Existence and strong pre-compactness properties for
entropy solutions of a first-order quasilinear equation

with discontinuous flux !
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Abstract

Sequences of entropy solutions of a non-degenerate first-order
quasilinear equation are shown to be strongly pre-compact in the
general case of a Caratheodory flux vector. Existence of the weak
and entropy solution to Cauchy problem for such equation is also es-
tablished. The proofs are based on general localization principle for
H-measures corresponding to sequences of measure-valued functions.

§ 1. Introduction
We consider a first-order quasilinear equation
divyp(z,u) + ¥ (z,u) = 0. (1)
Here p(x,u) = (p1(z,u),...,on(x,w)), u = u(z), * = (T1,...,2,) € Q,
where (2 is an open subset of R"; the flux vector ¢(z, u) is assumed to be a

Caratheodory vector (i.e. it is continuous with respect to u and measurable
with respect to z) such that for some ¢ > 2 the functions

an(v) = max [p(z, u)| € Lj,(2) VM >0 (2)
(here and below | - | stands for the Euclidean norm of a finite-dimensional

vector). We also assume that for any fixed p € R the distribution

lew(,O(x,p) = Tp € Mloc(Q)a (3)

where M,,.(€2) is the space of locally finite Borel measures on  with

the standard locally convex topology generated by semi-norms pg(p) =
Var (®pu), & = &(z) € Co(92).
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The function ¥ (x, u) is assumed to be a Caratheodory function on 2 x R
such that

Bur(x) = max |i(z,u)] € Li() VM >0 (@)
Let 7, = 7, + 7, be the decomposition of the measure 7, into the
sum of the regular and the singular measures, so that v, = w,(x)dx,

wy(z) € L},.(Q), and 7} is a singular measure (supported on a set of zero
Lebesgue measure). We denote by || the variation of the measure 7,
which is a non-negative locally finite Borel measure on ). Denote, as usual,

1, uw>0,
signu=<¢ —1 , u<0,
0 , u=0.

Now, we introduce the notion of entropy solution of (1).

Definition 1. A measurable function u(x) on € is called an entropy
solution of equation (1) if ¢(z,u(x)) € L] (Q,R"), ¥(z,u(z)) € L.(Q),
and for all p € R the Kruzhkov-type entropy inequality (see [9]) holds

div, [sign(u(z) — p)(¢(z, u(z)) = ¢(z,p))] +
sign(u(x) — p)lwp(z) + ¢(z, u())] — [ <0 (5)

in the sense of distributions on 2 (in the space D’(€2)); that is, for all non-
negative functions f(z) € C§°(Q)

/Q sign(u(z) — p) (p(r, u(z)) — o(z, p), V()
sign(u(®) — p)(wp() + ¥z, u(z))) f(@)] da + / F(@)dl3) () = 0

( here (-,-) is the scalar product in R™ ).

Our definition extends the notion of weak entropy solution introduced
for the case of one space variable in [6, 7]. Notice also that we do not require
that u(z) is a weak solution of (1).

We assume that the flux vector ¢(z, u) is non-degenerate in the sense of
the following definition.

Definition 2. A vector ¢(z,u) is said to be non-degenerate if for almost
all z € Q for all £ € R", £ # 0 the functions A — (&, p(x, \)) are not
constant on non-degenerate intervals.
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In this paper we shall establish the strong pre-compactness property
for sequences of entropy solutions. This result generalizes the previous re-
sults of [10, 11, 12, 13] to the case when flux vector may be discontinuous
with respect to spatial variables while entropy solutions may be generally
unbounded.

Theorem 1. Suppose that ui, k € N is a sequence of entropy solutions
of (1) with non-degenerate flux vector o(x,u), such that |o(x,ur(x))| +
(2, up(x))| + pup(x)) is bounded in L}, (2), where p(u) is a nonnegative
super-linear function (i.e. p(u)/u — oo as u — oco). Then there exists
a subsequence of ug, which converges in L} () to some entropy solution

Now, we consider the evolutionary equation
up + divep(t, z,u) =0, (6)

u=u(t,x), (t,x) € II = Ry x R", where R, = (0, +00). We assume that
©(t, z,u) is a Caratheodory vector on IT x R such that ¢(¢,z,-) € C'(R,R")
for each fixed (t,x) € II. We also assume that the vector (u, p(t,z,u)) €
R™"! is non-degenerate. The latter means that for a.e. (t,z) € II for
all £ € R™, & # 0 the functions u — (&, ¢(t,x,u)) are not affine on non-
degenerate intervals. We also suppose that for somea,b € R, a < b ¢(-,a) =
o(-,b) =0, 52[%%] (-, u)| € LE (1), ¢ > 2, Il = [0, +00) x R™, and

loc
)

le:z:@(vp) - 71) - wp(tv x)dtd:r: + ’)/; S Mloc(H)a

here 7, is a singular part of the measure ;.

We underline that equations like (1), (6) occur in various applications,
for instance in porous media, sedimentation processes, traffic flow, radar
shape-from-shading problems, blood flow, and have been widely studied in
recent years.

We shall study the Cauchy problem for equation (6) with initial condi-
tion

u(0, z) = ug(x), (7)

where ug(z) € L*(R"), a < ug(x) < b.



Definition 3. A function u = u(t,x) € L*(II) is called an entropy

solution of problem (6), (7), if Vp € R, Vf = f(t,z) € C*(II), f >0
[l + signtu = p) (o820 = lt,,). V) -
sn(u = phay(t,2) (1 0 deda + [ a)gl(e o) +
/n o (x) — k| £(0, 2)dz > 0. (8)

A function u(t,z) € L>®(II) is called a weak solution if u(t¢, z) satisfies (6)
in the sense of distribution.

Theorem 2. Under the above assumptions there exist a weak and
entropy solution u(t,z) of (6), (7) such that a < u(t,z) <b.

Observe that the statement of Theorem 2 covers results of [8], where
existence of weak solution is proved for the two-dimensional equation

up + f(kau)x + g(lay)y =0

with fixed BV -functions k = k(z,y), | = l(x,y) and sufficiently smooth flux
functions f, g.

Theorems 1,2 will be proved in the last section. The proof is based on
general localization properties for H-measures corresponding to bounded
sequences of measure-valued functions.

In next section 2 we describe the main concepts, in particular the concept
of measure-valued functions. In sections 3,4 we introduce the notion of H-
measure and prove the localization property. Finally, in the last section 5
these results are applied to prove Theorems 1 and 2.

§ 2. Main concepts

Recall that a measure-valued function on €2 is a weakly measurable
map r — v, of the set ) into the space of probability Borel measures
with compact support in R. The weak measurability of v, means that for
each continuous function f(\) the function x — [ f(\)dr,(\) is Lebesgue-
measurable on (2.

Remark 1. If v, is a measure-valued function then, as was shown in
[11], the functions [ g(A)dv,()\) are measurable in © for all bounded Borel
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functions g(\). More generally, if f(x,\) is a Caratheodory function and
g() is a bounded Borel function then the function [ f(z,A)g(A)dv,(N) is
measurable. This follows from the fact that any Caratheodory function is
strongly measurable as a map = — f(z,-) € C(R) (see [5], Chapter 2) and,
therefore, is a pointwise limit of step functions f,,(z,A) = > gmi () hmi(N)

so that for x € Q f,,(z,-) — f(z,-) in C(R).

A measure-valued function v, is said to be bounded if there exists M > 0
such that supp v, C [—M, M] for almost all = € 2. We denote the smallest
value of M with this property by ||| co-

Finally, measure-valued functions of the form v,(\) = §(A — u(x)),
where §(A — u) is the Dirac measure concentrated at u are said to be reg-
ular; we identify them with the corresponding functions w(x). Thus, the
set MV (Q2) of bounded measure-valued functions on {2 contains the space
L*>(£2). Note that for a regular measure-valued function v, (\) = §(A—u(z))
the value ||Vg||oo = ||¢t||co- Extending the concept of boundedness in L>°(£2)
to measure-valued functions we shall say that a subset A of MV (Q) is
bounded if sup, 4 ||Vallsc < 00.

We define below the weak and the strong convergence of sequences of

measure-valued functions

Definition 4. Let v* € MV(Q), k € N, and let v, € MV (Q). Then

k

) the sequence v converges weakly to v, if for each f(\) € C(R),

/f )dvk( I~ f(AN)dvz(N\) in the weak-% topology of L*(2);

k

2) the sequence V2 converges to v, strongly if for each f(\) € C(R),

/ PR = [ F)dn(n) in L, (@)

The next result was proved in [16] for regular functions v*. The proof
can easily be extended to the general case, as was done in [11].

Theorem 3. Let v*, k € N be a bounded sequence of measure-valued
functions. Then there exist a subsequence V' = vk, k =k,, and a measure-
valued function v, € MV () such that v, — v, weakly as r — 0.

Theorem 3 shows that bounded sets of measure-valued functions are
weakly precompact.



We shall study the strong pre-compactness property using Tartar’s tech-
niques of H-measures.

Let F(u)(§), & € R", be the Fourier transform of a function u(x) €
L2 (R™), S=8"1={¢e€R | |{l =11} be the unit sphere in R". Denote
by u — w, u € C the complex conjugation.

The concept of an H-measure corresponding to some sequence of vector-
valued functions bounded in L?(Q2) was introduced by Tartar [17] and
Gerard [4] on the basis of the following result. For [ € N let Ug(z) =
(UNz),...,Uk(z)) € L*(Q,R") be a sequence weakly convergent to the
zero vector.

Proposition 1 (see [17], Theorem 1.1). There exists a family of complex
Borel measures p = {,uij};jzl in Q xS and a subsequence U,(x) = Ug(x),
k = k,, such that

() Ba0(6) =t [ PO F TR () de
for all ®1(z), Po(x) € Co(Q) and ¥(§) € C(S).

The family u = {u¥ }i,j:1 is called the H-measure corresponding to
U (x).

The concept of H-measure has been extended in [11] ( see also [12, 13] )
to sequences of measure-valued functions. We study the properties of such
H-measures in the next section.

§ 3. H-measures corresponding to bounded sequences of
measure-valued functions

Let v¥ € MV(Q) be a bounded sequence of measure-valued functions
weakly convergent to a measure-valued function v € MV (Q). For z € Q
and p € R we set

up(z,p) = Vi ((p,+00)), uo(x,p) = v2((p, +00)).

Then, as mentioned in Remark 1, for £ € NU {0} and p € R the functions
ug(z, p) are measurable in x € Q; thus, u,(x,p) € L>®(Q) and 0 < uy(z,p) <
1. Let

E=E1)) = { po € R | ug(zx,p) e uo(z,po) in L, () } :
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We have the following result, the proof of which can be found in [11].

Lemma 1. The complement E = R\ E is at most countable and if
p € E then ug(x,p) T uo(x, p) in the weak-+ topology in L>(S2).

Let Uy (x) = wuk(x,p) — up(x,p). Then, by Lemma 1, U(x) — 0 as
k — oo weakly-* in L*>°(Q2) for p € E.

The next result, similar to Proposition 1, has also been established in
[11].

Proposition 2. 1) There exists a family of locally finite complex Borel
measures {pPl}) poin QxS and a subsequence U,(x) = {UF(2)},cp,
UP(x) = Ul(x), k = k. such that for all ®1(x),Po(x) € Co() and
»(€) € C(5)

(1, @, (2) () 0(€)) = lim [ F(@,U7) () F@UD ) (é—|) i (9)
r—00 Jpn
2) The correspondence (p,q) — pP? is a continuous map from E X FE
into the space My,.(£2 x 9).
Definition 5. We call the family of measures {pP},

corresponding to the subsequence V7 = V¥, k = k,.

4CE the H-measure
We point out the following important properties of an H-measure.
Lemma 2. 1) y?? > 0 for each p € E; 2) uP? = p® for all p,q € E;
3) for pr,....,p € E and g1,...,q1 € Co(2 x S) the matric A = a;; =
(UPPi g;g5), 1,5 = 1,...,1 is positive-definite.
Proof. We prove 3). First let the functions g; = g;(x, &) be finite sums
of functions of the form ®(z)1(§), where ®(x) € Co(2) and (§) € C(S5).
Then it follows from (9) that

a; = lim | HJ(€)H?(€)de, (10)

r—00 Jpn

where H(§) = F(g:(,&/[€)UP)(). Hence setting gi(w,§) = g(z.§) =
> Op(z)r(€) we obtain
k=1

Hi(€) = 3 F(0UP ) () (é—|) .

m

It immediately follows from (10) that aj; = @;;, i,j = 1,..., [, which shows



that A is a Hermitian matrix. Further, for aq,...,q; € C we have

l
E aijozioz_j = lim
r—00

i,j=1

l
(H (€)1 >0, H (&)= Hi(&)a
=1

Rn

which means that A is positive-definite.

In the general case of g; € Cy(€2 x S) one carries out the proof of 3) by
approximating the functions ¢;, ¢ = 1,...,[ in the uniform norm by finite
sums of functions of the form ®(z)y(&).

Assertions 1) and 2) are easy consequences of 3). For setting [ = 1,
p1 = p and g; = g we obtain the relation (P, |g|*>) > 0, which holds for all
g € Cy(2 x 9), thus showing that uPP is real and non-negative. To prove 2)
we represent an arbitrary function g = g(x, ) with compact support in the
form g = ¢1g5. Let [ =2, py = p and py = ¢. In view of 3),

(1", g) = (W™, 192) = (u, g271) = (n,7) = (u, g)
and pP? = . The proof is complete.

We consider now a countable dense index subset D C E.

Proposition 3. There exists a family of complex finite Borel measures
pb? in the sphere S with p,q € D, x € §, where Q) is a subset of 2 of
full measure, such that uP? = pPidx that is, for all ®(x,&) € Co(Q2 X S) the
function

v = (2w, ) = [ D))
is Lebesque-measurable on €2, bounded, and

(1, B, €)) = / (9(€), Bz, €))do.

Q

Moreover, for p,p’,q € D, p' >p

Var 2t <1 and Var (uf' —20) <2 (2((p.p))) """, (11)

Proof. We claim that proVar #? < meas for p,q € F, where meas is
the Lebesgue measure on 2. Assume first that p = ¢. By Lemma 2, the



measure pPP is non-negative. Next, in view of relation (9) with ®,(z) =

Dy(x) = () € Co(£2) and ¥ (&) =1,

(| 2(@)]*) = lim [ F(QUY)(§)F(QUF)(£)ds =

r—00 [pn

lim [ U2(2) () Pdr < / () Pde
= Jo Q

( we use here Plancherel’s equality and the estimate |UP(x)| < 1 ). Thus,
we see that that prouP? < meas.

Let p,qg € E, A be a bounded open subset of 2, and g = g(x,§) €
Co(A x S), |g] < 1. Let also ¢ = g/+/|g] ( we set g, = 0 for g = 0 ) and
g2 = /Igl. Then g1,9, € Co(A X S), g = 0152, |g1|* = [g2|* = |g| and the

matrix
(WP, lgl) (1P, g)
(upe, g) (9%, ]g])

is positive-definite by Lemma 2; in particular,

(1P, g)| < (U, gy (u®, |g]))'? < (uPP(A x S)p?%(A x S))'? < meas(A).

We take account of the inequalities prou”? < meas and prou?? < meas to
obtain the last estimate. Since g can be an arbitrary function in Cy(A x S),
lg| < 1, we obtain the inequality Var yP9(A x S) < meas(A), The measure
(P4 is regular, therefore this estimate holds for all Borel subsets A of {2 and

prg Var p’? < meas . (12)
It follows from (12) that for all ¥(§) € C(S) we have

Var prg ((§)p™(,€)) < [|[1h]loo - proVar p? < |1 - meas . (13)

In view of (13) the measures prg (v (§)ur?(x,£)) are absolutely continuous
with respect to Lebesgue measure, and the Radon-Nikodym theorem shows
that

pro (V(§)p(z,§)) = hy'(x) - meas,

where the densities /,(x) are measurable on 2 and, as seen from (13),

1725 () loo < |9 ]loc- (14)



We now choose a non-negative function K (z) € C§°(R™) with support in the
unit ball such that [ K(z)dx = 1 and set K,,(z) = m"K (mz) for m € N.
Clearly, the sequence of K, converges in D/(R") to the Dirac J-function
( that is, this sequence is an approximate unity ).

Let B— lim ¢, be a generalized Banach limit on the space [, of bounded

m—0o0

sequences ¢ = {Cy }men, 1.6. L(c) = B — lim ¢, is a linear functional on

m—oo

lo With the property:

lim ¢, < L(c) < lim ¢,

m—o0 m—oo

( in particular for convergent sequences ¢ = {c¢,,} L(c¢) = lim ¢,, ). For
complex sequences ¢, = a,, + 1b,, the Banach limits is deﬁngzrg;f complex-
ification: B — lim ¢,, = L(a) 4+ iL(b), where a = {a,,}, b = {b,,,} are real
and imaginarynf)_aﬁs of the sequence ¢ = {¢,, }, respectively. Modifying the
densities hﬁq(a:) on subsets of measure zero, for instance, replacing them by
the functions

B — lim [ W (y)Kn(r —y)dy

m—0o0 Q

( obviously, the value hJ/(x) does not change for any Lebesgue point x of
the function A} ), we shall assume that for all z € {2 we have

h'(v) = B — lim_ i hiy! (Y) K (2 — y)dy. (15)
Let €2 be the set of common Lebesgue points of the functions (),
uo(w, p) = v2((p, +00)), and uq (2, p) = v([p, +00)) = lim uo(z, ), where
p,q € D and 9 belongs to F, some countable dense subset of C(S). The
family of (p, q,1) is countable, therefore €)' is of full measure.

The dependence of the hZJq on 1, regarded as a map from C(S) into
L*>(£2), is clearly linear and continuous (in view of (14)), therefore it follows
from the density of F' in C(S) that x € Q' is a Lebesgue point of the
functions hy(z) for all ¥(§) € C(S) and p,q € D ( here we also take
account of (15) ).

For p,q € D and x € Q' the equality I(v)) = hy(z) defines a continuous
linear functional in C'(S); moreover, ||/|| < 1 in view of (14). By the Riesz-
Markov theorem this functional can be defined by integration with respect
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to some complex Borel measure p29(€) in S and Var pP? = ||| < 1. Hence
ORI GRUR R (16)

for all (&) € C(9).
Equality (16) shows that the functions x — / Y(€)dpPd(€) are bounded

S
and measurable for all ¢(§) € C(S). Next, for ®(z) € Cy(Q2) and (&) €
C'(S) we have

/Q (/s q)(x)‘/’@)d“?q(f)) du = /Q B(a)h¥ (x) dw =

/Q B () dpro ((€)) = / B () (€)dy (., €). (17)

QxS

Approximating an arbitrary function ®(z,£) € Co(2 x S) in the uniform
norm by linear combinations of functions of the form ®(z)1y (&) we derive

from (17) that the integral / O (x,€)dub(€) is Lebesgue-measurable with
S
respect to x € €2, bounded, and

/Q ([9@(%5)@?(5)) dr = /stcp(x’g)dupq(%@

that is, uP? = pPdx. Recall that Var puP? < 1.

[t remains to prove the last estimate in (11). Let p,p’,q € D, p’ > p and
r €. Weset ®,, = VK,, € Co(R"), m € N, where the sequence of kernels
K, is as defined above. Starting from some index m the function ®,,(z —y)

(of the y-variable) belongs to Cy(€2) and, in view of Proposition 2, for all
Y(€) € C(S) we have

[ Kontar =) (1) = 1)) | =
‘ PP — 1P (y, €), Ko — y)(€))] =

[ Py~ umy @ 0mEw (1 ) ds

1/2
4]l T [( [ IF@.wy - unyera)

lim
r—00

IA
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< ([ Ir@avnora) 1/2] -

= [[¢] T [( | Konla =) ) - Uf<y>>2dy) "

[z

Note that |U¢| < 1, [, Kp(x —y)dy = 1 and, therefore,
/ Ky (x — y))dy < 1.
Further,
Kn(x = y)(UF (y) = UE(y))*dy <
2 [ Koo =)V () = UF0)ldy <
2 /Q Koz = y)(ur(y, p) — ur(y, 1)) dy +

2 /Q Kz — ) (uo(y,p) — uo(y, p'))dy

(18)

(20)

(note that u,(y, p) —u,.(y,p’) > 0 for r € NU{0}). Since p,p’ C E, it follows
from Lemma 1 that w,.(y,p) — u.-(y,0") — uo(y,p) — uo(y,p’) in the weak-x

topology in L>°(€2), therefore
lm [ K(z —y)(u(y,p) — u(y,p))dy =

T—00 Q

/QKm(x - y)(UO(yvp) o uO(y7p/))dy7

and by (20),

Tim ( [ Kl =)0 0) - Uf(y))zdy> "
2 ( | Konta = )l ) - uo<y,p'>>dy) "
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From (18), in view of ( 21), we obtain the estimate

/ Kol = 5)(H°0) ~ 1) <

2ol ( | Konta = al ) - uo<y,p'>>dy) -

and passing to the limit as m — oo, since z € ' is a Lebesgue point of the
functions hj %, Ry, and ug(-,p'), we obtain the inequality

W @) = B ()] < 1l (ol ) — wole, )",
that is, for all ¥(&) € C'(S) we have

(= 119, 0) | < 2] (o, p) = wole, 9,
and therefore

Var (" = ") < 2 (uo(, p) = wo(w, ) ”* =2 (0. #)) " (22)
Now we demonstrate that for z € Q' v, ({p}) = 0 for each p € D. Indeed,
W({p}) = ug (x,p) — ug(x, p) and since p € D C E is a continuity point of

1/2

the map p — wug(x,p) in L, () we conclude that ug (x,p) — ue(z,p) = 0
a.e. in €). By the construction z € ) is a common Lebesgue point of
this function, therefore v2({p}) = ug (x,p) — ug(x,p) = 0, as required. In
particular v2({p'}) = 0 and we can replace the segment (p,p'] in estimate
(22) by the interval (p,p’). The proof is complete.

Corollary 1. The correspondences p — pb? and ¢ — pb? are continuous
maps of the set D into the space M(S) of finite complex Borel measures in
S (with norm Var ).

Proof. The continuity of the map p — p2? is an immediate consequence
of estimate (11). In the case of the map ¢ — pf? we must take into account
the equality p?? = pd?, which is an easy consequence of Lemma 2(2).

Remark 2. a) Since the H-measure is absolutely continuous with
respect to x-variables identity (9) is satisfied for ®;(z), Po(x) € L3(Q).
Indeed, by Proposition 3 we can rewrite this identity in the form:

Vb, (2), Ba(x) € Co(2), (€) € C(S)
/Q By (2)Bo(2) ((€), u7(€))dx =

lim [ F(@,U7)(¢) F@00 @) (i) de. (23)

r—oo Jpn €]
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Both sides of this identity are continuous with respect to (®1(z), Po(x)) in
L3(Q) x L*(Q2) and since Cy(9) is dense in L?*(2) we conclude that (23) is
satisfied for each ®,(z), ®o(z) € L*(Q);

b) if x € ' is a Lebesgue point of a function ®(z) € L*(Q) then

¥(o) ' 0(O) = tim lim [P0, 00 F@00©0 () de
(24)
for all (&) € C(S), where (®®,,UP)(y) = @(y)P.n(x — y)UP(y) and

(LU (y) = Pz — y)UH(y).
Indeed, it follows from (23) that

§
€]

lim [ F(@®,,U7)(¢)F(@, U%(fw(

)de = [ W00 Ko=)y
r—00 Jpn
(25)
Now, since x € Q' is a Lebesgue point of the functions 2} (y) and ®(y), and
the function hy(y) is bounded, x is also a Lebesgue point for the product
of these functions. Therefore,
lim [ W (y)@(y) Kpn(z — y)dy = @(2) k) (z) = (2)(uh?, ¥ (),

m—0o0 Q

and (24) follows from (25) in the limit as m — oc;

c) for x € € and each families p; € D, ¢;(§) € C(S),i =1,...,1 the
matrix (up"?,Pib;), i,j = 1,...,1 is positive definite. Indeed, as follows
from Lemma 2(3), for ay,...,a € C

I
Z (U7 iy )iy =
ij=1
I

Lim (0P (y, €), Pl — y)ti(€) Pl — )i (E) iy > 0.

ij=1
Taking in the above property [ =2, py =p , py = q, wl( ) V(&) /Y
(1 = 0for ¢y =0 ) and () = /|P()], ¥(¢ (5), we Obtam, as

in the proof of Proposition 3, that the matrix

<u§p,|w\> e )\
(') (pd?, [])

positive definite. In particular,

a2, 0 < (2, ) - et 1)
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and this easily implies that for any Borel set A C .S

Var p2(A) < (P (A)pt(A))? . (26)

We now fix x € Q) pg € D. Let L(p) C R™ be the smallest linear
subspace containing supp pP?°, p € D, and let L = L(po), | = dim L.

Lemma 3. There exists positive § such that L(p) = L for each p €
[po — 0, po + 6] N D.

Proof. Remark firstly that, as it directly follows from (26), supp pu?*° C
supp puPoPo C L and, therefore L(p) C L. For positive r we denote V, =
[po — 7, po+ 7N D, Ly =y, L(p). Clearly, L, C L is a decreasing (with
respect to inclusion) family of linear subspaces of the finite-dimensional
space L, therefore starting from some quantity » = § > 0 for all r € (0, J]
we have L, = L C L. To prove the lemma it suffices to show that L=L.
For in that case L C L(p) C L and the equality L(p) = L, p € Vs follows.
We carry out the proof of the equality L = L by contradiction. Thus, we
assume that L # L. Then m = dimL < [ = dimL. We fix ¢ > 0. By
Corollary 1 there exists r € (0, 6] such that for p € V,. we have

Var (ubPo — pboro) < g, (27)

x

By the definition of the space L, we can choose a strictly decreasing finite
sequence of subspaces L}, i =0,...,k, such that Lj = L, L}, = Ls = L, and
L =L, ,NL(p;), where p; € V,, i =1,..., k. Clearly, k < dim L —dim L =
[ — m. By the definition of the L(p) we have supp pfi?° C L(p;). Hence
Var (u2i?o(C'L(p;)) = 0, where C'A for A C R” is the difference S\ A. It
now follows from (27) that

L (CL(p)) <&, i=1,....k.

Since L = (N, L(py), it follows that CL = |Jf_, CL(p;) and

k
W (CL) < 3727 (CL(py)) < ke.

=1

Since ¢ is an arbitrary positive number, it follows that z2°P(C'L) = 0 and
supp pbore C L. Further, L is the smallest subspace such that supp pf°?° C
L, therefore L C L, which is a contradiction. This completes the proof.

15



We consider now the complex linear subspace
0 ={ [vesame: veecs)ce

Lemma 4. We have the equality R(p) = L(p), where L(p) = L(p) +
iL(p) C C" is the complex linear subspace spanned by L(p).
Proof. The relation

(/ B(E)Edym (¢ ) [u@Ename, vec, we e

(here and below we consider the scalar products (-, ) of vectors in C")
shows us that the orthogonal complements (R(p))* = (L(p))* are the same
(in C"), which means that R(p) = L(p). The proof is complete.

Suppose that f(y,\) is a Caratheodory vector-function on Q2 x R, i.e.
fly,) € C(R,R™) for each y € Q and the functions + — f(z,\) are
Lebesgue measurable on () for every fixed A € R. Assume also that the
following estimate holds

VM >0 [l = max £ V)] < oula) € L (). (29

Since the space C'(R,R") is separable with respect to the standard locally
convex topology generated by seminorms || - ||, then, by the Pettis the-
orem (see [5], Chapter 3), the map + — F(z) = f(x,-) € C(R,R") is
strongly measurable and in view of estimate (28) we see that F((z), (F(z))? €

L (Q,C(R,R")). In particular (see [5], Chapter 3), a.e. x € Q are

Lebesgue points both maps F(x), (F(z))?, i.e.

VM >0 lim [ Kp(z —y)|F(z) = F(y)llaeedy =

m—0o0

lim [ Kpn(z = y)[[(F(2))” = (F(y))* [ aoody = 0.

m—o0

Since, evidently,

1F(2)=F ) 3r00 < 201F (@) =F @)l as00l F (@) ar,00 1 (F(2))* = (F ()] 31,005

from the above relation it follows that for a set {2y C Q of full measure of
values x

lim | Kp(z—y)|F(2) = F(y)|[iredy =0 VM > 0. (29)

m—o0
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Clearly, each = € {1y is a Lebesgue point of all functions z — f(z, A), A € R.
Let Q" = Q' NQy, 7 = vl — 2. By 6()\) we shall denote the Heaviside

function:
1, AX>0,
o) = { 0, A<O.

Suppose that = € Q”, py € D, and the subspace L and the segment V =
Vs = [po — 9, po + 0] N D are determined as in Lemma 3, x(\) = 0(A —p;1) —
O(X\— py), where p1,p, € V. Assume also that f(y, \) takes its values in L.
For a vector-function A(y, A) on £ x R, which is Borel and locally bounded
with respect to the second variable, we denote I.(h)(y) = [ h(y, A)dv;(A).
In view of the strong measurability of F'(x) and (28) we see that L.(f-x)(y) €
L? (Q) ( cf. Remark 1).

loc

Proposition 4. Under the above assumptions,

Jim tim [ (& F@L(r 06 ) F0m @0 () de =0
forally(&) € C(S). Here @, = @ (x—y) = / Kin(x — y) and I.(f-x), UP°
are functions of the variable y € 2.

Proof. Note that starting from some index m the supports of the
®,,(r — y) lie in some compact subset B of 2. Without loss of general-
ity we can assume that supp ®,, C B for all m € N. Let f(y, \) = f(z, ),
M = sup ||V ||o- Then

1 ((f = y)l </\f Y, A) = [, M]dVary, (A) < 2[[F(y) = F()]|a,00

and by Plancherel’s identity

€]

¢ —ad
/ (|£| P17 0)) ) FE, 0@ ()
f 3 Do

[ (G F@all(f = 10O ) FTo, 0P TS0 ( )
locl®ade(F = ) - )@l < Clnlo(F = - le <

20 ( / Ko (z — y)| Fly) — F(x)|\?\4mdy> "o~ const

[ (5 F@nn )@ ) FE 0@ () de-
d
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Here we take account of the equality

ol = ([ Fonte vy “l

From the above estimate and (29) it follows that

lim lim

m—00 r—o0

/ <é‘ F(®nl(f - x))(£)> F(®,, Upo)(5)¢<

(|§_| F(®o, (f'X))(f)) F(®,,UP)(€)y (é|> g

)dﬁ‘ =0 (30)

€]

and it is sufficient to prove the proposition with f replaced by f. This
function is continuous and does not depend on y. Therefore for any € > 0
k

there exists a vector-valued function g(A) of the form g(A\) = > v,0(A — p;),
i=1

where v; € L' and p; € V such that ||f - x — g|/c < € on R.
Using again Plancherel’s identity and the fact that

\ [ - g)(A)dﬁ(A)‘ < [ x = lavar (G < 2=

we obtain

f ¢ Do
[ (& r@at(F - g~>><5>) P00 (15 ) | <
10T, (F - x = )l 1@V o < = (31

for (&) € C(9), where ¢ is a constant independent of m.
Since

k k

I (g9)(y) = / (Z vifl (A pz-)> dyy(\) =Y wlUPi(y),

=1 =1

we obtain the limit relation

it [ (& F@uL0)(©) ) F@0m©w () de -

m—00 r—00 ‘5‘ ‘5‘
k

> (e (v, )1(€)) =0, (32)

=1
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The last equality is a consequence of the inclusion supp p2#° C L, which
holds by Lemma 3 for all i = 1,...,k (because p; € V), combined with the
relation v; L L. By (31) and (32),

lim lim

m—00 r—0o0

[ (5 @100 ) FE, 0PN () de| < conste

and it suffices to observe that € > 0 can be arbitrary to complete the proof.

8 4. Localization principle and strong pre-compactness of
bounded sequences of measure-valued functions.

Let o(z, \) = (o1(x, A\), ..., pu(x, A)) be a Caratheodory vector on QxR
such that for each M > 0

ay(x) = max [o(z, u)| € Li,. (). (33)
u| <M
Consider a bounded sequence v*, k € N of measure-valued functions, and
suppose that for each p € R the sequence of distributions

div, </«9()\ —p)(p(x,\) — gp(x,p))dug()\)) is pre-compact in Hy ().
(34)
Here 0(u) is the Heaviside function and H;,!(Q) is the locally convex space
of distributions u(x) such that wuf () belongs to the Sobolev space H, ' for
all f(x) € C5°(2). The topology in H; !(£2) is generated by the family of
semi-norms u — [[uf|[ -1, f(z) € CG(Q).

We choose a subsequence v/ = v* k = k. weakly convergent to a
bounded measure-valued function v? such that the H-measure pP? = puP4dw,
p,q € D is well defined.

Define the measures 77 = v — 12 and set of full measure Q" = Q' NQ,,
as in the previous section.

The following Theorem shows that supp pf? consists of £ € S such that

the function (p(x, A), Z wi(x, N\)&; is constant in a vicinity of p.
1=1

Theorem 4 (localization principle). Suppose that x € Q" and
pboro =£ O for some pg € D. Then there exists § > 0 such that (p(x, ), §) =
const on the interval A € (pg — 6, po + 6) for all & € supp pboro.
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Proof. Throughout the proof we use the notation of § 3. Let V =V =
[po — 9, po + 0] N D be an interval chosen in accordance with Lemma 3, L be
a linear span of supp pPoP°. As follows from (34) and the weak convergence

T 0
—
Vy Vy )

£50) = v, ([ 00— DoY) — el Db V) = 0 Hl;(@zéa

For p € V' we consider the sequence of distributions
L, — L, = divy(Q¥(y)), reN,

where the vector-valued functions Q?(y) are as follows:
@5) = [ (ol0.3) = ol )OO~ PN -
[ 0.0 = el 200 - m)ar3) =
[ (w5 = olr ) -
/(w(y,p) — (Y, p0))0(A — po)d, (A) =

/ (0(.0) — 05, XN — (0(5.0) — oy, p)UP () (36)

here x(A) = 0(A — po) — 6(A — p).
As already noted, div,(Q¥(y)) — 0 in H,_'(Q) and if ®(y) € C(Q)
then
div, (Q?®(y)) — 0 in H,'. (37)

Using the Fourier transformation, from (37) we obtain
[€171(E F(QR)(€)) — 0 in L*(R™) (38)

as r — o0o. Indeed, as follows from the definition of H; ' (see, for instance,
[1]), (37) is equivalent to the following condition:

(1+ €)1 (E F@P)(E) — 0 in L*(R"),
which shows that
€171 (€, F(QR)(€)) — 0 in L*(R™\ B) (39)
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as r — oo ( here B is the ball {& € R" : [¢| < 1} ). By (33)
we have the uniform estimate ||QP®|; < 8||ay®|1 = const, where
M = max(sup ||Vz||eo, |P|, [Po]). This estimate implies that the functions
€171, F(QPCI))(S)) are bounded uniformly in 7 € N. By assumption,
v, - V weakly in MV(€), which easily implies that QF(y) — 0 in
Log(QooRn) in the weak-* topology, and the sequence F(QPP)(¢) gono\jerges
pointwise to zero as r — oco. Hence, it follows from Lebesgue’s dominated

convergence theorem that

€17 (&, F(Qr@)(€)) — 0 in L*(B)

as r — co. Combined with (39) this yields relation (38) in an obvious way.
Let (&) € C(S). By (38), using the boundedness of the sequence UP°®(z)
in L?(R") we obtain

[ ke F@ e FOPa@e () -0

as r — 00, or in view of (36),

i { [ e e rop o FOFRI©w ) de-
[ ke Fope o FTFR©e () deb =0 o)
where

fy) = o(y,p) — oy, po) and VP(y) = /(w(y,p) — (Y, A))x(N)dyy (A).

We set in (40) ®(y) = @,,(x — y) , where the functions ®,,, were defined
in § 3 in the proof of Proposition 3, and pass to the limit as m — oco. By
Remark 2 (see equality (24)) we obtain

i i [ |66 PP 0,)(€) FOPE, )@ (f)dg—

m—0o0 r—0o0 ‘f‘

(gp(:l?,p) - @(5’37]70)7 < wopo’ £¢(€)>) )

therefore

(go(x,p) - gO(.Z,pO), <:u§0p0? f¢(§)>) -
i tim [ (€7 e, F(V2®,)(€) FOPS, @) (i) € ()

m—o0r—00 [pn ‘5‘
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Let m; and 7, be orthogonal projections of R™ onto the subspaces L and L+
respectively; let @(z, \) = m(p(x, A)), @(z, \) = m2(p(x, A)). Recall that L
is the smallest subspace containing supp pf°?°. Hence

(go(x,p) - W(xap0)7 <M§0p07 §¢(f)>) - (Sb(xap> - @(x7p0)7 <M§0po’ §¢(f)>) :
(42)
Further, V2(y) = m (V2 (1) + m (V2 () and

(VP () = / ((5.0) — 3 A) XN V),
(VP () = / (@(y.0) — By, A) x(N ().
In the notation of Proposition 4,

m (VP (y) = L.(h - Xx),

where h(y, \) = @(y,p) — @(y, A) is a Caratheodory vector taking its values
in L*. Now, by Proposition 4 we obtain

§
€]

Let XN/IjT(y) = m1(V, (y)). From (41), in view of (42) and (43), we see that

(@(x7p> - @(l’,po), <N§0p0? f¢(§)>) =
lim lim [ |67 € F(729,.)(€) U@ @) (5) e,

m—oor—00 [pn ‘f‘

which in turn, by Bunyakovskii inequality and Plancherel’s equality, gives

lim Tim [ (6] P(ma(V2) ) (€) FUP B @) (

m—o0r—00 [pn

>d§ = 0. (43)

us the estimate

(@) — B po), (27, D] < T T (77 a- [U2 Bl ]
(44)
Next, for M,(y) = max  |@(y,p) — @(y, )|

|A—po|<|p—pol

VI (y)] < My(y)

/ YN (7 (0) + 10| =

M, (y)ur(y, o) — ur(y, p) + uo(y, o) — uo(y, p)|
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so that, in view of the elementary inequality (a + b)* < 2(a? + b?) and

the relation [u,(y,po) — u.(y,p)| = sign(p — po)(u-(y,po) — ur(y,p)) < 1,
r € NU {0}, we have

HW@M@§2LM@@W«wwmﬂ—wme+

(uo(y, o) — uo(y: p))?) Km(x — y)dy <

2sign(p — po) /Q(Mp(y))Q(ur(y,po) —ur(y,p) +

uo(y, po) — uo(y, p)) Km(x — y)dy. (45)

Since po,p € D C FE, it follows from Lemma 1 that

ur (Y, po) — ur(y,p) — uo(y, po) — uo(y, p)

as r — oo in the weak-* topology of L*°(£2) and from (45) we now obtain
the estimate

lim [|VP®,, 5 < 4/(Mp(y))2|u()(y,po) — ug(y, )| Km(z — y)dy,
T—00 Q
from which, passing to the limit as m — oo, we obtain

T T (V7013 < 4(04(@) (e, o) — vole,p)| (46)
(here we bear in mind that x is a Lebesgue point of the functions wu(y, po),
up(y,p), and (M,(y))? ( the latter easily follows from the fact that = € Q,
is a Lebesgue point of the maps y — ©(y,), ¥y — (¢(y,))? into the space
C(R) ). Further, we have |UP°| < 1, therefore ||[UP°®,, |2 < |[®,,]]2 = 1 and,
in view of (44) and (46),

| (@(x,p) — &(z, po), (b7, E0(E))) | <
< 2[[9)]| oo Mp(7)w(p), (47)
w(p) = |uo(z, po) — uo(x,p)|"* =0

( remind that py € D is a continuity point of the function p — wug(x, p) for
x € Q). Next, by Lemma 4, the set of vectors of the form (uoro £i(&)),
V() € C(S) spans the subspace L = L+iL. Hence we can choose functions

Yi(§) € C(5), i = 1,...,1 such that the vectors v; = (uP°Po, £1);(€)) make
up an algebraic basis in L.
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By (47), for ¥(§) = ¢ (§), 1 =1,...,l, we obtain
‘ (95(33;]9) - 95(%]?0),%) | < Ciw(p)Mp(:U), ¢; = const,

and since v;, ¢ = 1,...,[ is a basis in L, these estimates show that for all
peV

cw(p)  max \gb( ,p) —@(x, N)], ¢ = const. (48)
|A—po|<|p—po]

Taking a smaller ¢ if necessary we can assume that 2cw(p) < e < 1 for all
p € V. Now, in view of (48),

£ - -
5 max [z, p) — @(x, A, (49)

0 Z, — @ xz, S
|2(x, p) — ¢, po) 2 [A=pol|<|p—po]

and since p(x, p) is continuous with respect to p and the set D is dense, the
estimate (49) holds for all p € [py — §, po + 9.

We claim that now @(z,p) = @(x,po) for p € [po — 9, po + d]. Indeed,
assume that for p’ € [pg — 0, po + 0]

|§5($,p,) o Qb(l’,po)l = max ‘@(x >\) @(gjapO”
|A—po|<d

Then for |A — po| < |p" — po| we have
|6(z, p') — (x, M) < [&(z, A) — @(x, po)| +
I@(;E,p,) o gb(;)j,poﬂ < 2‘@(1’,])) o gp(xva)‘
and

max |¢(x,p') — @z, A)| < 2|¢(x, p') — @z, po)l.
|A—po|<[p’—po]

We now derive from (49) with p = p’ that
|6(z,p') — &(z,po)| < elp(z, ) — &z, pol,
and since € < 1, this implies that

@@, p) = ¢z, po)| = max |Gz, A) = (z, po)| = 0.
€[po—0,po+9]
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We conclude that o(z,p) — o(x,pg) € Lt for all p € (py — &, py + 0), i.e.
(p(x, M), &) = (p(x,po), &) = const on the interval X € (pg — 0, pg + 9) for all
¢ € L. The proof is complete.

Theorem 5. If the sequence v converges as k — oo weakly to 10 and

satisfies (34) with non-degenerate vector p(x,u) then this sequence con-
verges strongly to 1/2 .

Proof. Let v = v* k = k,, be a subsequence such that the H-measure
{uP1}, scp is well defined. As directly follows from the assertion of Theo-
rem 4 and non-degeneracy condition in Definition 2, uf? = 0 for a.e. x € ()
and p € D. Therefore, uP? = pPPdxr = 0 for p € D. By Lemma 2,3) we see
that pP? = 0 for p,q € D and since D is dense and pP? is continuous in p, q
(see Proposition 2) it follows that p?? = 0 for all p, g € E. This implies that

Ur(l',p) - Uo(ﬂf,p) in LZQOC(Q)

as r — 00. Indeed, it follows from the definition of an H-measure and
Plancherel’s equality that

lim [|UF® || = (", |®(z)[*) = 0

for all ®(x) € Cy(§2) and p € E. Thus, for p € E we have

/ 60— pd(N) — [0 —p)dA(N) in I2(Q). (50

T—00
Any continuous function can be uniformly approximated on any compact

subset by finite linear combinations of functions A — 6(A — p), p € E.
Hence, it follows from (50) that for all f(A) € C(R) we have

r—00

/ FOVLN) — [ FO)AN) in L2,(),

(), that is, the subsequence v converges to v/°

xT

and therefore also in Ll

loc
strongly. Finally, for each admissible choice of the subsequence v the limit
measure-valued function is uniquely defined, therefore the original sequence

k

V¥ is also strongly convergent to v2. The proof is now complete.

Taking account of Theorem 3 one can also give another formulation of
Theorem 5: each bounded sequence of measure-valued functions satisfying
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(34) is pre-compact in the sense of strong convergence. Observe that in the
regular case v°(\) = §(\ — ux(z)) condition (34) has the form: Vp € R

div,[0(ur(x) — p)(@(x, up(x)) — p(x,p))] is pre-compact in H;, (). (51)

In this case Theorem 5 yields the following

Corollary 2. FEach bounded sequence ug(x) € L¥(S) satisfying (51)
with non-degenerate vector p(x,u) contains a subsequence convergent in
LL(2).

Proof. It only need to note that if the sequence ug(x) converges to a
measure-valued function 10 strongly in MV (Q), then by the definition of
strong convergence

up(z) — wup(x) :/)\dz/g()\) in L} (Q)

k—o0

( which also shows that v2(\) = §((X — up(z)) is regular in Q ).

Remark 3. The statements of Theorems 4 and 5 remains true also
for sequences of unbounded measure-valued (or usual) functions. For the
proof we should apply cut-off functions s,;(v) = max(a, min(u,b)), a,b €
R and derive that bounded sequences of measure-valued functions 327171/5

satisfy (34). Then, under non-degeneracy condition, we obtain strong pre-
compactness property for these sequences.

For instance, consider the sequence uy(z) € L (Q), k € N. Let ¢(z,u)
be a non-degenerate Caratheodory vector, satisfying (33). Suppose that
o(z,u(z)) € L () and condition (51) holds. Let a,b € R, a < b, vy =
Sap(ur) = max(a, min(ug, b)). Then vy = vg(z) is a bounded sequence in

L>(Q) and for each p € R

dive[0(vr — p)(p(x, vr) = @(x,p))] = diva[0(ux — p) (o2, ur) — @(x, p))] -
dive[0(ux — 0)((p(, ur) — (2, 0))] + 0(p" — p)diva(e(z, p') — @(x,p)),

where p' = s,,(p). From this identity and (51) it follows that the sequence
div,0(vy — p)((z,v) — @(z,p)) is pre-compact in H,;}(Q). By Corollary 2
the sequences vy, (z) = s45(ux) are pre-compact in Lj, () for every a,b € R,
a < b. Using the standard diagonal extraction we can choose a subsequence
ur () = ug, (x) such that for each m € N the sequence s_,, ,,(u,) converges

as r — oo to some function w,(x) in L} (). Obviously, a.e. in §

(W ()] <m, and wy,(x) = s_pmm(wi(x)) VI > m.
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This allows to define a unique (up to equality a.e.) measurable function
u(z) € RU{xoo} such that w,,(z) = s_pmm(u(z)) a.e. on Q. If a,b € R,
a < b then for m > max(|al, |b])

Sap(Ur) = Sap(S—mm(Ur)) — Sap(Wm) = Sap(S—mm(u)) = sap(u) in Llloc(Q)-

T—00

In fact, we have proved the following general statement.
Theorem 6. Suppose that the sequence of measurable functions ug(x)

is such that for some non-degenerate Caratheodory vector p(x,u), which
satisfies (33), for each a,b € R, a < b

divap(x, sap(ug)) is pre-compact in H; ' (). (52)

Then
a) there exists a measurable function u(x) € RU{+oo} such that, after
extraction of a subsequence u,, r € N, s, p(u;) — Sap(u) Va,b € R, a < b.
b) If in addition the following estimates are satisfied

/K plup(z))dz < Cr, (53)

for each compact set K C ), where p(u) is a positive Borel function, such

that p(u)/u — oo, then u(x) € L;, () and u, — u in L}, (Q) asr — oo,

Proof. If v = s4(ux) then for each p € R

div, [0(vr — p) (2, v) = @(2, )] = divap (@, sarp(ur)) — divep(z, p),

where @’ = max(a, p) ( remark that in the case b < a’ the above distribution
is trivial ). By (52) this distribution is compact in H; (). As we have
already established this implies the assertion a). To prove b), observe that,
extracting a subsequence, if necessary, we can assume that s_m,m(ur) —
S_mm(u) as m — oo a.e. in 2 for every m € N. This implies that u, — u
a.e. in 2 and by Fatou lemma from (53) it follows that

/K plu(z))dz < C.

In particular, u(z) € L} (). Now, fix a compact K C  and ¢ > 0.
By the assumption p(u)/u — oo we can choose m € N such that

uU—00
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Jul/p(u) < &/(2Cx) for Ju] > m. Then
[ @) = ut@lde < [ Jsomu@) = s-n(ule)lde +

[ ur@io(a @) = mida + [ fute)lo(ua)| - myds

< /K 5 (0 (2)) — 5 (u(2)) d +

s ([ stuntonde+ [ plaeyir) <

[ 15 mane() = s+ =

This implies that lim [ |u,(z) — u(z)|dr < ¢ and since € > 0 is arbitrary
T—00 K
we conclude that lim | |u.(z) — u(x)|dz = 0 for any compact K C €2, i.e.

u, — u in L}, _(€). The proof is complete.

§ 5. Proofs of Theorems 1,2.

We need the following simple

Lemma 5. Suppose u = u(z) is an entropy solution of (1). Then for
all a,b €R, a < b

dive(x, sap(u)) = Cup in D'(Q), (54)

where Cup € Mipe(S2). Moreover, for each compact set K C € we have
Var (o p(K) < C(K,a,b,I), where I = I(x) = |p(x,u(x))| + |[¢(z,u(r))| €
Ly, .(Q) and the map I — C(K,a,b, 1) is bounded on L, .(Q).

Proof. By known representation property for non-negative distribu-
tions we derive from (5) that

div, [sign(u(z) — p)(p(z, u(z)) = @(z,p))] +
sign(u(z) — p)lwp(x) + ¥(z, u(x))] = |yl = =K, in D(Q),

where k, € M;,.(€2), k, > 0. Besides, for a compact set K C 2 we have the
estimate

fwms/mwwaw=
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| bien(ula) =) (el ) = olap), ¥ i) -

sgn(u(e) = p)y(a) + vl @) S de -+ [ felaydplie) <
AWK p.1) = [ (1) max( 9 fclo)l o)) + It - [V o) +
@)@l + [ fiwydpa).

where fx(z) € C}(Q) is a non-negative function, which equals 1 on K.
Hence,

div, [sign(u(z) — p)(p(z, u(z)) — ©(z,p))] = G, (55)
where

Cp = [pl = p = sign(u(z) — p)lwp(x) + (2, u(2))] € Mig(IT).

In particular, taking into account the equality |[y;| + |w,(7)|dz = |y, we
obtain the estimates for measures ,: |G| < kp + |7,| + [ (x, u(z))|dz.
Further, notice that

P2, sap(u)) = (p(x,a) +¢(2,0))/2+
(sign(u — a)(p(z, u) = ¢(x,a)) —sign(u = b)(p(z,u) — ¢(z,))/2

and it follows from (55) that relation (54) holds with (op = (Co — G +7a +
Y)/2. Moreover, we have

Var Cop(K) < C(K, a,b, 1) = (A(K, a, I) + A(K, b, 1))/2 +
7l + Pl (K /wmu )/ d.

To complete the proof it remains to note that the dependence of C(K, a, b, I)
on the function I(z) € Lj,.(Q) is evidently bounded.

Proof of Theorem 1. Taking into account that the sequence Ij(x) =
lo(x, up(x))| + (2, up(x))] is bounded in L} (£2), we derive from Lemma 5
that for all a,b € R

divep(w, sap(ur)) = Gy in D'(Q),

where C’“ , 18 a bounded sequence in M;,.(€2). Further, in view of condi-
tion (2) |¢(z, Sap(ur))] € L, (), which implies that the sequence (¥, is
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bounded in H

. 1 (Q). Using for instance Murat interpolation lemma (see

[16], Lemma 28) we derive that the sequence C(’f’b is pre-compact in Hj!.
Hence condition (52) is satisfied. By our assumption condition (53) is also
satisfied. By Theorem 6 we conclude that some subsequence u, converges
as r — 0o to a limit function w in Lj (). Finally, passing to the limit
as 7 — oo in relation (5) with u = u, we conclude that the limit function

u = u(x) is an entropy solution of (1).

Remark 4. Based on relation (54), we can introduce the class of
quasi-solutions, including, by Lemma 5, entropy solutions of (1), as well as
entropy sub- and super-solutions of this equation, see [14, 15]. As is seen
from the proof of Theorem 1, the statement of this Theorem remains true
for more general case when wuy(z) are quasi-solutions of equation (1).

Proof of Theorem 2. To prove Theorem 2 we use the approximation
of the flux vector. We choose a non-negative function £(s) € C§°(R) with
support in the segment [—1,0] such that [€&(s)ds = 1 and set &,(s) =

mé&(ms) for m € N, a,,(7,y) = (T Hﬁ'm Yi), ) € R x R", so that

the sequence «,, is an approximate umty on R, Consider the averaged
vector

ot 1) = (% ) (0, 10) = / ot — 7o — yow)an(, y)drdy.
Rn-+1

Then, by known properties of averaged functions, ¢, (t,z,u) €
C>(II, CY(R)) and @, (t,x,-) — @(t,x,) in LL (II,CY(R)) as m — oo.

loc

In particular,

max [ (t,,u) — ot v, u)| — 0 in L (TD) (56)

u€la,b] m—o0

Notice also that ¢,,(t,z,a) = ¢, (t,z,b) = 0.
Then, recall that div,p(t, z,p) = v, =7, +7,, where v, = w,(t, z)dtdz
and therefore
dive@m(t, 2,0) = Yip + Voups
where 7], Yo, € C(I1),

=W,k — w, in L (1), (57)

r
,‘}/mp M—00

|%§w| < \fy;\ * Q= |”y;| weakly in M,.(IT).
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From the latter relation it follows that for each f(t,z) € Cy(II), f(t,x) > 0

m—0o0

lim f(t )|V (t, ) |dtdr < / [t z)d|y,l. (58)

Observe also that v,|=o = 0 and therefore also ;|0 = 0 ( hence we can
replace in (58) the integration domain II by IT ). Indeed, if f(z) € C}(R"®)
and h > 0 then

/ F(@)d(t,z) = — / (o(t, 2, p), Vo f ydtdz — 0 as b — 0,
[0,h) xR"™ [0,h) xR"™

which implies that f{o}an f(x)dy,(t,z) = 0 for all f(xz) € CJ(R™) and,
therefore, 7,0 = 0.

Since the flux ¢, (¢, z,u) is sufficiently smooth then by the classical
Kruzhkov result [9] there exists an entropy solution w,, (¢, z) to the Cauchy

problem

up + diven(t,z,u) =0, w(0,x) = ug(z). (59)
Recall that a < ug(z) < b, and ¢, (t,x,a) = on(t,x,b) = 0 (i.e. the
constants a, b are entropy solutions of the approximate equations). By the

maximum principle we see that a < wu,,(t,z) < b. Taking p = a,b in the
relation

U — pli + divg[sign(um — p)(@m(t, T, un) — om(t, 2, p))] +
sign(u,, — p)diveen, (¢, z,p) < 0 in D'(II), (60)

we derive that u,, = u,,(t, ) is a weak solution of the approximate equation
that is
()t + divepm(t, ,uy,) = 0 in D'(ID). (61)

This implies in particular that for each p € R

(U — D)t + dive (m(t, 2, um) — @m(t, 2, p)) + divepn(t, z,p) =0 in D'(II).
(62)
Combining (60) and (62), we obtain

(0t — ) (U, — P))t + dive[0(um — ) (@m(t; T, Um) — Om(t, 7, p))] +
0(up, — p)divypm(t,z,p) <0 in D'(II).
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From this relation it follows, in the same way as in the proof of Theorem 1,
that the sequence of distributions

Ly = (9<um - p) (um - p))t + divm[e(um - p)(gpm(t, Ly um) - me(ta :U,p))]

is bounded in M, (IT) N H,_ (IT) and therefore pre-compact in H,, . (TI).

Since in view of (56)

‘QOm(t,.I,’U,m) - QO(t,,I,Um)l S ma:}s] |§Om(t,$,U) - Sp(twf)u)l — 0

u€|a, m—o0

in LY (IT) and also ¢,,(t,z,p) — ¢(t,z,p) — 0in L (II) we see that the

loc
m—oo

sequence

£'2m — dlvw[e(um - p)(go(t, €z, um) - Spm(ta Z, um) - Sp(ta xap) + Spm(ta xap))]

converges to zero in H, ! (I). Thus, the sequence

(0(wm — p)(um — p))i + dive [0(wm — p)(p(t, T, um) — ©(t, 2,p))] = Lim + Lom

is pre-compact in H; ! (IT). By Corollary 2 we conclude that after extraction
of a subsequence, if necessary, the sequence u,, converges in L}, (IT) to some

function u = wu(t,z). Clearly, a < u(t,z) < b. Taking into account (56)

we see that o, (t, 2, u,) — ©(t,z,u) as m — oo in L} (II). Passing to the

limit as m — oo in relation (61), we obtain that
ug + divyp(t, x,u) =0 in D'(IT),
i.e. u(t,x) is a weak solution of (6). To show that u(¢, x) is also an entropy
solution of this equation, remark that, as follows from (8) applied for the
approximate equation, for each p € R, f(t,z) € CL(II)
[ Wt =l i (it = ) (o2, 10) = 9,91, ) -
i
sign(t,, — p)”y;p(t, x) f(t, :z:)} dtdx +

/H P40yt ldtde + [ o) = plf(0.2)do > 0

Passing in this relation to the limit as m — oo and taking into account
(57), (58), we derive

[l =l sigate = ) (ot 2,0) = (6 9), V) -
sign(u — p)w,(t, z) f(t, )] dtdx +
/Hf(t,x)d\%?\(t,x) + [ |uo(x) — p|f(0,2)dr >0 (63)

R?’L
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for such p € R that the level set u~!(p) has zero Lebesgue measure ( as is
easy to see, then sign(u,,(t,z) — p) — sign(u(t,z) — p) as m — oo a.e. on
IT ). Since the set P of such p has full measure and, therefore, is dense, for
an arbitrary p € R we can choose sequences p, < p < p}, pF € P,r € N
convergent to p. Taking a sum of relations (63) with p = p and p = p
and passing to the limit as » — oo, with account of the point-wise relation
sign(u — p;) + sign(u — p;") nd 2sign(u — p), we obtain that (63) holds for
all p € R, i.e. u(t,z) is an entropy solution of the problem (6), (7). The
proof is complete.
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