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tConsider the Cau
hy problem for a system of vis
ous 
onservationlaws with a solution 
onsisting of a thin, vis
ous sho
k layer 
onne
tingsmooth regions. We expe
t the time dependent behavior of su
h asolution to involve two pro
esses. One pro
ess 
onsists of the larges
ale evolution of the solution. This pro
ess is well modeled by the
orresponding invis
id equations. The other pro
ess is the adjustmentin shape and position of the sho
k layer to the large s
ale solution.The time s
ale of the se
ond pro
ess is mu
h faster than the �rst, 1=�
ompared to 1. The se
ond pro
ess 
an be divided into two parts,adjustment of the shape and of the position. During this adjustmentthe end states are essentially 
onstant.In order to answer the question of stability we have developed ate
hnique where the two pro
esses 
an be separated. To isolate thefast pro
ess, we 
onsider the region in the vi
inity of the sho
k layer.The equations are augmented with spe
ial boundary 
onditions whi
hre
e
t the slow 
hange of the end states. We show that, for the isolatedfast pro
ess, the perturbations de
ay exponentially in time.1 Introdu
tionConsider a system of vis
ous 
onservation laws,u� + f(u)� = �u��; � 2 R; � � 0 : (1)Here 0 < � � 1 denotes the vis
osity, u = u(�; � ) is a ve
tor fun
tion with n
omponents and f : Rn! Rn is a given smooth fun
tion of the state ve
tor1



u. We are interested in solutions 
onsisting of a vis
ous sho
k layer whi
h
onne
ts smooth regions. We expe
t the time dependent behavior of su
ha solution to involve two pro
esses. One pro
ess 
onsists of the large s
aleevolution of the solution. Di�usion a
ts weakly in this pro
ess, and it is wellmodeled by the 
orresponding invis
id equations. To �rst approximationthis pro
ess determines the position of the sho
k via the Rankine-Hugoniotrelations. The other pro
ess is the adjustment in shape and position of thesho
k layer due to perturbations in the sho
k layer itself. Here the di�usivee�e
ts are large. The time s
ale of the se
ond pro
ess is mu
h faster thanthe time s
ale of the �rst, 1=� to 1. On the fast time s
ale, the large s
ale ofthe solution is essentially 
onstant.In order to study the stability of the sho
k pro�le to lo
al perturbations,we fo
us on the fast pro
ess and will not in
lude e�e
ts of the slower larges
ale behavior or the e�e
t of global perturbations. The fo
us on lo
al pertur-bations is, among others, of interest from a numeri
al point of view be
auseerrors in numeri
al 
omputations are mainly generated in the sho
k layer,and one wants to know if these numeri
al errors 
an 
ause the solution to
hange 
hara
ter.This paper 
ontains a dis
ussion of three di�erent models that 
an beused to understand stability of sho
k pro�les. We present a new eigenvalueresult for systems on bounded domains and a new non-linear stability result.2 Stability of Traveling WavesAs a model, one has studied the stability of traveling wave solutions of theCau
hy problem vt + f(v)x = vxx; x 2 R; t � 0 ; (2)v(�1; t) = UL; v(1; t) = UR;v(x; 0) = v0(x):See, for instan
e, [5℄ and [7, 8, 9, 2℄. In (2) the standard s
aling of spa
eand time eliminates the parameter � from the equation. Without loss ofgenerality one 
an assume the wave speed to be zero.We make the following standard assumptions:Assumption 1: There is a steady solution U(x), i.e.,f(U(x))x = Uxx(x) ;2



where limx!1U(x) = UR; limx!�1U(x) = UL; UL 6= UR :To study the stability of U(x) we 
onsider (2) with initial datav(x; 0) = U(x) + u0(x);where u0 is a small perturbation of U with 
ompa
t support. Linearizing (2)at U(x) gives ut + (A(x)u)x = uxx; x 2 R; u(�; t) 2 L2: (3)Here A(x) = J(U(x)) where J = �f=�u is the Ja
obian of f . For theJa
obian evaluated at the end states we use the notations AR = J(UR) andAL = J(UL). The eigenvalue problem 
orresponding to (3) is��+ (A(x)�)x = �xx; x 2 R; � 2 L2: (4)Clearly, s = 0,� = Ux is an eigensolution.Assumption 2: There is no non{trivial solution of (4) with Re� � 0, � 6= 0,and, for � = 0, all eigenfun
tions in L2 are multiples of � = Ux.Assumption 3: The matri
es AL and AR have real, distin
t, non{zeroeigenvalues, and there are n+1 ingoing 
hara
teristi
s, i.e., the total numberof positive eigenvalues of AL and negative eigenvalues of AR is n + 1.Assumption 4: The n � n matrixM = (UL � UR; SIIR ; SIL) (5)is nonsingular. Here the 
olumns of SIL and SIIR are the eigenve
tors 
orre-sponding to outgoing 
hara
teristi
s to the left and to the right, respe
tively.Remark 1: It follows that the 
onvergen
e of U(x) to the end states asx! �1 is exponential. Therefore, we 
an use the representationA(x) = AR + e��xBR(x); x � l0; (6)A(x) = AL + e��jxjBL(x); x � �l0; (7)with � > 0 for some suÆ
iently large l0; here BR;L(x) are bounded matrixfun
tions. In our analysis below we will assume that l0 > 0 is a �xed 
onstantfor whi
h e��l0 is suÆ
iently small. 3



Remark 2: The eigenvalues of A(x) are only required to be real at thelimit states. This is useful when 
onsidering two phase 
ows, for example.Remark 3: Assumptions 3 and 4 are standard also in an invis
id setting.The �rst nonlinear stability result for sho
ks of arbitrary strength wasgiven in [5℄ where stability to small zero{mass perturbations was established.The result is: 1Theorem 1: If the initial data is of the formv(x; 0) = U(x) + "hx; khk1 + khk2 = 1;then, for suÆ
iently small ",limt!1 jv(�; t)� U(�)j1 = 0;i.e., U is non-linearly stable to small zero{mass perturbations.In [5℄ the question of stability was redu
ed to the study of estimates forthe resolvent equation, sû+ (A(x)û)x = ûxx + F̂ (x):There are two diÆ
ulties in obtaining the ne
essary estimates. First, sin
ethe 
oeÆ
ients of (2) do not expli
itly depend on x and t, the steady statesolution U(x) is not unique. Any shifted pro�le, U(x + �) with � �xed, isalso a stationary solution of (2). Correspondingly, the fun
tionUx(x+ �)satis�es (A(x+ �)Ux(x+ �))x = (Ux(x+ �))xx;whi
h means that Ux is an eigenfun
tion of the eigenvalue problems�+ (A(x)�)x = �xx; x 2 R; � 2 L2(R) ;with eigenvalue s = 0. Thus, generally one 
annot expe
t 
onvergen
e ofv(x; t) to U(x) as t ! 1. Non{uniqueness of the steady solution does nothave to be a problem. In [4℄ we treated this diÆ
ulty in a slightly di�erent1We use the notations kuk1 = R1�1 ju(x)jdx; kuk22 = R1�1 ju(x)j2dx; juj1 = supx ju(x)j.4



setting. Instead of proving 
onvergen
e to U(x), we showed that v(x; t)
onverges to a shifted pro�le, U(x+ �). Te
hni
ally, we make the ansatzv(x; t) = U(x+ �(t)) + w(x; t)and 
hoose �(t) so that w(x; t) never has a 
omponent in the dire
tion of theeigenfun
tion, Ux(x+ �(t)). We will use the same te
hnique here.Se
ond, for general systems, lo
al perturbations of strong sho
ks will notremain lo
al. Along the outgoing 
hara
teristi
s di�usion waves are formed.A typi
al behavior is given by 1px+ t e� (x�t)2t :Perturbations of this type de
ay in time only like 1=pt, and the L2{normof the perturbation over spa
e and time is not �nite. Thus the resolventte
hnique 
annot be used to prove 
onvergen
e. Also, through nonlinearintera
tion, signals are sent ba
k to the sho
k layer via the ingoing 
hara
-teristi
s. This slows down the 
onvergen
e also in the sho
k layer.In [5℄ we 
onsidered only zero{mass perturbations. Then the 
onvergen
erate is improved by a fa
tor 1=pt and, as we have shown, the resolventte
hnique 
an be applied. Another advantage of the zero{mass assumptionis that v(x; t) 
onverges to U(x) without shift.In this paper we are interested in the stability of the sho
k layer to lo
alperturbations, without in
luding intera
tion with the large s
ale variationsof the solution. With the original s
aling of time and spa
e, the amplitudeof the di�usion waves is of order O(p�). Thus, the slowly de
aying di�usionwaves vary on time and spa
e s
ales 
omparable to the large s
ale variationsthat we have already ex
luded from our study, but with a mu
h smalleramplitude. The mathemati
al diÆ
ulties 
aused by the slow 
onvergen
eof the di�usion waves are therefore irrelevant and we need to formulate adi�erent model problem.We analyze instead the stability of U(x) as a solution of an initial{boundary value problem formulated on a �nite interval, jxj � l.5



3 Stability on a Bounded IntervalThe seemingly most natural 
hoi
e is to use U(�l) as boundary data atx = �l: ut + f(u)x = uxx; jxj � l; t � 0 ;u(x; 0) = U(x) + y0(x); jxj � l ; (8)u(�l; t) = U(�l); t > 0 :Later we will modify the boundary 
onditions by allowing a time{dependentshift of U in the boundary data. Clearly, U(x) is a steady solution of (8).In [3℄ we investigated the initial{boundary value problem for Burgers'equation, u� + (u22 )� = = �u��; �1 � � � 1; � � 0; (9)u(�1; � ) = 1; u(1; � ) = �1;u(�; 0) = u0(�):Here 0 < � � 1. There is the unique, anti-symmetri
, steady solution,U(�) = �U(��), whi
h is the restri
tion of a sho
k pro�le on the whole linewith end states U(�1) = 1 +O(e� 1� ) and U(1) = �1 +O(e� 1� ).In 
omputations we observe the following: The solution rapidly approa
hesa shifted pro�le U(� + �), where � depends on the initial fun
tion. How-ever, this is not the 
orre
t steady solution. In a se
ond phase the solution
onverges exponentially slowly to the 
orre
t steady solution, U(�).There is no 
orresponding behavior in the in�nite{line 
ase or in theinvis
id 
ase; see Abarbanell et. al. [6℄. In the invis
id 
ase one 
onsidersu� + (u22 )� = 0; �1 � � � 1:Then the dis
ontinuous fun
tionU(�) = n 1; � < 0;�1; � > 0is a steady solution with a sho
k at � = 0. With perturbed initial data,u(�; 0) = U(�) + h(�);6



the solution will in general 
onverge to a shifted pro�le,lim�!1u(�; � ) = U(� + �):By 
onservation, dd� Z 1�1 ud� = 0:Therefore, the shift � is determined by� = Z 1�1 h(�)d�:In the vis
ous 
ase we havedd� Z 1�1 ud� = �(u�(1; � )� u�(�1; � )):Thus, there is no 
onservation. The exponentially slow 
onvergen
e in thevis
ous 
ase 
an be explained by 
onsidering the 
orresponding eigenvalueproblem ��+ (U(�)�)� = ����; �1 � � � 1; �(�1) = 0: (10)All eigenvalues �j are real and negative and there is one algebrai
ally simpleeigenvalue �0 and 
orresponding eigenfun
tion �0 with�0 = O(e�1=�); �0(�) = U�(�) +O(e� 1� ):All other eigenvalues satisfy�j � � 
� ; j = 1; 2; : : :where 
 > 0 is independent of �. The perturbation equation, linearized atU , predi
ts what happens. After a short initial phase, the only part of theperturbation that remains is in the dire
tion of �0. Su
h a perturbation
orresponds to shifting the pro�le. This remaining perturbation will onlyde
ay exponentially slowly to zero, i.e., the shift will disappear only veryslowly. Clearly, the small eigenvalue �0 
ontrols the speed at whi
h thesho
k layer moves to the 
orre
t position in the se
ond phase.7



For systems of equations, the linearized problem on the bounded domainreads ut + (Au)x = uxx; jxj � l; t � 0 ;u(x; 0) = y0(x); jxj � l ; (11)u(�l; t) = 0; t > 0and the 
orresponding eigenvalue problem iss'+ (A')x = 'xx; jxj � l; '(�l) = 0: (12)The result for Burgers' equation 
an be generalized to systems. In thenext se
tion we will prove Theorem 2 formulated below. It is assumed thatl0 is a �xed, suÆ
iently large, 
onstant. More pre
isely, the term e��l0 ap-pearing in (6) and (7) is assumed to be small.Theorem 2: For suÆ
iently large l, the eigenvalue problem (12) has asimple, isolated eigenvalue s0 with 
orresponding eigenfun
tion '0, satisfyings0 = O(e�
(l�l0)); j'0(x)� Ux(x)j � Ce�
l; jxj � l: (13)Here 
 > 0 is independent of l. Further, there is a 
onstant Æ > 0 so that allother eigenvalues satisfy Re sj � �Æ; j = 1; 2; : : :The 
onstant Æ is independent of l.The theorem implies at best an exponentially slow approa
h to the steadypro�le. In fa
t, there is no reason for the exponentially small eigenvalue s0to have negative real part. Thus (8) 
an be mildly unstable even though (1)is stable.For the linear problem (11) we 
an use an eigenfun
tion expansion torepresent the solution. All 
omponents, ex
ept the one in the dire
tion of'0, will 
onverge to zero exponentially fast. Thus, after a short time we haveu(x; t) � U(x) + �(t)Ux(x) � U(x+ �(t));whi
h 
orresponds to the observed behavior in the 
ase of Burgers' equation.8



4 Analysis of the Eigenvalue ProblemIn this se
tion we will prove Theorem 2. The proof relies on 
omparing the�nite{interval eigenvalue problems �'+ (A �')x = �'xx jxj � l; �'(�l) = 0 ; (14)with the in�nite{line eigenvalue problem,s'+ (A(x)')x = 'xx x 2 R; ' 2 L2: (15)The main idea is to reformulate both eigenvalue problems, (14) and (15), asproblems on a �xed interval, �l0 � x � l0, where l� l0 � 1. First note thatone 
an show, see Se
tion 2 of [5℄, that there is a 
onstant C0 so that thereare no eigenvalues s of (15) or of (14) with jsj � C0; Re s � �1. Therefore,we only need to 
onsider jsj � C0.A �rst step is to show that the in�nite{line eigenvalue problem (15) 
anbe reformulated as an eigenvalue problem on a bounded domain, jxj � l0,with non{standard boundary 
onditions:s'+ (A(x)')x = 'xx; jxj � l0'x = QR(s)' at x = l0 (16)'x = QL(s)' at x = �l0Here QR(s) and QL(s) are analyti
 matrix fun
tions of s whi
h, at �rst, areonly de�ned for Re s � 0; s 6= 0. We will show that the matrix fun
tionsQR;L(s) 
an be extended analyti
ally to all jsj � C0; Re s > �Æ, for somepositive Æ. However, the problems (15) and (16) are equivalent only for Re s �0; s 6= 0, in the following sense: If (s; ') solves (15), then the restri
tionof ' to jxj � l0 solves (16). Further, if (s; ') solves (16) then there is aunique smooth extension of '(x) to all of R by solving s'+(A')x = 'xx forjxj > l0, with ' 2 L2(R). No equivalen
e, in this sense, generally holds forthe problems (15) and (16) if Re s < 0.Also, the �nite{interval eigenvalue problem (14) on �l � x � l 
an bereformulated as an eigenvalue problem on �l0 � x � l0. In this 
ase, theoriginal problem (14) and the redu
ed problem are equivalent for all valuesof s. The only di�eren
es between the two redu
ed problems o

urs in theboundary 
onditions, and we will show that this di�eren
e is exponentiallysmall, i.e., of order O(e�
(l�l0)). 9



To 
arry out the redu
tions, we use the representations (6) and (7). Byassumption, the matrix AR has n distin
t, real eigenvalues �j 6= 0, and thereexists a nonsingular matrix SR withS�1R ARSR = �R = ���IR 00 �IIR� : (17)Here �IR and �IIR are diagonal matri
es with r and n � r positive diagonalentries, respe
tively. Similarly, for x � �l0, we have the representation (7),and there is a non{singular matrix SL withS�1L ALSL = ���IL 00 �IIL � : (18)Here �IL and �IIL are diagonal matri
es with r � 1 and n + 1 � r positivediagonal entries, respe
tively.Before giving a proof of Theorem 2, we note that ifA(x) = AR; x � l0;then for x � l0 the 
omponents of ~' = (SR)�1' solve un
oupled equations:s ~'j + �j ~'jx = ~'jxx; j = 1; : : : ; n: (19)For the solutions, �1j and �2j, of the 
hara
teristi
 equation�2 � �j�� s = 0 (20)the following holds. (See Lemma 4.1 in [5℄.)Lemma 1. The solutions of (20),�1j = �j2  1 +s1 + 4s�2j ! ; �2j = �j2  1�s1 + 4s�2j! ; (21)satisfy:1. For Re s > �14�2j ; the fun
tions depend analyti
ally on s:2. Re�ij 6= 0; i = 1; 2, for Re s � 0; s 6= 0:3. �1j = �j +O(s); �2j = � s�j + s2�3j +O(s3) for jsj � 1:10



4. sign(Re �1j) =sign �j ; sign(Re �2j) = �sign �j ; for Re s � 0; s 6= 0:5. For every Æ > 0 there is a 
onstant � > 0 so that for all s with jsj �Æ; Re s � 0;(a) jRe �ijj � �; i = 1; 2:(b) j(�ij � �kl)j � � if (i; j) 6= (k; l):Proof: Property 1 is 
lear if we de�ne the square root by the usual analyti

ontinuation. Next, assume that �kj = i�; � real, � 6= 0: By (20),�� 2 � i��j = s; i:e:; Re s < 0:This proves Property 2. Property 3 follows dire
tly from (21). Property 4follows from Property 3 for small jsj and then from Properties 1 and 2 forall s with Re s � 0; s 6= 0: For jsj >> 1; Property 5 follows dire
tly from(21). Sin
e Re �ij 6= 0; we 
an use a 
ompa
tness argument to prove 5a.The formula �1j � �2j = �jq1 + 4s�2j shows that 5b holds if j = l: If � solves�2 � �j�� s = 0; �2 � �l�� s = 0; j 6= l;then (�j � �l) Re � = 0; i:e:; Re � = 0;whi
h violates Property 2. This proves the lemma.The general solution of (19) is~'j(x) = �1e�1j(x�l0) + �2e�2j(x�l0):Here �1j and �2j are given by (21). Note that �ij = �ij(s). For ease ofnotation we will in general not write out the s-dependen
e. For Re s �0; s 6= 0, the requirement ~'j 2 L2(l0;1) yields the 
ondition�1 = 0 if �j > 0; �2 = 0 if �j < 0 :Equivalently, ~'jx(l0) = (�2j ~'j(l0) if �j > 0;�1j ~'j(l0) if �j < 0: (22)11



In terms of the original variable ' = SR ~', we obtain from (22):'x(l0) = SR ~QR(s)S�1R '(l0): (23)Here ~QR(s) is the diagonal matrix with entries �1j(s); 1 � j � r; and�2j(s); r + 1 � j � n, a

ording to (22). We note that~QR(s) = ���IR 00 0�+O(s):If A(x) = AR for x � l0, then the matrix QR(s) = SR ~QR(s)S�1R is the
oeÆ
ient matrix in the boundary 
ondition at x = l0 for the redu
ed prob-lem, (16). Note that, sin
e the 
oeÆ
ient matrix depends on s, this is anon{standard boundary 
ondition.4.1 Redu
tion of the All{Line ProblemThe roots, �1j and �2j, of the 
hara
teristi
 equation (20) are important alsoin the general 
ase. Consider the half{line x � l0 and use the representationA(x) = AR + "e��(x�l0)BR(x) for x � l0, " = e��l0 : (24)To simplify notation, we assume that AR is diagonal with elements �j . Tobegin with we 
onsider only Re s � 0; C0 � jsj > 0.Introdu
ing the notation � = A'� 'x; (25)we 
an write the equation s'+ (A')x = 'xx as a �rst{order system:� '� �x = � A �I�sI 0 �� '� � : (26)In the simpli�ed 
ase, with A(x) = �R, (26) de
ouples into 2 � 2 systems� 'j�j �x = � �j �1�s 0 �� 'j�j � : (27)The eigenvalues of the matrix on the right side are �1j and �2j, and thesystem (27) is diagonalized by the transformation�'j�j� = Sj ��j j� ; Sj = � 1 �1s�2j� s�1j 1 � : (28)12



Here S�1j = 1�1j � �2j ��1j 1s�1j�2js �1j � : (29)Note that Sj and S�1j are analyti
 fun
tions of s, and 
an be extended ana-lyti
ally to all s with Re s > ��2j=4. The diagonalized system is� �j j �x = � �1j 00 �2j �� �j j � : (30)If we require the solution to belong to L2(l0;1), there 
an be no growing
omponents, and the solution must satisfy�j(l0) = 0 if �j > 0 ;  j(l0) = 0 if �j < 0: (31)This is the boundary 
ondition at x = l0 for the redu
ed problem. Byinverting the transformations (28) and (25) we re
over (23).In the general 
ase, i.e., for " 6= 0, the transformation (28) will yield a 
ou-pled system. Let the 
omponents of ' be ordered so that 'I = ('1; : : : ; 'r)T
orresponds to eigenvalues �j < 0 and 'II = ('r+1; : : : 'n)T 
orresponds to�j > 0. We partition the ve
tors � and  
orrespondingly, i.e., we set�I = 0B��1...�r1CA ; �II =0B��r+1...�n 1CA ;  I = 0B� 1... r1CA ;  II = 0B� r+1... n 1CA :Finally, let � = �� �and apply (28) to the 
omponents of the �rst{order system (26), yielding�x = �K + "e��(x�l0)B(x)��; x � l0: (32)Here K = �K1 00 K2� ; Ki = �KIi 00 KIIi � =0B��i1 . . . �in1CA ;is diagonal, and we have partitioned a

ording to sign of real part. By Lemma1 we have that for Re s � 0; s 6= 0, the elements of KI1 and KII2 have negative13



real parts, while the elements of KII1 and KI2 have positive real parts. Thematri
es KIi and KIIi are of size r � r and (n � r) � (n � r), respe
tively.Furthermore, B(x) := S�1�BR(x) 00 0�Swhere the matrix S 
olle
ts the transformations Sj.For C0 � jsj � 
0 > 0; Re s � 0, the diagonal elements of K are distin
twith real parts bounded away from zero. For suÆ
iently large l0, the value" = e��l0 is small 
ompared with 
0, and the system (32) 
an be diagonalizedby a transformation, analyti
 in s, whi
h is an O("e��(x�l0)) perturbation ofthe identity. The diagonalization separates growing 
omponents from de
ay-ing 
omponents. It is easy to show that the resulting boundary 
onditions atx = l0 are O(") perturbations of the boundary 
onditions in the simpli�ed
ase (" = 0) and that they 
an be analyti
ally extended to Re s � �Æ0, forsome Æ0 > 0.For jsj � 
0 � 1 we haveKI1 = ��IR +O(s); KII1 = �IIR +O(s);KI2 = s(�IR)�1 +O(s2); KII2 = �s(�IIR )�1 +O(s2): (33)The analysis in this 
ase is more deli
ate sin
e the elements of K2 are nolonger uniformly separated. Consider the �rst{order system�x = �K + "e��(x�l0)B(x)��; x � l0; � 2 L2(l0;1); (34)�I(l0) = y1;  II(l0) = y2; (35)for Re s > 0; jsj � 
0. By Lemma B3, the system (34) with side 
ondition(35) has a unique bounded solution, and (34) determines a linear mapping��II(l0) I(l0)� = "Q(s)� �I(l0) II(l0)� : (36)The equation (36) is the boundary 
ondition at x = l0 for the all{line problemredu
ed to [�l0; l0℄. The matrix Q(s) depends analyti
ally on s and 
an beextended to a full neighborhood of s = 0 using analyti
 
ontinuation; seeLemma B3. Also, note that for " = 0 
ondition (36) redu
es to (31).Similar 
onsiderations yield a boundary 
ondition at x = �l0. Thus thispro
edure de�nes the redu
tion to �l0 � x � l0 of the all-line eigenvalueproblem (16) for all s with Re s � �Æ; jsj � C0 for some Æ > 0. In the14



following theorem we relate the resolvent result from [5℄ to the redu
ed all-line eigenvalue problem. The proof is given in Appendix A.Theorem 3: The problem (16), whi
h is the redu
tion of the all{line eigen-value problem (15) to jxj � l0, has no eigenvalue s with Re s � 0; s 6= 0.There is an algebrai
ally simple, eigenvalue at s = 0.Remark 4: The statement \s = 0 is an algebrai
ally simple eigenvalue" isde�ned in the following way. To determine whi
h s are eigenvalues we 
al
u-late the general solution of the di�erential equation and determine whetherthere is a nontrivial solution satisfying the boundary 
onditions or not. Thisleads to a linear system of equations, B(s)� = 0. There is a nontrivial so-lution if and only if the determinant D(s) := detB(s) satis�es D(s) = 0.In our 
ase, B(s) and D(s) are analyti
 fun
tions for Re s > �Æ. We de�nes = 0 as an algebrai
ally simple eigenvalue if D(0) = 0 and D0(0) 6= 0.An immediate 
onsequen
e is:Theorem 4: There is a 
onstant Æ > 0 so that the eigenvalue problem (16)has no eigenvalue other than s = 0 for Re s � �Æ.Proof: As already noted, there are no eigenvalues with jsj � C0; Re s � �1.From Theorem 3 we have D0(0) 6= 0, and it follows that there exists a Æ1 su
hthat s = 0 is the only eigenvalue with jsj � Æ1. For Æ1 � jsj � C0; Re s � 0 itfollows from Assumption 2 that D(s) 6= 0. Sin
e D is a 
ontinuous fun
tionof s there is a Æ2 > 0 su
h that D(s) 6= 0 when Re s � �Æ2. This 
ompletesthe proof.4.2 Redu
tion of the Bounded{Interval ProblemWe will 
ompare the redu
ed in�nite{line eigenvalue problem (16) with thebounded{interval eigenvalue problem (14) redu
ed to the interval [�l0; l0℄.Here 1 � l0 � l. The only di�eren
e between the two redu
ed problemso

urs in the boundary 
onditions at x = �l0.First we 
onsider the simpli�ed 
ase with " = 0, i.e, with A(x) = ARfor x � l0. The boundary 
onditions at x = l0 for the redu
ed in�nite{lineeigenvalue problem are given by (31) (or, equivalently, by (23)). We will nowredu
e problem (14) to jxj � l0 and show that the resulting boundary 
ondi-tions at x = l0 are exponentially small (as a fun
tion of l� l0) perturbationsof (31). Consider (30) on l0 � x � l, but 
all the variables ��j and � j insteadof �j and  j. The solution for l0 � x � l will 
onsist of growing and de
aying
omponents, and the relation between the 
omponents is determined by the15



boundary 
ondition �'j(l) = 0. In terms of the new variables, ��j and � j, this
ondition reads ��j(l)� �2js � i(l) = 0: (37)Sin
e ��jx = �1j ��j and � jx = �2j � j equation (37) is equivalent to the following
ondition at x = l0:e�1j(l�l0) ��j(l0)� �2js e�2j(l�l0) � j(l0) = 0: (38)By (21), �1j � �2j = 8<:+q�2j + 4s if �j > 0,�q�2j + 4s if �j < 0.Therefore we write (38) as��j(l0) = �2js e�(�1j��2j )(l�l0) � j(l0) if �j > 0, (39)� j(l0) = s�2j e�(�2j��1j )(l�l0) ��j(l0) if �j < 0. (40)It follows that, as long as Re s � �18 min�2j , (40) and (39) is a perturbationof order O(e�
(l�l0)) of (31), with 
 = minj j�j j=p2 independent of s. Thisresult is a 
onsequen
e of the fa
t that (37) 
ouples one growing (with x)and one de
aying 
omponent. It is important that, even when jsj is small,at least one of the exponential rates is essentially independent of s.For the general 
ase, i.e., for " 6= 0 in (24), we again only need to 
onsiderthe 
ase jsj � C0. When dis
ussing (14) we introdu
e ��; ��; � and ��, de�ned
orrespondingly to �; �;  and �. Corresponding to (37), the boundary
ondition �'(l) = 0 in terms of �� and � is��(l)� 1sK2 � (l) = 0;or, equivalently,���II(l)� I(l)� = D(s)� � II(l)��I(l)� ; D(s) = �1sKII2 s(KI2)�1� (41)For Re s � �min�2j=8; jsj � C0; D is a diagonal, analyti
 matrix fun
tionof s. We will apply Lemma B4 withuI = � ��I� II� ; uII = � � I��II� ; �I = ��KI1 �KII2 � ; �II = �KI2 KII1 � :16



The result is that for all Re s � 0; C0 � jsj > 0, there is a unique boundedsolution ��(x; s) of��x = �K+ "e��(x�l0)B(x)� ��; l0 � x � l; (42)��I(l0) = y1; � II(l0) = y2: (43)augmented with (41).The boundary value problem (41) { (43) determines a mapping���II(l0)� I(l0)� = " �Q(s)� ��I(l0)� II(l0)� ; (44)where �Q(s) is analyti
 and 
an be extended to all s with Re s � �Æ; jsj � C0,by analyti
 
ontinuation.In the all{line 
ase, the mapping (36) is the boundary 
ondition at x = l0for the all{line problem redu
ed to [�l0; l0℄. In order to 
ompare (36) with(44) in the 
ase jsj � 
0 we �rst use Lemma B3 for Re s > 0 to repla
e (34),(35) by a problem on [l0; l℄:�x = �K + "e��(x�l0)B(x)��; l0 � x � l; (45)�I(l0) = y1;  II(l0) = y2; ��II(l) I(l)� = "e��(l�l0)P (s)� �I(l) II(l)� ; (46)Here P (s) is analyti
 and 
an be extended to a full neighborhood of s = 0using analyti
 
ontinuation.The following lemma states that Q and �Q di�er from ea
h other only byexponentially small terms. The result is valid in a full neighborhood of s = 0.Lemma 2: Let ��(x; s) and �(x; s) be the solutions of (41){(43) and (45),(46), respe
tively. There is a Æ > 0 su
h that for jsj � Æ we havej�(l0)� ��(l0)j � 
"e��(l�l0)(jy1j+ jy2j):Here � and 
 are positive 
onstants, independent of s and l.Proof: Introdu
e Æ� = � � �� and the 
orresponding Æ� and Æ . Thenwe obtainÆ�x = �K + "e��(x�l0)B(x)� Æ�;� Æ�I(l0)Æ II(l0)� = 0;�Æ�II(l)Æ I(l)� = D�Æ II(l)Æ�I(l)�+ "e��(l�l0)P (s)� �I(l) II(l)��D� II(l)�I(l)� :17



We need to show that Æ�II(l0) and Æ I(l0) are exponentially small. To beginwith we shall estimate the inhomogeneous terms in the boundary 
onditionat x = l. For " = 0 we have�I(l) = eKI1(l�l0)y1;  II(l) = eKII2 (l�l0):If jsj � 
0 where 
0 is suÆ
iently small, then jRe�2jj � 2
0=j�j j < �=4 andjRe�1jj � 
. (Here, as before, 
 = min j�j j=p2.) Note that the elements ofKI1 have negative real parts. Therefore,je��4 (l�l0) II(l)j � jy2j; j�I(l)j � e�
(l�l0℄jy1j:If " 6= 0 we 
an apply Lemma B3 with Æ = �=4 to (34), (35) and obtainje��4 (l�l0) II(l)j � jy2j+ 2" jBj1� (jy1j+ jy2j): (47)To estimate the 
omponents of �I(l) for " 6= 0, we apply Lemma B2 to (34),(35). It follows that there is a 
onstant 
 su
h thatj�I(l)j � e�
(l�l0)jy1j+ 
 e� ~�2 (l�l0)"jBj1(jy1j+ jy2j); ~� = min(�; j�jj): (48)Thus all the inhomogeneous terms in the boundary 
ondition at x = l areexponentially small, ex
ept for DI II(l). Here DI is the upper diagonalblo
k of D. In the 
ase " = 0 the e�e
t of this term isÆ�II(x) = eKII1 (x�l)DI II(l):Clearly, the 
orresponding part of the solution de
ays rapidly away from theboundary at x = l and is exponentially small at x = l0. If " 6= 0 Lemma B5yields a similar estimate. By Lemma B4 the e�e
t of the remaining termsare estimated, 
ompleting the proof of the lemma.If C0 � jsj � 
0 > 0; Re s � 0, the elements of K are distin
t with realparts bounded away from zero. The full system 
an be diagonalized by atransformation, analyti
 in s, whi
h is an O("e��(x�l0)) perturbation of theidentity. It is easy to show that the resulting boundary 
onditions for thebounded{interval and for the in�nite{line problems di�er by O("e��(l�l0)),and that the result 
an be extended to Re s � �Æ0 for some Æ0 > 0.Proof of Theorem 2. We only have to 
onsider jsj � C0. We have shownabove that the bounded{interval and the all{line eigenvalue problems, ((15)18



and (14)), redu
ed to [�l0; l0℄ di�er only by exponentially small terms inthe boundary 
onditions at x = �l0. The derivation of the boundary 
on-ditions was done for jsj � C; Re s � 0; s 6= 0, but the 
oeÆ
ient matri
esare analyti
 in s, and 
an be extended to Re s > �Æ for some Æ > 0 byanalyti
 
ontinuation. Correspondingly, for Re s > �Æ; jsj � C0; the two
orresponding determinants, D(s) and �D(s), are analyti
 fun
tions, and �D isan exponentially small perturbation of D. The eigenvalues in the two 
asesare the zeros D(s) and �D(s), respe
tively. By Theorem 4, s = 0 is a simpleroot of D(s) = 0, and the only root with Re s � �~Æ for some ~Æ > 0. Sin
e �Dis an exponentially small perturbation of D, the eigenvalue result follows bya 
ontinuity argument.For jxj � l0 the estimate for the eigenfun
tion follows by the same argu-ment. We must also dis
uss the eigenfun
tion for l0 � jxj � l. For l0 � x � l,introdu
e �'0 � '0 = ~', and obtain�s0 ~'+ (A ~')x = ~'xx + �s0'0; l0 � x � l:Note that the di�eren
e in eigenvalues and in eigenfun
tions in [�l0; l0℄ isO("e��(l�l0)). Also, �'0(l) = 0, and '0(x) de
ays exponentially. This yieldsthat j ~'(l0)j+ j ~'x(l0)j+ j ~'(l)j+ k�s0'0k1;[l0;l℄ = O("e��(l�l0)):We 
an then use Lemma B4 to prove that j ~'j1 is exponentially small. This
ompletes the proof of Theorem 2.4.3 Computing EigenvaluesOne 
an solve the eigenvalue problem (14) to 
he
k if Assumption 2 for (15)is satis�ed. (See, for example, [1℄ for results relating the spe
tra of �nite{interval and all{line eigenvalue problems.) For large l, problem (14) be
omesin
reasingly ill-
onditioned. However, one 
an avoid this by a 
hange ofvariables: Let C(x) denote the matrix fun
tion satisfyingCx = 12AC; C(0) = I ;and introdu
e into (14) a new variable  by� = C(x) :19



We obtain s + C�1Cxx =  xx;  (�l) = 0: (49)Sin
e A 
onverges exponentially fast to 
onstant matri
es as x ! �1 itfollows that (49) is a well behaved eigenvalue problem.5 Nonlinear Stability on a Bounded Intervalwith Modi�ed Boundary ConditionsIn this se
tion we 
onsider nonlinear systemsut + f(u)x = uxx; �l � x � l; t � 0;u(x; 0) = u0(x): (50)To begin with, the boundary 
onditions areu(�l; t) = U(�l) (51)where U(x) is a steady solution of the all{line problem, i.e., f(U)x = Uxx; x 2R. Assume the initial data to be a small perturbation of U(x), that isu(x; 0) = U(x) + "y0(x); j"j � 1; jyj1 = 1:De�ne y(x; t) by u(x; t) = U(x) + "y(x; t): (52)Then y satis�es yt = Ly + "(h(y))x; �l � x � l; t � 0; (53)y(x; 0) = y0(x);y(�l; t) = 0: (54)Here Ly = �(Ay)x+ yxx where A(x) is the Ja
obian of f evaluated at U(x).Furthermore,"h(y) := �1" �f(U(x) + "y)� f(U(x))� "A(x)y� ;whi
h vanishes quadrati
ally at y = 0. We may assume thatjh(y)j � 
jyj2for some 
onstant 
. (The fun
tion h also depends on x and ", but this isunimportant and suppressed in our notation.)20



5.1 Analysis of the Linearized ProblemThe linearized problem 
orresponding to (53), (54) isyt = Ly; �l � x � l; t � 0; (55)y(�l; t) = 0; y(x; 0) = y0(x);and the 
orresponding eigenvalue problem iss' = L'; �l � x � l; '(�l) = 0: (56)By the previous se
tion, we know that there is a simple eigenvalue s0, js0j �1, and that all other eigenvalues satisfy Re si � �Æ. The eigenfun
tion 
orre-sponding to s0, denoted '0(x), is 
lose to the eigenfun
tion of the in�nite{lineproblem, that is j'0(x)� Ux(x)j � 
e��l:Therefore, the proje
tionP0 = � 12�i Zjsj= Æ4 (sI � L)�1ds;whi
h proje
ts L2(�l; l) onto the subspa
e spanned by '0, is a bounded linearoperator from L2(�l; l) to H2(�l; l).Without restri
tion we may assume thatP0y0 = 0: (57)Let us show that (57) is, in fa
t, not a restri
tion: If P0y0 = %'0; % 6= 0, we
hange the ansatz (52) and the boundary 
onditions (51) tou(x; t) = U(x+ "�) + "y(x; t); u(�l; t) = U(�l + "�); (58)respe
tively. Here � will be determined as we will now explain. With y(x; t)de�ned in (58), the initial 
ondition for y be
omes y(x; 0) = y1(x) withu(x; 0) = U(x+ "�)+ "y1(x); y1(x) = y0(x)� (U(x+ "�)�U(x))=": (59)We will use the notationL�y = yxx � (A�y)x; A�(x) = A(x+ "�);P� = � 12�i Zjsj= Æ4 (sI � L�)�1ds:21



Further, denote by s�0 and '�0 the eigenvalue 
lose to zero and the 
orrespond-ing eigenfun
tion, respe
tively, of L� with boundary 
ondition '�(�l) = 0.We have P�y1 = P�y0 � 1"P�(U(x+ "�)� U(x))= P�y0 � �P�(Ux(x+ "�) +O("�))= P�y0 � �(1 +O("�) +O(e��l))'�0 :Sin
e kP� � P0k = O("�)we obtain P�y0 = (%+O("�))��0 :Therefore, P�y1 = �% � ��1 +O(") +O("�) +O(e��l)��'�0 :By the impli
it fun
tion theorem, we 
an 
hoose � � � so that P�y1 = 0provided l is suÆ
iently large and " is suÆ
iently small. Therefore, we mayassume (57) to hold.For the linear problem (55) the equality (57) impliesP0y(�; t) = 0; t � 0:Thus the solution y(x; t) of the linear problem (55) 
onverges exponentiallyfast to zero as t!1.5.2 Analysis of the Nonlinear Problem with Modi�edBoundary ConditionsConsider the nonlinear equation ut + f(u)x = uxx with initial 
onditionu(x; 0) = U(x) + "y0(x). As explained above, we may assume P0y0 = 0without restri
tion. In the nonlinear 
ase, there is no guarantee, however,that the perturbation y(x; t) (de�ned by (52)) remains without 
omponent inthe dire
tion of '0. To leading order, a non{zero 
omponent in this dire
tion
orresponds to a shifted pro�le, U(x + "�), and by modifying the boundary
onditions for u(x; t) we allow shifting of the pro�le to o

ur.22



With �(t) a smooth fun
tion that needs to be determined and satis�es�(0) = 0, let u(x; t) = U(x+ "�(t)) + "y(x; t):Here y(x; t) is a new perturbation variable. The nonlinear equation ut +f(u)x = uxx be
omes�tU�x + yt = L�y + "h�(y)x; �l � x � l; t � 0: (60)y(x; 0) = y0(x):Here h� and U�x are de�ned by"h�(y) := �1" �f(U(x+ "�) + "y)� f(U(x + "�))� "A�(x)y� (61)and U�x (x) = Ux(x+ "�): (62)As dis
ussed in Se
tion 3, the boundary 
onditions must allow for a shiftin order to avoid an eigenvalue whi
h is exponentially 
lose to zero. Thus we
onsider the boundary 
onditionsu(�l; t) = U(�l + "�(t)); (63)where �(t) will be determined so thatP�(t)y(�; t) = 0: (64)We will now prove that it is possible to determine �(t) by the side 
ondition(64) and that, for the new problem, y(x; t) 
onverges exponentially fast tozero (in maximum norm) as t!1.Introdu
e yI = (I � P�)y; yII = P�y:Note that yII(�; 0) = 0 and(P�)t = �"�t2�i Zjsj= Æ4 (sI � L�)�1�L��� (sI � L�)�1ds =: "�tR�: (65)As in [4℄, R� is a bounded operator from L2(�l; l) to H1(�l; l). Di�erentiat-ing yI = (I � P�)y, we obtain(I � P�)yt = (yI)t + "�tR�y (66)23



and, similarly, P�yt = (yII)t + P�(yI)t � "�tR�yII : (67)Also, (I � P�)U�x = e��lrI ; krIk � 1; (68)and P�U�x = (1 +O(e��l))'�0 : (69)Applying the proje
tors I � P� and P� to (60) yields�t(I � P�)U�x + (I � P�)yt = L�yI + "(h�;x)I ;�tP�U�x + P�yt = L�yII + "(h�;x)II :Using (66){(69) one obtains(yI)t = L�yI + "(h�;x)I � �te��lrI � "�tR�y; (70)(yII)t = L�yII + "(h�;x)II � �t(1 +O(e��l))��0 (71)+ "�tP�R�y + "�tR�yII : (72)If " is small enough and l is large enough we 
an determine �(t) as a smoothfun
tion so that�t�(1 +O(e��l))'�0 � "P�R�yI� = "(h�;x)II : (73)Then we obtain: (yII)t = L�yII + "�t(P� + I)R�yII: (74)By 
onstru
tion, yII(x; 0) = 0, and a unique solubility argument for (74)implies yII(x; t) = 0; t � 0: (75)Therefore (70) be
omes(yI)t = L�yI � "�tR�yI � �te��lrI + "(h�(yI)x)I ; (76)yI(x; 0) = y0(x):In [4℄ we have 
onsidered systems of the form (76) and proved exponential
onvergen
e to zero when the 
oeÆ
ients of L� do not depend on t and the24



eigenvalues have negative real parts. Therefore, we rewrite (76) in terms ofvI = (I � P0)yI and vII = P0yI and repla
e L�yI by LvI . We haveL� = L+ "�~L; P� = P0 + "� ~P : (77)Here ~P is a bounded operator from L2 into H1 whi
h depends smoothly on� and t, and ~L is a �rst{order di�erential operator with smooth 
oeÆ
ients.We have vII = P0yI = (P� � "� ~P )yI = �"� ~P (vI + vII):Therefore, vII = "� ~~PvI ; ~~P = �(I + "� ~P )�1 ~P ; (78)and yI = vI + vII = (I + "� ~~P )vI : (79)Now we 
an write (76) in the formvIt = LvI + ("+ e��l)(F (x; t; vI) +Gx(x; t; vI)): (80)The te
hnique in [4℄ is now dire
tly appli
able, and 
onvergen
e at an expo-nential rate, yI(�; t)! 0 as t!1, follows. Re
onsidering (73), one obtainsthat �(t) approa
hes a 
onstant. This 
ompletes the proof of the followingresult:Theorem 5: Let Assumptions 1 to 4 be satis�ed. For suÆ
iently small "and suÆ
iently large l, there is a smooth fun
tion �(t) and a 
onstant �1with limt!1�(t) = �1;limt!1u(x; t) = U(x+ "�1):The rate of 
onvergen
e is exponential.6 Appendix AIn this appendix we prove Theorem 3.For the analyti
 matrix fun
tion B(s), introdu
ed in Remark 4 followingTheorem 3, we use the representationB(s) = B0 + sB1 +O(s2) (81)25



and re
all the notation D(s) = detB(s).Assumption 2 implies that B0 is singular, and the eigenvalue s = 0 of B0is geometri
ally simple. In parti
ular, D(0) = 0. Also, in [5℄ we have provedthat the resolvent for the in�nite{line problem is � 1=jsj for all Re s > 0,whi
h yields jB(s)�1j � Kjsj ; Re s > 0: (82)We now show that this implies D0(0) 6= 0: After applying a similarity trans-formation to B0, we may assumeB(s) = 0BBB� 0 0 : : : 00... B(0)220 1CCCA+s0BBBB� b(1)11 b(1)12 : : : : : :b(1)21... B(1)22... 1CCCCA+O(s2); detB(0)22 6= 0 :There is a transformation S(s) = I +O(s);so thatS�1(s)B(s)S(s) =0BBB� 0 0 : : : 00... B(0)220 1CCCA+ s0BBB� b(1)11 0 : : : 00... B(1)220 1CCCA+O(s2) :The estimate (82) yields that b(1)11 6= 0, and thenD(s) = sb(1)11 detB(0)22 +O(s2)implies D0(0) 6= 0.7 Appendix BIn this appendix we 
olle
t some results for �rst{order di�erential systems26



ux = (� + "e��xB(x))u; x � 0: (83)Here � > 0 is a 
onstant, B(x) is a 
ontinuous, bounded matrix fun
tion,and � is a diagonal matrix of the form� = ���I 00 �II� ; Re�I > 0; Re�II > 0: (84)Partition u(x) 
orrespondingly. In our appli
ation, the matri
es �I and �IIboth have size n� n, and in the following we will make this assumption.For " = 0, the solution formula for (83) makes estimates straightforwardlyavailable. Our results below are for the " 6= 0 
ase, and they are perturbationsof 
orresponding " = 0 results.Lemma B1: Consider (83) with boundary 
onditionuI(0) = yI0: (85)If "jBj1� � 14 ; (86)then there is a unique bounded solution of (83), (85). It satis�esjuI j1 � (1 + 2"jBj1� )jyI0j; juIIj1 � 2"jBj1� jyI0j: (87)Proof: To begin with, let " = 0. The unique bounded solution is given byyI(x) = e��IxyI0; jyIj1 � jyI0j; (88)yII(x) � 0: (89)To treat the 
ase " 6= 0 we let u = y + v. Then v satis�esvx = �v + "e��xB(x)(v+ y); vI(0) = 0: (90)Assume �rst that a bounded solution v exists and 
onsider the exponentiallyde
aying terms as for
ing terms. We havevI(x) = "Z x0 e��I(x��)���B1(�)(v(�) + y(�))d�; (91)vII(x) = �"Z 1x e��II(��x)���B2(�)(v(�) + y(�))d�: (92)27



Here B1 and B2 
onsist of the �rst and last n rows of B, respe
tively. From(91) and (92) we derive jvj1 � "� jBj1(jvj1 + jyj1):The estimate and uniqueness follows for "jBj1=� � 1=4.To prove existen
e we let v0 � 0 and 
onsider the iterationvn+1x = �vn+1 + "e��xB(x)(vn + y); (vn+1)I(0) = 0:If "jBj1=� � 14 ;then it is easy to show that wn = vn � vn�1 satis�esjwnj1 � 2"� jBj1jwn�1j1:Thus the iteration 
onverges uniformly to the unique bounded solution. This
on
ludes the proof.In the following, we always make the smallness assumption (86) for ".In the next lemma we sharpen the estimates. Denote the 
omponents ofuI and uII by uIj and uIIj , respe
tively, and the diagonal elements of �I and�II by �Ij and �IIj , respe
tively. By (88) and (89):jyIj (x)j � e�Re�IjxjyI0j; yIIj (x) � 0:By (91): jvIj (x)j � "jBj1(jvj1 + jyj1)Z x0 je��Ij(x��)���jd� :By partitioning the integral at x=2, we see that it is exponentially small withexponent 
Ij = min(Re�Ij ; �)=2. ThusjvIj (x)j � 
 "jBj1jyI0je�
Ij xfor some 
onstant 
. Correspondingly, by (92):jvIIj (x)j � "jBj1(jvj1 + jyj1)Z 1x je�IIj (x��)���jd� � 
 "jBj1jyI0je��x:28



This proves:Lemma B2: The bounded solution of (83), (85) satis�es the more pre
iseestimatesjuIj (x)j � (1 + 
onst "jBj1)e�
Ij xjyI0j; juIIj (x)j � 
onst "jBj1e��xjyI0j;with 
Ij = min(Re�Ij ; �)=2.As shown above, for every uI(0) = yI0 the system (83) on 0 � x <1) hasa unique bounded solution u(x). In parti
ular, uII(0) is determined uniquelyby uI(0). In this way, the system (83) determines a linear mapping:uII(0) = "QuI(0); jQj � 2 jBj1� :Next we let B = B(x; s) and � = �(s) be analyti
 fun
tions of s de�nedin some open, 
onne
ted subset S0 of the s�plane. Assume "jBj1=� � 1=4,Re�I > 0, Re�II > 0 for all s 2 S0. Then u = u(x; s) is also an analyti
fun
tion of s, bounded by (87), and there is a unique analyti
 mapping:uII(0) = "Q(s)uI(0); jQ(s)j � 2 jBj1� : (93)Even if the real part of some of the eigenvalues of �(s) 
hange sign in S0,under suitable assumptions we 
an still de�ne an analyti
 mapping Q(s) byusing analyti
 
ontinuation. To be spe
i�
, we will 
onsider a neighborhoodS0 of s = 0, S0 = fs : jsj < �g, where � > 0 is �xed, and assume that � andB are analyti
 for s 2 S0, and that for a 
onstant Æ > 0Re�I(s) + ÆI > 0; Re�II(s) + ÆI > 0: (94)Lemma B3: Consider (83) and (85). Assume (94) with 0 < Æ � �=4 for alls 2 S0. Then there is a unique solution u(x; s) = y(x; s) + v(x; s), analyti
in s for ea
h x, satisfyingyI(x; s) = e��IxyI0; je�ÆxyIj1 � jyI0j;yII(x; s) � 0;je�ÆxvI j1 + jvIIj1 � 8"jBj1� jyI0j:29



for s 2 S0. In parti
ular the mapping Q = Q(s) in (93) is an analyti
fun
tion of s.Proof: The transformed variable~u(x) = �e�ÆxI eÆxI�u(x) (95)satis�es~ux = ~�~u+ "e��2 x ~B(x)~u; ~uI(0) = yI0; ~� = ��(�I + ÆI) �II + ÆI� :Here j ~Bj1 � jBj1, and ~� satis�es (84) for all s 2 S0. Now we 
an applyLemma B1, and by (95) the 
laims follow.Next we 
onsider (83) for 0 � x � l with 2n boundary 
onditionsuI(0) = yI0; uII(l) = DuI(l) + yIIl ; (96)where D is a diagonal matrix.Lemma B4: Consider (83),(96) where � satis�es (84). If"jBj1� (1 + jDj) � 14 ;then the unique solution satis�esjuI j1 � jyI0j+ 2"jBj1� �(1 + jDj)jyI0j+ jyIIl j�;juII j1 � jDjjyI0j+ jyIIl j+ 2"jBj1� (1 + jDj)�(1 + jDj)jyI0j+ jyIIl j�Also, if yIIl = 0 and � = �(s); B = B(x; s); D = D(s) are analyti
 fun
tionsof s 2 S0 and if (84) is valid, then the boundary value problemux = (� + "e��xB)u; 0 � x � l; uI(0) = yI0; uII(l) = DuI (l);determines a unique analyti
 mapping:uII(0) = �P (s)uI(0); j �P (s)j � je�(�I+�II )ljjDj + "2(1 + jDj)jBj1� : (97)30



Remark: In our appli
ation, (84) is satis�ed for Res > 0. By analyti

ontinuation there is a unique analyti
 mapping in a full neighborhood of theorigin, jsj < �, for some � > 0.Proof: To begin with, let s 2 S0 be �xed. Existen
e of a solution of(83),(96) follows on
e the estimates are shown. As above, let y be the solutionof the 
orresponding problem with " = 0:yI(x) = e��IxyI0; (98)yII(x) = e��II(l�x) �DyI (l) + yIIl � : (99)It follows thatjyI j1 � jyI0j; jyIIj1 � jDjjyI0j+ jyIIl j; jyj1 � (1 + jDj)jyI0j+ jyIIl j: (100)We also note that yII(0) = e�(�I+�II)lDyI0 if yIIl = 0 : (101)For v = u�y we pro
eed as in the proof of Lemma B1. The solution formulavI(x) = "Z x0 e��I(x��)e���B1(�)(v + y)d�; (102)vII(x) = �"Z lx e��II(��x)e���B2(�)(v + y)d� + e��II(l�x)DvI(l)(103)yields jvIj1 � "jBj1� (jyj1 + jvj1);jvIIj1 � "jBj1� (jyj1 + jvj1) + jDjjvI(l)j� "jBj1� (1 + jDj)(jyj1 + jvj1):The estimates follow if ("jBj1=�)(1 + jDj) � 1=2. Existen
e of the analyti
mapping for ea
h s 2 S0 follows as before.We shall also give an estimate in the spe
ial 
ase where the simpli�edproblem ((83) with " = 0) only 
ontains terms that de
ay rapidly in 0 � x � laway from the boundary at x = l. 31



Lemma B5: Consider (83), (96) with yI0 = 0. If there is a 
onstant 
 > 0su
h that for all s 2 S0 the solution of the simpli�ed problem (with " = 0)satis�es jyII(x)j = je�II(x�l)yIIl j � e
(x�l)jyIIl j;and if "jBj1 is suÆ
iently small (as 
ompared with � and 
), then there isa 
onstant 
 su
h thatjuII(0)j � 
 e�~
ljyIIl j; ~
 = min(
; �)=2:Proof: The simpli�ed problem has the solution given by (98) and (99)with yI � 0. By (102) and (103):jvI(x)j � "jBj1( jvj1� + jyIIl jZ l0 e���+
(��l)d�)� "jBj1� (jvj1 + 
 e�~
ljyIIl j); (104)jvII(x)j � "jBj1� (jvj1 + 
 e�~
ljyIIl j) + jDjjvI(l)j� "jBj1� (1 + jDj)(
 e�~
ljyIIl j+ jvj1):The lemma follows.Referen
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