
STABILITY OF VISCOUS SHOCKS ONFINITE INTERVALSGunilla Kreiss, Heinz-Otto Kreiss, Jens LorenzSeptember 25, 2006AbstratConsider the Cauhy problem for a system of visous onservationlaws with a solution onsisting of a thin, visous shok layer onnetingsmooth regions. We expet the time dependent behavior of suh asolution to involve two proesses. One proess onsists of the largesale evolution of the solution. This proess is well modeled by theorresponding invisid equations. The other proess is the adjustmentin shape and position of the shok layer to the large sale solution.The time sale of the seond proess is muh faster than the �rst, 1=�ompared to 1. The seond proess an be divided into two parts,adjustment of the shape and of the position. During this adjustmentthe end states are essentially onstant.In order to answer the question of stability we have developed atehnique where the two proesses an be separated. To isolate thefast proess, we onsider the region in the viinity of the shok layer.The equations are augmented with speial boundary onditions whihreet the slow hange of the end states. We show that, for the isolatedfast proess, the perturbations deay exponentially in time.1 IntrodutionConsider a system of visous onservation laws,u� + f(u)� = �u��; � 2 R; � � 0 : (1)Here 0 < � � 1 denotes the visosity, u = u(�; � ) is a vetor funtion with nomponents and f : Rn! Rn is a given smooth funtion of the state vetor1



u. We are interested in solutions onsisting of a visous shok layer whihonnets smooth regions. We expet the time dependent behavior of suha solution to involve two proesses. One proess onsists of the large saleevolution of the solution. Di�usion ats weakly in this proess, and it is wellmodeled by the orresponding invisid equations. To �rst approximationthis proess determines the position of the shok via the Rankine-Hugoniotrelations. The other proess is the adjustment in shape and position of theshok layer due to perturbations in the shok layer itself. Here the di�usivee�ets are large. The time sale of the seond proess is muh faster thanthe time sale of the �rst, 1=� to 1. On the fast time sale, the large sale ofthe solution is essentially onstant.In order to study the stability of the shok pro�le to loal perturbations,we fous on the fast proess and will not inlude e�ets of the slower largesale behavior or the e�et of global perturbations. The fous on loal pertur-bations is, among others, of interest from a numerial point of view beauseerrors in numerial omputations are mainly generated in the shok layer,and one wants to know if these numerial errors an ause the solution tohange harater.This paper ontains a disussion of three di�erent models that an beused to understand stability of shok pro�les. We present a new eigenvalueresult for systems on bounded domains and a new non-linear stability result.2 Stability of Traveling WavesAs a model, one has studied the stability of traveling wave solutions of theCauhy problem vt + f(v)x = vxx; x 2 R; t � 0 ; (2)v(�1; t) = UL; v(1; t) = UR;v(x; 0) = v0(x):See, for instane, [5℄ and [7, 8, 9, 2℄. In (2) the standard saling of spaeand time eliminates the parameter � from the equation. Without loss ofgenerality one an assume the wave speed to be zero.We make the following standard assumptions:Assumption 1: There is a steady solution U(x), i.e.,f(U(x))x = Uxx(x) ;2



where limx!1U(x) = UR; limx!�1U(x) = UL; UL 6= UR :To study the stability of U(x) we onsider (2) with initial datav(x; 0) = U(x) + u0(x);where u0 is a small perturbation of U with ompat support. Linearizing (2)at U(x) gives ut + (A(x)u)x = uxx; x 2 R; u(�; t) 2 L2: (3)Here A(x) = J(U(x)) where J = �f=�u is the Jaobian of f . For theJaobian evaluated at the end states we use the notations AR = J(UR) andAL = J(UL). The eigenvalue problem orresponding to (3) is��+ (A(x)�)x = �xx; x 2 R; � 2 L2: (4)Clearly, s = 0,� = Ux is an eigensolution.Assumption 2: There is no non{trivial solution of (4) with Re� � 0, � 6= 0,and, for � = 0, all eigenfuntions in L2 are multiples of � = Ux.Assumption 3: The matries AL and AR have real, distint, non{zeroeigenvalues, and there are n+1 ingoing harateristis, i.e., the total numberof positive eigenvalues of AL and negative eigenvalues of AR is n + 1.Assumption 4: The n � n matrixM = (UL � UR; SIIR ; SIL) (5)is nonsingular. Here the olumns of SIL and SIIR are the eigenvetors orre-sponding to outgoing harateristis to the left and to the right, respetively.Remark 1: It follows that the onvergene of U(x) to the end states asx! �1 is exponential. Therefore, we an use the representationA(x) = AR + e��xBR(x); x � l0; (6)A(x) = AL + e��jxjBL(x); x � �l0; (7)with � > 0 for some suÆiently large l0; here BR;L(x) are bounded matrixfuntions. In our analysis below we will assume that l0 > 0 is a �xed onstantfor whih e��l0 is suÆiently small. 3



Remark 2: The eigenvalues of A(x) are only required to be real at thelimit states. This is useful when onsidering two phase ows, for example.Remark 3: Assumptions 3 and 4 are standard also in an invisid setting.The �rst nonlinear stability result for shoks of arbitrary strength wasgiven in [5℄ where stability to small zero{mass perturbations was established.The result is: 1Theorem 1: If the initial data is of the formv(x; 0) = U(x) + "hx; khk1 + khk2 = 1;then, for suÆiently small ",limt!1 jv(�; t)� U(�)j1 = 0;i.e., U is non-linearly stable to small zero{mass perturbations.In [5℄ the question of stability was redued to the study of estimates forthe resolvent equation, sû+ (A(x)û)x = ûxx + F̂ (x):There are two diÆulties in obtaining the neessary estimates. First, sinethe oeÆients of (2) do not expliitly depend on x and t, the steady statesolution U(x) is not unique. Any shifted pro�le, U(x + �) with � �xed, isalso a stationary solution of (2). Correspondingly, the funtionUx(x+ �)satis�es (A(x+ �)Ux(x+ �))x = (Ux(x+ �))xx;whih means that Ux is an eigenfuntion of the eigenvalue problems�+ (A(x)�)x = �xx; x 2 R; � 2 L2(R) ;with eigenvalue s = 0. Thus, generally one annot expet onvergene ofv(x; t) to U(x) as t ! 1. Non{uniqueness of the steady solution does nothave to be a problem. In [4℄ we treated this diÆulty in a slightly di�erent1We use the notations kuk1 = R1�1 ju(x)jdx; kuk22 = R1�1 ju(x)j2dx; juj1 = supx ju(x)j.4



setting. Instead of proving onvergene to U(x), we showed that v(x; t)onverges to a shifted pro�le, U(x+ �). Tehnially, we make the ansatzv(x; t) = U(x+ �(t)) + w(x; t)and hoose �(t) so that w(x; t) never has a omponent in the diretion of theeigenfuntion, Ux(x+ �(t)). We will use the same tehnique here.Seond, for general systems, loal perturbations of strong shoks will notremain loal. Along the outgoing harateristis di�usion waves are formed.A typial behavior is given by 1px+ t e� (x�t)2t :Perturbations of this type deay in time only like 1=pt, and the L2{normof the perturbation over spae and time is not �nite. Thus the resolventtehnique annot be used to prove onvergene. Also, through nonlinearinteration, signals are sent bak to the shok layer via the ingoing hara-teristis. This slows down the onvergene also in the shok layer.In [5℄ we onsidered only zero{mass perturbations. Then the onvergenerate is improved by a fator 1=pt and, as we have shown, the resolventtehnique an be applied. Another advantage of the zero{mass assumptionis that v(x; t) onverges to U(x) without shift.In this paper we are interested in the stability of the shok layer to loalperturbations, without inluding interation with the large sale variationsof the solution. With the original saling of time and spae, the amplitudeof the di�usion waves is of order O(p�). Thus, the slowly deaying di�usionwaves vary on time and spae sales omparable to the large sale variationsthat we have already exluded from our study, but with a muh smalleramplitude. The mathematial diÆulties aused by the slow onvergeneof the di�usion waves are therefore irrelevant and we need to formulate adi�erent model problem.We analyze instead the stability of U(x) as a solution of an initial{boundary value problem formulated on a �nite interval, jxj � l.5



3 Stability on a Bounded IntervalThe seemingly most natural hoie is to use U(�l) as boundary data atx = �l: ut + f(u)x = uxx; jxj � l; t � 0 ;u(x; 0) = U(x) + y0(x); jxj � l ; (8)u(�l; t) = U(�l); t > 0 :Later we will modify the boundary onditions by allowing a time{dependentshift of U in the boundary data. Clearly, U(x) is a steady solution of (8).In [3℄ we investigated the initial{boundary value problem for Burgers'equation, u� + (u22 )� = = �u��; �1 � � � 1; � � 0; (9)u(�1; � ) = 1; u(1; � ) = �1;u(�; 0) = u0(�):Here 0 < � � 1. There is the unique, anti-symmetri, steady solution,U(�) = �U(��), whih is the restrition of a shok pro�le on the whole linewith end states U(�1) = 1 +O(e� 1� ) and U(1) = �1 +O(e� 1� ).In omputations we observe the following: The solution rapidly approahesa shifted pro�le U(� + �), where � depends on the initial funtion. How-ever, this is not the orret steady solution. In a seond phase the solutiononverges exponentially slowly to the orret steady solution, U(�).There is no orresponding behavior in the in�nite{line ase or in theinvisid ase; see Abarbanell et. al. [6℄. In the invisid ase one onsidersu� + (u22 )� = 0; �1 � � � 1:Then the disontinuous funtionU(�) = n 1; � < 0;�1; � > 0is a steady solution with a shok at � = 0. With perturbed initial data,u(�; 0) = U(�) + h(�);6



the solution will in general onverge to a shifted pro�le,lim�!1u(�; � ) = U(� + �):By onservation, dd� Z 1�1 ud� = 0:Therefore, the shift � is determined by� = Z 1�1 h(�)d�:In the visous ase we havedd� Z 1�1 ud� = �(u�(1; � )� u�(�1; � )):Thus, there is no onservation. The exponentially slow onvergene in thevisous ase an be explained by onsidering the orresponding eigenvalueproblem ��+ (U(�)�)� = ����; �1 � � � 1; �(�1) = 0: (10)All eigenvalues �j are real and negative and there is one algebraially simpleeigenvalue �0 and orresponding eigenfuntion �0 with�0 = O(e�1=�); �0(�) = U�(�) +O(e� 1� ):All other eigenvalues satisfy�j � � � ; j = 1; 2; : : :where  > 0 is independent of �. The perturbation equation, linearized atU , predits what happens. After a short initial phase, the only part of theperturbation that remains is in the diretion of �0. Suh a perturbationorresponds to shifting the pro�le. This remaining perturbation will onlydeay exponentially slowly to zero, i.e., the shift will disappear only veryslowly. Clearly, the small eigenvalue �0 ontrols the speed at whih theshok layer moves to the orret position in the seond phase.7



For systems of equations, the linearized problem on the bounded domainreads ut + (Au)x = uxx; jxj � l; t � 0 ;u(x; 0) = y0(x); jxj � l ; (11)u(�l; t) = 0; t > 0and the orresponding eigenvalue problem iss'+ (A')x = 'xx; jxj � l; '(�l) = 0: (12)The result for Burgers' equation an be generalized to systems. In thenext setion we will prove Theorem 2 formulated below. It is assumed thatl0 is a �xed, suÆiently large, onstant. More preisely, the term e��l0 ap-pearing in (6) and (7) is assumed to be small.Theorem 2: For suÆiently large l, the eigenvalue problem (12) has asimple, isolated eigenvalue s0 with orresponding eigenfuntion '0, satisfyings0 = O(e�(l�l0)); j'0(x)� Ux(x)j � Ce�l; jxj � l: (13)Here  > 0 is independent of l. Further, there is a onstant Æ > 0 so that allother eigenvalues satisfy Re sj � �Æ; j = 1; 2; : : :The onstant Æ is independent of l.The theorem implies at best an exponentially slow approah to the steadypro�le. In fat, there is no reason for the exponentially small eigenvalue s0to have negative real part. Thus (8) an be mildly unstable even though (1)is stable.For the linear problem (11) we an use an eigenfuntion expansion torepresent the solution. All omponents, exept the one in the diretion of'0, will onverge to zero exponentially fast. Thus, after a short time we haveu(x; t) � U(x) + �(t)Ux(x) � U(x+ �(t));whih orresponds to the observed behavior in the ase of Burgers' equation.8



4 Analysis of the Eigenvalue ProblemIn this setion we will prove Theorem 2. The proof relies on omparing the�nite{interval eigenvalue problems �'+ (A �')x = �'xx jxj � l; �'(�l) = 0 ; (14)with the in�nite{line eigenvalue problem,s'+ (A(x)')x = 'xx x 2 R; ' 2 L2: (15)The main idea is to reformulate both eigenvalue problems, (14) and (15), asproblems on a �xed interval, �l0 � x � l0, where l� l0 � 1. First note thatone an show, see Setion 2 of [5℄, that there is a onstant C0 so that thereare no eigenvalues s of (15) or of (14) with jsj � C0; Re s � �1. Therefore,we only need to onsider jsj � C0.A �rst step is to show that the in�nite{line eigenvalue problem (15) anbe reformulated as an eigenvalue problem on a bounded domain, jxj � l0,with non{standard boundary onditions:s'+ (A(x)')x = 'xx; jxj � l0'x = QR(s)' at x = l0 (16)'x = QL(s)' at x = �l0Here QR(s) and QL(s) are analyti matrix funtions of s whih, at �rst, areonly de�ned for Re s � 0; s 6= 0. We will show that the matrix funtionsQR;L(s) an be extended analytially to all jsj � C0; Re s > �Æ, for somepositive Æ. However, the problems (15) and (16) are equivalent only for Re s �0; s 6= 0, in the following sense: If (s; ') solves (15), then the restritionof ' to jxj � l0 solves (16). Further, if (s; ') solves (16) then there is aunique smooth extension of '(x) to all of R by solving s'+(A')x = 'xx forjxj > l0, with ' 2 L2(R). No equivalene, in this sense, generally holds forthe problems (15) and (16) if Re s < 0.Also, the �nite{interval eigenvalue problem (14) on �l � x � l an bereformulated as an eigenvalue problem on �l0 � x � l0. In this ase, theoriginal problem (14) and the redued problem are equivalent for all valuesof s. The only di�erenes between the two redued problems ours in theboundary onditions, and we will show that this di�erene is exponentiallysmall, i.e., of order O(e�(l�l0)). 9



To arry out the redutions, we use the representations (6) and (7). Byassumption, the matrix AR has n distint, real eigenvalues �j 6= 0, and thereexists a nonsingular matrix SR withS�1R ARSR = �R = ���IR 00 �IIR� : (17)Here �IR and �IIR are diagonal matries with r and n � r positive diagonalentries, respetively. Similarly, for x � �l0, we have the representation (7),and there is a non{singular matrix SL withS�1L ALSL = ���IL 00 �IIL � : (18)Here �IL and �IIL are diagonal matries with r � 1 and n + 1 � r positivediagonal entries, respetively.Before giving a proof of Theorem 2, we note that ifA(x) = AR; x � l0;then for x � l0 the omponents of ~' = (SR)�1' solve unoupled equations:s ~'j + �j ~'jx = ~'jxx; j = 1; : : : ; n: (19)For the solutions, �1j and �2j, of the harateristi equation�2 � �j�� s = 0 (20)the following holds. (See Lemma 4.1 in [5℄.)Lemma 1. The solutions of (20),�1j = �j2  1 +s1 + 4s�2j ! ; �2j = �j2  1�s1 + 4s�2j! ; (21)satisfy:1. For Re s > �14�2j ; the funtions depend analytially on s:2. Re�ij 6= 0; i = 1; 2, for Re s � 0; s 6= 0:3. �1j = �j +O(s); �2j = � s�j + s2�3j +O(s3) for jsj � 1:10



4. sign(Re �1j) =sign �j ; sign(Re �2j) = �sign �j ; for Re s � 0; s 6= 0:5. For every Æ > 0 there is a onstant � > 0 so that for all s with jsj �Æ; Re s � 0;(a) jRe �ijj � �; i = 1; 2:(b) j(�ij � �kl)j � � if (i; j) 6= (k; l):Proof: Property 1 is lear if we de�ne the square root by the usual analytiontinuation. Next, assume that �kj = i�; � real, � 6= 0: By (20),�� 2 � i��j = s; i:e:; Re s < 0:This proves Property 2. Property 3 follows diretly from (21). Property 4follows from Property 3 for small jsj and then from Properties 1 and 2 forall s with Re s � 0; s 6= 0: For jsj >> 1; Property 5 follows diretly from(21). Sine Re �ij 6= 0; we an use a ompatness argument to prove 5a.The formula �1j � �2j = �jq1 + 4s�2j shows that 5b holds if j = l: If � solves�2 � �j�� s = 0; �2 � �l�� s = 0; j 6= l;then (�j � �l) Re � = 0; i:e:; Re � = 0;whih violates Property 2. This proves the lemma.The general solution of (19) is~'j(x) = �1e�1j(x�l0) + �2e�2j(x�l0):Here �1j and �2j are given by (21). Note that �ij = �ij(s). For ease ofnotation we will in general not write out the s-dependene. For Re s �0; s 6= 0, the requirement ~'j 2 L2(l0;1) yields the ondition�1 = 0 if �j > 0; �2 = 0 if �j < 0 :Equivalently, ~'jx(l0) = (�2j ~'j(l0) if �j > 0;�1j ~'j(l0) if �j < 0: (22)11



In terms of the original variable ' = SR ~', we obtain from (22):'x(l0) = SR ~QR(s)S�1R '(l0): (23)Here ~QR(s) is the diagonal matrix with entries �1j(s); 1 � j � r; and�2j(s); r + 1 � j � n, aording to (22). We note that~QR(s) = ���IR 00 0�+O(s):If A(x) = AR for x � l0, then the matrix QR(s) = SR ~QR(s)S�1R is theoeÆient matrix in the boundary ondition at x = l0 for the redued prob-lem, (16). Note that, sine the oeÆient matrix depends on s, this is anon{standard boundary ondition.4.1 Redution of the All{Line ProblemThe roots, �1j and �2j, of the harateristi equation (20) are important alsoin the general ase. Consider the half{line x � l0 and use the representationA(x) = AR + "e��(x�l0)BR(x) for x � l0, " = e��l0 : (24)To simplify notation, we assume that AR is diagonal with elements �j . Tobegin with we onsider only Re s � 0; C0 � jsj > 0.Introduing the notation � = A'� 'x; (25)we an write the equation s'+ (A')x = 'xx as a �rst{order system:� '� �x = � A �I�sI 0 �� '� � : (26)In the simpli�ed ase, with A(x) = �R, (26) deouples into 2 � 2 systems� 'j�j �x = � �j �1�s 0 �� 'j�j � : (27)The eigenvalues of the matrix on the right side are �1j and �2j, and thesystem (27) is diagonalized by the transformation�'j�j� = Sj ��j j� ; Sj = � 1 �1s�2j� s�1j 1 � : (28)12



Here S�1j = 1�1j � �2j ��1j 1s�1j�2js �1j � : (29)Note that Sj and S�1j are analyti funtions of s, and an be extended ana-lytially to all s with Re s > ��2j=4. The diagonalized system is� �j j �x = � �1j 00 �2j �� �j j � : (30)If we require the solution to belong to L2(l0;1), there an be no growingomponents, and the solution must satisfy�j(l0) = 0 if �j > 0 ;  j(l0) = 0 if �j < 0: (31)This is the boundary ondition at x = l0 for the redued problem. Byinverting the transformations (28) and (25) we reover (23).In the general ase, i.e., for " 6= 0, the transformation (28) will yield a ou-pled system. Let the omponents of ' be ordered so that 'I = ('1; : : : ; 'r)Torresponds to eigenvalues �j < 0 and 'II = ('r+1; : : : 'n)T orresponds to�j > 0. We partition the vetors � and  orrespondingly, i.e., we set�I = 0B��1...�r1CA ; �II =0B��r+1...�n 1CA ;  I = 0B� 1... r1CA ;  II = 0B� r+1... n 1CA :Finally, let � = �� �and apply (28) to the omponents of the �rst{order system (26), yielding�x = �K + "e��(x�l0)B(x)��; x � l0: (32)Here K = �K1 00 K2� ; Ki = �KIi 00 KIIi � =0B��i1 . . . �in1CA ;is diagonal, and we have partitioned aording to sign of real part. By Lemma1 we have that for Re s � 0; s 6= 0, the elements of KI1 and KII2 have negative13



real parts, while the elements of KII1 and KI2 have positive real parts. Thematries KIi and KIIi are of size r � r and (n � r) � (n � r), respetively.Furthermore, B(x) := S�1�BR(x) 00 0�Swhere the matrix S ollets the transformations Sj.For C0 � jsj � 0 > 0; Re s � 0, the diagonal elements of K are distintwith real parts bounded away from zero. For suÆiently large l0, the value" = e��l0 is small ompared with 0, and the system (32) an be diagonalizedby a transformation, analyti in s, whih is an O("e��(x�l0)) perturbation ofthe identity. The diagonalization separates growing omponents from deay-ing omponents. It is easy to show that the resulting boundary onditions atx = l0 are O(") perturbations of the boundary onditions in the simpli�edase (" = 0) and that they an be analytially extended to Re s � �Æ0, forsome Æ0 > 0.For jsj � 0 � 1 we haveKI1 = ��IR +O(s); KII1 = �IIR +O(s);KI2 = s(�IR)�1 +O(s2); KII2 = �s(�IIR )�1 +O(s2): (33)The analysis in this ase is more deliate sine the elements of K2 are nolonger uniformly separated. Consider the �rst{order system�x = �K + "e��(x�l0)B(x)��; x � l0; � 2 L2(l0;1); (34)�I(l0) = y1;  II(l0) = y2; (35)for Re s > 0; jsj � 0. By Lemma B3, the system (34) with side ondition(35) has a unique bounded solution, and (34) determines a linear mapping��II(l0) I(l0)� = "Q(s)� �I(l0) II(l0)� : (36)The equation (36) is the boundary ondition at x = l0 for the all{line problemredued to [�l0; l0℄. The matrix Q(s) depends analytially on s and an beextended to a full neighborhood of s = 0 using analyti ontinuation; seeLemma B3. Also, note that for " = 0 ondition (36) redues to (31).Similar onsiderations yield a boundary ondition at x = �l0. Thus thisproedure de�nes the redution to �l0 � x � l0 of the all-line eigenvalueproblem (16) for all s with Re s � �Æ; jsj � C0 for some Æ > 0. In the14



following theorem we relate the resolvent result from [5℄ to the redued all-line eigenvalue problem. The proof is given in Appendix A.Theorem 3: The problem (16), whih is the redution of the all{line eigen-value problem (15) to jxj � l0, has no eigenvalue s with Re s � 0; s 6= 0.There is an algebraially simple, eigenvalue at s = 0.Remark 4: The statement \s = 0 is an algebraially simple eigenvalue" isde�ned in the following way. To determine whih s are eigenvalues we alu-late the general solution of the di�erential equation and determine whetherthere is a nontrivial solution satisfying the boundary onditions or not. Thisleads to a linear system of equations, B(s)� = 0. There is a nontrivial so-lution if and only if the determinant D(s) := detB(s) satis�es D(s) = 0.In our ase, B(s) and D(s) are analyti funtions for Re s > �Æ. We de�nes = 0 as an algebraially simple eigenvalue if D(0) = 0 and D0(0) 6= 0.An immediate onsequene is:Theorem 4: There is a onstant Æ > 0 so that the eigenvalue problem (16)has no eigenvalue other than s = 0 for Re s � �Æ.Proof: As already noted, there are no eigenvalues with jsj � C0; Re s � �1.From Theorem 3 we have D0(0) 6= 0, and it follows that there exists a Æ1 suhthat s = 0 is the only eigenvalue with jsj � Æ1. For Æ1 � jsj � C0; Re s � 0 itfollows from Assumption 2 that D(s) 6= 0. Sine D is a ontinuous funtionof s there is a Æ2 > 0 suh that D(s) 6= 0 when Re s � �Æ2. This ompletesthe proof.4.2 Redution of the Bounded{Interval ProblemWe will ompare the redued in�nite{line eigenvalue problem (16) with thebounded{interval eigenvalue problem (14) redued to the interval [�l0; l0℄.Here 1 � l0 � l. The only di�erene between the two redued problemsours in the boundary onditions at x = �l0.First we onsider the simpli�ed ase with " = 0, i.e, with A(x) = ARfor x � l0. The boundary onditions at x = l0 for the redued in�nite{lineeigenvalue problem are given by (31) (or, equivalently, by (23)). We will nowredue problem (14) to jxj � l0 and show that the resulting boundary ondi-tions at x = l0 are exponentially small (as a funtion of l� l0) perturbationsof (31). Consider (30) on l0 � x � l, but all the variables ��j and � j insteadof �j and  j. The solution for l0 � x � l will onsist of growing and deayingomponents, and the relation between the omponents is determined by the15



boundary ondition �'j(l) = 0. In terms of the new variables, ��j and � j, thisondition reads ��j(l)� �2js � i(l) = 0: (37)Sine ��jx = �1j ��j and � jx = �2j � j equation (37) is equivalent to the followingondition at x = l0:e�1j(l�l0) ��j(l0)� �2js e�2j(l�l0) � j(l0) = 0: (38)By (21), �1j � �2j = 8<:+q�2j + 4s if �j > 0,�q�2j + 4s if �j < 0.Therefore we write (38) as��j(l0) = �2js e�(�1j��2j )(l�l0) � j(l0) if �j > 0, (39)� j(l0) = s�2j e�(�2j��1j )(l�l0) ��j(l0) if �j < 0. (40)It follows that, as long as Re s � �18 min�2j , (40) and (39) is a perturbationof order O(e�(l�l0)) of (31), with  = minj j�j j=p2 independent of s. Thisresult is a onsequene of the fat that (37) ouples one growing (with x)and one deaying omponent. It is important that, even when jsj is small,at least one of the exponential rates is essentially independent of s.For the general ase, i.e., for " 6= 0 in (24), we again only need to onsiderthe ase jsj � C0. When disussing (14) we introdue ��; ��; � and ��, de�nedorrespondingly to �; �;  and �. Corresponding to (37), the boundaryondition �'(l) = 0 in terms of �� and � is��(l)� 1sK2 � (l) = 0;or, equivalently,���II(l)� I(l)� = D(s)� � II(l)��I(l)� ; D(s) = �1sKII2 s(KI2)�1� (41)For Re s � �min�2j=8; jsj � C0; D is a diagonal, analyti matrix funtionof s. We will apply Lemma B4 withuI = � ��I� II� ; uII = � � I��II� ; �I = ��KI1 �KII2 � ; �II = �KI2 KII1 � :16



The result is that for all Re s � 0; C0 � jsj > 0, there is a unique boundedsolution ��(x; s) of��x = �K+ "e��(x�l0)B(x)� ��; l0 � x � l; (42)��I(l0) = y1; � II(l0) = y2: (43)augmented with (41).The boundary value problem (41) { (43) determines a mapping���II(l0)� I(l0)� = " �Q(s)� ��I(l0)� II(l0)� ; (44)where �Q(s) is analyti and an be extended to all s with Re s � �Æ; jsj � C0,by analyti ontinuation.In the all{line ase, the mapping (36) is the boundary ondition at x = l0for the all{line problem redued to [�l0; l0℄. In order to ompare (36) with(44) in the ase jsj � 0 we �rst use Lemma B3 for Re s > 0 to replae (34),(35) by a problem on [l0; l℄:�x = �K + "e��(x�l0)B(x)��; l0 � x � l; (45)�I(l0) = y1;  II(l0) = y2; ��II(l) I(l)� = "e��(l�l0)P (s)� �I(l) II(l)� ; (46)Here P (s) is analyti and an be extended to a full neighborhood of s = 0using analyti ontinuation.The following lemma states that Q and �Q di�er from eah other only byexponentially small terms. The result is valid in a full neighborhood of s = 0.Lemma 2: Let ��(x; s) and �(x; s) be the solutions of (41){(43) and (45),(46), respetively. There is a Æ > 0 suh that for jsj � Æ we havej�(l0)� ��(l0)j � "e��(l�l0)(jy1j+ jy2j):Here � and  are positive onstants, independent of s and l.Proof: Introdue Æ� = � � �� and the orresponding Æ� and Æ . Thenwe obtainÆ�x = �K + "e��(x�l0)B(x)� Æ�;� Æ�I(l0)Æ II(l0)� = 0;�Æ�II(l)Æ I(l)� = D�Æ II(l)Æ�I(l)�+ "e��(l�l0)P (s)� �I(l) II(l)��D� II(l)�I(l)� :17



We need to show that Æ�II(l0) and Æ I(l0) are exponentially small. To beginwith we shall estimate the inhomogeneous terms in the boundary onditionat x = l. For " = 0 we have�I(l) = eKI1(l�l0)y1;  II(l) = eKII2 (l�l0):If jsj � 0 where 0 is suÆiently small, then jRe�2jj � 20=j�j j < �=4 andjRe�1jj � . (Here, as before,  = min j�j j=p2.) Note that the elements ofKI1 have negative real parts. Therefore,je��4 (l�l0) II(l)j � jy2j; j�I(l)j � e�(l�l0℄jy1j:If " 6= 0 we an apply Lemma B3 with Æ = �=4 to (34), (35) and obtainje��4 (l�l0) II(l)j � jy2j+ 2" jBj1� (jy1j+ jy2j): (47)To estimate the omponents of �I(l) for " 6= 0, we apply Lemma B2 to (34),(35). It follows that there is a onstant  suh thatj�I(l)j � e�(l�l0)jy1j+  e� ~�2 (l�l0)"jBj1(jy1j+ jy2j); ~� = min(�; j�jj): (48)Thus all the inhomogeneous terms in the boundary ondition at x = l areexponentially small, exept for DI II(l). Here DI is the upper diagonalblok of D. In the ase " = 0 the e�et of this term isÆ�II(x) = eKII1 (x�l)DI II(l):Clearly, the orresponding part of the solution deays rapidly away from theboundary at x = l and is exponentially small at x = l0. If " 6= 0 Lemma B5yields a similar estimate. By Lemma B4 the e�et of the remaining termsare estimated, ompleting the proof of the lemma.If C0 � jsj � 0 > 0; Re s � 0, the elements of K are distint with realparts bounded away from zero. The full system an be diagonalized by atransformation, analyti in s, whih is an O("e��(x�l0)) perturbation of theidentity. It is easy to show that the resulting boundary onditions for thebounded{interval and for the in�nite{line problems di�er by O("e��(l�l0)),and that the result an be extended to Re s � �Æ0 for some Æ0 > 0.Proof of Theorem 2. We only have to onsider jsj � C0. We have shownabove that the bounded{interval and the all{line eigenvalue problems, ((15)18



and (14)), redued to [�l0; l0℄ di�er only by exponentially small terms inthe boundary onditions at x = �l0. The derivation of the boundary on-ditions was done for jsj � C; Re s � 0; s 6= 0, but the oeÆient matriesare analyti in s, and an be extended to Re s > �Æ for some Æ > 0 byanalyti ontinuation. Correspondingly, for Re s > �Æ; jsj � C0; the twoorresponding determinants, D(s) and �D(s), are analyti funtions, and �D isan exponentially small perturbation of D. The eigenvalues in the two asesare the zeros D(s) and �D(s), respetively. By Theorem 4, s = 0 is a simpleroot of D(s) = 0, and the only root with Re s � �~Æ for some ~Æ > 0. Sine �Dis an exponentially small perturbation of D, the eigenvalue result follows bya ontinuity argument.For jxj � l0 the estimate for the eigenfuntion follows by the same argu-ment. We must also disuss the eigenfuntion for l0 � jxj � l. For l0 � x � l,introdue �'0 � '0 = ~', and obtain�s0 ~'+ (A ~')x = ~'xx + �s0'0; l0 � x � l:Note that the di�erene in eigenvalues and in eigenfuntions in [�l0; l0℄ isO("e��(l�l0)). Also, �'0(l) = 0, and '0(x) deays exponentially. This yieldsthat j ~'(l0)j+ j ~'x(l0)j+ j ~'(l)j+ k�s0'0k1;[l0;l℄ = O("e��(l�l0)):We an then use Lemma B4 to prove that j ~'j1 is exponentially small. Thisompletes the proof of Theorem 2.4.3 Computing EigenvaluesOne an solve the eigenvalue problem (14) to hek if Assumption 2 for (15)is satis�ed. (See, for example, [1℄ for results relating the spetra of �nite{interval and all{line eigenvalue problems.) For large l, problem (14) beomesinreasingly ill-onditioned. However, one an avoid this by a hange ofvariables: Let C(x) denote the matrix funtion satisfyingCx = 12AC; C(0) = I ;and introdue into (14) a new variable  by� = C(x) :19



We obtain s + C�1Cxx =  xx;  (�l) = 0: (49)Sine A onverges exponentially fast to onstant matries as x ! �1 itfollows that (49) is a well behaved eigenvalue problem.5 Nonlinear Stability on a Bounded Intervalwith Modi�ed Boundary ConditionsIn this setion we onsider nonlinear systemsut + f(u)x = uxx; �l � x � l; t � 0;u(x; 0) = u0(x): (50)To begin with, the boundary onditions areu(�l; t) = U(�l) (51)where U(x) is a steady solution of the all{line problem, i.e., f(U)x = Uxx; x 2R. Assume the initial data to be a small perturbation of U(x), that isu(x; 0) = U(x) + "y0(x); j"j � 1; jyj1 = 1:De�ne y(x; t) by u(x; t) = U(x) + "y(x; t): (52)Then y satis�es yt = Ly + "(h(y))x; �l � x � l; t � 0; (53)y(x; 0) = y0(x);y(�l; t) = 0: (54)Here Ly = �(Ay)x+ yxx where A(x) is the Jaobian of f evaluated at U(x).Furthermore,"h(y) := �1" �f(U(x) + "y)� f(U(x))� "A(x)y� ;whih vanishes quadratially at y = 0. We may assume thatjh(y)j � jyj2for some onstant . (The funtion h also depends on x and ", but this isunimportant and suppressed in our notation.)20



5.1 Analysis of the Linearized ProblemThe linearized problem orresponding to (53), (54) isyt = Ly; �l � x � l; t � 0; (55)y(�l; t) = 0; y(x; 0) = y0(x);and the orresponding eigenvalue problem iss' = L'; �l � x � l; '(�l) = 0: (56)By the previous setion, we know that there is a simple eigenvalue s0, js0j �1, and that all other eigenvalues satisfy Re si � �Æ. The eigenfuntion orre-sponding to s0, denoted '0(x), is lose to the eigenfuntion of the in�nite{lineproblem, that is j'0(x)� Ux(x)j � e��l:Therefore, the projetionP0 = � 12�i Zjsj= Æ4 (sI � L)�1ds;whih projets L2(�l; l) onto the subspae spanned by '0, is a bounded linearoperator from L2(�l; l) to H2(�l; l).Without restrition we may assume thatP0y0 = 0: (57)Let us show that (57) is, in fat, not a restrition: If P0y0 = %'0; % 6= 0, wehange the ansatz (52) and the boundary onditions (51) tou(x; t) = U(x+ "�) + "y(x; t); u(�l; t) = U(�l + "�); (58)respetively. Here � will be determined as we will now explain. With y(x; t)de�ned in (58), the initial ondition for y beomes y(x; 0) = y1(x) withu(x; 0) = U(x+ "�)+ "y1(x); y1(x) = y0(x)� (U(x+ "�)�U(x))=": (59)We will use the notationL�y = yxx � (A�y)x; A�(x) = A(x+ "�);P� = � 12�i Zjsj= Æ4 (sI � L�)�1ds:21



Further, denote by s�0 and '�0 the eigenvalue lose to zero and the orrespond-ing eigenfuntion, respetively, of L� with boundary ondition '�(�l) = 0.We have P�y1 = P�y0 � 1"P�(U(x+ "�)� U(x))= P�y0 � �P�(Ux(x+ "�) +O("�))= P�y0 � �(1 +O("�) +O(e��l))'�0 :Sine kP� � P0k = O("�)we obtain P�y0 = (%+O("�))��0 :Therefore, P�y1 = �% � ��1 +O(") +O("�) +O(e��l)��'�0 :By the impliit funtion theorem, we an hoose � � � so that P�y1 = 0provided l is suÆiently large and " is suÆiently small. Therefore, we mayassume (57) to hold.For the linear problem (55) the equality (57) impliesP0y(�; t) = 0; t � 0:Thus the solution y(x; t) of the linear problem (55) onverges exponentiallyfast to zero as t!1.5.2 Analysis of the Nonlinear Problem with Modi�edBoundary ConditionsConsider the nonlinear equation ut + f(u)x = uxx with initial onditionu(x; 0) = U(x) + "y0(x). As explained above, we may assume P0y0 = 0without restrition. In the nonlinear ase, there is no guarantee, however,that the perturbation y(x; t) (de�ned by (52)) remains without omponent inthe diretion of '0. To leading order, a non{zero omponent in this diretionorresponds to a shifted pro�le, U(x + "�), and by modifying the boundaryonditions for u(x; t) we allow shifting of the pro�le to our.22



With �(t) a smooth funtion that needs to be determined and satis�es�(0) = 0, let u(x; t) = U(x+ "�(t)) + "y(x; t):Here y(x; t) is a new perturbation variable. The nonlinear equation ut +f(u)x = uxx beomes�tU�x + yt = L�y + "h�(y)x; �l � x � l; t � 0: (60)y(x; 0) = y0(x):Here h� and U�x are de�ned by"h�(y) := �1" �f(U(x+ "�) + "y)� f(U(x + "�))� "A�(x)y� (61)and U�x (x) = Ux(x+ "�): (62)As disussed in Setion 3, the boundary onditions must allow for a shiftin order to avoid an eigenvalue whih is exponentially lose to zero. Thus weonsider the boundary onditionsu(�l; t) = U(�l + "�(t)); (63)where �(t) will be determined so thatP�(t)y(�; t) = 0: (64)We will now prove that it is possible to determine �(t) by the side ondition(64) and that, for the new problem, y(x; t) onverges exponentially fast tozero (in maximum norm) as t!1.Introdue yI = (I � P�)y; yII = P�y:Note that yII(�; 0) = 0 and(P�)t = �"�t2�i Zjsj= Æ4 (sI � L�)�1�L��� (sI � L�)�1ds =: "�tR�: (65)As in [4℄, R� is a bounded operator from L2(�l; l) to H1(�l; l). Di�erentiat-ing yI = (I � P�)y, we obtain(I � P�)yt = (yI)t + "�tR�y (66)23



and, similarly, P�yt = (yII)t + P�(yI)t � "�tR�yII : (67)Also, (I � P�)U�x = e��lrI ; krIk � 1; (68)and P�U�x = (1 +O(e��l))'�0 : (69)Applying the projetors I � P� and P� to (60) yields�t(I � P�)U�x + (I � P�)yt = L�yI + "(h�;x)I ;�tP�U�x + P�yt = L�yII + "(h�;x)II :Using (66){(69) one obtains(yI)t = L�yI + "(h�;x)I � �te��lrI � "�tR�y; (70)(yII)t = L�yII + "(h�;x)II � �t(1 +O(e��l))��0 (71)+ "�tP�R�y + "�tR�yII : (72)If " is small enough and l is large enough we an determine �(t) as a smoothfuntion so that�t�(1 +O(e��l))'�0 � "P�R�yI� = "(h�;x)II : (73)Then we obtain: (yII)t = L�yII + "�t(P� + I)R�yII: (74)By onstrution, yII(x; 0) = 0, and a unique solubility argument for (74)implies yII(x; t) = 0; t � 0: (75)Therefore (70) beomes(yI)t = L�yI � "�tR�yI � �te��lrI + "(h�(yI)x)I ; (76)yI(x; 0) = y0(x):In [4℄ we have onsidered systems of the form (76) and proved exponentialonvergene to zero when the oeÆients of L� do not depend on t and the24



eigenvalues have negative real parts. Therefore, we rewrite (76) in terms ofvI = (I � P0)yI and vII = P0yI and replae L�yI by LvI . We haveL� = L+ "�~L; P� = P0 + "� ~P : (77)Here ~P is a bounded operator from L2 into H1 whih depends smoothly on� and t, and ~L is a �rst{order di�erential operator with smooth oeÆients.We have vII = P0yI = (P� � "� ~P )yI = �"� ~P (vI + vII):Therefore, vII = "� ~~PvI ; ~~P = �(I + "� ~P )�1 ~P ; (78)and yI = vI + vII = (I + "� ~~P )vI : (79)Now we an write (76) in the formvIt = LvI + ("+ e��l)(F (x; t; vI) +Gx(x; t; vI)): (80)The tehnique in [4℄ is now diretly appliable, and onvergene at an expo-nential rate, yI(�; t)! 0 as t!1, follows. Reonsidering (73), one obtainsthat �(t) approahes a onstant. This ompletes the proof of the followingresult:Theorem 5: Let Assumptions 1 to 4 be satis�ed. For suÆiently small "and suÆiently large l, there is a smooth funtion �(t) and a onstant �1with limt!1�(t) = �1;limt!1u(x; t) = U(x+ "�1):The rate of onvergene is exponential.6 Appendix AIn this appendix we prove Theorem 3.For the analyti matrix funtion B(s), introdued in Remark 4 followingTheorem 3, we use the representationB(s) = B0 + sB1 +O(s2) (81)25



and reall the notation D(s) = detB(s).Assumption 2 implies that B0 is singular, and the eigenvalue s = 0 of B0is geometrially simple. In partiular, D(0) = 0. Also, in [5℄ we have provedthat the resolvent for the in�nite{line problem is � 1=jsj for all Re s > 0,whih yields jB(s)�1j � Kjsj ; Re s > 0: (82)We now show that this implies D0(0) 6= 0: After applying a similarity trans-formation to B0, we may assumeB(s) = 0BBB� 0 0 : : : 00... B(0)220 1CCCA+s0BBBB� b(1)11 b(1)12 : : : : : :b(1)21... B(1)22... 1CCCCA+O(s2); detB(0)22 6= 0 :There is a transformation S(s) = I +O(s);so thatS�1(s)B(s)S(s) =0BBB� 0 0 : : : 00... B(0)220 1CCCA+ s0BBB� b(1)11 0 : : : 00... B(1)220 1CCCA+O(s2) :The estimate (82) yields that b(1)11 6= 0, and thenD(s) = sb(1)11 detB(0)22 +O(s2)implies D0(0) 6= 0.7 Appendix BIn this appendix we ollet some results for �rst{order di�erential systems26



ux = (� + "e��xB(x))u; x � 0: (83)Here � > 0 is a onstant, B(x) is a ontinuous, bounded matrix funtion,and � is a diagonal matrix of the form� = ���I 00 �II� ; Re�I > 0; Re�II > 0: (84)Partition u(x) orrespondingly. In our appliation, the matries �I and �IIboth have size n� n, and in the following we will make this assumption.For " = 0, the solution formula for (83) makes estimates straightforwardlyavailable. Our results below are for the " 6= 0 ase, and they are perturbationsof orresponding " = 0 results.Lemma B1: Consider (83) with boundary onditionuI(0) = yI0: (85)If "jBj1� � 14 ; (86)then there is a unique bounded solution of (83), (85). It satis�esjuI j1 � (1 + 2"jBj1� )jyI0j; juIIj1 � 2"jBj1� jyI0j: (87)Proof: To begin with, let " = 0. The unique bounded solution is given byyI(x) = e��IxyI0; jyIj1 � jyI0j; (88)yII(x) � 0: (89)To treat the ase " 6= 0 we let u = y + v. Then v satis�esvx = �v + "e��xB(x)(v+ y); vI(0) = 0: (90)Assume �rst that a bounded solution v exists and onsider the exponentiallydeaying terms as foring terms. We havevI(x) = "Z x0 e��I(x��)���B1(�)(v(�) + y(�))d�; (91)vII(x) = �"Z 1x e��II(��x)���B2(�)(v(�) + y(�))d�: (92)27



Here B1 and B2 onsist of the �rst and last n rows of B, respetively. From(91) and (92) we derive jvj1 � "� jBj1(jvj1 + jyj1):The estimate and uniqueness follows for "jBj1=� � 1=4.To prove existene we let v0 � 0 and onsider the iterationvn+1x = �vn+1 + "e��xB(x)(vn + y); (vn+1)I(0) = 0:If "jBj1=� � 14 ;then it is easy to show that wn = vn � vn�1 satis�esjwnj1 � 2"� jBj1jwn�1j1:Thus the iteration onverges uniformly to the unique bounded solution. Thisonludes the proof.In the following, we always make the smallness assumption (86) for ".In the next lemma we sharpen the estimates. Denote the omponents ofuI and uII by uIj and uIIj , respetively, and the diagonal elements of �I and�II by �Ij and �IIj , respetively. By (88) and (89):jyIj (x)j � e�Re�IjxjyI0j; yIIj (x) � 0:By (91): jvIj (x)j � "jBj1(jvj1 + jyj1)Z x0 je��Ij(x��)���jd� :By partitioning the integral at x=2, we see that it is exponentially small withexponent Ij = min(Re�Ij ; �)=2. ThusjvIj (x)j �  "jBj1jyI0je�Ij xfor some onstant . Correspondingly, by (92):jvIIj (x)j � "jBj1(jvj1 + jyj1)Z 1x je�IIj (x��)���jd� �  "jBj1jyI0je��x:28



This proves:Lemma B2: The bounded solution of (83), (85) satis�es the more preiseestimatesjuIj (x)j � (1 + onst "jBj1)e�Ij xjyI0j; juIIj (x)j � onst "jBj1e��xjyI0j;with Ij = min(Re�Ij ; �)=2.As shown above, for every uI(0) = yI0 the system (83) on 0 � x <1) hasa unique bounded solution u(x). In partiular, uII(0) is determined uniquelyby uI(0). In this way, the system (83) determines a linear mapping:uII(0) = "QuI(0); jQj � 2 jBj1� :Next we let B = B(x; s) and � = �(s) be analyti funtions of s de�nedin some open, onneted subset S0 of the s�plane. Assume "jBj1=� � 1=4,Re�I > 0, Re�II > 0 for all s 2 S0. Then u = u(x; s) is also an analytifuntion of s, bounded by (87), and there is a unique analyti mapping:uII(0) = "Q(s)uI(0); jQ(s)j � 2 jBj1� : (93)Even if the real part of some of the eigenvalues of �(s) hange sign in S0,under suitable assumptions we an still de�ne an analyti mapping Q(s) byusing analyti ontinuation. To be spei�, we will onsider a neighborhoodS0 of s = 0, S0 = fs : jsj < �g, where � > 0 is �xed, and assume that � andB are analyti for s 2 S0, and that for a onstant Æ > 0Re�I(s) + ÆI > 0; Re�II(s) + ÆI > 0: (94)Lemma B3: Consider (83) and (85). Assume (94) with 0 < Æ � �=4 for alls 2 S0. Then there is a unique solution u(x; s) = y(x; s) + v(x; s), analytiin s for eah x, satisfyingyI(x; s) = e��IxyI0; je�ÆxyIj1 � jyI0j;yII(x; s) � 0;je�ÆxvI j1 + jvIIj1 � 8"jBj1� jyI0j:29



for s 2 S0. In partiular the mapping Q = Q(s) in (93) is an analytifuntion of s.Proof: The transformed variable~u(x) = �e�ÆxI eÆxI�u(x) (95)satis�es~ux = ~�~u+ "e��2 x ~B(x)~u; ~uI(0) = yI0; ~� = ��(�I + ÆI) �II + ÆI� :Here j ~Bj1 � jBj1, and ~� satis�es (84) for all s 2 S0. Now we an applyLemma B1, and by (95) the laims follow.Next we onsider (83) for 0 � x � l with 2n boundary onditionsuI(0) = yI0; uII(l) = DuI(l) + yIIl ; (96)where D is a diagonal matrix.Lemma B4: Consider (83),(96) where � satis�es (84). If"jBj1� (1 + jDj) � 14 ;then the unique solution satis�esjuI j1 � jyI0j+ 2"jBj1� �(1 + jDj)jyI0j+ jyIIl j�;juII j1 � jDjjyI0j+ jyIIl j+ 2"jBj1� (1 + jDj)�(1 + jDj)jyI0j+ jyIIl j�Also, if yIIl = 0 and � = �(s); B = B(x; s); D = D(s) are analyti funtionsof s 2 S0 and if (84) is valid, then the boundary value problemux = (� + "e��xB)u; 0 � x � l; uI(0) = yI0; uII(l) = DuI (l);determines a unique analyti mapping:uII(0) = �P (s)uI(0); j �P (s)j � je�(�I+�II )ljjDj + "2(1 + jDj)jBj1� : (97)30



Remark: In our appliation, (84) is satis�ed for Res > 0. By analytiontinuation there is a unique analyti mapping in a full neighborhood of theorigin, jsj < �, for some � > 0.Proof: To begin with, let s 2 S0 be �xed. Existene of a solution of(83),(96) follows one the estimates are shown. As above, let y be the solutionof the orresponding problem with " = 0:yI(x) = e��IxyI0; (98)yII(x) = e��II(l�x) �DyI (l) + yIIl � : (99)It follows thatjyI j1 � jyI0j; jyIIj1 � jDjjyI0j+ jyIIl j; jyj1 � (1 + jDj)jyI0j+ jyIIl j: (100)We also note that yII(0) = e�(�I+�II)lDyI0 if yIIl = 0 : (101)For v = u�y we proeed as in the proof of Lemma B1. The solution formulavI(x) = "Z x0 e��I(x��)e���B1(�)(v + y)d�; (102)vII(x) = �"Z lx e��II(��x)e���B2(�)(v + y)d� + e��II(l�x)DvI(l)(103)yields jvIj1 � "jBj1� (jyj1 + jvj1);jvIIj1 � "jBj1� (jyj1 + jvj1) + jDjjvI(l)j� "jBj1� (1 + jDj)(jyj1 + jvj1):The estimates follow if ("jBj1=�)(1 + jDj) � 1=2. Existene of the analytimapping for eah s 2 S0 follows as before.We shall also give an estimate in the speial ase where the simpli�edproblem ((83) with " = 0) only ontains terms that deay rapidly in 0 � x � laway from the boundary at x = l. 31



Lemma B5: Consider (83), (96) with yI0 = 0. If there is a onstant  > 0suh that for all s 2 S0 the solution of the simpli�ed problem (with " = 0)satis�es jyII(x)j = je�II(x�l)yIIl j � e(x�l)jyIIl j;and if "jBj1 is suÆiently small (as ompared with � and ), then there isa onstant  suh thatjuII(0)j �  e�~ljyIIl j; ~ = min(; �)=2:Proof: The simpli�ed problem has the solution given by (98) and (99)with yI � 0. By (102) and (103):jvI(x)j � "jBj1( jvj1� + jyIIl jZ l0 e���+(��l)d�)� "jBj1� (jvj1 +  e�~ljyIIl j); (104)jvII(x)j � "jBj1� (jvj1 +  e�~ljyIIl j) + jDjjvI(l)j� "jBj1� (1 + jDj)( e�~ljyIIl j+ jvj1):The lemma follows.Referenes[1℄ W.{J. Beyn, J. Lorenz, Stability of traveling waves: Dihotomies andeigenvalue onditions on �nite intervals. Numer. Anal. and Optimiz.,Vol. 20, No. 3&4, pp. 201-244, 1999.[2℄ W.{J. Beyn, J. Lorenz, Stability of visous pro�les: Proofs via di-hotomies. J. Dynamis and Di�. Equ., Vol. 18, No. 1, pp. 141-195,2006.[3℄ G. Kreiss, H.-O. Kreiss, Convergene to steady state of solutions of Burg-ers' equation. Appl. Numer. Math., Vol. 2, pp. 161{179, 1986.32
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