy/entropy flux pair (ηδ, qδ) of system (14)
for ρ > 0 is

ηδ(ρ, y) =
1
τ

η̃δ(τ, w) =
1
τ

∫ τ

τ0

g′
(
w − p̃δ(ξ)

)
dξ,

qδ(ρ, y) = q̃δ(τ, w) +
w − p̃δ(τ)

τ
η̃δ(τ, w)

= g
(
w − p̃δ(τ)

)
−

(
w − p̃δ(τ)

) 1
τ

∫ τ

τ0

g′
(
w − p̃δ(ξ)

)
dξ.

Thus, ηδ(ρ, y) → g′(w) and qδ(ρ, y) → g(w) − wg′(w) as ρ → 0. The Lipschitz
continuity of g(v) and g′(v) with respect to v yields uniform convergence of (ηδ, qδ)
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to some limit (η, q) as δ → 0. Further, since dfδ → df , the limit (η, q) satisfies
∇q = df · ∇η.

Consider inequality (32). Let δ → 0 and use Lebesgue’s dominated convergence
theorem and the Lipschitz properties. Thus, we finally conclude that for all non-
negative test functions φ(x, t) in C∞0 (R×R+) and all semiconvex entropies η with
corresponding entropy fluxes q,∫

R

∫
R+

(
η(u)φt + q(u) φx

)
dt dx +

∫
R

η(u0)φ(x, 0) dx ≥ 0,

and u(x, t) is a weak entropy solution of (1).

3. Proof of Theorem 2.

Consider system (8) with initial Riemann invariants (v0(x), w0(x)) in BV (R)2

taking values in DV and initial Cauchy data u0(x). In order to show existence of a
weak entropy solution, we split the system into a hyperbolic part, given by (1), and a
pair of ordinary differential equations in time, ρt = 0 and [ρ (v + p(ρ))]t = ρR(ρ, v).
More conveniently we write

ρt = 0

wt = vt = R(ρ, v),
(37)

where vt = wt follows from ρ(x, t) being constant in time. The hyperbolic system
is treated in the previous section. For initial data given by u0(x), we denote a weak
entropy solution of the hyperbolic part at time t as H(t)u0(x). The domain DV is
an invariant domain for the system. Further, the total variation of the Riemann
invariants is nonincreasing and they are Lipschitz continuous in time as functions
into L1

loc(R). Moreover, by Theorem 1 there exists a weak entropy solution in
L1

loc(R× R+)2.
Consider the system of ordinary differential equations (37) with initial data

u0(x). Denote the solution at time t by S(t)u0(x). For simplicity, we abuse this
notation and write the variables w, v and y at time t as S(t)w0(x), S(t)v0(x) and
S(t)y0(x), respectively. However, bear in mind that S(t)w0 in fact depends on v0

as well as w0, and similarly for the other variables.
First, we want to show that if the initial data lies in the domain DV given by

(5), then so does the solution S(t)u0(x). Consider the boundary of the domain
DV . When w = w+ we want wt ≤ 0, and thus we require R(ρ, y) ≤ 0. On the
part of the boundary where v = 0 we want vt ≥ 0, which is satisfied if R(ρ, y) ≥ 0.
For w = v we have S(t)w = S(t)v, and the solution is still the vacuum state.
Thus, requiring (9) yields invariance of DV with respect to the system of ordinary
differential equations (37).

We now want to consider the total variation of the solution. From equation (37)
we have (

S(t)v1 − S(t)v2

)
t
= R

(
S(t)ρ1, S(t)v1

)
−R

(
S(t)ρ2, S(t)v2

)
.

Multiplying the equality by sign (S(t)v1 − S(t)v2) yields∣∣S(t)v1 − S(t)v2

∣∣
t
≤

∣∣R(
S(t)ρ1, S(t)v1

)
−R

(
S(t)ρ2, S(t)v2

)∣∣
≤ L

(∣∣S(t)w1 − S(t)w2

∣∣ +
∣∣S(t)v1 − S(t)v2

∣∣) .

The same argument is true for S(t)w. Thus, by Grönwall’s inequality,

|S(t)w1 − S(t)w2|+ |S(t)v1 − S(t)v2| ≤ eLt (|w1 − w2|+ |v1 − v2|) ,

and this implies

(38) TV
(
S(t)w,S(t)v

)
≤ eLt TV(w, v).
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Since R(ρ, v) is bounded, S(t)w and S(t)v are Lipschitz continuous in time,∫
Ω

|S(t)w − S(s)w| dx +
∫

Ω

|S(t)v − S(s)v| dx ≤ C̃|t− s|,(39)

where C̃ = 2‖R‖∞|Ω|.
We define an approximate solution of system (8) at time tn = n∆t, where ∆t =

T/N , by
un = [H(∆t)S(∆t)]nu0(x).

Since DV is invariant for both the hyperbolic part and the system of differential
equations, the approximate solution un takes values in DV . Further, by (22), (38)
and induction the total variation of wn and vn is bounded,

TV (wn, vn) ≤ CeLT .

By (23) and (39) we obtain Lipschitz continuity in time for vn,

‖vn − vn+m‖ ≤
m−1∑
i=n

‖vi − vi+1‖

≤
m−1∑
i=n

(
‖vi − S(∆t)vi‖+ ‖S(∆t)vi −H(∆t)S(∆t)vi‖

)
≤

m−1∑
i=n

(C̃ + CeLT )∆t = Ĉ|tn − tn+m|.

(40)

The same argument holds for wn.
We now consider an approximate solution that is defined for all times t in [0, T ],

u∆t(x, t) =

{
H

(
2(t− tn)

)
un(x), t ∈ [tn, tn+1/2)

S
(
2(t− tn+1/2)

)
un+1/2(x), t ∈ [tn+1/2, tn+1),

where un+1/2(x) = H(∆t)un. From the above results, u∆t takes values in the
invariant domain DV . Further, w∆t and v∆t have bounded total variation,

(41) TV (w∆t, v∆t) ≤ CeLT ,

and they are Lipschitz continuous in time for tn, n in N. By (23), (39) and (40),
w∆t and v∆t are Lipschitz continuous in time,

(42) ‖w∆t(s)− w∆t(t)‖+ ‖v∆t(s)− v∆t(t)‖ ≤ C̄|s− t|,

for all s and t in [0, T ] and a constant C̄ independent of ∆t.
In order to prove convergence of a subsequence u∆(x, t) to some limit in L1

loc(R×
R+), we use Lemma 2 and the same technique as we used to prove convergence of
uδ(x, t) in the previous section. Since p′(ρ∆t ∨ ε) is bounded, equation (41) and
w∆t = v∆t + p(ρ∆t) give

TV(ρ∆t ∨ ε) ≤ Mε for all ∆t ≥ 0.

Thus, replacing uδ by u∆t in equation (24)–(25) and (26)–(31) yields convergence
of u∆t(x, t) to some limit u(x, t) in L1

loc(R × R+)2 as ∆t → 0. Further, the limits
w and v also have bounded total variation (41) and they are Lipschitz continuous
in time (42).

It remains to show that the limit u(x, t) is a weak solution of system (8). For
simplicity, introduce the vector r(u) = (0, R(ρ, v)). Since u∆t(x, t) is a weak so-
lution of the hyperbolic system for t ∈ [tn, tn+1/2), we have for all test functions
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φ(x, t) ∈ C∞0 (R× R+),∫
R

∫ tn+1/2

tn

(
u∆tφt + 2f(u∆t)φx

)
dt dx

−
∫

R
u∆t(x, tn+1/2)φ(x, tn+1/2) dx +

∫
R

u∆t(x, tn)φ(x, tn) dx = 0.

Further, u∆t(x, t) is a solution of the system of ordinary differential equations for
t ∈ [tn+1/2, tn+1). After multiplying with a test function φ and partial integration,∫

R

∫ tn+1

tn+1/2

u∆tφt dt dx +
∫

R

∫ tn+1

tn+1/2

2r(u∆t)φdt dx

−
∫

R
u∆t(x, tn+1)φ(x, tn+1) dx +

∫
R

u∆t(x, tn+1/2)φ(x, tn+1/2) dx = 0.

Adding the two equations and summing over n = 0, 1, ..., N − 1 yields∫
R

∫ T

0

u∆tφt dxdt + 2χ∆t

∫
R

∫ T

0

f(u∆t)φx dt dx

+ 2χ̃∆t

∫
R

∫ T

0

r(u∆t)φdt dx +
∫

R
u∆t(x, t0)φ(x, t0) dx

−
∫

R
u∆t(x, T )φ(x, T ) dx = 0,

where χ∆t = χ∪[tn,tn+1/2) and χ̃∆t = χ∪[tn+1/2,tn+1). Notice that χ∆t converges
weakly to 1

2 as ∆t → 0. Remember that u∆t is bounded and Lipschitz continu-
ous in time. Thus, letting ∆t → 0 in the above equation, Lebesgue’s dominated
convergence theorem yields

(43)
∫

R

∫ T

0

(u(x, t)φt(x, t) + f(u(x, t)φx) dt dx +
∫

R
u0(x)φ(x, 0) dx

−
∫

R

∫ T

0

r(u(x, t)) dtφ(x, t) dx = 0

i.e. the limit u(x, t) is a weak solution of system (8).
In the proof of Theorem 1 we show existence of semiconvex entropy/entropy flux

pairs (η, q) of the flux f , where we assume that ηρρ > 0. By definition, u∆t is
a weak entropy solution of the hyperbolic part for t in [tn, tn+1/2). Further, we
multiply system (37) with ∇u ηφ and integrate over t in [tn+1/2, tn+1). Thus, the
same arguments as used to achieve (43) yields∫

R

∫ T

0

(
η(u)φt + q(u)φx

)
dxdt +

∫
R

u0(x)φ(x, 0) dx

+
∫

R

∫ T

0

∇uη(u)r(u) φdt dx ≥ 0.

For all t ∈ [0, T ], u∆t(t) converges in L1
loc(R)2 to a weak entropy solution u(t) of

system (8) and the convergence is in C([0, T ];L1
loc(R)2). Further, the limits w(x, t)

and v(x, t) are the Riemann invariants of system (8).
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