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Abstract

The Navier-Stokes equations for the motion of compressible, viscous fluids in the half-space
R} with the no-slip boundary condition are studied. Given a constant equilibrium state (p, 0),
we construct a global in time, regular weak solution, provided that the initial data po,uo are

close to the equilibrium state when measured by the norm

lpo = plLes + a0l

and discontinuities of pg decay near the boundary of Ri.

0.1 Introduction

We consider a model for the motion of a compressible, isothermal, viscous flow based on the
Navier-Stokes equations. With p(¢,z) and u(¢,x) being the density and the velocity of the

fluid, the model consist of the equations:

7] .
FP + div (pu) =0, (1)
g(pu) + div (pu®u) — (A + p)diva — pAu + VP = pf, (2)

ot
3 +2u>0, >0,

(t,z) ERy xQ, P(p) =Ap, A>0,

and a set of initial and boundary conditions:

(p(0,2), u(0,2)) = (po(z), wo(x)), =z €Q, (3)
u(t,z) =0, (t,z) € Ry x 9. (4)
There is an extensive literature concerning different aspects of the problem (1) — (4). For the

detailed discussion of the results we refer the reader to the recent monograph [13]. We shortly

mention some of them. It is known that if the initial data of the problem are smooth then the



problem is well-posed. Moreover, a unique, global solution exists if the initial data are close
to a static equilibrium state, measured in strong norms, for example in H? (Ri) , see [11, 15].
On the other hand, there is a well-developed theory of weak solutions of the problem (1) — (4)

and other related problems, see [8, 3]. A typical result is contained in the following theorem.

Theorem (P.-L. Lions, [8]). Suppose that v > % and Q € C?T%, 0 > 0. Suppose that the
initial data (po,mo) satisfy p € L7 (Q), |mo|*/po € L* (Q), where we agree that mo = 0
on {po(-) = 0}. Then there is a global weak solution of the problem (1)—(4), (p,u), such that
0(0,) = pa(+) and p(0,-)u(t,-) = mo Moreover, for any t > 0 the energy inequality holds.
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Solutions constructed in the above theorem have somewhat limited regularity properties:
p e L®[Ry:L(Q) and u € L? (Ry : WH2(Q))°

physical phenomena.

, and thus, may incorporate some non-

For the Cauchy problem, i.e. when the flow occupies the whole space R3, global existence
of weak solutions that remain near a static equilibrium sate, (p, 0), was proved in [4], see also
[5] for related results. In contrast with the result of [11], solutions built in [4] are essentially
weak; the density is an element of L®°. On the other hand, solutions possess many favorable
properties, such as, impossibility of spontaneous formation of vacuum, the fact which is being

implicitly assumed when equations (1) — (2) are used to model a motion of real fluids.

Theorem (D. Hoff, [4, 5]). Let Q =RY, N =2,3. Let 5> 0 and L > 0 be given. There is a
positive number ¢ = ¢(N) and a pair of positive numbers A, C' depending on (u, X, p, L, N, c),
with the property that if

At p<cp (5)

and the initial data (po, o) satisfy bounds

and

|uO‘L2N (]RN)N S La

then, a global weak solution (p,u) of the problem (1)—(3) exists for which

|p‘Loo(]R+ XRN) < Cﬁa

uc L™ {t:t>7} xRN, vr>o.
(We refer the reader to [5] for the complete statement of the Theorem.)

The analogous result was obtained for flows in domains with boundaries under the Navier
boundary condition, i.e. the condition that tangential velocity at the boundary is proportional

to the tangential component of the stress, see [5].



In this work we present a development of the existence theory of the near equilibrium weak
solutions initiated in [4] to the problems with the no-slip boundary condition (4). The density
component of the weak solution that we construct is L°° away form the boundaries and such
that discontinuities in p(¢,-) decay near the boundary. Specifically, we measure p(t,-) by the
norm

(ot N + 19t Nporpas @ €l0,1,
where (-)o is defined in (13). The localization of discontinuities in p(t,-) inside the domain
corresponds to a physical situation when motion of a fluid results from disturbances that occur
in the interior of the domain. At the level of technical description of the proof, the introduction
of the above functional to measure the density is dictated by the fact that the L> norm along is
not suitable to control sound waves reflected from the boundary. Moreover, for weak solutions
to remain near the equilibrium state we impose a certain structural restriction on the model,
i.e. on the relative size of A and u, given by (6), which guarantees that sound waves reflected
from the boundary are, in fact, weaker than of incident waves. More detailed descussion of

the result is given in the next section.

0.2 Statement of the result

We prove the following theorem.

Theorem A. For any p > 0 and o €]0, L[ there are co = co(a) > 0, ¢; = ci(p, A, p, o0, A),

i =1,2, and a continuous, non-increasing function a(t) > 0, a(0) = « such that if

c(a)p
P (©6)

and a pair of measurable functions (po, uo) verifies a smallness assumption:

[P0 = Plr2@y) + 10 = Plpoo (ms ) + (Po)a + o]y (az ) < e, (7)

then, there exists a weak solution, (p, u), of the problem (1) — (4), defined for all times t > 0,
see Definition 1 for the definition of a weak solution. Moreover, for a.e. t in Ry, the following

estimates hold.

OSCp(t, ) + <p(t7 ')>a(t) < CQ(OSC ,O(t, ) + <p(t7 ')>a + |u0|H1)a
[u(t, ')|H1(Ri) +[p(t,-) — ﬁ‘LQ(Ri) < C2(|UO‘H1(R3) + [po — ﬁ|L2(R3+))7 (8)

Veu € L2(Ry @ L° (R3)).

Remark 1. Since the solution, constructed in the Theorem, is such that the oscillations in
density are small, there is no loss of generality in assuming the pressure law P = Ap instead
of the ‘“isentropic” y—law, P = Ap”, v > 1. Indeed, the derivation of a priori estimates in
case v > 1 is identical to case v = 1. Moreover, the strong convergence of the sequence of
the approximate, classical solutions for v > 1 is established by the Lions-Feireisl theory, see
FEIREISL/[S].



The framework of the analysis was established in works [4, 8]. We shortly describe the new
issues appearing in the problem with the no-slip boundary conditions. First, we notice that
unlike the situation for the Cauchy problem, L° norm alone is not well-suited to measure the

density of a solution. Indeed, the Navier-Stokes equations (2) can be written as a problem

(9)

A+ p)Vdivu+pAu = a+V(p—p),
u = 0, ORY,

where a = pD,u — the acceleration. Using a classical method of Lichtestein and assuming for

a moment that a = 0, the divergence of u can be represented as

A4 p

A+ 2p)divu(t,z) = — Nt3

(p(t,x) — p)

e [, 900 V(o) = ), (10
where G(z,v) is the Green’s function for the Laplace’s equation in R3, see section 0.6 for
details. It can be seen from the above formula that divu is not bounded in sup-norm if p — p
is a generic function in L*NL> (Ri) . The divergence, divu, may blow-up at boundary points.
Moreover, the singularities caused by V(p — p) are unlikely to be balanced by the acceleration,
a, because the later vanishes at the boundary of the domain. On the other hand, divu is the
rate of the production of mass which, when unbounded, may cause the blow-up of the density

in L*° norm. A better substitute is a norm
|plxo == (pP)a +|p = pl2 + oscp. (11)
where (-)q is defined by (13). It can be shown that
| divulx, <elplxo,

see Lemma 9. The question to ask then, is either the motion caused by the reflection of
“waves” from the boundary can destabilize a solution which is close to the static equilibrium
(p,0) initially. We consider the reflection in the context of the linear elliptic problem (9). We
say that sound waves reflected from the boundary of 8Ri are weaker then incident waves when

measured by | - |x if
[(A+2p)divu—(p—p)|x <clp—p|lx, and 0<ec<]1. (12)

For example, the representation formula (10) can be used to show that the above property
holds with X = L? (R%), if A+ > 0, u > 0. For X introduced in (11) we were able to show

that the above estimate holds with
o= Gl
A+ 2p’
where the function co(a) is of the order a~'. We do not know if this number is smaller than
1 for the full range of {(\, ) : p > 0, 3X 4+ 2u > 0} and this is the reason for including a
structural condition (6) in the Theorem. On the other hand, the constant c is less than 1 if

the ratio ﬁ is small. In Hydrodynamics the quantity A + % u is called a second viscosity
3

coefficient or bulk viscosity. Under certain conditions such as propagation of high frequency



sound waves, the bulk viscosity shows a dispersion relation on the frequency and the values of
1/ (A+ %) are in fact small, see Section 81 of [6]. For that reason our result may be thought of
as a model for such type of motion. Note also that the space that we are using for the density
supports oscillations of arbitrary high frequencies. We use the estimate (12) with X = X,
in the equation (1) to show that the oscillations of the density in reflected sound waves are
damped by pressure.

Another issue is also connected with the stability of the flow in (p), norm. Because of
the hyperbolicity of the equation (1) the norm (p(t,-))s critically depends on the regularity
of the flow X' generated by the velocity field u. Using the integral representation of u as a
solution of (9) we derive a system of ODE’s (56) for the flow trajectories, from which, based
on the energy estimates, we are able to show that the flow is Holder continuous with the
constant of Holder continuity being generally a decreasing function of time, see Lemma 13.
The later property causes the degradation of regularity of the density. In Theorem A this fact
is represented by a non-increasing function «(t) in the estimate (8). From the estimates of
Lemma 13 one can also see that flow trajectories approach the boundary of the domain at the
rate proportional to (p(t,-))a. This, potentially singular phenomenon is counterbalanced by
the damping effect produced by the pressure on the density. The intensity of the damping is
measured by inf p(t, -), which is required to be positive, see Lemma 14.

A main part of the paper is devoted to derivation of a priori estimates for a generic classical
solution of (1)—(2). A weak solution is constructed as a limit of global smooth solutions with

appropriately smoothed initial data using Lions-Feireisl theory, [8, 3].

0.3 Functional setting

By B(r,z), » > 0, x € R3 we denote a ball with radius r, centered at 2 € R3.. We use symbol V
to denote the spacial gradient of a function and D? the set of all spacial second derivatives. Let
LP; 1 < p < 400, be the Lebesgue space of functions from Ri to R, integrable with exponent
p (essentially bounded when p = 4+00). We use the standard notation wk.p (]Ri’_) ,keN, 1<
p < +oo for the space of weakly differentiable, up to the order k, functions, with derivatives
from L? (Ri) space. We use notation H' := W2, In this paper we will abbreviate L? (R‘:’L)
to L? and use the same notation for norms of scalar and vector functions. Denote by

[ua= sup M’ a €]0,1],
x,yeRi,z;ﬁy |$ - y‘

(U)a = sup ln@) =u®)l ", 0,11, (13)
zeBRi,yER‘j’r,O<|x—y\<1 |$_ y|

various Hélder semi-norms. The following estimates are well-known, see [2](Theorem 7.10,
Theorem 7.17)

Lemma 1. Let u be a locally integrable function such that Vu € L? (Ri) and having zero
trace on the boundary BR?’,_. Then, u € LS (Ri) and there is ¢ > 0, independent of u, such that

lulls < el Vul|2.



Lemma 2. Let u be a locally integrable function with Vu € L (Ri’_) , p > 3. Then, there is
c = c(p) such that for a.e. x,y € RY it holds

@ 3
[u(@) = u)l < e = y"[Vuller, o= 1=

Definition 1. A pair of functions

(p7 u) = (p(t,:c), U1(t, 33)7 u2(t7I)7 U3(t, l‘))

is called a weak solution of (1)-(4) if
Py PUi, vui € Llloc (R+ X Ri) ) 1= 172737

pur @ ui € Lie (Ry x RY) i, k1 = 1.3,

Vu € L*(Ry xRY}),
u = 0, ondR%,

and for all test functions ¢, ¥; € C* ([t7 7] : C&° (]Ri)) ,1=1,23, with0 <t <T < +o0 it
holds (summation over the repeated indezes is assumed)

//RMR%+ PO+ pu -V — /RL1 (7, )o(T )

T
:07

t

// pukOubr + puru;Opth;
Ry xR

3
— // (A + ) divudiv ) + pdw Oty + (P — P)Okiy
Ry xRS

T
- / p(T7 )uk (Ta ')"/’(T, ) =0
R3 t
+
To simplify the presentation we assume that the constant A = 1 in (2). It is always possible
to reduced to this case through the substitution (¢,z,p,u) — (a’t, az, p, au), a = Aié,

without changing the viscosity coefficients.
0.4 The Lamé equations
In this section we recall some elliptic estimates. The principal part of (2) is an elliptic system

of Lamé equations (14). Consider the problem

: _ 3
A+ p)Vdivu+ pAu=F, R3, } (14)

u=0, ORY,

with the conditions u > 0, A+ u > 0. Here, F = (Fi(x), F2(x), F3(z)). The system is (W&’Z)3
— elliptic, see Chap. 3, sec. 7 of [12], meaning that the bilinear form

a(u,v) = /112{3 A+ p)divudivv + pVu : Vv,
+



is coercive, i.e.
a(u,u) > “'VuFLZ(Ri)-

This condition is sufficient to imply the existence of the strong solution, Theorem 2.1 in [12],
Chap. 3.

Lemma 3. Let F € L? (Ri) . Then, there is a unique strong solution of (14), such that
2
D701y ) < lFliaey) T elVulia).

|Vu|L2(R3) < C|F|

L8 (=)’

The following Lemma is a well-known fact, whose prove is based on the Calderon-Zygmund

estimates on singular integrals.
Lemma 4. Suppose that in the problem (14) F = VP, for some P € L?, p €]1,00[. Then, the
problem has a unique weak solution u € L3 = ,p<3oruc€ Ly, p>3, such that

|Vu|rr < ¢|P|rr,

for some ¢ = ¢(p).
Corollary 1. In the problem (14), let F = F1 + VP, where F1 € L*(RY) and P € L°(RY).

Then, a unique solution of the problem exists and there is ¢ > 0 such that

[Vuls < c(|Vulz + [Filz + |[Plo) - (15)

0.5 Energy estimates

In all subsequent estimate we assume

Hypothesis Ho. For all (t,z),
p(t,z) <10p:=M

Lemma 5. Let ,
D(p) = p[ s (s—p)ds, p=0
P

and

B = [ ot a2+ 2(o(t,).
T
Then, for any smooth solution (p, u) of the problem (1)—(4) the following equality holds.

t
E(t)+ / / (A + 2u)| divu(t,)|* + p|curlu(t, -)|* = E(0). (16)
0 JR3
.
The proof of this Lemma is well-known and can be found, for example, in [4].
Lemma 6. With the notation F = (A + 2u) divu — (p — p),
F, =VF + pcurl o curlu,

Y(t) = |p(t,") = pl3 + [F(t, )5 + [ curlu(t, )3



and in the conditions of the previous lemma, there are ¢; = ¢i(\, u, M, |Vuol2), i = 1,2, such
that for t > 0 it holds:

Y(t) + /0 [Fi(7, )3 + |p(r,-) = pl3 dr < e2 (E(0) + Y(0)), (17)

provided that
E(O) < Cl.

Proof. We divide equations (2) by p and take operators div and curl of the result. We get:

%dwu+&verh0—m-Vmwu

— div [p_1VF — p_lucurl curlu] =0,

% curlu + curl ((u- V)u) — (u- V) curlu

— curl [p_1VF — p_lucurl curlu] =0.

Then, we multiply the first equation by F|, second by pcurlu, add them and integrate over
Ri. After carrying out the integration by parts on the principal part we obtain (dependence

on t is not explicitely written):

d1 F? 2 -1 2
3 )\+2M+,u\curlu\ + /p |F4]

= 1/(ﬂ—l— | curl u®) divu + /(div((u Viu) — (u-V)divu)F

RV AT

+ /(curl((u -V)u) — (u-V)curlu) - ucurlu}
pdivuF
+/7;57—L+h+k7u&
Both terms,

|1, [J2| < es|Vul3 + 6|p — pl3, (19)
for any 6 > 0. On the other hand,

(o= p)divu((+ 20 diva — (o — 7))
o= /%3 A+ 2p

B divu((A+2p)diva— (p — p)) 2 1 _2
< |V - _|p— . 2
+p/]R3 A+ 2u elVulz 2(\ +2u) lp = pla- (20)

+

+

3 3
Let us estimate |Vu|z. We have |Vul3 < ¢|Vu|2|Vu|Z and thus by Corollary 1 we get (for
any €, d > 0):
[Vul3 < e[Fuf3 + ces|Vul3(IVulz + 1) +8lp — al3- (21)

A simple energy estimate of the Lamé equations (14) leads to the following estimate.

|Vul3 < ¢|F|3 + ¢| curlul3 + ¢|p — )3



Using this estimate in (21) and combining estimates (19)—(21) in (18) we obtain

d _
7 (FI2+ [ewrlul3) + c|Ff3 + clp — pl3
< e HVu3((|F3 + | curlul3)* + |p — pl3 + 1).
Finally, from the equation (1) it follows that
d _12 12 2
S|P =Pl < 8lp = plz + cs|Vulz.
Note, that we allow ¢ depend on sup p. We conclude from the last two inequalities that
Y/ () + [F1(t, )3 + |p(t,-) = pl3 < e[ Vu(t, ) 3(Y ()" + 1).

The conclusion of the lemma follows from the last inequality and Lemma 5. O

0.6 Representation formulas for the solution of (14)

Let us recall a classical method of Lichtenstein for the reduction of a boundary value problem
for the elliptic system of Lamé equations to a boundary integral equation for the divu. The
later can be explicitly solved in the half-space ]Ri. The exposition of this method can be found
for example in [10].

For = (1,72, %3) € R, let £* = (—x1, 22, 73). Let

1
H S —

and denote by

the Green’s function for the Laplace’s equation in RY. We look at the system of equations (2)

as elliptic problem (14) where we set
F=a+ V(p - ﬁ)7

with
a=(a', d? &)= (pu); + divpu®u
— the inertia force. Let
F=(\+2p)diva— (p—p), (23)
be the notation for the viscous flux. Applying div to (14) we derive:

AF = diva, (24)

and the following integral representation holds (the dependence of functions on ¢ is not written

for notational convenience).

Flz) = /BRB) 00, G, ) F() + [ Gla,)dival-). (25)

3
Ry



Using (24), equations (14) can be written in the following form.

At p . A+ p iz .
A[72(/\+2M)Fx+uu] —a+7()\+2 )dlv( ):c+/\+2uV(p )
and so,
A4 p A tp /
uu(ac)—i— 2(A+2‘u)F(:C)"E /\+2/,L 6]R3 8nyG 7y ( )dey
+ [ Gl [at) + g4 dvaly + 5L V600 - )] v (26)
RS 2(A +2p) At+2u
We set N 543
o] = T g = H a3 = +ou . (27)

2(A+2p)° Xr2p T 200+ 2p)
We take div of the last equations and use integral representation (25) for F' to get the following

equation (here and below the summation over repeated indexes is assumed).

(201 + a3) F(z) = — aa(p(x) - p)

ar [ 000G - 2P S, +as [ V.Gl) - (- 7) divaly) dy
oORY R

+ [ VG 2w dy+an [ V.Gw) Vi oly) - )
R3 R3
T +
One can easily verify that
Ony 0z, G(x,9)(yi — i) = 200, G(x,y), yE ORY.

We use this identity in the last equation together with (25) to obtain the following represen-

tation formula for F.

azF(z) = —ax(p(z) - p)

— 20 / G(z,y)divady + o / V.G(z,y) - (y — z)diva(y) dy
R3 R
+ +

R3

+ [ VaGlam) - a@dy+as [ V.Gl Vilols) = Py (29

Now, we work on the representation for the right-hand side of the above equation that we will

need for the derivation of favorable estimates on F. First, notice that
/ , On G 0uole) = Py = — (o) =)+ / , B0 p00) = 7).
Let
o) =20 [ , oG 2+ / , V-Gl (= 2) divae) dy

+ ‘/112{3 V.G(z,y) - aly) dy.

10



A direct computation shows that

VoG(2,y) - (y —x) = G(x,y) + H(z,y"),

where ( )
7 Yy1(r1 — Y1
H = ——

and

Thus, we can write

Ita) =i +1) [ 9,6y atoydy— [ [V, )
+ 28?41 (H(xv y*)7 0, 0)] : a(t’ y) dy. (29)

As the next step, we recall the definition of a and perform the following operations. Note that

D; stands for the material derivative.
[, V6 atpydy=D: [ 9,6y o], dy
R R ’
+ +
—u(t,z) Ve | VyGz,y)pu|, dy— [ V,@V,G(z,y):puul,  dy
R3 () 73 (t,y)
+ +
=i [ 9,Glaw) gl dy+ [ Ve@VHE) @ () - uto) dy
R ’ R3 ’

-/, Ve ®VyH(z,y") : pt,y)ult,y) @ ut,z)dy
R
A

- Vy ® VyH(z,y") : p(t,y)u(t,y) @ u(t,y) dy. (30)

3
R

Similarly, we compute
[, ittty attg)dy =i [ V) ol dy
R R3 ’

— | Ve®VyH(z,y") : p(t,y)u(t,y) @ u(t,z)dy

3
Et

- [, Ve Vi) et ity (1)

and

28@1(H(m7y*)7070)a(t7y) dy:Dt za’yl(H(x7y*)7O’O)pu| t dy
R3 R3 (t,y)
T T
R
T
= [ Vy®(20y,,0,0)H(z,y") : p(t,y)u(t,y) @ u(t,y)dy (32)

3
R

11



Collecting (30)—(32) in (29) we can write the following representation formula for I(t,z).

Ita) = Do | | Liw.y) - plty)uit.) dy

+ [ Ll sttt ) © (ult.) = (e, ) dy

4 / Li(z,9) : plt, y)u(t,y) ® u(t, ) dy
R%

+ [ i) ottt o u(t.)dy. (3)

3
where ) )
L(z,y) = (a1 + 1)VyG(2,y) — a1 Vy H(z,y") — (20y,,0,0)H(z, y"),
Li(z,y) = (1 + 1)V, @ Vy H(z,y),
Li(z,y) = — (1 + 1)V @ VyH(z,y") — a1 Ve ® Vy H(z, y") (34)
— Ve ®(20y,,0,0)H(z,y"),
Ly(z,y) = — (a1 +1)Vy @ VyH(2,y") —aaVy ® Vyﬁ(x,y*)
L —Vy ® (20y,,0,0)H(x,y"). ]
Let us also set
K*(z,y) = 04,04, H(z,y"). (35)

Then, using (33) in (28) we deduce the following representation for F.

asF(x) = Dy /RS L(z,y) - p(t,y)u(t, y) dy

+ / La(z,9) : plt, w)ut,y) ® (u(t,y) — u(t,z)) dy

3
.
+ [, Liw): plty)ulty) @ ultx) dy
R
+

+ [ Litaw) s ottt @ utt.g) dy

+ {Om(p(ﬂ:) —p)to /3 div, VG (z,y)(p(y) — p) dy} - (36)
R
3
For notational convenience we abbreviate the above formula as
4
F(t,x) = DyJi(t,z) + ; Jilt,z) + z—iPl(t, z). (37)

Now, we derive a representation formula for u. Let G be a Green’s matrix for the problem
(14), i.e.

u(z) = G(z,y)F(y) dy.

R3
3
The explicit expression for the Green’s matrix can be found, for example, in [14]. Let

At A+ 3
2u(X + 2u)’ A4

12



and d;; be the Kronecker symbol. Then,

" B , RN LI
Gi(z,y)=A [(B(S““ + (@ yz)@yk) <47r|a7*y| 4|z *y*‘>]

_ 0 1 9 1
Sp —B lypp— | — o ——— Lk =1,2,3.
+ x1 < k Y1 8yk> o 6:131 |1: _y*‘7 1y ) 53 (38)

We split u according to the following formula

dy

u(t, z) / G(z,y)((pu): + diva ® u) -

+ [, S Viot) ~pdyi=wita) + [ S Viott) -y (@9

0.7 Some potential estimates
To deal with rather lengthy representation formulas from the last subsection we introduce the
following classes of functions.

Property S. We say that a function K(x,y) is of the class S if there is a constant ¢ > 0 such
that

1.
|K(.T,y)‘ §C|$—y‘3, vx?éyv
2. Va # 2z, y € RY such, that |(z + 2)/2 — y| > 2|z — x| it holds
K (2,y) — K(2,9)| < clz —all(x +2)/2 -y
Property S*. We say that a function K(z,y) is of the class S* if there is a constant ¢ > 0

such that

1.
|K({l7,y)| Sc‘x/iyﬁ? Vx#:’/v

where x’ is the projection of the point x € ]Ri onto aRi,
2. Vo # 2z, y € RY such, that |(x + 2)/2 — y| > 2|z — x| it holds
K (2,y) = K(z,9)| < ¢z —zll€ —y| ™",
where € — the projection of the point (x + 2)/2 onto OR3..
The following two Lemmas are verified by direct computations.

Lemma 7. The elements of vector L and matriz L1, from (34), satisfy property S.

Lemma 8. The function K* from (35) and the elements of matrices L3, L3, from (34), satisfy
property S*.

Let
Pi@) = (o) = p) + [ | V.G )(o0) - ).
Ry

Then, the following Lemma holds.

13



Lemma 9. For any o € ]0, 1[ and § > 0 there are ¢ > 0, ¢s > 0, independent of (A, p, p, t),
such, that
(Pr)a < c(lp(-) = pl2 + (p)a) (40)

and
|P1(z)] < 6{p)a + cs|p(-) — Pla. (41)

Proof. We proof only the first part of the Lemma. The proof for the second part goes along the
same line of arguments. Let z1, z2 € R, |21 —22| < § and set B2 = B(z1,2), B1 = B(x1,49),
B = B(z1,2|z1 — z2|),

Sy =9 {R} N B2} \ ORY,

and
S=0{R} NB}\oR}.

We can write the following representation for

Pu(a1) = Pi(a2) = (pla) — p(e2))
= [, LTG0 — A, TGl )} 000) )
+ s {VeG(z1,y) = VaG(z2,9)} - ny(p(y) — p) dSy
-/ . (9 VaG1,) = v, VoGl )} (o) = i)
_ /B {divyVoG(a1,y) — div,VaG(z2, 1)} (0(y) — p(z1))
+ [ (VeG1) = DG ) (m)o0) o) S, (42)

We set a4 to be the projection of point 2 onto OR3. and consequently,

Py(a1) = Pi(x2) = (pla1) = ple2))
= [y, LTG0 — @, TGl )} 00) )
b [ AT2G) = -Gl )} mlo(or) )5,
= [ TG ) — div, .G, ) (0(3) — )
= [, (TG 0) — d, TGl )} (o) — ple)
- /B divy Vo G(21,9)(p(y) — p(z1))

n /B div V. G(@s, ) (p(y) — p(ah))

+(o(ah) = plan)) [ div VoGlazy) mydS,. (43

14



Finally, we split G = H + H™ as in (22) and use the fact that H is a fundamental solution of
the Laplace’s equation. We obtain, see (35) for definition of K™,

Pi(21) = Pa(z2) = (p(x1) — p(25))

= [y, @) K ) o)~ 5)
+ / (V.G(e1,y) — VaG(r2,9)} - ny(p(a1) — p) dS,
Sa
- /B o U@y — K ) o) = i)
- /B @)~ K )} (o) — o)
- /BK*(Ihy)(p(y)—p(wl))
+ fB K*(22,9)(py) — plah))
T (p(ah) — ple1) / V.G(r2,y) ny dS,. (44)
S

In the above representation formula we take x1 € aRi and 2 € Ri. The first term on the
right is bounded by (p)a,s|z1 — z2|%. The second is bounded by |p(:) — p|2|z1 — x2|. The third
— by oscp(-)|x1 — x2|. The fourth — by

oscp(-)0 " “a o1 — 2o|®
and the rest of the terms are bounded by
a” H{paslzr — a2l

because K™ possesses property S*. The same bound holds for the last term on the right, since

| / V.Gl2,y) 1y dS,| < c,
S

with ¢ independent of 1, x2. Setting § = 1 we obtain the required estimate. O

We prove the following lemma.
Lemma 10. There are ¢; = ¢i(p,q), i = 0,1 and ca = c2(8,p) such that

[Jiloe + [J1)y < co (lpuly + lpulg), v=1-3p~", p>3,q€]L,3[ (45)

and fori=2.4

il < enMlula | sup [ulpson +lul | 1<q<3/a<p (46)
z€R+
(Ji)p < c2M ([ula + [u]alul,), B€]0,af p>1. (47)
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Proof. We only prove (47). The proofs of (45) and (46) are similar. Lets consider Jz2(z). Let
z1 € ORY, z2 € RY and |21 — 22| < 1. Let 2o = ©3%2 and B = B(wo,2|z1 — 22|) N R} and
Bi1 = B(x0,2) NR%. We can write

Jo(x1) — Jo(x2) = /BILl,ij(xl,y) o) wi(y) (us(z1) — ui(y))]
- /B Lo ij (@2, y) [p(u)us (4) (s (22) — w5 (1))
b )~ L (e, n)} ) (s eo) — ()
B1\B

+ / {L,i5 (21, 9) (ug (1) — ui(y)) — L (w2, y) (ug(21) — w;i ()} p(y)ui(y)
Rﬁr\Bl

+ (uj(w1) — uj (500))/ La,i5 (1, y)p(y)ui (y)

B1\B
— (uj(z2) — u;(z0)) /B - Luij(z2,9)p(m)ui(y) £ > Jo.  (48)

Note, that u = 0 on dR?Y. Since functions L1 ;; verify property S, it is easy to see that |J3],
|J3| and |J3| are bounded by c|p|oo[u]2|z1 — x2|*, for suitable c. For J3 (and J§) we have the
following estimate.

|J5] < clploolulalzr — 22| log |21 — za| "

On the other hand, due to the property S
| 72] < clploo[ulalulplzr — 22|%,  p>1.

We proved estimate (47) for J». Lets consider Js (Ji is estimated in the same way). Let

xi, © = 0,1,2 be chosen as above.

Js(r) — Js(a2) = / (Laos(e1,1) — Lo (22,9)} plo)us(y)us (9)

R3\By
[ By L)} s
+ [ Las@ @) w)
+ [ Lis@p@uu ). @)
Now, since L5 ;; has the property S, the first term on the right is bounded by
|ploslulplzr = @2, p > 1,
the second by (note that u =0 on 9RY)
|ploo [ulaler — 2|

The last bound is also true for the third and forth terms. O
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The purpose of the following corollary is to combine the results of the previously obtained

Lemmas with the energy estimates of the section 0.5.
Corollary 2. There is ¢ > 0 such that

[J1(t, oo + [N1(E, )]
Jo 158, )oo + (Jit,))

1
2

A (50)

VANVAY

i
i =2.4.
Proof. In the estimate (45) we set ¢ = 2, p = 6 and v = 1/2. Then, by the Lemma 1 we can
write

[Jiloo + [1]% < c(ly/pula + [ Vula),

which by the energy estimates of Lemma 5 and Lemma 6 is not greater than (E(0) + Y(O))%
To estimate J;, i = 2..4, we first notice that by the Sobolev’s Lemma 1 and elliptic estimate
(15) we know that

uls < c|Vulz, |Vuls < c(|Fil2+|p— pls) -

Thus, with an appropriate choice of 8 € ]0, 1[, we derive that
ulis < [V]ss < |Vul3|[Vulg™ < e|Vual3([Fal2 +[p = plo)' ™"
Also,
61 1—601 01 =1 \1-61
[u]1 < c[Vuly < | Vul' [Vulg™™ < c|Vualy' ([Fifa +|p = ple)

It follows then, that (Lemma 6 and Lemma 6)
‘ ! 2 2 2
[ alstuly < ) [ (Vi + B[ + o - o) < c(BO) +Y(0).
0 0

The above quantity is a bound for fot |Ji]oo as can be seen from the estimate (46) where we
set ¢ = 6, p =13 and a = 1/2. The estimate on fg(JQ% is obtained in exactly the same way
from the estimate (47) with p =13, « =1/2 and 8 = 1/4. O

0.8 Holder continuity of flow trajectories

In this section we consider the regularity of the flow generated by the velocity u.
Let X (¢,z;T) denote the trajectory of flow, i.e.

%X(t, ;T) =w(T, X (t,z;T)), X(T,z;T) =z, zcR’. (51)

We choose two points x1 € R3 and x2 € OR% and consider trajectories X (t,x1;7T) and
X (t,z2; T) which we abbreviate to X} and X35. Let w(t, z) be the vector field from the repre-
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sentation (39). We can write that (note, that X§ = z» and w(t,z2) = 0, V¢t > 0)
wit, X1) = w(t, X3) = / {G(X!,y) ~ G(X5,)} plt,y)ult,y)
- / (e, X1) - V)G )plt y)ult,y)
3
+

+ / (ult, X8) - V.)G(XE y)p(t, y)ult,y)

/ (G(XL,y) — G(XL )} div (p(t, )ut, ) © u(t,y))-

‘We introduce a point
€ = AX! 4 (1 )X

(52)

and develop the above formula into another one (summation over repeated indexes is assumed).

w(t, X1) — wit, X4) = D, { [, [ ity dy} (xt - X,
- 1 [ 0n8(E e vt ar s X1) = s, )
-/ , (0t XD) - VG ot o)
+ [ (e, XE) - VB )t g)uttn)

~ [, VS~ G(XE )} : (ot putt.n) @ u(tn)
- D {/R/ 0, G (€5, w)(t, y)ult, y)dAdy} (X!~ X8,
— it X1) / 3 / {02, G(X1,) — 0,64, v)} p(t,y)ult, )

suxd) [ [ 4008000 - 0,660} ot n)uten
T

- [, ToABC ) - EC ) (olt pute) 9 u(e.n)).

3

Let us introduce a matrix A with elements

1
by = [ [ oG ot punt.y) ardy
+

18

(53)

(54)



and vector

B(O) = —ut X)) [ [ {00605 - .Gl )} pltp)uttn
vul ) [ [ {0,605 - 0.6 0} pltp)utty

= [, T AR ~ 6K )} (o(t. puttn) © u(t.y)

T

~ [ (OuE(XE ) = VB ) ot 9) = ) (59
We use formulas (53), (39) with notation (54), (55) in the equation (51) to write it as
D; (X1 — X5) = DiA (X1 — X3) +B. (56)

In the next lemma we estimate B in terms of the difference X7 — X&.

Lemma 11. Let
In"r = max{1, —Inr}, r > 0.

For any p > 1, a € |0 1], there is a number ¢ = c(p,«) > 0 such that
IB| < car ()| X7 — X3|In™ |X] — X3| 4 caz(t)| X1 — X3,
where
a1 = Mlu(t, ')]2% + Mlu(t, )] u(t, )y + Mlu(t, )y
and
az = [p(t,-) = pl2 + (p(t,"))a-

Proof. 1t is a well-known fact that the vector field
/ YV, ——w(y) dy
Yz —yl

is log — Lipschitz if w(y) is bounded, see, for example, Lemma 8.1 of [9] for the precise
statement. All terms, except the last one, in the representation of B, (55), can be treated
similarly to this term. The last term is treated exactly as in the Lemma 9. The details of the

proof are left to the reader. O

We also state the following lemma, which proof is similar to the proof of (45) of Lemma
10.

Lemma 12. For any p > 3 and q € ]1, 3| there is ¢ > 0 such that

|8 ()] < e | sup [p(t;)ult,)lpBa.2) + ot )ult, g

xeRi

In the next corollary, we combine the estimates of the last two Lemmas with the energy

estimates from the section 0.5.

19



Corollary 3. There is a constant ¢ = c(\, u, M) > 0 such that

Ay < c(BO+Y ()2, (57)
B < bi(0)|XT - X3[InT [X] — X5| + b2(8)| X7 — X3,
where
2 2 12
bi(t) = c(IVu(t, )|z + [Fa(t, )2 + |p(t, ) — pl2)
and
b2 = c(lp(t,) = P)l2 + (p(t;))a) -
Now, from the system of ODE’s (56) we derive the next Lemma.
Lemma 13. There is ¢1 > 0 such, that if
E0)+Y(0) <e¢,
then .
|X15 _ Xé' < [2|LL‘1 _ LL‘2H672A b1(s) dsez ftT(b1(5)+bQ(S)) ds7 te ]07 T[
We introduce a non-increasing function of time
at) = age 2o (o) ds, (58)

Note, that by Corollary 3 and the Lemma 6 there is an & > 0, independent of time such, that
a(t) >a>0, t>0.
It can be deduced from the last Lemma that

Xt _ Xt a(t) )
P comoilman ve o, 1y, (59)
1 — L2

with an appropriate choice of c.

Proof. For the proof we only note that ODE’s (56) can be written as a system of integral

equations

T
Xt — X4 = PO (1) gy — eA(t)/ e *IB(s) ds,

t
for t € ]0, T[. Then, by Corollary 3 and energy estimates from Lemmas (5) and (6) the initial
data can be restricted in the norm E(0) + Y (0) in such a way that

ef®12 <2, telo, T

The Lemma is concluded by a Grénwall-type estimate. O

20



0.9 Uniform estimates on density

In this section we assume

Hypothesis Hy. For all (t,z),
p(t,z) > 0.1p :== m.

The final a priori estimate is contained in the

Lemma 14. Assuming the conditions of Lemma 5 and Lemma 6, with a(t) defined in (58),
there exist ¢; = ¢i(A, 1, p, ), t = 1,2, and co = co(aw), ao € ]0,1/4], such that

=

osc p(t, ) + (plts ) aey < ca(05c po + c{po)ay) + (E(0) + Y (0))3, (60)

provided that
E0) 4+ Y (0) + oscpo+ {(po)ay < 1
and

Cob
A+ 3u

<1,

Proof. In the estimates below we allow a generic constant ¢ depend on both m and M (lower
and upper bound on p). Take 1 € R%, 25 € R and consider two flow trajectories X (s, z1,t),
X (s, x2,t) with the initial data

X(t,xl,t)::cl, X(t,.’IZQ,t):.’EQ.

We abbreviate them as X; and Xj. Let p'(7), F*, i = 1,2, be the restriction of p(t,z) and
F(t,z) to the first and second trajectories. Set

Alogp = logp* —logp®, Ap=p' —p’

and
AF = F' — F?,

Generally, by Af we will refer to the difference of the values of the function f(¢,z) on these

trajectories. One readily notices that
Ap = p(t)Alogp

where j € Int[p", p?]. We set

t ~
p
w(t) = dt.
® /0 A2

m
A+2u

Consider equation (1). It can be written in the following form,

It holds that
w(s) —w(t) <

(s—t), s<t.

p

DAl
¢ ng+A+2u

Alogp

4
1 1 (e}
= - AF = — DA AT+ 22AP 5.
A+ 2u /\+2u{ ‘ J”L; Tt 1}
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This equation is integrated to obtain an inequality

|Ap(t)] < Me M| Ap(0))|

LM
A+2p

t 4
/ ew ()= {DsAjl + > AT+ OQAPI} ds|. (61)
0 ) (0%}

First, we obtain an estimate on osc p(t). Using Lemma 10 and Corollary 2 we can write

Nl=

t
/e“’(s)*w(“DsAJlds < esup [ J1(s, )[eo < ¢(£(0) +Y(0))3.
0

[0,t]

Also, by Lemma 10 and Corollary 2,

t
/ eI A T ds
0

< [ 1)l ds < (B +Y(0),
0

Finally, by the estimate 41

¢
/ WA P ds

0

t
= / =0 (510(s, ) — pla + 8(p(s,))a) ds
(0]

<esY(0)2 +6 / O 5, e ds.
0
Using the last estimates in (61) and taking the maximum over all points z1, x2 we obtain that
osc p(t,-) < cosc po(-) + s (B(0) + Y (0)) + c(E(0) + Y (0))
+4 /t e 32 D (s, Ve ds.  (62)
0

Now, we concentrate on derive the estimate on (p)o. For that in the equation (61) we restrict
x1 € R, |21 — 22| < 1 and divide the equation by |z1 — 22|*?), where a(t) was introduced
in (58). Note, that

a(t) € &, aol, ao < 1/4.
We obtain

yot 18l < et ___1Apo] |XP — X3|*
|z1 — @a]a®) — | X0 — X9]o0 |z — zo|>®)

1 /t e—w(O+e() p AJi(s)
A+2u /o S xr — xa|a(®)
T / ! metrrue AT TG AR 1XT - X500 )
A+2p Jo X7 — X5]o) o — aa|o® '

7 X5

Some simplifications are in order. The ratio NGO
1—T2

was estimated in LEMMA (13) by

ecfst b1(s)+ba(s) ds
where b;(s) are given in Corollary 3. We also obtain from Corollary 3 and Lemma 6 that

—w(t) +w(s) + c/ bi(s) +ba(s)ds < — )\:2172#(75 - )+ c/ (p(2z, ) a(z) +€dz+cY(0).

We make the following
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Hypothesis Ha. Function (p(s,"))a(s) and number Y (0) verify the next bounds
C(Supse[o,t] (P(8, Nas) +€) < ﬁv

cY(0) < 1,

for some value of € > 0. Here, ¢ and ce are numbers from the previous estimate.

Thus we have estimated

e—w(t)+w(s) |)(iS — X5|a(8)

< Ce i TV 5 oy
|$1 _ x2|a(t) = ) )

where C' does not depend on A\, u,m, M, p or t. It follows then, that the first term on the
right-hand side in (63) is bounded by

(P0)ag + 0Sc po.
The second, by (Corollary 2),
e(B(0) +Y(0))*
The third, by (Corollary (2) and Lemma (9) and formulas for «; from (27)),

(E(0) +Y(0)) + —C “2/e’%ﬂéw‘“s)(oscp(s,~)+<p(s,-)>a<s>) ds

(>\+2N)CT3 0
C u

< e(B0) +Y(0) + -+ 30 (oscp(s,-) +(p(s, )acs)) - (64)

Above, C' depends only on ag = «(0). An inequality then can be derived from (63):

(0t )t < clpo)ay + cosc po + c(B(0) + Y(0))¥ + c(E(0) + Y (0))

CM pu
— su oscp(s,-) 4+ (p(s,*))arsy) - (65
m A+ 3 se[ol?t]( p(s,) +{p(s,))acs)) - (65)

We consider the system of inequalities (62) and (65). It is straightforward to verify that if

CM pu
m A+ 3u

)

then we can choose E(0) + Y (0) + oscpo + (po)ao so small, depending on A, p, g, ap, that
Hypotheses Hy — Hy hold and (60) is verified. O

0.10 Proof of the existence
Consider now the sequence of data of the problem
Py uf € O™ (BY) x O (RY)?,

which approximates the given initial data in the space LY (R3) x L° (Ri)g. Moreover, we
require that M > pg > m > 0, and smallness condition (7) as required by analysis of the
previous sections. Such a sequence, clearly exists. We can take p§ () = (po(z)+n")sw,-1(z),
ug = (uo(z)) * w,—1(z), where w is the standard mollifier. Accordingly, let p™,u™ be the

sequence of smooth solutions of the problem with p{, ug as the initial data. The existence of

23



such solutions follows from the local existence result [11] and a priori estimates we obtained

in the previous sections. In particular, we established that the following norms are bounded

with bounds independent of n.

{p"} bounded in L™ (R4 x RY), (66)
{V/p"u"} bounded in L* (Ry : L? (Ri)) , (67)
{Vu"} bounded in L* (R4 x RY), (68)
{D’u"}  bounded in L*(Ry xRY}). (69)

By the weak stability result of P.-L. Lions, see Theorem 5.1 of [8], bounds (66)—(68) imply
the existence of an accumulation point (p, u) of the sequence (p™, u™) in the weak topology
of LY ((R3) x L5(R3) which is a weak solution of (1)—(4). Moreover, the bounds in the spaces
from (66)—(69) hold for this (p, u).
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