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Abstract

Consider the Cauchy problem for a system of viscous conservation
laws with a solution consisting of a thin, viscous shock layer connecting
smooth regions. We expect the time dependent behavior of such a
solution to involve two processes. One process consists of the large
scale evolution of the solution. This process is well modeled by the
corresponding inviscid equations. The other process is the adjustment
in shape and position of the shock layer to the large scale solution.
The time scale of the second process is much faster than the first, 1/v
compared to 1. The second process can be divided into two parts,
adjustment of the shape and of the position. During this adjustment
the end states are essentially constant.

In order to answer the question of stability we have developed a
technique where the two processes can be separated. To isolate the
fast process, we consider the region in the vicinity of the shock layer.
The equations are augmented with special boundary conditions which
reflect the slow change of the end states. We show that, for the isolated
fast process, the perturbations decay exponentially in time.

1 Introduction
Consider a system of viscous conservation laws,

U, + flu)e =vuge, £€R, 72>0. (1)

Here 0 < v < 1 denotes the viscosity, u = u(£, 7) is a vector function with n
components and f: R” —+ R" is a given smooth function of the state vector



u. We are interested in solutions consisting of a viscous shock layer which
connects smooth regions. We expect the time dependent behavior of such
a solution to involve two processes. One process consists of the large scale
evolution of the solution. Diffusion acts weakly in this process, and it is well
modeled by the corresponding inviscid equations. To first approximation
this process determines the position of the shock via the Rankine-Hugoniot
relations. The other process is the adjustment in shape and position of the
shock layer due to perturbations in the shock layer itself. Here the diffusive
effects are large. The time scale of the second process is much faster than
the time scale of the first, 1 /v to 1. On the fast time scale, the large scale of
the solution is essentially constant.

In order to study the stability of the shock profile to local perturbations,
we focus on the fast process and will not include effects of the slower large
scale behavior or the effect of global perturbations. The focus on local pertur-
bations is, among others, of interest from a numerical point of view because
errors in numerical computations are mainly generated in the shock layer,
and one wants to know if these numerical errors can cause the solution to
change character.

This paper contains a discussion of three different models that can be
used to understand stability of shock profiles. We present a new eigenvalue
result for systems on bounded domains and a new non-linear stability result.

2 Stability of Traveling Waves

As a model, one has studied the stability of traveling wave solutions of the
Cauchy problem

vi 4 f(0)y = Vg, x€R, t>0, (2)
v(—o00,t) = Up, wv(oo,t)=Upg,
v(x,0) = wvo(x).
See, for instance, [5] and [7, 8, 9, 2]. In (2) the standard scaling of space
and time eliminates the parameter v from the equation. Without loss of

generality one can assume the wave speed to be zero.
We make the following standard assumptions:

Assumption 1: There is a steady solution U(x), i.e.,

JU(@))e = Uso() ,



where

lim U(x)=Ug, lim U(x)=Ug, Up+#Ug.

T—r 00 T—r— 00

To study the stability of U(x) we consider (2) with initial data
U(Q?,O) = U(l‘) + UO(J}),

where ug is a small perturbation of U with compact support. Linearizing (2)
at U(x) gives

ur + (A(z)u)y = gy, x €R, wu(-,t) € Ly. (3)

Here A(x) = J(U(x)) where J = 0f/0u is the Jacobian of f. For the
Jacobian evaluated at the end states we use the notations Ap = J(Ugr) and
Ar = J(Ug). The eigenvalue problem corresponding to (3) is

Ao+ (A(2)d)s = dusy, T ER, $€E Ly (4)

Clearly, s = 0,¢ = U, is an eigensolution.

Assumption 2: There is no non—trivial solution of (4) with ReXA > 0, A # 0,
and, for A = 0, all eigenfunctions in Ly are multiples of ¢ = Ul,.

Assumption 3: The matrices A;, and Ar have real, distinct, non-zero
eigenvalues, and there are n+ 1 ingoing characteristics, i.e., the total number
of positive eigenvalues of Ay and negative eigenvalues of Ap isn + 1.

Assumption 4: The n X n matrix
M = (UL — Uk, Sll%lv Si) (5)
is nonsingular. Here the columns of ST and S} are the eigenvectors corre-

sponding to outgoing characteristics to the left and to the right, respectively.

Remark 1: It follows that the convergence of U(x) to the end states as
r — too is exponential. Therefore, we can use the representation

A(x) = Ap + e_ﬁxBR(:L'), x> g, (6)
Alw) = Ap+eVIB(), @ <=y, (7)
with 3 > 0 for some sufficiently large lo; here B (x) are bounded matrix

functions. In our analysis below we will assume that [g > 0 is a fixed constant
for which e=#% is sufficiently small.



Remark 2: The eigenvalues of A(x) are only required to be real at the
limit states. This is useful when considering two phase flows, for example.

Remark 3: Assumptions 3 and 4 are standard also in an inviscid setting.

The first nonlinear stability result for shocks of arbitrary strength was
given in [5] where stability to small zero-mass perturbations was established.
The result is: !

Theorem 1: If the initial data is of the form
v(z,0) = U(x) +che, [[All+ [|A]l2 = 1,
then, for sufficiently small ¢,

lim [o(-,1) = U(-)|o = 0,

t—00

i.e., U is non-linearly stable to small zero—mass perturbations.

In [5] the question of stability was reduced to the study of estimates for
the resolvent equation,

A

s+ (A(2)t)y = e + F(x).

There are two difficulties in obtaining the necessary estimates. First, since
the coefficients of (2) do not explicitly depend on x and ¢, the steady state
solution U(x) is not unique. Any shifted profile, U(x + o) with «a fixed, is
also a stationary solution of (2). Correspondingly, the function

U2 + a)

satisfies

(A(z + a)Us(z + @) = (Ua( + @))w,

which means that U, is an eigenfunction of the eigenvalue problem

qu + (A(l')@b)x = bexy T € R, Qb - LQ(R) ,

with eigenvalue s = 0. Thus, generally one cannot expect convergence of
v(x,t) to U(x) as t — oo. Non—uniqueness of the steady solution does not
have to be a problem. In [4] we treated this difficulty in a slightly different

"We use the notations [Jul|y = [ |u(@)|de, ||ul|3 = [ |u(x)|?dz, [u|e = sup, |u(z)|.



setting. Instead of proving convergence to U(x), we showed that v(x,t)
converges to a shifted profile, U(x + «). Technically, we make the ansatz

v(a,t)=U(x + at)) + w(x, t)

and choose «a(t) so that w(a,t) never has a component in the direction of the
eigenfunction, U,(x 4+ «a(t)). We will use the same technique here.

Second, for general systems, local perturbations of strong shocks will not
remain local. Along the outgoing characteristics diffusion waves are formed.
A typical behavior is given by

1 T—t 2

NETA

Perturbations of this type decay in time only like 1/4/%, and the L, norm

of the perturbation over space and time is not finite. Thus the resolvent
technique cannot be used to prove convergence. Also, through nonlinear
interaction, signals are sent back to the shock layer via the ingoing charac-
teristics. This slows down the convergence also in the shock layer.

In [5] we considered only zero-mass perturbations. Then the convergence
rate is improved by a factor 1/v/f and, as we have shown, the resolvent
technique can be applied. Another advantage of the zero-mass assumption
is that v(x,t) converges to U(x) without shift.

In this paper we are interested in the stability of the shock layer to local
perturbations, without including interaction with the large scale variations
of the solution. With the original scaling of time and space, the amplitude
of the diffusion waves is of order O(y/v). Thus, the slowly decaying diffusion
waves vary on time and space scales comparable to the large scale variations
that we have already excluded from our study, but with a much smaller
amplitude. The mathematical difficulties caused by the slow convergence
of the diffusion waves are therefore irrelevant and we need to formulate a
different model problem.

We analyze instead the stability of U(x) as a solution of an initial-
boundary value problem formulated on a finite interval, |z| <.



3 Stability on a Bounded Interval

The seemingly most natural choice is to use U(+l) as boundary data at

x =+l

ut‘l’f(u)x = Uy, |$|§l, tZ()?
u(z,0) = Ulx) +yolx), |z] <1, (8)
WL t) = U, t>0.

Later we will modify the boundary conditions by allowing a time—dependent
shift of U in the boundary data. Clearly, U(x) is a steady solution of (8).

In [3] we investigated the initial-boundary value problem for Burgers’
equation,

u2

UT"’(?)S = =vug, —1<E<1, 720, (9)

u(—=1,7) = 1, wu(l,7)=-1,
U(f,O) = uo(f)

Here 0 < v <« 1. There is the unique, anti-symmetric, steady solution,
U(€) = =U(=£), which is the restriction of a shock profile on the whole line
with end states U(—o0) =1 + (’)(e_%) and U(oco) = —1 + O(e_%).

In computations we observe the following: The solution rapidly approaches
a shifted profile U(¢ + «), where o depends on the initial function. How-
ever, this is not the correct steady solution. In a second phase the solution
converges exponentially slowly to the correct steady solution, U(§).

There is no corresponding behavior in the infinite-line case or in the
inviscid case; see Abarbanell et. al. [6]. In the inviscid case one considers

2

Then the discontinuous function

L, £<0,
U(f):{ —1, £€>0

is a steady solution with a shock at ¢ = 0. With perturbed initial data,
u(¢,0) = U(§) + h($),
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the solution will in general converge to a shifted profile,

lim w(é,7) = U(E 4 ).

T—r00

d 1
— dé = 0.
dT/_luf 0

Therefore, the shift « is determined by

By conservation,

In the viscous case we have

Thus, there is no conservation. The exponentially slow convergence in the
viscous case can be explained by considering the corresponding eigenvalue
problem

A+ (U(€)d)e =vdee, —1<E<1, o(£l) =0. (10)

All eigenvalues A; are real and negative and there is one algebraically simple
eigenvalue A\g and corresponding eigenfunction ¢y with

Yo = O(e7), dol€) = Uel€) + Oe77).
All other eigenvalues satisfy

<5 =12
v
where ¢ > 0 is independent of v. The perturbation equation, linearized at
U, predicts what happens. After a short initial phase, the only part of the
perturbation that remains is in the direction of ¢g. Such a perturbation
corresponds to shifting the profile. This remaining perturbation will only
decay exponentially slowly to zero, i.e., the shift will disappear only very
slowly. Clearly, the small eigenvalue Ay controls the speed at which the
shock layer moves to the correct position in the second phase.



For systems of equations, the linearized problem on the bounded domain

reads
ur + (Au)y = Uge, x| <1, t>0,
u(z,0) = wolz), |z, (11)
u(+l,t) = 0, t>0

and the corresponding eigenvalue problem is

s+ (AS‘Q)GU = Pax, |x| <I, @(ZH) = 0. (12)

The result for Burgers’ equation can be generalized to systems. In the
next section we will prove Theorem 2 formulated below. It is assumed that
[y is a fixed, sufficiently large, constant. More precisely, the term e~ ap-
pearing in (6) and (7) is assumed to be small.

Theorem 2: For sufficiently large [, the eigenvalue problem (12) has a
simple, isolated eigenvalue sy with corresponding eigenfunction ¢o, satisfying

s0= O(e00), foo(a) = Unfa)| < Ce™, Jal <1 (13)

Here v > 0 is independent of l. Further, there is a constant 6 > 0 so that all
other eigenvalues satisfy

Res; <=4, j5=1,2,...

The constant & is independent of (.

The theorem implies at best an exponentially slow approach to the steady
profile. In fact, there is no reason for the exponentially small eigenvalue s,
to have negative real part. Thus (8) can be mildly unstable even though (1)
is stable.

For the linear problem (11) we can use an eigenfunction expansion to
represent the solution. All components, except the one in the direction of
o, Will converge to zero exponentially fast. Thus, after a short time we have

u(x,t) = U(x) + a(t)Uz(x) = Uz + a(t)),

which corresponds to the observed behavior in the case of Burgers’ equation.



4 Analysis of the Eigenvalue Problem

In this section we will prove Theorem 2. The proof relies on comparing the
finite-interval eigenvalue problem

s+ (AQ)e = @ 2] <1, @(£l) =0, (14)
with the infinite-line eigenvalue problem,
sop+ (A@))e = o T ER, @€ L. (15)

The main idea is to reformulate both eigenvalue problems, (14) and (15), as
problems on a fixed interval, —ly < a < lg, where [ > [y > 1. First note that
one can show, see Section 2 of [5], that there is a constant Cy so that there
are no eigenvalues s of (15) or of (14) with |s| > Cy, Res > —1. Therefore,
we only need to consider |s| < Cy.

A first step is to show that the infinite-line eigenvalue problem (15) can
be reformulated as an eigenvalue problem on a bounded domain, |z| < I,
with non—standard boundary conditions:

S+ (A(l’)cp)l, = Poa, |x| <l
vr = Qr(s)p at x =1l (16)
wr = Qu(s)p at x=—l

Here Qr(s) and Qr(s) are analytic matrix functions of s which, at first, are
only defined for Res > 0, s # 0. We will show that the matrix functions
Qr,r(s) can be extended analytically to all |s| < Cy, Res > —4, for some
positive §. However, the problems (15) and (16) are equivalent only for Re s >
0, s # 0, in the following sense: If (s,) solves (15), then the restriction
of ¢ to || <y solves (16). Further, if (s,¢) solves (16) then there is a
unique smooth extension of ¢(x) to all of R by solving s¢ + (Ap), = @, for
|z| > lo, with ¢ € Ly(R). No equivalence, in this sense, generally holds for
the problems (15) and (16) if Res < 0.

Also, the finite—interval eigenvalue problem (14) on — < < [ can be
reformulated as an eigenvalue problem on —ly < & < [5. In this case, the
original problem (14) and the reduced problem are equivalent for all values
of s. The only differences between the two reduced problems occurs in the
boundary conditions, and we will show that this difference is exponentially

small, i.e., of order O(e~1(=1)),



To carry out the reductions, we use the representations (6) and (7). By
assumption, the matrix Ag has n distinct, real eigenvalues A; # 0, and there
exists a nonsingular matrix Sg with

1 —AL 0
R

Here AL and AL are diagonal matrices with r and n — r positive diagonal
entries, respectively. Similarly, for @ < —ly, we have the representation (7),
and there is a non—singular matrix Sy, with

_ —AL 0
SLIALSL:< oL Ag) (18)

Here Al and Al are diagonal matrices with » — 1 and n + 1 — r positive
diagonal entries, respectively.
Before giving a proof of Theorem 2, we note that if

Alx) = Ap, x> o,
then for x > [y the components of @ = (Sg)~'¢ solve uncoupled equations:
$Pj + Ajfie = Piawy J=1,...m. (19)
For the solutions, k1; and ks, of the characteristic equation
kP =Xk —s=0 (20)

the following holds. (See Lemma 4.1 in [5].)
Lemma 1. The solutions of (20),

by 4 by 4
mlj:?f<1+ 1+A—‘§), @j:?f<1— 1+A—§), (21)
J

satisfy:
1. For Res > —i)\f, the functions depend analytically on s.
2. Rerij #0, 1 =1,2, for Res >0, s # 0.

3. k1 =X+ O(s), kg = —% + i—z + O(s%) for |s| <« 1.

10



4. sign(Re r1;) =sign A, sign(Re rq;) = —sign Aj, for Res >0, s # 0.
5. For every § > 0 there is a constant p > 0 so that for all s with |s| >
5, Res >0,
(a) |Re rijl 2 p, 1 =1,2.
(b) (ki —ww)l = o if (2,5) # (1),

Proof: Property 1 is clear if we define the square root by the usual analytic
continuation. Next, assume that xy; = i7, 7 real, 7 # 0. By (20),

—7% —it); =5, e, Res<0.

This proves Property 2. Property 3 follows directly from (21). Property 4
follows from Property 3 for small |s| and then from Properties 1 and 2 for
all s with Res > 0, s #£ 0. For |s| >> 1, Property 5 follows directly from
(21). Since Re k;; # 0, we can use a compactness argument to prove Ha.

The formula k; — Kky; = A, /1 + ;‘—g shows that 5b holds if 7 = [. If k solves

K= dr—s=0, K= XNr—s5=0, j#£I,
then
(A\;—XN)Rex =0, ie, Rer=0,
which violates Property 2. This proves the lemma.

The general solution of (19) is

@](w) ey 0-16/11](73—[0) _I_ 0.26/12](73—[0)‘

Here kq; and ky; are given by (21). Note that x;; = k;;(s). For ease of
notation we will in general not write out the s-dependence. For Res >
0, s # 0, the requirement @; € Ly(ly, o0) yields the condition

o =0 1if )\]‘>07 oy =0 1if )\]‘<0.

Equivalently,

tﬁﬂ(lo) — KJ?]S‘?]( 0) 1 J > 07 (22)
k1;9(lo) it A; <.

11



In terms of the original variable ¢ = Sr@, we obtain from (22):

#o(lo) = SRQr(s)Sg w(lo). (23)

Here Qg(s) is the diagonal matrix with entries ry;(s),1 < j < r, and
Ko;(s),r + 1 < j <n, according to (22). We note that

@R(S) = <_é\é 8) + O(s).

If A(z) = Ag for @ > [y, then the matrix Qgr(s) = SRQR(S)SIEI is the
coefficient matrix in the boundary condition at x = [y for the reduced prob-
lem, (16). Note that, since the coefficient matrix depends on s, this is a
non-standard boundary condition.

4.1 Reduction of the All-Line Problem

The roots, k1; and ky;, of the characteristic equation (20) are important also
in the general case. Consider the half-line # > [y and use the representation

Alx) = Ap + e P Bp(a) for & > 1y, e=e . (24)

To simplify notation, we assume that Ap is diagonal with elements A;. To
begin with we consider only Res > 0, Cy > |s| > 0.
Introducing the notation

0= Ap— oo, (25)
we can write the equation s¢ + (Ap), = @up as a first—order system:
vy _( A I v
(5).-(2 ) (), e
In the simplified case, with A(x) = Ag, (26) decouples into 2 x 2 systems
iy (N 1 i
(91‘>x_<—5 0><91‘>' 27

The eigenvalues of the matrix on the right side are xy; and k3, and the
system (27) is diagonalized by the transformation

i\ _ o (¢ (L =ik
(0)=s() s=( ™) o

12



Here

1 R P
-1 15 FR1R2
ST = ( ! ! ]>. (29)

K15 — Rgj $ Ry

Note that 5; and Sj_l are analytic functions of s, and can be extended ana-
lytically to all s with Res > —)\?/4. The diagonalized system is

() =% 2 )(%) (30)

If we require the solution to belong to Ly(ly, o), there can be no growing
components, and the solution must satisfy

qu(lo) =0if )\]‘ >0, 77/)]([0) =0if )\]‘ < 0. (31)

This is the boundary condition at © = [y for the reduced problem. By
inverting the transformations (28) and (25) we recover (23).

In the general case, i.e., for ¢ # 0, the transformation (28) will yield a cou-
pled system. Let the components of ¢ be ordered so that ¢! = (p1,...,¢,)T
corresponds to eigenvalues A\; < 0 and ¢! = (¢, 11,...9,)T corresponds to
A; > 0. We partition the vectors ¢ and 1 correspondingly, i.e., we set

le Qbr-l—l ¢1 77Z)7’-I-1
o= |, e"= ==
o On Py Vn

(0

and apply (28) to the components of the first-order system (26), yielding

Finally, let

O, = (K +eePo0B@) @, = >y, (32)

Here
Ri1

_ (K 0 (KT 0y .
IC_(() ICQ)’ IC’L_<O ICZII>_ . 9

Rin

is diagonal, and we have partitioned according to sign of real part. By Lemma
1 we have that for Res > 0, s # 0, the elements of K and X! have negative

13



real parts, while the elements of X1/ and K! have positive real parts. The
matrices K/ and K!! are of size r x r and (n —r) x (n — r), respectively.

Furthermore,
_ o1 (Br(z) 0
B(z):=S ( 0 0 S

where the matrix S collects the transformations .S;.

For Cy > |s| > ¢o > 0, Res > 0, the diagonal elements of K are distinct
with real parts bounded away from zero. For sufficiently large [y, the value
e = ¢ P is small compared with ¢y, and the system (32) can be diagonalized
by a transformation, analytic in s, which is an O(se=#=%)) perturbation of
the identity. The diagonalization separates growing components from decay-
ing components. It is easy to show that the resulting boundary conditions at
x = ly are O(e) perturbations of the boundary conditions in the simplified
case (¢ = 0) and that they can be analytically extended to Res > —dy, for
some &g > 0.

For [s| < ¢ < 1 we have

Ky =—Ap+0O(s), Kil'=Af + O(s),

Ki=s(Ah) 402, K= s o).

The analysis in this case is more delicate since the elements of Ky are no
longer uniformly separated. Consider the first—order system

O, = (K4+ec U 0B@)d, a>1ly, @€ Lylo,00), (34)
') = w1, M (lo) = 2, (35)

for Res > 0, |s| < ¢o. By Lemma B3, the system (34) with side condition
(35) has a unique bounded solution, and (34) determines a linear mapping

7 1
(St) =00 (3 (5
The equation (36) is the boundary condition at « = [, for the all-line problem
reduced to [—lo, lp]. The matrix Q(s) depends analytically on s and can be
extended to a full neighborhood of s = 0 using analytic continuation; see
Lemma B3. Also, note that for ¢ = 0 condition (36) reduces to (31).
Similar considerations yield a boundary condition at @ = —ly. Thus this

procedure defines the reduction to —ly < = < [y of the all-line eigenvalue
problem (16) for all s with Res > —4, |s| < Cy for some § > 0. In the

14



following theorem we relate the resolvent result from [5] to the reduced all-
line eigenvalue problem. The proof is given in Appendix A.

Theorem 3: The problem (16), which is the reduction of the all-line eigen-
value problem (15) to |x| < ly, has no eigenvalue s with Res > 0, s # 0.
There is an algebraically simple, eigenvalue at s = 0.

Remark 4: The statement “s = 0 is an algebraically simple eigenvalue” is
defined in the following way. 'To determine which s are eigenvalues we calcu-
late the general solution of the differential equation and determine whether
there is a nontrivial solution satisfying the boundary conditions or not. This
leads to a linear system of equations, B(s)o = 0. There is a nontrivial so-
lution if and only if the determinant D(s) := det B(s) satisfies D(s) = 0.
In our case, B(s) and D(s) are analytic functions for Res > —§. We define
s =0 as an algebraically simple eigenvalue it D(0) =0 and D'(0) # 0.

An immediate consequence is:

Theorem 4: There is a constant § > 0 so that the eigenvalue problem (16)
has no eigenvalue other than s =0 for Res > —4.

Proof: As already noted, there are no eigenvalues with |s| > Cy, Res > —1.
From Theorem 3 we have D'(0) # 0, and it follows that there exists a §; such
that s = 0 is the only eigenvalue with |s| < 8;. For 6; < |s| < Cp, Res > 0 it
follows from Assumption 2 that D(s) # 0. Since D is a continuous function
of s there is a §; > 0 such that D(s) # 0 when Res > —d5. This completes
the proof.

4.2 Reduction of the Bounded—Interval Problem

We will compare the reduced infinite-line eigenvalue problem (16) with the
bounded-interval eigenvalue problem (14) reduced to the interval [—lg, lo].
Here 1 <« ly < [. The only difference between the two reduced problems
occurs in the boundary conditions at = = +I,.

First we consider the simplified case with ¢ = 0, i.e, with A(z) = Ap
for # > lg. The boundary conditions at @ = [y for the reduced infinite-line
eigenvalue problem are given by (31) (or, equivalently, by (23)). We will now
reduce problem (14) to |z| < [y and show that the resulting boundary condi-
tions at @ = [y are exponentially small (as a function of [ — ly) perturbations
of (31). Consider (30) on ly < & <[, but call the variables ¢; and v; instead
of ¢; and ;. The solution for {; < o < [ will consist of growing and decaying
components, and the relation between the components is determined by the

15



boundary condition ¢;({) = 0. In terms of the new variables, ¢; and v;, this
condition reads

O3(l) = ~Zaii(1) = 0. (37)

Since ¢, = k1;¢; and ¥, = Ky;00; equation (37) is equivalent to the following
condition at = = {j:

e 1= (1g) — Z2L e (=10l (1) = 0. (38)

S

+4/AF+4s i A >0,
e —
VU e A tas iy <o,

Therefore we write (38) as

By (21),

_ Ko _ X

oi(lo) = %e—“w—@ﬂ(’—lowj(zo) it A >0, (39)

_ S - .

willo) = ﬁ—?e_(”ﬂ_“lﬂ)(l_lo)gbj(lo) if A; <. (40)
J

It follows that, as long as Res > —1 min A%, (40) and (39) is a perturbation
of order O(e=7=10)) of (31), with v = min; |\;|/v/2 independent of s. This
result is a consequence of the fact that (37) couples one growing (with )
and one decaying component. It is important that, even when |s| is small,
at least one of the exponential rates is essentially independent of s.

For the general case, i.e., for ¢ # 0 in (24), we again only need to consider
the case |s| < Ch. When discussing (14) we introduce 8, ¢, ¢ and ®, defined
correspondingly to 0, ¢, ¢» and ®. Corresponding to (37), the boundary
condition ¢(1) = 0 in terms of ¢ and ¥ is

- 1
or, equivalently,

(Gi) =2 () 200 = (™ segm)

For Res > —minA3/8, [s| < Co, D is a diagonal, analytic matrix function
of s. We will apply Lemma B4 with

o1 1 I I
u! = (fn) ) u'l = (;Z}II) ) A = ( ICI —IC%I> ) AT = (IC? IC{I) :

16



The result is that for all Res > 0, Cy > |s| > 0, there is a unique bounded
solution ®(z,s) of
o, = (IC + 56_5(95_[0)3(:1;)) o, Iy <zx<l, (42)
o' (lo) = w1, " (lo) = . (43)
augmented with (41).
The boundary value problem (41) — (43) determines a mapping

(f;((zlf))) = el (fflf(f?()))) , (44)

where ((s) is analytic and can be extended to all s with Res > —§, |s| < Cy,
by analytic continuation.

In the all-line case, the mapping (36) is the boundary condition at @ = [,
for the all-line problem reduced to [—lo,lo]. In order to compare (36) with
(44) in the case |s| < ¢o we first use Lemma B3 for Res > 0 to replace (34),
(35) by a problem on [lo, []:

o, = (IC + 56_5(95_[0)3(:1;)) o, [ <ax<l|, (45)
Sty = )= (agy)) == () ) o

Here P(s) is analytic and can be extended to a full neighborhood of s = 0
using analytic continuation.

The following lemma states that @ and @ differ from each other only by
exponentially small terms. The result is valid in a full neighborhood of s = 0.

Lemma 2: Let ®(x,s) and ®(z,s) be the solutions of (41)-(43) and (45),
(406), respectively. There is a 6 > 0 such that for |s| < & we have

1D (ly) — D (lo)] < 056_N(1_l°)(|y1| + |y2|).

Here n and ¢ are positive constants, independent of s and [.

Proof: Introduce §® = ® — ® and the corresponding §¢ and &1. Then

we obtain

50, = (K +ee70)B(a)) 50,
(i) - o
(o) = 2 (o) weoria () =2 ()
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We need to show that §¢'1(ly) and §¢/!(ly) are exponentially small. To begin
with we shall estimate the inhomogeneous terms in the boundary condition
at x = [. For ¢ = 0 we have

¢I(l) _ e/c{(z—lo)y17 ;/)H(l) _ e)cgl(l—lo)‘

If |s] < ¢o where ¢q is sufficiently small, then |Rerz;| < 2¢o/|A;| < 5/4 and
[Rery;] > 7. (Here, as before, ¥ = min |);|/v/2.) Note that the elements of
KT have negative real parts. Therefore,

e RG] < [yf, 6! (1)] < ey, .
If £ # 0 we can apply Lemma B3 with § = 3/4 to (34), (35) and obtain

| B
s

To estimate the components of ¢!(l) for & # 0, we apply Lemma B2 to (34),
(35). It follows that there is a constant ¢ such that

_Bq_
eI (D)] < [y + 26522 (a4 ). (47)

- B SO
(D] < e 0y | eem 20 Bl + lyal). 5= min(g,[A]). (48)

Thus all the inhomogeneous terms in the boundary condition at © = [ are
exponentially small, except for DIy!(l). Here D! is the upper diagonal
block of D. In the case ¢ = 0 the effect of this term is

5¢H(x) _ eK{I(x—l)DI¢II(l)‘

Clearly, the corresponding part of the solution decays rapidly away from the
boundary at @ = [ and is exponentially small at = = [5. If £ # 0 Lemma B5
yields a similar estimate. By Lemma B4 the effect of the remaining terms
are estimated, completing the proof of the lemma.

If Co > |s| > ¢ > 0, Res > 0, the elements of K are distinct with real
parts bounded away from zero. The full system can be diagonalized by a
transformation, analytic in s, which is an O(se=#"=%)) perturbation of the
identity. It is easy to show that the resulting boundary conditions for the
bounded-interval and for the infinite-line problems differ by O(ge=/U=l)),
and that the result can be extended to Res > —§y for some 65 > 0.

Proof of Theorem 2. We only have to consider |s| < Cy. We have shown
above that the bounded—interval and the all-line eigenvalue problems, ((15)
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and (14)), reduced to [—ly, o] differ only by exponentially small terms in
the boundary conditions at © = +l;. The derivation of the boundary con-
ditions was done for |s| < C, Res > 0, s # 0, but the coefficient matrices
are analytic in s, and can be extended to Res > —¢§ for some § > 0 by
analytic continuation. Correspondingly, for Res > —d, |s| < Cy, the two
corresponding determinants, D(s) and D(s), are analytic functions, and D is
an exponentially small perturbation of ). The eigenvalues in the two cases
are the zeros D(s) and D(s), respectively. By Theorem 4, s = 0 is a simple
root of D(s) =0, and the only root with Res > —§ for some & > 0. Since D
is an exponentially small perturbation of D, the eigenvalue result follows by
a continuity argument.

For |z| < [y the estimate for the eigenfunction follows by the same argu-
ment. We must also discuss the eigenfunction for [y < |2| < [. For [y < a <,
introduce @y — @y = @, and obtain

509 + (A@)y = Puw + 500, lo < x <L

Note that the difference in eigenvalues and in eigenfunctions in [—lg, (o] is
O(ze7=0)) Also, @o(l) = 0, and po(z) decays exponentially. This yields
that

(@ (lo)| + 122 (lo)| + [2(1)] + I5000ll1, 100 = O™,

We can then use Lemma B4 to prove that |@|., is exponentially small. This
completes the proof of Theorem 2.

4.3 Computing Eigenvalues

One can solve the eigenvalue problem (14) to check if Assumption 2 for (15)
is satisfied. (See, for example, [1] for results relating the spectra of finite—
interval and all-line eigenvalue problems.) For large [, problem (14) becomes
increasingly ill-conditioned. However, one can avoid this by a change of
variables: Let C'(x) denote the matrix function satisfying

1
Cp= §AC, c)y=1,
and introduce into (14) a new variable ¢ by

¢ =C(x)y.
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We obtain
s+ C_lcxx¢ = Vi ¢(il) = 0. (49)

Since A converges exponentially fast to constant matrices as © — +oo it
follows that (49) is a well behaved eigenvalue problem.

5 Nonlinear Stability on a Bounded Interval
with Modified Boundary Conditions

In this section we consider nonlinear systems

ur+ f(u)y = Upe, —I<a<I t2>0,
u(x,0) = wup(x). (50)
To begin with, the boundary conditions are
u(+l,t) = U(£l) (51)

where U(x) is a steady solution of the all-line problem, i.e., f(U), = U, €
R. Assume the initial data to be a small perturbation of U(x), that is

u(z,0) =Ulz) +eyo(z), |e| <1, |yle =1
Define y(x,t) by

u(x,t) =Ulx) +ey(x, ). (52)
Then y satisfies
vy = Ly4eh(y))e —I(<a<I[t>0, (53)
y(x,0) = yolx),
y(£l,t) = 0. (54)

Here Ly = —(Ay)s + yze where A() is the Jacobian of f evaluated at U(x).

Furthermore,
1
chiy) = == (f(U(2) +2y) = f(U(2)) = cA(2)y) -

e

which vanishes quadratically at y = 0. We may assume that

Ih(y)| < cly|”

for some constant ¢. (The function h also depends on x and e, but this is
unimportant and suppressed in our notation.)
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5.1 Analysis of the Linearized Problem
The linearized problem corresponding to (53), (54) is

y(:l:l,t) =0, y(:z;,()) = yo(l‘),

and the corresponding eigenvalue problem is
sp=Lp, —1<ax<l,  ol)=0. (56)

By the previous section, we know that there is a simple eigenvalue sg, |sg| <
1, and that all other eigenvalues satisfy Res; < —4. The eigenfunction corre-
sponding to sg, denoted ¢o(x), is close to the eigenfunction of the infinite-line
problem, that is

[po(2) = Up(o)] < ce™.

Therefore, the projection

1
Py=—— (s] — L) 'ds,

2mi Is|=2

which projects Ly(—1,1) onto the subspace spanned by g, is a bounded linear
operator from Ly(—I,1) to Hx(—I,1).
Without restriction we may assume that

Let us show that (57) is, in fact, not a restriction: If Poyo = opo, 0 # 0, we
change the ansatz (52) and the boundary conditions (51) to

u(z,t) =U(x +ea) +ey(e,t), u(tlt)=U(xl+ca), (58)

respectively. Here a will be determined as we will now explain. With y(x,1)
defined in (58), the initial condition for y becomes y(x,0) = y;(x) with

u(z,0) = Uz +ea)teyi(a), yilx) =yo(z) — (U(x+ea)=Ulz))/e. (59)
We will use the notation

Loy = Yuw — (Asy)z,  Aslz) = Az 4 ca),

1
P, = — (s] — Lo) "ds.

2mi Is|=2
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Further, denote by s§ and ¢f the eigenvalue close to zero and the correspond-
ing eigenfunction, respectively, of L, with boundary condition ¢(+/) = 0.
We have

1
Poyi = Poyo— gPa(U(l' +5a) - U(l'))
P.yo — aP,(Uy(x + ca) + Oea))
= P,yo— ol + Oea) + O(e_m))cpg.

Since
1P — Bol| = O(ea)
we obtain
Poyo = (2 + Ofea))¢p.
Therefore,

Pan = (o= (14 0() + O(ca) +0(™) ) 5.

By the implicit function theorem, we can choose o ~ p so that P,y; = 0
provided [ is sufficiently large and ¢ is sufficiently small. Therefore, we may

assume (57) to hold.
For the linear problem (55) the equality (57) implies

Poy(',t):(), tZO

Thus the solution y(x,?) of the linear problem (55) converges exponentially
fast to zero as t — oco.

5.2 Analysis of the Nonlinear Problem with Modified
Boundary Conditions

Consider the nonlinear equation u; + f(u), = wug, with initial condition
u(x,0) = Ulx) + eyo(x). As explained above, we may assume FPyyo = 0
without restriction. In the nonlinear case, there is no guarantee, however,
that the perturbation y(x,t) (defined by (52)) remains without component in
the direction of ¢g. To leading order, a non—zero component in this direction
corresponds to a shifted profile, U(x + ca), and by modifying the boundary
conditions for u(x,t) we allow shifting of the profile to occur.
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With a(?) a smooth function that needs to be determined and satisfies
a(0) =0, let
u(x,t) = Ulx +ea(t)) + ey(a, t).
Here y(x,t) is a new perturbation variable. The nonlinear equation u; +
f(u)y = gy becomes

Uty = Lay+cha(y)e, —l<a<I 120 (60)
y(x,0) = yolx).
Here h, and U are defined by

cha(y) = — (FU( +20) +2y) = F(U( +20) — cAulaly) (6]

and
Ut(x) = Uy(x + ca). (62)
As discussed in Section 3, the boundary conditions must allow for a shift

in order to avoid an eigenvalue which is exponentially close to zero. Thus we
consider the boundary conditions

u(+l,t) = U(£l + ca(t)), (63)
where a(t) will be determined so that
Poy(-11) = 0. (64)

We will now prove that it is possible to determine a(t) by the side condition
(64) and that, for the new problem, y(x,t) converges exponentially fast to
zero (in maximum norm) as { — oo.

Introduce

v' = =Py, y'"=Puy.
Note that y!(-,0) = 0 and

(Po): = o (sl — L,)

27

-1 aLa

(a4

(sl — La)_lds =ecaylR,. (65)

Jsl=3

As in [4], R, is a bounded operator from Ly(—I,1) to Hi(—[,[). Differentiat-
ing y! = (I — P,)y, we obtain

(I = P.)ye = (y")i + carRay (66)
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and, similarly,

Pozyt = (yII)t —|— Pa(yl)t — €OétRayII. (67)
Also,
(I = P)Uy = el et ~ 1, (68)
and
PUZ = (14 0(e™7))gs. (69)

Applying the projectors [ — P, and P, to (60) yields

a(l = PYUS+ (I =Py, = Loy +2(hay),
P U 4+ Py = Loy™ 4 2(has)™.

Using (66)—(69) one obtains

() = Loy’ +e(han)’ — el —coyR,y, (70)
W' = Loy 4 e(haw)" —ai(1+O(e™")) gy (71)
+eay PRy + 5oztRayH. (72)

If ¢ is small enough and [ is large enough we can determine a(t) as a smooth
function so that

ozt<(1 + O(e™)) o — €PaRayI> = c(hoo). (73)
Then we obtain:
(y"")e = Lay™ + cau(Po + 1) Roy™. (74)
By construction, y'(z,0) = 0, and a unique solubility argument for (74)
implies
y 'z, t) =0, t>0. (75)
Therefore (70) becomes

(yl)t = LayI - 5atRayI - O‘te_ﬁlrl + g(hoé(yl)l’)lv (76)
y'(2,0) = yolz).

In [4] we have considered systems of the form (76) and proved exponential
convergence to zero when the coefficients of L, do not depend on ¢ and the
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eigenvalues have negative real parts. Therefore, we rewrite (76) in terms of
vl = (I — Py)y! and v!! = Pyy! and replace Ly’ by Lvi. We have

L,=L+cal, P,=Py+caP. (77)

Here P is a bounded operator from L, into [; which depends smoothly on
a and ¢, and L is a first—order differential operator with smooth coefficients.

We have ) )
vl = Poy' = (P, — caP)y’ = —caP(v! + o).

Therefore,

ol = caPuvl, p= —([ 4+ caP)'P, (78)

and

yI =l Ll = (1 + 5@]5)1)[. (79)

Now we can write (76) in the form
ol = Lo + (e 4+ Y (F(x, t,0!) + Gz, t,0h)). (80)

The technique in [4] is now directly applicable, and convergence at an expo-
nential rate, y!(+,#) — 0 as t — oo, follows. Reconsidering (73), one obtains
that «o(t) approaches a constant. This completes the proof of the following
result:

Theorem 5: Let Assumptions 1 to 4 be satisfied. For sufficiently small ¢
and sufficiently large [, there is a smooth function a(t) and a constant ay
with

fim a(t) =,

lim u(x,t) = U(x 4 con).

t—00

The rate of convergence is exponential.

6 Appendix A

In this appendix we prove Theorem 3.
For the analytic matrix function B(s), introduced in Remark 4 following
Theorem 3, we use the representation

B(s) = By + sBy + (’)(32) (81)
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and recall the notation D(s) = det B(s).

Assumption 2 implies that By is singular, and the eigenvalue s = 0 of By
is geometrically simple. In particular, D(0) = 0. Also, in [5] we have proved
that the resolvent for the infinite-line problem is ~ 1/|s| for all Res > 0,
which yields

[B(s)™| <

[,7
%, Res > 0. (82)
s

We now show that this implies D'(0) # 0: After applying a similarity trans-
formation to By, we may assume

0 0 0 ol by

0 5211) 2 (0)
B(s) = . BO +s . BW +0(s%), det Byy #0

: 22 22

0

There is a transformation

S(s) =14 O(s),

so that
0 0 0 Bt o 0
51(s)B(s)S(s) = | co| L O(s)
S S S) = S S
o iy
0 0

The estimate (82) yields that b(lll) # 0, and then
D(s) = Sb(lll)det ng) + O(s?)
implies D'(0) # 0.

7 Appendix B

In this appendix we collect some results for first-order differential systems
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uy = (A + 56_59”B(x))u, x> 0. (83)

Here # > 0 is a constant, B(x) is a continuous, bounded matrix function,
and A is a diagonal matrix of the form

—AT 0 I 7
A= ( 0 AH), ReA® >0, ReA™ >0. (84)
Partition u(x) correspondingly. In our application, the matrices AT and A
both have size n x n, and in the following we will make this assumption.

For e = 0, the solution formula for (83) makes estimates straightforwardly
available. Our results below are for the ¢ # 0 case, and they are perturbations
of corresponding ¢ = 0 results.

Lemma B1: Consider (83) with boundary condition

u'(0) = yp. (85)
If
e|Ble 1
< — 86
6 — 47 ( )
then there is a unique bounded solution of (83), (85). It satisfies
Jul oo < (14 Nvgl, oo < lya . (87)

s s

Proof: To begin with, let € = 0. The unique bounded solution is given by

ALy
yiz) = Vb 1y e < ludls (88)
y'(z) = 0. (89)

To treat the case ¢ # 0 we let u = y + v. Then v satisfies
vy = Av + 56_59”3(:1;)(1) +y), UI(O) = 0. (90)

Assume first that a bounded solution v exists and consider the exponentially
decaying terms as forcing terms. We have

vi(z) = ¢ / N =008 B, (€)(0(€) + y(£))de, (91)
o'l(z) = —e / " AEBE R, (€)(w(€) + y(€))dE. (92)

T

27



Here By and B, consist of the first and last n rows of B, respectively. From

(91) and (92) we derive
€
] < E|B|oo(|v|00 4 y]oo )

The estimate and uniqueness follows for ¢|B|./0 < 1/4.
To prove existence we let v = 0 and consider the iteration

Pt = Ayt 4 5e_ﬁxB(x)(v” +y), (U”"H)I(O) = 0.

It |
B/ < =,

el Bluc/6 <

n—1

then it is easy to show that w™ = v" — v"~! satisfies

2e
W™ [oo < g|B|oolw”‘lloo-

Thus the iteration converges uniformly to the unique bounded solution. This
concludes the proof.

In the following, we always make the smallness assumption (86) for .
In the next lemma we sharpen the estimates. Denote the components of
ul and u!! by u]I and u]U, respectively, and the diagonal elements of A’ and
A by )\]I, and )\]U, respectively. By (88) and (89):
I

lyl ()] < e ydl, gyl (x) = 0.

By (91):
o/(@)] < el Blo(o]on + o) / N8 g
0

By partitioning the integral at x/2, we see that it is exponentially small with
exponent ’yjl = min(Re)\]I,ﬁ)/Z. Thus

0l(2)] < ¢ e| Bloolylle ™"

for some constant ¢. Correspondingly, by (92):

> II r—&)— —Dbx
o ()] sg|B|oo<|v|oo+|y|oo>/ MO g < ¢ Bl Jylle ™.

T
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This proves:

Lemma B2: The bounded solution of (83), (85) satisfies the more precise
estimates

uf(@)] < (14 const e|Bloo)e 7 |ygl,  |uf ()] < conste| Blooe™|yg],

with ’yjl = min(Re)\]I,ﬁ)/Z.

As shown above, for every u!(0) = y the system (83) on 0 < x < c0) has
a unique bounded solution u(z). In particular, u!1(0) is determined uniquely
by u!(0). In this way, the system (83) determines a linear mapping:

Bl
s

Next we let B = B(x,s) and A = A(s) be analytic functions of s defined
in some open, connected subset Sy of the s—plane. Assume ¢|B|../3 < 1/4,
ReAl > 0, ReA!l > 0 for all s € Sy. Then u = u(x,s) is also an analytic
function of s, bounded by (87), and there is a unique analytic mapping:

1(0) =eQu'(0), QI <27—=

Bl
s

Even if the real part of some of the eigenvalues of A(s) change sign in S,
under suitable assumptions we can still define an analytic mapping Q(s) by
using analytic continuation. To be specific, we will consider a neighborhood
Soof s =0, Sy ={s:|s] <o}, where o > 0 is fixed, and assume that A and
B are analytlc for s € Sy, and that for a constant 6 > 0

u''(0) = 2Q(s)u' (0), Q)] < 27— (93)

ReA!(s) 4+ 61 >0, ReA(s)+ 61> 0. (94)

Lemma B3: Consider (83) and (85). Assume (94) with 0 < 6 < 3/4 for all
s € So. Then there is a unique solution u(x,s) = y(x,s)+ v(x,s), analytic
in s for each x, satisfying

— Il’ T
yi(z,s) = eyl ey e < lugl,
v (z,s) 0,

82| Beo
ﬁ | 0|
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for s € Sy. In particular the mapping Q = Q(s) in (93) is an analytic
function of s.

Proof: The transformed variable

o) = (7 ) uto (95)

satisfies

. N » . I
i = At ce” 5 Bla)a, a'(0) =yl A= ( R AT 51) '

Here |Blo < |Bls, and A satisfies (84) for all s € Sy. Now we can apply
Lemma B1, and by (95) the claims follow.

Next we consider (83) for 0 < & <[ with 2n boundary conditions

u'(0) = yo, u'(l) = Dul(l) +y/", (96)

where D is a diagonal matrix.

Lemma B4: Consider (83),(96) where A satisfies (84). If

| Bloo 1
— (1 +|D]) < -
TEAHID) < 4,

then the unique solution satisfies

2¢| Bl
3
uee < 1Dyl + Iyl +

IA

(1 1DDLd1 + 1w1).
2¢|Bloo
E

Also, if yl! =0 and A = A(s), B = B(xz,s), D = D(s) are analytic functions
of s € Sy and if (84) is valid, then the boundary value problem

Ju]so ol +

(1+ D) (1 + D]yl + ")

Uy = (A +ee B, 0 <z <1, u'(0)=yl, u'(l)=Du'(l),

determines a unique analytic mapping:

2(1+ |D))|Blo

u'(0) = P(s)u’(0),  |P(s)] < |em™HDD| 4 &

(97)
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Remark: In our application, (84) is satisfied for Res > 0. By analytic
continuation there is a unique analytic mapping in a full neighborhood of the
origin, |s| < o, for some o > 0.

Proof: To begin with, let s € Sy be fixed. Existence of a solution of
(83),(96) follows once the estimates are shown. As above, let y be the solution
of the corresponding problem with ¢ = 0:

y'(z) = My, (98)
ye) = e (DY () + ). (99)

It follows that
v oo < lvels [y oo < IDIlyal + 1ui'], lylee < (L4 [DD]d] + lyi'] (100)

We also note that

y(0) = WAyl p T =0 (101)
For v = w—y we proceed as in the proof of Lemma B1. The solution formula
vie) = e / NI EB () (v + y)de, (102)
0
I
o (z) = —e / e N ED =R, () (v + y)de + eV = Do (1)(103)
yields
e|Blw
o < Pyl o),
)
e|Blw
ol < LByt ) + DI
e|Blw
< L4 10y + 1ol

The estimates follow if (¢|B|./8)(1 4 |D]) < 1/2. Existence of the analytic
mapping for each s € Sy follows as before.

We shall also give an estimate in the special case where the simplified
problem ((83) with e = 0) only contains terms that decay rapidly in 0 < a </
away from the boundary at x = [.
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Lemma B5: Consider (83), (96) with y& = 0. If there is a constant v > 0
such that for all s € Sy the solution of the simplified problem (with ¢ = 0)
satisfies

[y ()] = [y | < Dy,

and if €| B|s is sufficiently small (as compared with 3 and v), then there is
a constant ¢ such that

[w(0)] < ¢ e yi"], 5 = min(y, 3)/2.

Proof: The simplified problem has the solution given by (98) and (99)
with y' = 0. By (102) and (103):

()] < elBla(e 4 ) / -Betle) )

< 5'§'°°<|v|oo+ce 1)), (104)
@) < B2l e ) + D] )

< L= pie !+ ol

The lemma follows.
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