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Abstract

Sequences of entropy solutions of a non-degenerate first-order

quasilinear equation are shown to be strongly pre-compact in the

general case of a Caratheodory flux vector. Existence of the weak

and entropy solution to Cauchy problem for such equation is also es-

tablished. The proofs are based on general localization principle for

H-measures corresponding to sequences of measure-valued functions.

§ 1. Introduction

We consider a first-order quasilinear equation

divxϕ(x, u) + ψ(x, u) = 0. (1)

Here ϕ(x, u) = (ϕ1(x, u), . . . , ϕn(x, u)), u = u(x), x = (x1, . . . , xn) ∈ Ω,

where Ω is an open subset of Rn; the flux vector ϕ(x, u) is assumed to be a

Caratheodory vector (i.e. it is continuous with respect to u and measurable

with respect to x) such that for some q > 2 the functions

αM (x) = max
|u|≤M

|ϕ(x, u)| ∈ Lqloc(Ω) ∀M > 0 (2)

(here and below | · | stands for the Euclidean norm of a finite-dimensional

vector). We also assume that for any fixed p ∈ R the distribution

divxϕ(x, p) = γp ∈ Mloc(Ω), (3)

where Mloc(Ω) is the space of locally finite Borel measures on Ω with

the standard locally convex topology generated by semi-norms pΦ(µ) =

Var (Φµ), Φ = Φ(x) ∈ C0(Ω).

1This research was carried out with the financial support of the Russian Foundation

for Basic Research (grant No. 06-01-00289) and DFG project No. 436 RUS 113/895/0-1
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The function ψ(x, u) is assumed to be a Caratheodory function on Ω×R

such that

βM (x) = max
|u|≤M

|ψ(x, u)| ∈ L1
loc(Ω) ∀M > 0. (4)

Let γp = γrp + γsp be the decomposition of the measure γp into the

sum of the regular and the singular measures, so that γrp = ωp(x)dx,

ωp(x) ∈ L1
loc(Ω), and γsp is a singular measure (supported on a set of zero

Lebesgue measure). We denote by |γsp| the variation of the measure γsp,

which is a non-negative locally finite Borel measure on Ω. Denote, as usual,

signu =







1 , u > 0,

−1 , u < 0,

0 , u = 0.
Now, we introduce the notion of entropy solution of (1).

Definition 1. A measurable function u(x) on Ω is called an entropy

solution of equation (1) if ϕ(x, u(x)) ∈ L1
loc(Ω,R

n), ψ(x, u(x)) ∈ L1
loc(Ω),

and for all p ∈ R the Kruzhkov-type entropy inequality (see [9]) holds

divx [sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))] +

sign(u(x) − p)[ωp(x) + ψ(x, u(x))]− |γsp| ≤ 0 (5)

in the sense of distributions on Ω (in the space D′(Ω)); that is, for all non-

negative functions f(x) ∈ C∞
0 (Ω)

∫

Ω

[sign(u(x)− p) (ϕ(x, u(x))− ϕ(x, p),∇f(x))−

sign(u(x)− p)(ωp(x) + ψ(x, u(x)))f(x)]dx+

∫

Ω

f(x)d|γsp|(x) ≥ 0

( here (·, ·) is the scalar product in R
n ).

Our definition extends the notion of weak entropy solution introduced

for the case of one space variable in [6, 7]. Notice also that we do not require

that u(x) is a weak solution of (1).

We assume that the flux vector ϕ(x, u) is non-degenerate in the sense of

the following definition.

Definition 2. A vector ϕ(x, u) is said to be non-degenerate if for almost

all x ∈ Ω for all ξ ∈ R
n, ξ 6= 0 the functions λ → (ξ, ϕ(x, λ)) are not

constant on non-degenerate intervals.
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In this paper we shall establish the strong pre-compactness property

for sequences of entropy solutions. This result generalizes the previous re-

sults of [10, 11, 12, 13] to the case when flux vector may be discontinuous

with respect to spatial variables while entropy solutions may be generally

unbounded.

Theorem 1. Suppose that uk, k ∈ N is a sequence of entropy solutions

of (1) with non-degenerate flux vector ϕ(x, u), such that |ϕ(x, uk(x))| +

|ψ(x, uk(x))| + ρ(uk(x)) is bounded in L1
loc(Ω), where ρ(u) is a nonnegative

super-linear function (i.e. ρ(u)/u → ∞ as u → ∞). Then there exists

a subsequence of uk, which converges in L1
loc(Ω) to some entropy solution

u(x).

Now, we consider the evolutionary equation

ut + divxϕ(t, x, u) = 0, (6)

u = u(t, x), (t, x) ∈ Π = R+ × R
n, where R+ = (0,+∞). We assume that

ϕ(t, x, u) is a Caratheodory vector on Π×R such that ϕ(t, x, ·) ∈ C1(R,Rn)

for each fixed (t, x) ∈ Π. We also assume that the vector (u, ϕ(t, x, u)) ∈
Rn+1 is non-degenerate. The latter means that for a.e. (t, x) ∈ Π for

all ξ ∈ Rn, ξ 6= 0 the functions u → (ξ, ϕ(t, x, u)) are not affine on non-

degenerate intervals. We also suppose that for some a, b ∈ R, a < b ϕ(·, a) =

ϕ(·, b) ≡ 0, max
u∈[a,b]

|ϕ(·, u)| ∈ Lqloc(Π̄), q > 2, Π̄ = [0,+∞) × Rn, and

divxϕ(·, p) = γp = ωp(t, x)dtdx+ γsp ∈ Mloc(Π̄),

here γsp is a singular part of the measure γp.

We underline that equations like (1), (6) occur in various applications,

for instance in porous media, sedimentation processes, traffic flow, radar

shape-from-shading problems, blood flow, and have been widely studied in

recent years.

We shall study the Cauchy problem for equation (6) with initial condi-

tion

u(0, x) = u0(x), (7)

where u0(x) ∈ L∞(Rn), a ≤ u0(x) ≤ b.
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Definition 3. A function u = u(t, x) ∈ L∞(Π) is called an entropy

solution of problem (6), (7), if ∀p ∈ R, ∀f = f(t, x) ∈ C∞
0 (Π̄), f ≥ 0

∫

Π

[|u− p|ft + sign(u− p) (ϕ(t, x, u)− ϕ(t, x, p),∇xf)−

sign(u− p)ωp(t, x)f(t, x)]dtdx+

∫

Π

f(t, x)d|γsp|(t, x) +
∫

Rn

|u0(x) − k|f(0, x)dx ≥ 0. (8)

A function u(t, x) ∈ L∞(Π) is called a weak solution if u(t, x) satisfies (6)

in the sense of distribution.

Theorem 2. Under the above assumptions there exist a weak and

entropy solution u(t, x) of (6), (7) such that a ≤ u(t, x) ≤ b.

Observe that the statement of Theorem 2 covers results of [8], where

existence of weak solution is proved for the two-dimensional equation

ut + f(k, u)x + g(l, y)y = 0

with fixed BV -functions k = k(x, y), l = l(x, y) and sufficiently smooth flux

functions f, g.

Theorems 1,2 will be proved in the last section. The proof is based on

general localization properties for H-measures corresponding to bounded

sequences of measure-valued functions.

In next section 2 we describe the main concepts, in particular the concept

of measure-valued functions. In sections 3,4 we introduce the notion of H-

measure and prove the localization property. Finally, in the last section 5

these results are applied to prove Theorems 1 and 2.

§ 2. Main concepts

Recall that a measure-valued function on Ω is a weakly measurable

map x → νx of the set Ω into the space of probability Borel measures

with compact support in R. The weak measurability of νx means that for

each continuous function f(λ) the function x →
∫

f(λ)dνx(λ) is Lebesgue-

measurable on Ω.

Remark 1. If νx is a measure-valued function then, as was shown in

[11], the functions
∫

g(λ)dνx(λ) are measurable in Ω for all bounded Borel
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functions g(λ). More generally, if f(x, λ) is a Caratheodory function and

g(λ) is a bounded Borel function then the function
∫

f(x, λ)g(λ)dνx(λ) is

measurable. This follows from the fact that any Caratheodory function is

strongly measurable as a map x→ f(x, ·) ∈ C(R) (see [5], Chapter 2) and,

therefore, is a pointwise limit of step functions fm(x, λ) =
∑

i

gmi(x)hmi(λ)

so that for x ∈ Ω fm(x, ·) →
m→∞

f(x, ·) in C(R).

A measure-valued function νx is said to be bounded if there existsM > 0

such that supp νx ⊂ [−M,M ] for almost all x ∈ Ω. We denote the smallest

value of M with this property by ‖νx‖∞.

Finally, measure-valued functions of the form νx(λ) = δ(λ − u(x)),

where δ(λ − u) is the Dirac measure concentrated at u are said to be reg-

ular; we identify them with the corresponding functions u(x). Thus, the

set MV (Ω) of bounded measure-valued functions on Ω contains the space

L∞(Ω). Note that for a regular measure-valued function νx(λ) = δ(λ−u(x))
the value ‖νx‖∞ = ‖u‖∞. Extending the concept of boundedness in L∞(Ω)

to measure-valued functions we shall say that a subset A of MV (Ω) is

bounded if supνx∈A ‖νx‖∞ <∞.

We define below the weak and the strong convergence of sequences of

measure-valued functions

Definition 4. Let νkx ∈MV (Ω), k ∈ N, and let νx ∈MV (Ω). Then

1) the sequence νkx converges weakly to νx if for each f(λ) ∈ C(R),

∫

f(λ)dνkx(λ) →
k→∞

∫

f(λ)dνx(λ) in the weak-∗ topology of L∞(Ω);

2) the sequence νkx converges to νx strongly if for each f(λ) ∈ C(R),

∫

f(λ)dνkx(λ) →
k→∞

∫

f(λ)dνx(λ) in L1
loc(Ω).

The next result was proved in [16] for regular functions νkx . The proof

can easily be extended to the general case, as was done in [11].

Theorem 3. Let νkx , k ∈ N be a bounded sequence of measure-valued

functions. Then there exist a subsequence νrx = νkx , k = kr, and a measure-

valued function νx ∈MV (Ω) such that νrx → νx weakly as r → ∞.

Theorem 3 shows that bounded sets of measure-valued functions are

weak1y precompact.
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We shall study the strong pre-compactness property using Tartar’s tech-

niques of H-measures.

Let F (u)(ξ), ξ ∈ Rn, be the Fourier transform of a function u(x) ∈
L2(Rn), S = Sn−1 = { ξ ∈ R | |ξ| = 1 } be the unit sphere in Rn. Denote

by u→ u, u ∈ C the complex conjugation.

The concept of an H-measure corresponding to some sequence of vector-

valued functions bounded in L2(Ω) was introduced by Tartar [17] and

Gerard [4] on the basis of the following result. For l ∈ N let Uk(x) =
(

U1
k (x), . . . , U

l
k(x)

)

∈ L2(Ω,Rl) be a sequence weakly convergent to the

zero vector.

Proposition 1 (see [17], Theorem 1.1). There exists a family of complex

Borel measures µ = {µij}li,j=1 in Ω × S and a subsequence Ur(x) = Uk(x),

k = kr, such that

〈µij ,Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (U i
rΦ1)(ξ)F (U j

rΦ2)(ξ)ψ

(

ξ

|ξ|

)

dξ

for all Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family µ = {µij}li,j=1 is called the H-measure corresponding to

Ur(x).

The concept of H-measure has been extended in [11] ( see also [12, 13] )

to sequences of measure-valued functions. We study the properties of such

H-measures in the next section.

§ 3. H-measures corresponding to bounded sequences of

measure-valued functions

Let νkx ∈ MV (Ω) be a bounded sequence of measure-valued functions

weakly convergent to a measure-valued function ν0
x ∈ MV (Ω). For x ∈ Ω

and p ∈ R we set

uk(x, p) = νkx((p,+∞)), u0(x, p) = ν0
x((p,+∞)).

Then, as mentioned in Remark 1, for k ∈ N ∪ {0} and p ∈ R the functions

uk(x, p) are measurable in x ∈ Ω; thus, uk(x, p) ∈ L∞(Ω) and 0 ≤ uk(x, p) ≤
1. Let

E = E(ν0
x) =

{

p0 ∈ R | u0(x, p) →
p→p0

u0(x, p0) in L1
loc(Ω)

}

.
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We have the following result, the proof of which can be found in [11].

Lemma 1. The complement Ē = R \ E is at most countable and if

p ∈ E then uk(x, p) →
k→∞

u0(x, p) in the weak-∗ topology in L∞(Ω).

Let Up
k (x) = uk(x, p) − u0(x, p). Then, by Lemma 1, Up

k (x) → 0 as

k → ∞ weakly-∗ in L∞(Ω) for p ∈ E.

The next result, similar to Proposition l, has also been established in

[11].

Proposition 2. 1) There exists a family of locally finite complex Borel

measures {µpq}p,q∈E in Ω × S and a subsequence Ur(x) = {Up
r (x)}p∈E,

Up
r (x) = Up

k (x), k = kr such that for all Φ1(x),Φ2(x) ∈ C0(Ω) and

ψ(ξ) ∈ C(S)

〈µpq,Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ

(

ξ

|ξ|

)

dξ. (9)

2) The correspondence (p, q) → µpq is a continuous map from E × E

into the space Mloc(Ω × S).

Definition 5. We call the family of measures {µpq}p,q∈E the H-measure

corresponding to the subsequence νrx = νkx , k = kr.

We point out the following important properties of an H-measure.

Lemma 2. 1) µpp ≥ 0 for each p ∈ E; 2) µpq = µqp for all p, q ∈ E;

3) for p1, . . . , pl ∈ E and g1, . . . , gl ∈ C0(Ω × S) the matrix A = aij =

〈µpipj , gigj〉, i, j = 1, . . . , l is positive-definite.

Proof. We prove 3). First let the functions gi = gi(x, ξ) be finite sums

of functions of the form Φ(x)ψ(ξ), where Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

Then it follows from (9) that

aij = lim
r→∞

∫

Rn

H i
r(ξ)H

j
r (ξ)dξ, (10)

where H i
r(ξ) = F (gi(·, ξ/|ξ|)Upi

r )(ξ). Hence setting gi(x, ξ) = g(x, ξ) =
m
∑

k=1

Φk(x)ψk(ξ) we obtain

H i
r(ξ) =

m
∑

k=1

F (ΦkU
pi

r )(ξ)ψk

(

ξ

|ξ|

)

.

It immediately follows from (10) that aji = aij, i, j = 1, . . . , l, which shows
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that A is a Hermitian matrix. Further, for α1, . . . , αl ∈ C we have

l
∑

i,j=1

aijαiαj = lim
r→∞

∫

Rn

|Hr(ξ)|2dξ ≥ 0, Hr(ξ) =

l
∑

i=1

H i
r(ξ)αi

which means that A is positive-definite.

In the general case of gi ∈ C0(Ω × S) one carries out the proof of 3) by

approximating the functions gi, i = 1, . . . , l in the uniform norm by finite

sums of functions of the form Φ(x)ψ(ξ).

Assertions 1) and 2) are easy consequences of 3). For setting l = 1,

p1 = p and g1 = g we obtain the relation 〈µpp, |g|2〉 ≥ 0, which holds for all

g ∈ C0(Ω×S), thus showing that µpp is real and non-negative. To prove 2)

we represent an arbitrary function g = g(x, ξ) with compact support in the

form g = g1g2. Let l = 2, p1 = p and p2 = q. In view of 3),

〈µpq, g〉 = 〈µpq, g1g2〉 = 〈µqp, g2g1〉 = 〈µqp, g〉 = 〈µqp, g〉

and µpq = µqp. The proof is complete.

We consider now a countable dense index subset D ⊂ E.

Proposition 3. There exists a family of complex finite Borel measures

µpqx in the sphere S with p, q ∈ D, x ∈ Ω′, where Ω′ is a subset of Ω of

full measure, such that µpq = µpqx dx that is, for all Φ(x, ξ) ∈ C0(Ω × S) the

function

x→ 〈µpqx (ξ),Φ(x, ξ)〉 =

∫

S

Φ(x, ξ)dµpqx (ξ)

is Lebesgue-measurable on Ω, bounded, and

〈µpq,Φ(x, ξ)〉 =

∫

Ω

〈µpqx (ξ),Φ(x, ξ)〉dx.

Moreover, for p, p′, q ∈ D, p′ > p

Varµpqx ≤ 1 and Var (µp
′q
x − µpqx ) ≤ 2

(

ν0
x((p, p

′))
)1/2

. (11)

Proof. We claim that prΩVarµpq ≤ meas for p, q ∈ E, where meas is

the Lebesgue measure on Ω. Assume first that p = q. By Lemma 2, the
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measure µpp is non-negative. Next, in view of relation (9) with Φ1(x) =

Φ2(x) = Φ(x) ∈ C0(Ω) and ψ(ξ) ≡ 1,

〈µpp, |Φ(x)|2〉 = lim
r→∞

∫

Rn

F (ΦUp
r )(ξ)F (ΦUp

r )(ξ)dξ =

lim
r→∞

∫

Ω

|Up
r (x)|2|Φ(x)|2dx ≤

∫

Ω

|Φ(x)|2dx

( we use here Plancherel’s equality and the estimate |Up
r (x)| ≤ 1 ). Thus,

we see that that prΩµ
pp ≤ meas.

Let p, q ∈ E, A be a bounded open subset of Ω, and g = g(x, ξ) ∈
C0(A × S), |g| ≤ 1. Let also g1 = g/

√

|g| ( we set g1 = 0 for g = 0 ) and

g2 =
√

|g|. Then g1, g2 ∈ C0(A × S), g = g1g2, |g1|2 = |g2|2 = |g| and the

matrix
(

〈µpp, |g|〉 〈µpq, g〉
〈µpq, g〉 〈µqq, |g|〉

)

is positive-definite by Lemma 2; in particular,

|〈µpq, g〉| ≤ (〈µpp, |g|〉〈µqq, |g|〉)1/2 ≤ (µpp(A× S)µqq(A× S))1/2 ≤ meas(A).

We take account of the inequalities prΩµ
pp ≤ meas and prΩµ

qq ≤ meas to

obtain the last estimate. Since g can be an arbitrary function in C0(A×S),

|g| ≤ 1, we obtain the inequality Varµpq(A × S) ≤ meas(A), The measure

µpq is regular, therefore this estimate holds for all Borel subsets A of Ω and

prΩVarµpq ≤ meas . (12)

It follows from (12) that for all ψ(ξ) ∈ C(S) we have

Var prΩ (ψ(ξ)µpq(x, ξ)) ≤ ‖ψ‖∞ · prΩVarµpq ≤ ‖ψ‖∞ · meas . (13)

In view of (13) the measures prΩ(ψ(ξ)µpq(x, ξ)) are absolutely continuous

with respect to Lebesgue measure, and the Radon-Nikodym theorem shows

that

prΩ (ψ(ξ)µpq(x, ξ)) = hpqψ (x) · meas,

where the densities hpqψ (x) are measurable on Ω and, as seen from (13),

‖hpqψ (x)‖∞ ≤ ‖ψ‖∞. (14)
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We now choose a non-negative functionK(x) ∈ C∞
0 (Rn) with support in the

unit ball such that
∫

K(x)dx = 1 and set Km(x) = mnK(mx) for m ∈ N.

Clearly, the sequence of Km converges in D′(Rn) to the Dirac δ-function

( that is, this sequence is an approximate unity ).

LetB− lim
m→∞

cm be a generalized Banach limit on the space l∞ of bounded

sequences c = {cm}m∈N, i.e. L(c) = B − lim
m→∞

cm is a linear functional on

l∞ with the property:

lim
m→∞

cm ≤ L(c) ≤ lim
m→∞

cm

( in particular for convergent sequences c = {cm} L(c) = lim
m→∞

cm ). For

complex sequences cm = am + ibm the Banach limits is defined by complex-

ification: B − lim
m→∞

cm = L(a) + iL(b), where a = {am}, b = {bm} are real

and imaginary parts of the sequence c = {cm}, respectively. Modifying the

densities hpqψ (x) on subsets of measure zero, for instance, replacing them by

the functions

B − lim
m→∞

∫

Ω

hpqψ (y)Km(x− y)dy

( obviously, the value hpqψ (x) does not change for any Lebesgue point x of

the function hpqψ ), we shall assume that for all x ∈ Ω we have

hpqψ (x) = B − lim
m→∞

∫

Ω

hpqψ (y)Km(x− y)dy. (15)

Let Ω′ be the set of common Lebesgue points of the functions hpqψ (x),

u0(x, p) = ν0
x((p,+∞)), and u−0 (x, p) = ν0

x([p,+∞)) = lim
q→p−

u0(x, q), where

p, q ∈ D and ψ belongs to F , some countable dense subset of C(S). The

family of (p, q, ψ) is countable, therefore Ω′ is of full measure.

The dependence of the hpqψ on ψ, regarded as a map from C(S) into

L∞(Ω), is clearly linear and continuous (in view of (14)), therefore it follows

from the density of F in C(S) that x ∈ Ω′ is a Lebesgue point of the

functions hpqψ (x) for all ψ(ξ) ∈ C(S) and p, q ∈ D ( here we also take

account of (15) ).

For p, q ∈ D and x ∈ Ω′ the equality l(ψ) = hpqψ (x) defines a continuous

linear functional in C(S); moreover, ‖l‖ ≤ 1 in view of (14). By the Riesz-

Markov theorem this functional can be defined by integration with respect
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to some complex Borel measure µpqx (ξ) in S and Varµpqx = ‖l‖ ≤ 1. Hence

hpqψ (x) = 〈µpqx (ξ), ψ〉 =

∫

S

ψ(ξ)dµpqx (ξ) (16)

for all ψ(ξ) ∈ C(S).

Equality (16) shows that the functions x→
∫

S

ψ(ξ)dµpqx (ξ) are bounded

and measurable for all ψ(ξ) ∈ C(S). Next, for Φ(x) ∈ C0(Ω) and ψ(ξ) ∈
C(S) we have

∫

Ω

(
∫

S

Φ(x)ψ(ξ)dµpqx (ξ)

)

dx =

∫

Ω

Φ(x)hpqψ (x)dx =

∫

Ω

Φ(x)dprΩ (ψ(ξ)µpq) =

∫

Ω×S

Φ(x)ψ(ξ)dµpq(x, ξ). (17)

Approximating an arbitrary function Φ(x, ξ) ∈ C0(Ω × S) in the uniform

norm by linear combinations of functions of the form Φ(x)ψ(ξ) we derive

from (17) that the integral

∫

S

Φ(x, ξ)dµpqx (ξ) is Lebesgue-measurable with

respect to x ∈ Ω, bounded, and

∫

Ω

(
∫

S

Φ(x, ξ)dµpqx (ξ)

)

dx =

∫

Ω×S

Φ(x, ξ)dµpq(x, ξ)

that is, µpq = µpqx dx. Recall that Varµpqx ≤ 1.

It remains to prove the last estimate in (11). Let p, p′, q ∈ D, p′ > p and

x ∈ Ω′. We set Φm =
√
Km ∈ C0(R

n), m ∈ N, where the sequence of kernels

Km is as defined above. Starting from some index m the function Φm(x−y)
(of the y-variable) belongs to C0(Ω) and, in view of Proposition 2, for all

ψ(ξ) ∈ C(S) we have

∣

∣

∣

∣

∫

Ω

Km(x− y)
(

hp
′q
ψ (y) − hpqψ (y)

)

dy

∣

∣

∣

∣

=

∣

∣

∣
〈(µp′q − µpq)(y, ξ), Km(x− y)ψ(ξ)〉

∣

∣

∣
=

lim
r→∞

∣

∣

∣

∣

∫

Rn

F (Φm(Up′

r − Up
r ))(ξ)F (ΦmU

q
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

∣

∣

∣

∣

≤

‖ψ‖∞ lim
r→∞

[

(
∫

Rn

|F (Φm(Up′

r − Up
r ))(ξ)|2dξ

)1/2

11



×
(
∫

Rn

|F (ΦmU
q
r )(ξ)|2dξ

)1/2
]

=

= ‖ψ‖∞ lim
r→∞

[

(
∫

Ω

Km(x− y)(Up′

r (y) − Up
r (y))

2dy

)1/2

×
(
∫

Ω

Km(x− y)(U q
r (y))

2dy

)1/2
]

. (18)

Note that |U q
r | ≤ 1,

∫

Ω
Km(x− y)dy = 1 and, therefore,

∫

Ω

Km(x− y)(U q
r (y))

2dy ≤ 1. (19)

Further,

∫

Ω

Km(x− y)(Up′

r (y) − Up
r (y))

2dy ≤

2

∫

Ω

Km(x− y)|Up′

r (y) − Up
r (y)|dy ≤

2

∫

Ω

Km(x− y)(ur(y, p) − ur(y, p
′))dy +

2

∫

Ω

Km(x− y)(u0(y, p) − u0(y, p
′))dy (20)

(note that ur(y, p)−ur(y, p′) ≥ 0 for r ∈ N∪{0}). Since p, p′ ⊂ E, it follows

from Lemma 1 that ur(y, p)−ur(y, p
′) →
r→∞

u0(y, p)−u0(y, p
′) in the weak-∗

topology in L∞(Ω), therefore

lim
r→∞

∫

Ω

Km(x− y)(ur(y, p) − ur(y, p
′))dy =

∫

Ω

Km(x− y)(u0(y, p) − u0(y, p
′))dy,

and by (20),

lim
r→∞

(
∫

Ω

Km(x− y)(Up′

r (y) − Up
r (y))

2dy

)1/2

≤

2

(
∫

Ω

Km(x− y)(u0(y, p) − u0(y, p
′))dy

)1/2

. (21)
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From (18), in view of (19), (21), we obtain the estimate
∣

∣

∣

∣

∫

Ω

Km(x− y)(hp
′q
ψ (y) − hpqψ (y))dy

∣

∣

∣

∣

≤

2‖ψ‖∞
(
∫

Ω

Km(x− y)(u0(y, p) − u0(y, p
′))dy

)1/2

and passing to the limit as m→ ∞, since x ∈ Ω′ is a Lebesgue point of the

functions hp
′q
ψ , hpqψ , and u0(· , p′), we obtain the inequality
∣

∣

∣
hp

′q
ψ (x) − hpqψ (x)

∣

∣

∣
≤ ‖ψ‖∞ (u0(x, p)− u0(x, p

′))
1/2
,

that is, for all ψ(ξ) ∈ C(S) we have
∣

∣

∣
〈µp′qx − µpqx , ψ〉

∣

∣

∣
≤ 2‖ψ‖∞ (u0(x, p) − u0(x, p

′))
1/2
,

and therefore

Var (µp
′q
x − µpqx ) ≤ 2 (u0(x, p)− u0(x, p

′))
1/2

= 2
(

ν0
x((p, p

′])
)1/2

. (22)

Now we demonstrate that for x ∈ Ω′ νx({p}) = 0 for each p ∈ D. Indeed,

ν0
x({p}) = u−0 (x, p) − u0(x, p) and since p ∈ D ⊂ E is a continuity point of

the map p → u0(x, p) in L1
loc(Ω) we conclude that u−0 (x, p) − u0(x, p) = 0

a.e. in Ω. By the construction x ∈ Ω′ is a common Lebesgue point of

this function, therefore ν0
x({p}) = u−0 (x, p) − u0(x, p) = 0, as required. In

particular ν0
x({p′}) = 0 and we can replace the segment (p, p′] in estimate

(22) by the interval (p, p′). The proof is complete.

Corollary 1. The correspondences p→ µpqx and q → µpqx are continuous

maps of the set D into the space M(S) of finite complex Borel measures in

S (with norm Var ).

Proof. The continuity of the map p→ µpqx is an immediate consequence

of estimate (11). In the case of the map q → µpqx we must take into account

the equality µpqx = µqpx , which is an easy consequence of Lemma 2(2).

Remark 2. a) Since the H-measure is absolutely continuous with

respect to x-variables identity (9) is satisfied for Φ1(x),Φ2(x) ∈ L2(Ω).

Indeed, by Proposition 3 we can rewrite this identity in the form:

∀Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(S)
∫

Ω

Φ1(x)Φ2(x)〈ψ(ξ), µpqx (ξ)〉dx =

lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ

(

ξ

|ξ|

)

dξ. (23)
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Both sides of this identity are continuous with respect to (Φ1(x),Φ2(x)) in

L2(Ω) × L2(Ω) and since C0(Ω) is dense in L2(Ω) we conclude that (23) is

satisfied for each Φ1(x),Φ2(x) ∈ L2(Ω);

b) if x ∈ Ω′ is a Lebesgue point of a function Φ(x) ∈ L2(Ω) then

Φ(x)〈µpqx , ψ(ξ)〉 = lim
m→∞

lim
r→∞

∫

Rn

F (ΦΦmU
p
r )(ξ)F (ΦmU

q
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

(24)

for all ψ(ξ) ∈ C(S), where (ΦΦmU
p
r )(y) = Φ(y)Φm(x − y)Up

r (y) and

(ΦmU
q
r )(y) = Φm(x− y)U q

r (y).

Indeed, it follows from (23) that

lim
r→∞

∫

Rn

F (ΦΦmU
p
r )(ξ)F (ΦmU

q
r )(ξ)ψ

(

ξ

|ξ|

)

dξ =

∫

Ω

hpqψ (y)Φ(y)Km(x−y)dy.
(25)

Now, since x ∈ Ω′ is a Lebesgue point of the functions hpqψ (y) and Φ(y), and

the function hpqψ (y) is bounded, x is also a Lebesgue point for the product

of these functions. Therefore,

lim
m→∞

∫

Ω

hpqψ (y)Φ(y)Km(x− y)dy = Φ(x)hpqψ (x) = Φ(x)〈µpqx , ψ(ξ)〉,

and (24) follows from (25) in the limit as m→ ∞;

c) for x ∈ Ω′ and each families pi ∈ D, ψi(ξ) ∈ C(S), i = 1, . . . , l the

matrix 〈µpipj

x , ψiψj〉, i, j = 1, . . . , l is positive definite. Indeed, as follows

from Lemma 2(3), for α1, . . . , αl ∈ C

l
∑

i,j=1

〈µpipj

x , ψiψj〉αiαj =

lim
m→∞

l
∑

i,j=1

〈µpipj(y, ξ),Φm(x− y)ψi(ξ)Φm(x− y)ψj(ξ〉αiαj ≥ 0.

Taking in the above property l = 2, p1 = p , p2 = q, ψ1(ξ) = ψ(ξ)/
√

|ψ(ξ)|
( ψ1 = 0 for ψ = 0 ) and ψ2(ξ) =

√

|ψ(ξ)|, ψ(ξ) ∈ C(S), we obtain, as

in the proof of Proposition 3, that the matrix

(

〈µppx , |ψ|〉 〈µpqx , ψ〉
〈µpqx , ψ〉 〈µqqx , |ψ|〉

)

is

positive definite. In particular,

|〈µpqx , ψ〉| ≤ (〈µppx , |ψ|〉 · 〈µqqx , |ψ|〉)1/2
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and this easily implies that for any Borel set A ⊂ S

Varµpqx (A) ≤ (µppx (A)µqqx (A))1/2 . (26)

We now fix x ∈ Ω′, p0 ∈ D. Let L(p) ⊂ R
n be the smallest linear

subspace containing suppµpp0x , p ∈ D, and let L = L(p0), l = dimL.

Lemma 3. There exists positive δ such that L(p) = L for each p ∈
[p0 − δ, p0 + δ] ∩D.

Proof. Remark firstly that, as it directly follows from (26), suppµpp0x ⊂
suppµp0p0x ⊂ L and, therefore L(p) ⊂ L. For positive r we denote Vr =

[p0 − r, p0 + r] ∩D, Lr =
⋂

p∈Vr
L(p). Clearly, Lr ⊂ L is a decreasing (with

respect to inclusion) family of linear subspaces of the finite-dimensional

space L, therefore starting from some quantity r = δ > 0 for all r ∈ (0, δ]

we have Lr = L̃ ⊂ L. To prove the lemma it suffices to show that L̃ = L.

For in that case L ⊂ L(p) ⊂ L and the equality L(p) = L, p ∈ Vδ follows.

We carry out the proof of the equality L̃ = L by contradiction. Thus, we

assume that L̃ 6= L. Then m = dim L̃ < l = dimL. We fix ε > 0. By

Corollary 1 there exists r ∈ (0, δ] such that for p ∈ Vr we have

Var (µpp0x − µp0p0x ) < ε. (27)

By the definition of the space Lr we can choose a strictly decreasing finite

sequence of subspaces L′
i, i = 0, . . . , k, such that L′

0 = L, L′
k = Lδ = L̃, and

L′
i = L′

i−1∩L(pi), where pi ∈ Vr, i = 1, . . . , k. Clearly, k ≤ dimL−dim L̃ =

l − m. By the definition of the L(p) we have suppµpip0
x ⊂ L(pi). Hence

Var (µpip0
x (CL(pi)) = 0, where CA for A ⊂ Rn is the difference S \ A. It

now follows from (27) that

µp0p0x (CL(pi)) < ε, i = 1, . . . , k.

Since L̃ =
⋂k
i=1 L(pi), it follows that CL̃ =

⋃k
i=1CL(pi) and

µp0p0x (CL̃) ≤
k
∑

i=1

µp0p0x (CL(pi)) ≤ kε.

Since ε is an arbitrary positive number, it follows that µp0p0x (CL̃) = 0 and

suppµp0p0x ⊂ L̃. Further, L is the smallest subspace such that suppµp0p0x ⊂
L, therefore L ⊂ L̃, which is a contradiction. This completes the proof.
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We consider now the complex linear subspace

R(p) =

{
∫

ψ(ξ)ξdµpp0x (ξ) : ψ(ξ) ∈ C(S)

}

⊂ C
n.

Lemma 4. We have the equality R(p) = L̄(p), where L̄(p) = L(p) +

iL(p) ⊂ Cn is the complex linear subspace spanned by L(p).

Proof. The relation
(
∫

ψ(ξ)ξdµpp0x (ξ), ν

)

=

∫

ψ(ξ)(ξ, ν)dµpp0x (ξ), ν ∈ C
n, ψ(ξ) ∈ C(S)

(here and below we consider the scalar products (· , ·) of vectors in C
n)

shows us that the orthogonal complements (R(p))⊥ = (L(p))⊥ are the same

(in C
n), which means that R(p) = L̄(p). The proof is complete.

Suppose that f(y, λ) is a Caratheodory vector-function on Ω × R, i.e.

f(y, ·) ∈ C(R,Rn) for each y ∈ Ω and the functions x → f(x, λ) are

Lebesgue measurable on Ω for every fixed λ ∈ R. Assume also that the

following estimate holds

∀M > 0 ‖f(x, ·)‖M,∞ = max
|λ|≤M

|f(x, λ)| ≤ αM (x) ∈ L2
loc(Ω). (28)

Since the space C(R,Rn) is separable with respect to the standard locally

convex topology generated by seminorms ‖ · ‖M,∞, then, by the Pettis the-

orem (see [5], Chapter 3), the map x → F (x) = f(x, ·) ∈ C(R,Rn) is

strongly measurable and in view of estimate (28) we see that F (x), (F (x))2 ∈
L1
loc(Ω, C(R,Rn)). In particular (see [5], Chapter 3), a.e. x ∈ Ω are

Lebesgue points both maps F (x), (F (x))2, i.e.

∀M > 0 lim
m→∞

∫

Km(x− y)‖F (x) − F (y)‖M,∞dy =

lim
m→∞

∫

Km(x− y)‖(F (x))2 − (F (y))2‖M,∞dy = 0.

Since, evidently,

‖F (x)−F (y)‖2
M,∞ ≤ 2‖F (x)−F (y)‖M,∞‖F (x)‖M,∞+‖(F (x))2−(F (y))2‖M,∞,

from the above relation it follows that for a set Ωf ⊂ Ω of full measure of

values x

lim
m→∞

∫

Km(x− y)‖F (x) − F (y)‖2
M,∞dy = 0 ∀M > 0. (29)
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Clearly, each x ∈ Ωf is a Lebesgue point of all functions x→ f(x, λ), λ ∈ R.

Let Ω′′ = Ω′ ∩ Ωf , γ
r
x = νrx − ν0

x. By θ(λ) we shall denote the Heaviside

function:

θ(λ) =

{

1, λ > 0,

0, λ ≤ 0.

Suppose that x ∈ Ω′′, p0 ∈ D, and the subspace L and the segment V =

Vδ = [p0 − δ, p0 + δ]∩D are determined as in Lemma 3, χ(λ) = θ(λ− p1)−
θ(λ−p2), where p1, p2 ∈ V . Assume also that f(y, λ) takes its values in L⊥.

For a vector-function h(y, λ) on Ω× R, which is Borel and locally bounded

with respect to the second variable, we denote Ir(h)(y) =
∫

h(y, λ)dγry(λ).

In view of the strong measurability of F (x) and (28) we see that Ir(f ·χ)(y) ∈
L2
loc(Ω) ( cf. Remark 1 ).

Proposition 4. Under the above assumptions,

lim
m→∞

lim
r→∞

∫

Rn

(

ξ

|ξ| , F (ΦmIr(f · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ = 0

for all ψ(ξ) ∈ C(S). Here Φm = Φm(x−y) =
√

Km(x− y) and Ir(f ·χ), Up0
r

are functions of the variable y ∈ Ω.

Proof. Note that starting from some index m the supports of the

Φm(x − y) lie in some compact subset B of Ω. Without loss of general-

ity we can assume that supp Φm ⊂ B for all m ∈ N. Let f̃(y, λ) = f(x, λ),

M = sup ‖νry‖∞. Then

|Ir((f − f̃) ·χ)(y)| ≤
∫

|f(y, λ)− f(x, λ)|dVarγry(λ) ≤ 2‖F (y)−F (x)‖M,∞

and by Plancherel’s identity
∣

∣

∣

∣

∫

Rn

(

ξ

|ξ| , F (ΦmIr(f · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ−
∫

Rn

(

ξ

|ξ| , F (ΦmIr(f̃ · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rn

(

ξ

|ξ| , F (ΦmIr((f − f̃) · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

∣

∣

∣

∣

≤

‖ψ‖∞‖ΦmIr((f − f̃) · χ)‖2‖ΦmU
p0
r ‖2 ≤ C‖ΦmIr((f − f̃) · χ)‖2 ≤

2C

(
∫

Km(x− y)‖F (y) − F (x)‖2
M,∞dy

)1/2

, C = const.
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Here we take account of the equality

‖Φm‖2 =

(
∫

Ω

Km(x− y)dy

)1/2

= 1.

From the above estimate and (29) it follows that

lim
m→∞

lim
r→∞

∣

∣

∣

∣

∫

Rn

(

ξ

|ξ| , F (ΦmIr(f · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ−
∫

Rn

(

ξ

|ξ| , F (ΦmIr(f̃ · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

∣

∣

∣

∣

= 0 (30)

and it is sufficient to prove the proposition with f replaced by f̃ . This

function is continuous and does not depend on y. Therefore for any ε > 0

there exists a vector-valued function g(λ) of the form g(λ) =
k
∑

i=1

viθ(λ− pi),

where vi ∈ L⊥ and pi ∈ V such that ‖f̃ · χ− g‖∞ ≤ ε on R.

Using again Plancherel’s identity and the fact that

∣

∣

∣

∣

∫

(f̃ · χ− g)(λ)dγry(λ)

∣

∣

∣

∣

≤
∫

|(f̃ · χ− g)(λ)|dVar (γry)(λ) ≤ 2ε,

we obtain
∣

∣

∣

∣

∫

Rn

(

ξ

|ξ| , F (ΦmIr(f̃ · χ− g))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

∣

∣

∣

∣

≤

‖ΦmIr(f̃ · χ− g)‖2 · ‖ΦmU
p0
r ‖2 · ‖ψ‖∞ ≤ cε (31)

for ψ(ξ) ∈ C(S), where c is a constant independent of m.

Since

Ir(g)(y) =

∫

(

k
∑

i=1

viθ(λ− pi)

)

dγry(λ) =
k
∑

i=1

viU
pi

r (y),

we obtain the limit relation

lim
m→∞

lim
r→∞

∫

Rn

(

ξ

|ξ| , F (ΦmIr(g))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ =

k
∑

i=1

〈µpip0
x , (vi, ξ)ψ(ξ)〉 = 0. (32)
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The last equality is a consequence of the inclusion suppµpip0
x ⊂ L, which

holds by Lemma 3 for all i = 1, . . . , k (because pi ∈ V ), combined with the

relation vi⊥L. By (31) and (32),

lim
m→∞

lim
r→∞

∣

∣

∣

∣

∫

Rn

(

ξ

|ξ| , F (ΦmIr(f̃ · χ))(ξ)

)

F (ΦmU
p0
r )(ξ)ψ

(

ξ

|ξ|

)

dξ

∣

∣

∣

∣

≤ const·ε,

and it suffices to observe that ε > 0 can be arbitrary to complete the proof.

§ 4. Localization principle and strong pre-compactness of

bounded sequences of measure-valued functions.

Let ϕ(x, λ) = (ϕ1(x, λ), . . . , ϕn(x, λ)) be a Caratheodory vector on Ω×R,

such that for each M > 0

αM (x) = max
|u|≤M

|ϕ(x, u)| ∈ L2
loc(Ω). (33)

Consider a bounded sequence νkx , k ∈ N of measure-valued functions, and

suppose that for each p ∈ R the sequence of distributions

divx

(
∫

θ(λ− p)(ϕ(x, λ)− ϕ(x, p))dνkx(λ)

)

is pre-compact in H−1
loc (Ω).

(34)

Here θ(u) is the Heaviside function and H−1
loc (Ω) is the locally convex space

of distributions u(x) such that uf(x) belongs to the Sobolev space H−1
2 for

all f(x) ∈ C∞
0 (Ω). The topology in H−1

loc (Ω) is generated by the family of

semi-norms u→ ‖uf‖H−1

2
, f(x) ∈ C∞

0 (Ω).

We choose a subsequence νrx = νkx , k = kr weakly convergent to a

bounded measure-valued function ν0
x such that the H-measure µpq = µpqx dx,

p, q ∈ D is well defined.

Define the measures γrx = νrx − ν0
x and set of full measure Ω′′ = Ω′ ∩ Ωϕ

as in the previous section.

The following Theorem shows that suppµppx consists of ξ ∈ S such that

the function (ϕ(x, λ), ξ) =
n
∑

i=1

ϕi(x, λ)ξi is constant in a vicinity of p.

Theorem 4 (localization principle). Suppose that x ∈ Ω′′ and

µp0p0x 6= 0 for some p0 ∈ D. Then there exists δ > 0 such that (ϕ(x, λ), ξ) =

const on the interval λ ∈ (p0 − δ, p0 + δ) for all ξ ∈ suppµp0p0x .
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Proof. Throughout the proof we use the notation of § 3. Let V = Vδ =

[p0 − δ, p0 + δ]∩D be an interval chosen in accordance with Lemma 3, L be

a linear span of suppµp0p0x . As follows from (34) and the weak convergence

νry → ν0
y ,

Lrp(y) = divy

(
∫

θ(λ− p)(ϕ(y, λ)− ϕ(y, p))dγry(λ)

)

→
r→∞

0 in H−1
loc (Ω).

(35)

For p ∈ V we consider the sequence of distributions

Lrp −Lrp0 = divy(Q
p
r(y)), r ∈ N,

where the vector-valued functions Qp
r(y) are as follows:

Qp
r(y) =

∫

(ϕ(y, λ) − ϕ(y, p))θ(λ− p)dγry(λ) −
∫

(ϕ(y, λ) − ϕ(y, p0))θ(λ− p0)dγ
r
y(λ) =

∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγry(λ) −
∫

(ϕ(y, p) − ϕ(y, p0))θ(λ− p0)dγ
r
y(λ) =

∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγry(λ) − (ϕ(y, p)− ϕ(y, p0))U
p0
r (y); (36)

here χ(λ) = θ(λ− p0) − θ(λ− p).

As already noted, divy(Q
p
r(y)) →

r→∞
0 in H−1

loc (Ω) and if Φ(y) ∈ C∞
0 (Ω)

then

divy(Q
p
rΦ(y)) →

r→∞
0 in H−1

2 . (37)

Using the Fourier transformation, from (37) we obtain

|ξ|−1(ξ, F (Qp
rΦ)(ξ)) → 0 in L2(Rn) (38)

as r → ∞. Indeed, as follows from the definition of H−1
2 (see, for instance,

[1]), (37) is equivalent to the following condition:

(1 + |ξ|)−1(ξ, F (Qp
rΦ)(ξ)) →

r→∞
0 in L2(Rn),

which shows that

|ξ|−1(ξ, F (Qp
rΦ)(ξ)) → 0 in L2(Rn \B) (39)
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as r → ∞ ( here B is the ball {ξ ∈ Rn : |ξ| ≤ 1} ). By (33)

we have the uniform estimate ‖Qp
rΦ‖1 ≤ 8‖αMΦ‖1 = const, where

M = max(sup ‖νx‖∞, |p|, |p0|). This estimate implies that the functions

|ξ|−1(ξ, F (Qp
rΦ)(ξ)) are bounded uniformly in r ∈ N. By assumption,

νry →
r→∞

ν0
y weakly in MV (Ω), which easily implies that Qp

r(y) →
r→∞

0 in

L∞(Ω,Rn) in the weak-∗ topology, and the sequence F (Qp
rΦ)(ξ) converges

pointwise to zero as r → ∞. Hence, it follows from Lebesgue’s dominated

convergence theorem that

|ξ|−1(ξ, F (Qp
rΦ)(ξ)) → 0 in L2(B)

as r → ∞. Combined with (39) this yields relation (38) in an obvious way.

Let ψ(ξ) ∈ C(S). By (38), using the boundedness of the sequence Up0
r Φ(x)

in L2(Rn) we obtain
∫

Rn

|ξ|−1(ξ, F (Qp
rΦ)(ξ))F (Up0

r Φ)(ξ)ψ

(

ξ

|ξ|

)

→ 0

as r → ∞, or in view of (36),

lim
r→∞

{
∫

Rn

|ξ|−1(ξ, F (Up0
r fΦ)(ξ))F (Up0

r Φ)(ξ)ψ

(

ξ

|ξ|

)

dξ−
∫

Rn

|ξ|−1(ξ, F (V p
r Φ)(ξ))F (Up0

r Φ)(ξ)ψ

(

ξ

|ξ|

)

dξ

}

= 0, (40)

where

f(y) = ϕ(y, p) − ϕ(y, p0) and V p
r (y) =

∫

(ϕ(y, p) − ϕ(y, λ))χ(λ)dγry(λ).

We set in (40) Φ(y) = Φm(x − y) , where the functions Φm were defined

in § 3 in the proof of Proposition 3, and pass to the limit as m → ∞. By

Remark 2 (see equality (24)) we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1(ξ, F (Up0
r fΦm)(ξ))F (Up0

r Φm)(ξ)ψ

(

ξ

|ξ|

)

dξ =

(ϕ(x, p)− ϕ(x, p0), 〈µp0p0x , ξψ(ξ)〉) ,

therefore

(ϕ(x, p)− ϕ(x, p0), 〈µp0p0x , ξψ(ξ)〉) =

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1(ξ, F (V p
r Φm)(ξ))F (Up0

r Φm)(ξ)ψ

(

ξ

|ξ|

)

dξ. (41)
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Let π1 and π2 be orthogonal projections of Rn onto the subspaces L and L⊥

respectively; let ϕ̃(x, λ) = π1(ϕ(x, λ)), ϕ̄(x, λ) = π2(ϕ(x, λ)). Recall that L

is the smallest subspace containing suppµp0p0x . Hence

(ϕ(x, p)− ϕ(x, p0), 〈µp0p0x , ξψ(ξ)〉) = (ϕ̃(x, p) − ϕ̃(x, p0), 〈µp0p0x , ξψ(ξ)〉) .
(42)

Further, V p
r (y) = π1(V

p
r (y)) + π2(V

p
r (y)) and

π1(V
p
r (y)) =

∫

(ϕ̃(y, p) − ϕ̃(y, λ))χ(λ)dγry(λ),

π2(V
p
r (y)) =

∫

(ϕ̄(y, p) − ϕ̄(y, λ))χ(λ)dγry(λ).

In the notation of Proposition 4,

π2(V
p
r (y)) = Ir(h · χ),

where h(y, λ) = ϕ̄(y, p)− ϕ̄(y, λ) is a Caratheodory vector taking its values

in L⊥. Now, by Proposition 4 we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1(ξ, F (π2(V
p
r )Φm)(ξ))F (Up0

r Φm)(ξ)ψ

(

ξ

|ξ|

)

dξ = 0. (43)

Let Ṽ r
p (y) = π1(V

r
p (y)). From (41), in view of (42) and (43), we see that

(ϕ̃(x, p)− ϕ̃(x, p0), 〈µp0p0x , ξψ(ξ)〉) =

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1(ξ, F (Ṽ p
r Φm)(ξ))F (Up0

r Φm)(ξ)ψ

(

ξ

|ξ|

)

dξ,

which in turn, by Bunyakovskii inequality and Plancherel’s equality, gives

us the estimate

|(ϕ̃(x, p)− ϕ̃(x, p0), 〈µp0p0x , ξψ(ξ)〉)| ≤ lim
m→∞

lim
r→∞

‖Ṽ p
r Φm‖2 ·‖Up0

r Φm‖2 ·‖ψ‖∞.
(44)

Next, for Mp(y) = max
|λ−p0|≤|p−p0|

|ϕ̃(y, p) − ϕ̃(y, λ)|

|Ṽ r
p (y)| ≤Mp(y)

∣

∣

∣

∣

∫

χ(λ)d
(

νry(λ) + ν0
y(λ)

)

∣

∣

∣

∣

=

Mp(y)|ur(y, p0) − ur(y, p) + u0(y, p0) − u0(y, p)|
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so that, in view of the elementary inequality (a + b)2 ≤ 2(a2 + b2) and

the relation |ur(y, p0) − ur(y, p)| = sign(p − p0)(ur(y, p0) − ur(y, p)) ≤ 1,

r ∈ N ∪ {0}, we have

‖Ṽ p
r Φm‖2

2 ≤ 2

∫

Ω

(Mp(y))
2((ur(y, p0) − ur(y, p))

2 +

(u0(y, p0) − u0(y, p))
2)Km(x− y)dy ≤

2 sign(p− p0)

∫

Ω

(Mp(y))
2(ur(y, p0) − ur(y, p) +

u0(y, p0) − u0(y, p))Km(x− y)dy. (45)

Since p0, p ∈ D ⊂ E, it follows from Lemma 1 that

ur(y, p0) − ur(y, p) → u0(y, p0) − u0(y, p)

as r → ∞ in the weak-∗ topology of L∞(Ω) and from (45) we now obtain

the estimate

lim
r→∞

‖Ṽ p
r Φm‖2

2 ≤ 4

∫

Ω

(Mp(y))
2|u0(y, p0) − u0(y, p)|Km(x− y)dy,

from which, passing to the limit as m→ ∞, we obtain

lim
m→∞

lim
r→∞

‖Ṽ p
r Φm‖2

2 ≤ 4(Mp(x))
2|u0(x, p0) − u0(x, p)| (46)

(here we bear in mind that x is a Lebesgue point of the functions u0(y, p0),

u0(y, p), and (Mp(y))
2 ( the latter easily follows from the fact that x ∈ Ωϕ

is a Lebesgue point of the maps y → ϕ(y, ·), y → (ϕ(y, ·))2 into the space

C(R) ). Further, we have |Up0
r | ≤ 1, therefore ‖Up0

r Φm‖2 ≤ ‖Φm‖2 = 1 and,

in view of (44) and (46),

| (ϕ̃(x, p)− ϕ̃(x, p0), 〈µp0p0x , ξψ(ξ)〉) | ≤
≤ 2‖ψ‖∞Mp(x)ω(p), (47)

ω(p) = |u0(x, p0) − u0(x, p)|1/2 →
p→p0

0

( remind that p0 ∈ D is a continuity point of the function p → u0(x, p) for

x ∈ Ω′ ). Next, by Lemma 4, the set of vectors of the form 〈µp0p0x , ξψ(ξ)〉,
ψ(ξ) ∈ C(S) spans the subspace L = L+iL. Hence we can choose functions

ψi(ξ) ∈ C(S), i = 1, . . . , l such that the vectors vi = 〈µp0p0x , ξψi(ξ)〉 make

up an algebraic basis in L.
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By (47), for ψ(ξ) = ψi(ξ), i = 1, . . . , l, we obtain

| (ϕ̃(x, p)− ϕ̃(x, p0), vi) | ≤ ciω(p)Mp(x), ci = const,

and since vi, i = 1, . . . , l is a basis in L, these estimates show that for all

p ∈ V

|ϕ̃(x, p) − ϕ̃(x, p0)| ≤ cω(p)Mp(x) =

cω(p) max
|λ−p0|≤|p−p0]

|ϕ̃(x, p)− ϕ̃(x, λ)|, c = const. (48)

Taking a smaller δ if necessary we can assume that 2cω(p) ≤ ε < 1 for all

p ∈ V . Now, in view of (48),

|ϕ̃(x, p)− ϕ̃(x, p0)| ≤
ε

2
max

|λ−p0|≤|p−p0]
|ϕ̃(x, p)− ϕ̃(x, λ)|, (49)

and since ϕ(x, p) is continuous with respect to p and the set D is dense, the

estimate (49) holds for all p ∈ [p0 − δ, p0 + δ].

We claim that now ϕ̃(x, p) = ϕ̃(x, p0) for p ∈ [p0 − δ, p0 + δ]. Indeed,

assume that for p′ ∈ [p0 − δ, p0 + δ]

|ϕ̃(x, p′) − ϕ̃(x, p0)| = max
|λ−p0|≤δ

|ϕ̃(x, λ) − ϕ̃(x, p0)|.

Then for |λ− p0| ≤ |p′ − p0| we have

|ϕ̃(x, p′) − ϕ̃(x, λ)| ≤ |ϕ̃(x, λ) − ϕ̃(x, p0)| +
|ϕ̃(x, p′) − ϕ̃(x, p0)| ≤ 2|ϕ̃(x, p′) − ϕ̃(x, p0)|

and

max
|λ−p0|≤|p′−p0]

|ϕ̃(x, p′) − ϕ̃(x, λ)| ≤ 2|ϕ̃(x, p′) − ϕ̃(x, p0)|.

We now derive from (49) with p = p′ that

|ϕ̃(x, p′) − ϕ̃(x, p0)| ≤ ε|ϕ̃(x, p′) − ϕ̃(x, p0|,

and since ε < 1, this implies that

|ϕ̃(x, p′) − ϕ̃(x, p0)| = max
λ∈[p0−δ,p0+δ]

|ϕ̃(x, λ)− ϕ̃(x, p0)| = 0.
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We conclude that ϕ(x, p) − ϕ(x, p0) ∈ L⊥ for all p ∈ (p0 − δ, p0 + δ), i.e.

(ϕ(x, λ), ξ) = (ϕ(x, p0), ξ) = const on the interval λ ∈ (p0 − δ, p0 + δ) for all

ξ ∈ L. The proof is complete.

Theorem 5. If the sequence νkx converges as k → ∞ weakly to ν0
x and

satisfies (34) with non-degenerate vector ϕ(x, u) then this sequence con-

verges strongly to ν0
x.

Proof. Let νrx = νkx , k = kr, be a subsequence such that the H-measure

{µpq}p,q∈E is well defined. As directly follows from the assertion of Theo-

rem 4 and non-degeneracy condition in Definition 2, µppx = 0 for a.e. x ∈ Ω

and p ∈ D. Therefore, µpp = µppx dx ≡ 0 for p ∈ D. By Lemma 2,3) we see

that µpq = 0 for p, q ∈ D and since D is dense and µpq is continuous in p, q

(see Proposition 2) it follows that µpq ≡ 0 for all p, q ∈ E. This implies that

ur(x, p) → u0(x, p) in L2
loc(Ω)

as r → ∞. Indeed, it follows from the definition of an H-measure and

Plancherel’s equality that

lim
r→∞

‖Up
rΦ‖2

2 = 〈µpp, |Φ(x)|2〉 = 0

for all Φ(x) ∈ C0(Ω) and p ∈ E. Thus, for p ∈ E we have

∫

θ(λ− p)dνrx(λ) →
r→∞

∫

θ(λ− p)dν0
x(λ) in L2

loc(Ω). (50)

Any continuous function can be uniformly approximated on any compact

subset by finite linear combinations of functions λ → θ(λ − p), p ∈ E.

Hence, it follows from (50) that for all f(λ) ∈ C(R) we have

∫

f(λ)dνrx(λ) →
r→∞

∫

f(λ)dν0
x(λ) in L2

loc(Ω),

and therefore also in L1
loc(Ω), that is, the subsequence νrx converges to ν0

x

strongly. Finally, for each admissible choice of the subsequence νrx the limit

measure-valued function is uniquely defined, therefore the original sequence

νkx is also strongly convergent to ν0
x. The proof is now complete.

Taking account of Theorem 3 one can also give another formulation of

Theorem 5: each bounded sequence of measure-valued functions satisfying
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(34) is pre-compact in the sense of strong convergence. Observe that in the

regular case νkx(λ) = δ(λ− uk(x)) condition (34) has the form: ∀p ∈ R

divx[θ(uk(x) − p)(ϕ(x, uk(x)) − ϕ(x, p))] is pre-compact in H−1
loc (Ω). (51)

In this case Theorem 5 yields the following

Corollary 2. Each bounded sequence uk(x) ∈ L∞(Ω) satisfying (51)

with non-degenerate vector ϕ(x, u) contains a subsequence convergent in

L1
loc(Ω).

Proof. It only need to note that if the sequence uk(x) converges to a

measure-valued function ν0
x strongly in MV (Ω), then by the definition of

strong convergence

uk(x) →
k→∞

u0(x) =

∫

λdν0
x(λ) in L1

loc(Ω)

( which also shows that ν0
x(λ) = δ((λ− u0(x)) is regular in Ω ).

Remark 3. The statements of Theorems 4 and 5 remains true also

for sequences of unbounded measure-valued (or usual) functions. For the

proof we should apply cut-off functions sa,b(u) = max(a,min(u, b)), a, b ∈
R and derive that bounded sequences of measure-valued functions s∗a,bν

k
x

satisfy (34). Then, under non-degeneracy condition, we obtain strong pre-

compactness property for these sequences.

For instance, consider the sequence uk(x) ∈ L1
loc(Ω), k ∈ N. Let ϕ(x, u)

be a non-degenerate Caratheodory vector, satisfying (33). Suppose that

ϕ(x, uk(x)) ∈ L1
loc(Ω) and condition (51) holds. Let a, b ∈ R, a < b, vk =

sa,b(uk) = max(a,min(uk, b)). Then vk = vk(x) is a bounded sequence in

L∞(Ω) and for each p ∈ R

divx[θ(vk − p)(ϕ(x, vk) − ϕ(x, p))] = divx[θ(uk − p′)((ϕ(x, uk) − ϕ(x, p′))] −
divx[θ(uk − b)((ϕ(x, uk) − ϕ(x, b))] + θ(p′ − p)divx(ϕ(x, p′) − ϕ(x, p)),

where p′ = sa,b(p). From this identity and (51) it follows that the sequence

divxθ(vk − p)(ϕ(x, vk)−ϕ(x, p)) is pre-compact in H−1
loc (Ω). By Corollary 2

the sequences vk(x) = sa,b(uk) are pre-compact in L1
loc(Ω) for every a, b ∈ R,

a < b. Using the standard diagonal extraction we can choose a subsequence

ur(x) = ukr
(x) such that for each m ∈ N the sequence s−m,m(ur) converges

as r → ∞ to some function wm(x) in L1
loc(Ω). Obviously, a.e. in Ω

|wm(x)| ≤ m, and wm(x) = s−m,m(wl(x)) ∀l > m.
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This allows to define a unique (up to equality a.e.) measurable function

u(x) ∈ R ∪ {±∞} such that wm(x) = s−m,m(u(x)) a.e. on Ω. If a, b ∈ R,

a < b then for m > max(|a|, |b|)

sa,b(ur) = sa,b(s−m,m(ur)) →
r→∞

sa,b(wm) = sa,b(s−m,m(u)) = sa,b(u) in L1
loc(Ω).

In fact, we have proved the following general statement.

Theorem 6. Suppose that the sequence of measurable functions uk(x)

is such that for some non-degenerate Caratheodory vector ϕ(x, u), which

satisfies (33), for each a, b ∈ R, a < b

divxϕ(x, sa,b(uk)) is pre-compact in H−1
loc (Ω). (52)

Then

a) there exists a measurable function u(x) ∈ R ∪ {±∞} such that, after

extraction of a subsequence ur, r ∈ N, sa,b(ur) → sa,b(u) ∀a, b ∈ R, a < b.

b) If in addition the following estimates are satisfied

∫

K

ρ(uk(x))dx ≤ CK, (53)

for each compact set K ⊂ Ω, where ρ(u) is a positive Borel function, such

that ρ(u)/u →
u→∞

∞, then u(x) ∈ L1
loc(Ω) and ur → u in L1

loc(Ω) as r → ∞.

Proof. If vk = sa,b(uk) then for each p ∈ R

divx[θ(vk − p)(ϕ(x, vk) − ϕ(x, p))] = divxϕ(x, sa′,b(uk)) − divxϕ(x, p),

where a′ = max(a, p) ( remark that in the case b ≤ a′ the above distribution

is trivial ). By (52) this distribution is compact in H−1
loc (Ω). As we have

already established this implies the assertion a). To prove b), observe that,

extracting a subsequence, if necessary, we can assume that s−m,m(ur) →
s−m,m(u) as m → ∞ a.e. in Ω for every m ∈ N. This implies that ur → u

a.e. in Ω and by Fatou lemma from (53) it follows that

∫

K

ρ(u(x))dx ≤ CK .

In particular, u(x) ∈ L1
loc(Ω). Now, fix a compact K ⊂ Ω and ε > 0.

By the assumption ρ(u)/u →
u→∞

∞ we can choose m ∈ N such that

27



|u|/ρ(u) ≤ ε/(2CK) for |u| > m. Then
∫

K

|ur(x) − u(x)|dx ≤
∫

K

|s−m,m(ur(x)) − s−m,m(u(x))|dx+
∫

K

|ur(x)|θ(|ur(x)| −m)dx+

∫

K

|u(x)|θ(|u(x)| −m)dx

≤
∫

K

|s−m,m(ur(x)) − s−m,m(u(x))|dx+

ε

2CK

(
∫

K

ρ(ur(x))dx+

∫

K

ρ(u(x))dx

)

≤
∫

K

|s−m,m(ur(x))− s−m,m(u(x))|dx+ ε.

This implies that lim
r→∞

∫

K

|ur(x) − u(x)|dx ≤ ε and since ε > 0 is arbitrary

we conclude that lim
r→∞

∫

K

|ur(x)− u(x)|dx = 0 for any compact K ⊂ Ω, i.e.

ur → u in L1
loc(Ω). The proof is complete.

§ 5. Proofs of Theorems 1,2.

We need the following simple

Lemma 5. Suppose u = u(x) is an entropy solution of (1). Then for

all a, b ∈ R, a < b

divϕ(x, sa,b(u)) = ζa,b in D′(Ω), (54)

where ζa,b ∈ Mloc(Ω). Moreover, for each compact set K ⊂ Ω we have

Var ζa,b(K) ≤ C(K, a, b, I), where I = I(x) = |ϕ(x, u(x))| + |ψ(x, u(x))| ∈
L1
loc(Ω) and the map I → C(K, a, b, I) is bounded on L1

loc(Ω).

Proof. By known representation property for non-negative distribu-

tions we derive from (5) that

divx [sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))] +

sign(u(x) − p)[ωp(x) + ψ(x, u(x))]− |γsp| = −κp in D′(Ω),

where κp ∈ Mloc(Ω), κp ≥ 0. Besides, for a compact set K ⊂ Ω we have the

estimate

κp(K) ≤
∫

fK(x)dκp(x) =
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∫

Ω

[sign(u(x)− p) (ϕ(x, u(x))− ϕ(x, p)) ,∇fK(x))−

sign(u(x)− p)(ωp(x) + ψ(x, u(x)))fK(x)] dx+

∫

Ω

fK(x)d|γsp|(x) ≤

A(K, p, I) =

∫

Ω

[I(x) max(|∇fK(x)|, |fK(x)|) + |ϕ(x, p)| · |∇fK(x)| +

|ωp(x)|fK(x)]dx+

∫

Ω

fK(x)d|γsp|(x),

where fK(x) ∈ C1
0 (Ω) is a non-negative function, which equals 1 on K.

Hence,

divx [sign(u(x) − p)(ϕ(x, u(x))− ϕ(x, p))] = ζp, (55)

where

ζp = |γsp| − κp − sign(u(x)− p)[ωp(x) + ψ(x, u(x))] ∈ Mloc(Π).

In particular, taking into account the equality |γsp| + |ωp(x)|dx = |γp| we

obtain the estimates for measures ζp: |ζp| ≤ κp + |γp| + |ψ(x, u(x))|dx.
Further, notice that

ϕ(x, sa,b(u)) = (ϕ(x, a) + ϕ(x, b))/2 +

(sign(u− a)(ϕ(x, u)− ϕ(x, a)) − sign(u− b)(ϕ(x, u)− ϕ(x, b))/2

and it follows from (55) that relation (54) holds with ζa,b = (ζa − ζb + γa +

γb)/2. Moreover, we have

Var ζa,b(K) ≤ C(K, a, b, I) = (A(K, a, I) +A(K, b, I))/2 +

|γa|(K) + |γb|(K) +

∫

K

|ψ(x, u(x))|dx.

To complete the proof it remains to note that the dependence of C(K, a, b, I)

on the function I(x) ∈ L1
loc(Ω) is evidently bounded.

Proof of Theorem 1. Taking into account that the sequence Ik(x) =

|ϕ(x, uk(x))|+ |ψ(x, uk(x))| is bounded in L1
loc(Ω), we derive from Lemma 5

that for all a, b ∈ R

divϕ(x, sa,b(uk)) = ζka,b in D′(Ω),

where ζka,b is a bounded sequence in Mloc(Ω). Further, in view of condi-

tion (2) |ϕ(x, sa,b(uk))| ∈ Lqloc(Ω), which implies that the sequence ζka,b is

29



bounded in H−1
q,loc(Ω). Using for instance Murat interpolation lemma (see

[16], Lemma 28) we derive that the sequence ζka,b is pre-compact in H−1
loc .

Hence condition (52) is satisfied. By our assumption condition (53) is also

satisfied. By Theorem 6 we conclude that some subsequence ur converges

as r → ∞ to a limit function u in L1
loc(Ω). Finally, passing to the limit

as r → ∞ in relation (5) with u = ur we conclude that the limit function

u = u(x) is an entropy solution of (1).

Remark 4. Based on relation (54), we can introduce the class of

quasi-solutions, including, by Lemma 5, entropy solutions of (1), as well as

entropy sub- and super-solutions of this equation, see [14, 15]. As is seen

from the proof of Theorem 1, the statement of this Theorem remains true

for more general case when uk(x) are quasi-solutions of equation (1).

Proof of Theorem 2. To prove Theorem 2 we use the approximation

of the flux vector. We choose a non-negative function ξ(s) ∈ C∞
0 (R) with

support in the segment [−1, 0] such that
∫

ξ(s)ds = 1 and set ξm(s) =

mξ(ms) for m ∈ N, αm(τ, y) = ξm(τ)
n
∏

i=1

ξm(yi), (τ, y) ∈ R × Rn, so that

the sequence αm is an approximate unity on Rn+1. Consider the averaged

vector

ϕm(t, x, u) = (ϕ ∗ αm)(t, x, u) =

∫

Rn+1

ϕ(t− τ, x− y, u)αm(τ, y)dτdy.

Then, by known properties of averaged functions, ϕm(t, x, u) ∈
C∞(Π, C1(R)) and ϕm(t, x, ·) → ϕ(t, x, ·) in Lqloc(Π̄, C

1(R)) as m → ∞.

In particular,

max
u∈[a,b]

|ϕm(t, x, u)− ϕ(t, x, u)| →
m→∞

0 in Lqloc(Π̄). (56)

Notice also that ϕm(t, x, a) = ϕm(t, x, b) = 0.

Then, recall that divxϕ(t, x, p) = γp = γrp + γsp, where γrp = ωp(t, x)dtdx

and therefore

divxϕm(t, x, p) = γrmp + γsmp,

where γrmp, γ
s
mp ∈ C∞(Π),

γrmp = ωp ∗ αm →
m→∞

ωp in L1
loc(Π̄), (57)

|γsmp| ≤ |γsp| ∗ αm →
m→∞

|γsp| weakly in Mloc(Π̄).
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From the latter relation it follows that for each f(t, x) ∈ C0(Π̄), f(t, x) ≥ 0

lim
m→∞

∫

Π̄

f(t, x)|γsmp(t, x)|dtdx ≤
∫

Π̄

f(t, x)d|γsp|. (58)

Observe also that γp|t=0 = 0 and therefore also γsp|t=0 = 0 ( hence we can

replace in (58) the integration domain Π̄ by Π ). Indeed, if f(x) ∈ C1
0(R

n)

and h > 0 then
∫

[0,h)×Rn

f(x)dγp(t, x) = −
∫

[0,h)×Rn

(ϕ(t, x, p),∇xf)dtdx→ 0 as h→ 0,

which implies that
∫

{0}×Rn f(x)dγp(t, x) = 0 for all f(x) ∈ C1
0(R

n) and,

therefore, γp|t=0 = 0.

Since the flux ϕm(t, x, u) is sufficiently smooth then by the classical

Kruzhkov result [9] there exists an entropy solution um(t, x) to the Cauchy

problem

ut + divxϕm(t, x, u) = 0, u(0, x) = u0(x). (59)

Recall that a ≤ u0(x) ≤ b, and ϕm(t, x, a) = ϕm(t, x, b) = 0 (i.e. the

constants a, b are entropy solutions of the approximate equations). By the

maximum principle we see that a ≤ um(t, x) ≤ b. Taking p = a, b in the

relation

|um − p|t + divx[sign(um − p)(ϕm(t, x, um) − ϕm(t, x, p))] +

sign(um − p)divxϕm(t, x, p) ≤ 0 in D′(Π), (60)

we derive that um = um(t, x) is a weak solution of the approximate equation

that is

(um)t + divxϕm(t, x, um) = 0 in D′(Π). (61)

This implies in particular that for each p ∈ R

(um − p)t + divx(ϕm(t, x, um)− ϕm(t, x, p)) + divxϕm(t, x, p) = 0 in D′(Π).

(62)

Combining (60) and (62), we obtain

(θ(um − p)(um − p))t + divx[θ(um − p)(ϕm(t, x, um) − ϕm(t, x, p))] +

θ(um − p)divxϕm(t, x, p) ≤ 0 in D′(Π).
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From this relation it follows, in the same way as in the proof of Theorem 1,

that the sequence of distributions

L1m = (θ(um − p)(um − p))t + divx[θ(um − p)(ϕm(t, x, um) − ϕm(t, x, p))]

is bounded in Mloc(Π) ∩ H−1
q,loc(Π) and therefore pre-compact in H−1

loc (Π).

Since in view of (56)

|ϕm(t, x, um) − ϕ(t, x, um)| ≤ max
u∈[a,b]

|ϕm(t, x, u)− ϕ(t, x, u)| →
m→∞

0

in Lqloc(Π̄) and also ϕm(t, x, p) − ϕ(t, x, p) →
m→∞

0 in Lqloc(Π̄) we see that the

sequence

L2m = divx[θ(um − p)(ϕ(t, x, um) − ϕm(t, x, um) − ϕ(t, x, p) + ϕm(t, x, p))]

converges to zero in H−1
loc (Π). Thus, the sequence

(θ(um− p)(um− p))t+ divx[θ(um− p)(ϕ(t, x, um)−ϕ(t, x, p))] = L1m +L2m

is pre-compact in H−1
loc (Π). By Corollary 2 we conclude that after extraction

of a subsequence, if necessary, the sequence um converges in L1
loc(Π) to some

function u = u(t, x). Clearly, a ≤ u(t, x) ≤ b. Taking into account (56)

we see that ϕm(t, x, um) → ϕ(t, x, u) as m → ∞ in L1
loc(Π̄). Passing to the

limit as m→ ∞ in relation (61), we obtain that

ut + divxϕ(t, x, u) = 0 in D′(Π),

i.e. u(t, x) is a weak solution of (6). To show that u(t, x) is also an entropy

solution of this equation, remark that, as follows from (8) applied for the

approximate equation, for each p ∈ R, f(t, x) ∈ C1
0 (Π̄)

∫

Π

[|um − p|ft + sign(um − p) (ϕm(t, x, um) − ϕm(t, x, p),∇xf)−

sign(um − p)γrmp(t, x)f(t, x)
]

dtdx+
∫

Π

f(t, x)|γsmp(t, x)|dtdx+

∫

Rn

|u0(x) − p|f(0, x)dx ≥ 0.

Passing in this relation to the limit as m → ∞ and taking into account

(57), (58), we derive
∫

Π

[|u− p|ft + sign(u− p) (ϕ(t, x, u)− ϕ(t, x, p),∇xf)−

sign(u− p)ωp(t, x)f(t, x)]dtdx+
∫

Π

f(t, x)d|γsp|(t, x) +

∫

Rn

|u0(x) − p|f(0, x)dx ≥ 0 (63)
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for such p ∈ R that the level set u−1(p) has zero Lebesgue measure ( as is

easy to see, then sign(um(t, x) − p) → sign(u(t, x) − p) as m → ∞ a.e. on

Π ). Since the set P of such p has full measure and, therefore, is dense, for

an arbitrary p ∈ R we can choose sequences p−r < p < p+
r , p±r ∈ P , r ∈ N

convergent to p. Taking a sum of relations (63) with p = p−r and p = p+
r

and passing to the limit as r → ∞, with account of the point-wise relation

sign(u− p−r ) + sign(u− p+
r ) →

r→∞
2 sign(u− p), we obtain that (63) holds for

all p ∈ R, i.e. u(t, x) is an entropy solution of the problem (6), (7). The

proof is complete.
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