
GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A

VISCOELASTIC TWO-PHASE MODEL WITH NONLOCAL

CAPILLARITY

ALEXANDER DRESSEL & CHRISTIAN ROHDE

Abstract. The aim of this paper is to study the existence and uniqueness of solu-
tions of an initial-boundary value problem for a viscoelastic two-phase material with
capillarity in one space dimension. Therein, the capillarity is modelled via a nonlocal
interaction potential. The proof relies on uniform energy estimates for a family of
difference approximations: with these estimates at hand we show the existence of a
global weak solution. Then, by means of a nontrivial variant of the arguments in [2],
uniqueness and optimal regularity are proven. The results of this paper also apply to
interaction potentials with non-vanishing negative part and constitute a base for an
analysis of the time-asymptotic behaviour.

1. Introduction

This paper is concerned with the global existence and uniqueness of weak solutions to
the initial value problem

(1.1)
wt − vx = 0,

vt − [σ(w) + Lεw]x = µvxx,

(1.2) v(x, 0) = v0(x), w(x, 0) = w0(x),

where the real-valued unknown functions v = v(x, t) and w = w(x, t) of (x, t) ∈
[0, 1]× [0,∞) represent the velocity and the strain field in Lagrangian coordinates; we
impose either the inhomogeneous Dirichlet boundary condition

(1.3)

∫ 1

0

w(y, t)dy =

∫ 1

0

w0(x)dx ∀t ∈ [0,∞)

or the homogeneous Neumann boundary condition

(1.4) σ(w(1, t)) + (Lεw)(1, t) = 0 ∀t ∈ [0,∞).

In system (1.1), the diffusion coefficient µ > 0 is fixed, and the deformation stress
w 7→ σ(w) is given by

(1.5) σ(w) = w3 − w.

For λ > 0, the capillarity stress Lε is defined by
1
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(1.6) Lεu = λ(φε ∗ u− u).

Therein, u 7→ φε ∗ u is the convolution operator given by

(1.7) (φε ∗ u)(x) =

∫ 1

0

φε(x− y)u(y) dy, φε(x) =
1

ε
φ
(x

ε

)

.

More specific assumptions on the non-local interaction kernel φ : R → R will be given
in the next section. Here we only note that the interaction kernel is also allowed to
have nonvanishing negative part.

The function σ : R → R in (1.5) represents a toy example of a material law for a
homogeneous viscoelastic two-phase medium. The stored energy function associated
to σ is

(1.8) S(w) =

∫ w

0

σ(u) du =
1

4
w4 − 1

2
w2.

It has the form of a double-well potential with minima at ±1. In case of w ∈
(−∞,−

√

1/3) (w ∈ (
√

1/3,∞)) a state w is referred to be in the low (high) strain

phase. On the interval J = (−
√

1/3,
√

1/3), the transitional region, the function
S ′ = σ is decreasing.

Due to the double-well structure of S, the energy minimizing configuration allows for
mixtures of the high and low strain phase, but, at least for nonnegative φε the capillarity
stress Lε penalizes sharp interphases. This can be most easily seen from the fact that
the evolution process governed by (1.1) dissipates the nonlocal energy

(1.9)
H(v, w) =

∫ 1

0

S(w(x)) +
v(x)2

2
dx+ E(w),

E(w) =
λ

4

∫ 1

0

∫ 1

0

φε(x− y)(w(x) − w(y))2 dydx.

A local version of (1.9) is given by

(1.10) Hloc(v, w) =

∫ 1

0

S(w(x)) +
v2

2
+
γλε2

2
w2

x(x) dx.

This energy is dissipated by the more frequently addressed third-order evolutionary
system

(1.11)
wt − vx = 0,

vt − [σ(w) + γλε2wxx]x = µvxx.

We will show in the next section in more detail how the nonlocal and the local
model are connected. In particular we relate the positive constant γ in (1.10) and
(1.11) to the interaction kernel. Concernig the different modelling background we refer
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to [6, 12, 10]. Here we mention that in contrast to (1.11), solutions of (1.1) do not
require more regularity as needed for the solution of (1.1) in the case λ = 0.

Moreover and more important, an advantage of the nonlocal model 1.1 is the fact
that ,in case of φε having negative parts, solutions with a finite scale microstructure
can develop (cf. [11]) and it is supposed that, in general, the time-asymptotic limit of
solutions to (1.1) contains multiple phase transitions induced by the negative part of
the kernel. This behaviour cannot be modelled within the approach (1.11).

For non-negative φε, the existence of weak solutions to system (1.1) for given initial
values (on the spatial domain R) was proven for arbitrary Lipschitz continuous σ with
a variational technique (see [13], Theorem 5.4) relying on the ideas in [4]. This result
is extended in this contribution in various directions: initial boundary value problems
are addressed, partly negative kernels are treated, and optimal regularity is proven
under quite rough initial conditions. Note that we merely assume that the energy of
the initial data is bounded.

For the existence of solutions for the initial boundary value problem for (1.11) we
refer to [2] and [7] in the case λ = 0. Existence and asymptotic behaviour of solutions
to (1.11) with λ ≥ 0 has been studied in [3, 8]. Furthermore, for the non-stationary
local model, global existence and time-asymptotic convergence to a stationary solution
for bounded spatial domains in higher dimension were studied (see [8] and references
therein). Note that, in the analysis of the local model, the initial strain w0 has to be
uniformly bounded.

Let us describe the paper’s content in more detail. To obtain a global existence
result for weak solutions of our viscoelastic system we will in the first step consider a
spatial difference approximation to system (1.1) and obtain uniform energy estimates.
With these estimates at hand, we succeed to construct a weak solution to system (1.1).

Then, by a nontrivial variant of the techniques in [2], we prove optimal regularity.
Furthermore, for any of these weak solutions, we show by means of a detailed analysis
of weak solutions close to t = 0, also referred to as time layer estimates, that there
exists an L∞ bound on (0, 1) × (δ,∞) for any δ > 0. Note that, in contrast to [2] and
[3], the initial strain w0 has not to be contained in L∞(0, 1).

Based on the regularity results we obtain uniqueness by a Gronwall argument. In
order to apply these techniques, we perform careful Green’s function estimates.
The regularity results of this paper will also be used as a base for the analysis of the
time-asymptotic behaviour (cf. [5]).

The paper is organized as follows. In Section 2, we specify the assumptions on our
non-local model in more detail and relate this model to the local one. In Section 3, we
introduce some notation and formulate the main result. In Section 4, we sketch out
and perform the proof of the main result.

2. Specification of the nonlocal model and its relation to the local

one

It is not hard to show that, for µ = 0, system (1.1) can be derived from the stationary
action principle with the Hamiltonian H in (1.9).
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We assume that

(2.1) φ ∈ L∞(R)

and

(2.2) φ(x) = φ(−x) ∀x ∈ R.

From (2.1) and definition (1.6) it follows for any u ∈ L∞(0, 1)

‖Lεu‖∞ ≤ C

ε
‖u‖∞,

where C depends on the normalized interaction kernel φ.

Define the bilinear form Bε via

(2.3) Bε(u1, u2) =
λ

2

∫ 1

0

∫ 1

0

φε(x− y)(u1(x) − u1(y))(u2(x) − u2(y))dydx,

where λ > 0.

For any ε > 0, there exists a finite constant C(ε) such that

(2.4) |Bε(u1, u2)| ≤ C(ε)‖u1‖L2(0,1)‖u2‖L2(0,1) ∀u1, u2 ∈ L2(0, 1).

From (1.9) and (2.3) we see that, for any w ∈ L2(0, 1), we have

(2.5) E(w) =
1

2
Bε(w,w).

Exploiting the symmetry (2.2), it is not hard to show that, for any ε > 0, the operator
Lε defined in (1.6) fulfills the following relation (cf. [12], p. 112):

(2.6)

∫ 1

0

u1(x)(Lεu2)(x)dx = Bε(u1, u2) ∀u1, u2 ∈ L2(0, 1).

In this sense, by virtue of relation (2.5), the operator Lε is associated to the nonlocal
interaction potential E.

Finally, we add some comments on the relationship between the local Cahn-Hilliard
type (also called Van-der-Waals type) energy and the nonlocal model under the moment
assumption

(2.7) 0 <

∫ ∞

0

xnφ(x)dx <∞ for n = 2, 3.

In case of w being in C2([0, 1]), the nonlocal model (1.1) can be related to the local
one by means of the following Taylor expansion argument: for ε small there holds
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∫ 1

0

∫ 1

0

φε(x− y)(w(x) − w(y))2dydx

=

∫ 1

0

∫ 1

0

φε(x− y)
[

wx(x)(x− y) +O((x− y)2)
]2
dydx,

and therefore

(2.8)

∫ 1

0

∫ 1

0

φε(x− y)(w(x) − w(y))2dydx = I1 + I2,

where

(2.9)

I1 =

∫ 1

0

∫ 1

0

φε(x− y)wx(x)
2(y − x)2dydx,

I2 =

∫ 1

0

∫ 1

0

φε(x− y)O(|x− y|3)dydx.

Set

(2.10) ȳ := x− y, ỹ :=
ȳ

ε

and

(2.11) Mε,x :=

{

x− y

ε
∈ R | y ∈ [0, 1]

}

.

From definitions (2.9), (2.10) and (2.11) it directly follows

I1 =

∫ 1

0

(
∫ 1

0

φε(x− y)(x− y)2dy

)

wx(x)
2dx

=

∫ 1

0

(

∫

M1,x

φε(ȳ)ȳ
2dȳ

)

wx(x)
2dx = ε2

∫ 1

0

(

∫

Mε,x

φ(ỹ)ỹ2dỹ

)

wx(x)
2dx,

I2 =

∫ 1

0

∫ 1

0

φε(x− y)O(|x− y|)3)dydx

=

∫ 1

0

∫

M1,x

φε(ȳ)O(|ȳ|3)dȳdx = ε3
∫ 1

0

∫

Mε,x

φ(ỹ)O(|ỹ|3)dỹdx.

Due to (2.7), for any x ∈ [0, 1],
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lim
ε→0

∫

Mε,x

φ(ỹ)ỹ2dỹ =

∫ 0

−∞

φ(ỹ)ỹ2dỹ
(2.1)
=

1

2

∫ ∞

−∞

φ(ỹ)ỹ2dỹ =: γ

and

sup
ε>0,x∈[0,1]

∣

∣

∣

∣

∣

∫ 1

0

∫

Mε,x

φ(ỹ)O(|ỹ|3)dỹdx
∣

∣

∣

∣

∣

<∞.

In particular,

I1 = ε2γ

∫ 1

0

wx(x)
2dx+O(ε3).

Hence, due to I2 = O(ε3) and (2.8), we obtain

∫ 1

0

∫ 1

0

φε(x− y)(w(x) − w(y))2dydx = ε2γ

∫ 1

0

wx(x)
2dx+O(ε3).

We formally obtain the local analogue of the energy (1.9), namely the Cahn-Hilliard
(Van-der-Waals) type energy for phase separation given by (1.10) corresponding to
system (1.11).

3. Notation and main theorem

In this section, we formulate the main result about the existence and asymptotic be-
haviour of weak solutions to system (1.1) with boundary condition (1.3) (resp. (1.4)).

A locally integrable function (v, w) : [0, 1] × [0,∞) → R
2 is referred to as a weak

solution of system (1.1) iff v, σ(w) and Lεw are locally integrable on (0, 1) × (0,∞)
and, for any ψ ∈ C∞

0 ((0, 1) × (0,∞)),

∫

[0,∞)

∫

[0,1]

−ψtw + ψxv dxdt = 0,

∫

[0,∞)

∫

[0,1]

−ψtv + ψx [σ(w) + Lεw] dxdt =

∫

[0,∞)

∫

[0,1]

µψxxv dxdt.

Before we formulate the main result, we make some remarks on the stored energy S in
(1.8), the functional E defined in (1.9) and the operator Lε defined in (1.6).

From (1.8) it easily follows

(3.1) lim
|z|→∞

S(z)

z2
= ∞.

In particular, there exists a finite real number C such that

S(z) ≥ C + z2 ∀z ∈ R.
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Furthermore, due to definition (1.9) and relation (2.4), there exists a finite real number
C̄(ε) such that

|E(w)| ≤ C̄(ε)‖w‖2
L2(0,1) ∀w ∈ L2(0, 1).

Due to (1.6),

(3.2) Lεw = −λw + L̂εw, where L̂εw = λφε ∗ w.
The main result of this paper can be formulated as follows:

Theorem 3.1. Assume that, in system (1.1), the scaling parameter ε and the diffusion
coefficient µ are strictly positive, that the initial values (v0, w0) are Lebesgue-measurable
on (0, 1) and the functional H defined in (1.9) is bounded from above:

H(v0, w0) <∞.

In case of the homogeneous Neumann boundary condition (1.4) additionally assume
that

w0 is continuous at x = 1 with lim
x→1

σ(w0(x)) + (Lεw0)(x) = 0.

Then, the following claims are true:

(i). There exists a global weak solution

(3.3) (v, w) ∈ C0([0,∞), L2(0, 1) × L2(0, 1))

of system (1.1) fulfilling the initial value condition (1.2) and the Dirichlet boundary
condition (1.3) (resp. the homogeneous Neumann boundary condition (1.4)). Fur-
thermore, in case of the homogeneous Neumann boundary condition (1.4), for any
t ∈ [0,∞), w(·, t) is continuous at x = 1 and

(3.4) lim
x→1

σ(w(x, t)) + (Lεw)(x, t) = 0.

(ii). For this weak solution there holds

(3.5) H(v(·, t), w(·, t)) ≤ H(v0, w0) ∀t ≥ 0,

(3.6) (v, w) ∈ L∞(δ,∞;H1,∞(0, 1)) × L∞((0, 1) × (δ,∞)) ∀δ > 0

and, in case of the Dirichlet boundary condition (1.3),

(3.7) v ∈ L2(0,∞;H1,2
0 (0, 1)).

(iii). On the other hand, any weak solution (v, w) ∈ C0([0,∞), L2(0, 1) × L2(0, 1)) to
one the aforementioned initial-boundary value problems with (3.5) is unique.
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Remark 3.1. (i). On the initial values (v0, w0), we only assume that the Hamiltonian
H(v0, w0) is bounded. In particular, the initial strain w0 has not to be contained in
L∞(0, 1) (cf. [2] and [3]).
(ii). In general, the regularity is optimal: it is well known that, for stationary solutions
to system (1.1), the strain w may be discontinuous (cf. [1]). As the heat kernel is
explicitly given, we obtain optimal regularity for the velocity field v by means of Green’s
function estimates.
(iii). In contrast to [2], we do not assume v0 ∈ H1,2

0 (0, 1). In fact, we only assume v0 ∈
L2(0, 1) and we will see that, under the Dirichlet boundary condition (1.3), the weak so-
lution (v, w) constructed below a posteriori is contained in C0([0,∞), L2(0, 1)×L2(0, 1))
and fulfills relation (3.7). These conditions together with (1.3) imply uniqueness for
the Dirichlet case. The treatment of the homogeneous Neumann boundary condition
will be reduced to the Dirichlet case condition by means of a mirroring argument.

4. Proof of main theorem

The proof is subdivided into six parts:

(i) uniform energy estimates on a family of difference approximations for the
Dirichlet boundary condition (1.3),

(ii) construction of a weak solution as a weak accumulation point of this family in
an appropriate space,

(iii) analysis of this weak solution close to t = 0 (time layer estimates),
(iv) proof of uniqueness,
(v) Green’s function estimates on the velocity field v,
(vi) treatment of the homogeneous Neumann boundary condition (1.4).

Remark 4.1. In fact, we first prove the existence, regularity and uniqueness of a weak
solution to the Dirichlet boundary condition (1.3) and then, in part (vi), apply a mirror-
ing argument in order to construct a solution to the homogeneous Neumann boundary
condition (1.4).

4.1. Energy estimates on difference approximations. In order to construct the
difference approximations in part (i) of the proof, we introduce some notation.

Notation 4.1. For an integer n ≥ 2, define h = 1
n−1

, and, for i = 1, · · · , n, set

xi = (i − 1)h. For an (n − 1)-vector u, let P
(n)
0 u : [0, 1] → R denote the piecewise

constant function with (P
(n)
0 u)(y) = u1 for 0 = x1 ≤ y ≤ x2 and (P

(n)
0 u)(y) = ui for

xi < y ≤ xi+1, (i = 2, · · · , n−1). Furthermore, for an n-vector u, let P
(n)
1 u : [0, 1] → R

denote the piecewise linear function with (P
(n)
1 u)(xi) = ui for i = 1, · · · , n.

In this subsection, for fixed n ∈ N, set

(4.1) Xn := {u ∈ R
n | u1 = un = 0} ,

and, for i = 1, 2, write Pi instead of P
(n)
i .

Consider the following initial value problem for (v,w) : [0,∞) → R
n ×R

n−1:
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(4.2)
wt − δhv = 0,

vt − δ̄hg(w) = µδ̄hδhv,

(4.3) (v(0),w(0)) = (v0,w0) ∈ Xn ×R
n−1.

Therein, for any u ∈ R
n−1, the mapping u 7→ g(u) is defined by

(4.4) g(u)i = σ(ui) + (Lε(u))i,

where σ is given in (1.5) and Lε : Rn−1 → R
n−1 is set to

(Lε(u))i = (Lε(P0u))(xi).

For any u ∈ Xn, δhu ∈ R
n−1 denotes the forward difference quotient defined by

(4.5) (δhu)i =
ui+1 − ui

h
for i = 1, · · · , n− 1,

and, for any u ∈ R
n−1, set

(4.6)

(δ̄hu)1 = (δ̄hu)n = 0,

(δ̄hu)i =
ui − ui−1

h
for i = 2, · · · , n− 1.

System (4.2) is our spatial discretization of system (1.1) to step-size h.

Due to the classical existence theory for ODE, for some T > 0, there exists a solution
of the initial value problem (4.2) on the time interval [0, T ] with

(4.7) (v(·),w(·)) ∈ C1([0, T ],Rn ×R
n−1), (v(0),w(0)) = (v0,w0)).

Due to definition (4.6),

(4.8) Range(δ̄h) ⊂ Xn.

According to (4.8), (4.2) and (4.3),

v(t) = v0 +

∫ t

0

δ̄h (g(w(s)) + µδhv(s)) ds ∈ Xn ∀t ∈ [0, T ].

In particular,

(4.9) v1(t) = vn(t) = 0 ∀t ∈ [0, T ].

By definition (4.5), for any u ∈ Xn,

(4.10) P0(δhu) = ∂x(P1u)
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in the weak sense and therefore

(4.11) h |δhu|2 =

∫ 1

0

∂x(P1u)(x)2dx ∀u ∈ Xn.

Recall the definition of P0 = P
(n)
0 in Notation 4.1 and obtain for any C1 solution

(v,w) = (v(t),w(t)) of (4.2):

d

dt

∫ 1

0

(P0w(t))(x)dx = h
d

dt

n−1
∑

i=1

(w(t))i = h

n−1
∑

i=1

(wt(t))i

(4.2)
= h

n−1
∑

i=1

(δhv(t))i
(4.5)
=

n−1
∑

i=1

vi+1(t) − vi(t) = vn(t) − v1(t)
(4.9)
= 0.

In particular,

(4.12)

∫ 1

0

(P0w(t))(x)dx =

∫ 1

0

(P0w(0))(x)dx ∀t ∈ [0,∞).

In this sense, the difference approximation is consistent with the displacement bound-
ary condition (1.3).

Due to definitions (4.1) and (4.8),

(4.13) x1 = xn = (δ̄hy)1 = (δ̄hy)n = 0 ∀(x,y) ∈ Xn ×R
n−1.

In particular, for any (x,y) ∈ Xn ×R
n−1,

x · (δ̄hy) =

n
∑

i=1

xi(δ̄hy)i
(4.13)
=

n−1
∑

i=2

xi(δ̄hy)i
(4.6)
=

n−1
∑

i=2

xi
yi − yi−1

h

=
n−1
∑

i=2

xiyi

h
− xiyi−1

h
=

n−1
∑

i=2

xiyi

h
−

n−2
∑

i=1

xi+1yi

h

(4.13)
=

n−1
∑

i=1

xiyi

h
−

n−1
∑

i=1

xi+1yi

h
= −

n−1
∑

i=1

xi+1 − xi

h
yi

(4.5)
= −(δhx) · y,

and we obtain

(4.14) x · (δ̄hy) = −(δhx) · y ∀(x,y) ∈ Xn ×R
n−1.

Recall the definition (1.8) of the stored energy function S and set
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(4.15) Eε,n(v,w) := h

[

n−1
∑

i=1

S(wi) +
1

2
v2

i

]

+ Bε(w,w).

In particular,

(4.16)
d

dt
Eε,n(v,w) = hg(w) · wt + hv · vt.

Therein, Bε is the discrete analogue to the bilinear form defined in (2.3):

(4.17) Bε(u1,u2) =
1

2
u1 · Lεu2.

The energy Eε,n defined in (4.15) is the discretized analogue of the Hamiltonian H in
(1.9).

The aim of this section is to prove the following lemma:

Lemma 4.2. For any (v0,w0) ∈ Xn ×R
n−1, a solution

(v(·),w(·)) ∈ C1([0,∞);Xn ×R
n−1)

of the initial-value problem (4.2)-(4.3) exists globally in time. More precisely, the
mapping

t 7→ (P1v(t), P0w(t)),

is uniformly bounded in C0([0,∞);L2(0, 1)×L2(0, 1)) by a constant C = C(H(P1v0, P0w0)),
and, for any t > 0,

(4.18)
d

dt
Eε,n(v(t),w(t)) = −µ

∫ 1

0

∂x(P1v(t))(x)2dx ≤ 0.

Furthermore, there exists a finite real number K = K(H(P1v0, P0w0)) such that

(4.19) Eε,n(v(t),w(t)) ≥ K + ‖P0w(t)‖L2(0,1) ∀t ∈ (0,∞).

Proof of Lemma 4.2: Our aim is to derive an energy estimate for the solution (v(·),w(·))
of (4.2) with (4.7). With this estimate at hand, we will prove global existence by means
of a bootstrap argument.

Due to (4.14), we have

(4.20) g(w) · δhv + v · δ̄hg(w) = g(w) · δhv − g(w) · δhv = 0.

Scalar multiplication of hg(w) (resp. hv) to the first (resp. second) equation in (4.2)
from the left, addition of the resulting two equations and exploiting relation (4.20) give
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(4.21) hg(w) · wt + hv · vt = hµv · (δ̄hδhv) = −hµ|δhv|2 ≤ 0.

Relation (4.21) together with (4.11) and (4.16) implies relation (4.18).

It remains to verify relation (4.19).

From (4.15) we conclude that

Eε,n(v(t),w(t)) ≥ Bε(w(t),w(t)) +

∫ 1

0

1

4
(P0w(t))(x)4 − 1

2
(P0w(t))(x)2

where Bε is the bilinear form in (4.17).

There holds for some constant C = C(ε)

|Bε(w(t),w(t))| ≤ C ‖P0w(t)‖2
L2(0,1)

and, for any δ > 0, we have

∫ 1

0

(P0w)(x)2dx ≤ δ +
1

4δ

∫ 1

0

(P0w)(x)4dx.

Hence, relation (4.19) follows and Lemma 4.2 has been proven. 2

4.2. Construction of weak solution. Recall the definition of P
(n)
0 and P

(n)
1 in No-

tation 4.1 and let {(P (n)
1 v(·), P (n)

0 w(·))}n∈N be a sequence of solutions of (4.2) in
C1([0,∞), L2(0, 1) × L2(0, 1)) with

lim
n→∞

(P
(n)
1 v0, P

(n)
0 w0) = (v0, w0) in L2(0, 1)

such that

(4.22)

∫ 1

0

(P
(n)
0 w0)(x)dx =

∫ 1

0

w0(x)dx ∀n ∈ N.

Such a sequence exists: with (w0)i being set to

(w0)i =
1

xi+1 − xi

∫ xi+1

xi

w0(x)dx for i = 1, · · ·n− 1,

(where xi is defined in Notation 4.1) relation (4.22) is fulfilled.

According to Lemma 4.2 there exists a finite real number C(ε, v0, w0) (also not depend-
ing on n) such that

(4.23) Eε,n(v(t),w(t)) ≤ C(ε, v0, w0) ∀t ∈ [0,∞).

From (4.18) we obtain
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(4.24)

Eε,n(v(0),w(0))− Eε,n(v(∞),w(∞))

= µ

∫ ∞

0

∫ 1

0

∂x(P
(n)
1 v(t))(x)2dxdt

= µ‖∂x(P
(n)
1 v(·))‖2

L2([0,∞)×[0,1]).

Note that, due to (4.19), the mapping

t 7→ Eε,n(v(t),w(t))

is bounded from below. Furthermore, due to (4.18), this mapping is monotone in t.

From (4.23) and (4.24) we conclude that the sequence {P (n)
1 v(·)}n∈N is bounded in

L2(0,∞;H1,2
0 (0, 1)) by a constant K(µ, v0, w0). Hence, from the weak lower semiconti-

nuity of the L2(0,∞;H1,2(0, 1)) - norm we conclude that, for any weak accumulation

point v ∈ L2(0,∞;H1,2
0 (0, 1)) of the sequence {P (n)

1 v}n∈N,

(4.25)

∫ ∞

0

∫ 1

0

v(x, t)2 + vx(x, t)
2dxdt ≤ K(µ, v0, w0).

Due to Lemma 4.2, for any finite T > 0, the sequence {P (n)
0 w}n∈N has a weak accu-

mulation point in w ∈ L2(0, T ;L2(0, 1)).

Without loss of generality, we can assume that {(P (n)
1 v, P

(n)
0 w)}n∈N weakly converges

in L2(0, T ;L2(0, 1)).

In particular, the spatial integral of (P
(n)
1 v, P

(n)
0 w) strongly converges for n→ ∞, and,

as, due to the construction of the difference approximations,

∫ 1

0

(P
(n)
0 w)(x, t)dx =

∫ 1

0

w0(x)dx ∀n ∈ N,

we conclude that, for any finite T > 0, the weak limit (v, w) solves (1.1), and, at any
Lebesgue point t ∈ (0,∞) of t 7→ w(·, t) in L2(0, T ;L2(0, 1)) there holds

∫ 1

0

w(x, t)dx =

∫ 1

0

w0(x)dx.

By means of a similar argument, we conclude that, at any Lebesgue point t ∈ (0,∞) of
t 7→ v(·, t) in L2(0,∞;H1,2(0, 1)), the traces v(0, t) and v(1, t) of the weak limit point
v are defined and

(4.26) v(0, t) = v(1, t) = 0 for almost all t ∈ (0,∞).

In particular,
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(4.27) v ∈ L2(0,∞;H1,2
0 (0, 1)).

Now, we will show relation (3.3) for the weak solution (v, w). In particular, it fulfills
the initial-value problem in the sense that the evaluation

(v, w) 7→ (v(·, 0), w(·, 0)) = (v0, w0)

is well defined.

From (4.25) and the first equation in (1.1) we conclude that

(4.28) vx, wt ∈ L2(0,∞;L2(0, 1)).

From w0 ∈ L2(0, 1) and (4.28) we conclude, that, for any t ∈ (0,∞), the integral

w(·, t) = w0 +

∫ t

0

wt(·, s)ds

is contained in L2(0, 1) and that

(4.29) w ∈ C0([0,∞);L2(0, 1)).

From Green’s function estimates in Section 4.6 we easily obtain that

(4.30) v ∈ C0([0,∞);L2(0, 1))

and we have proven part (i) of Theorem 3.1 under the Dirichlet boundary condition
(1.3).

Furthermore, after multiplying σ(w(x, t)) + (Lεw)(x, t) to the first and v(x, t) to the
second equation in (1.1) and spatial integration over (0, 1), and exploiting relation
(4.26), we obtain for a.e. t ∈ (0,∞)

∫ 1

0

(σ(w(x, t)) + (Lεw)(x, t))wt(x, t) + v(x, t)vt(x, t) = −µ
∫ 1

0

vx(x, t)
2dx ≤ 0.

Recall relations (2.5), (2.6) and that, due to (1.8), we have S ′ = σ.

Hence, we obtain for the Hamiltonian H defined in (1.9) for a.e. t ∈ (0,∞)

d

dt
H(v(·, t), w(·, t)) ≤ 0

and relation (3.5) follows.
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4.3. L∞ estimates on the strain. The aim of this section is to prove relation (3.6)
for any δ > 0 by means of appropriate time-layer estimates.

Recall that S = S(w) denotes the stored energy function defined in (1.8). Furthermore,
for any (z1, z2) ∈ R

2 let σ̄ fulfill the following relation

σ̄(z1, z2)(z1 − z2) = σ(z1) − σ(z2).

A straightforward calculation gives

(4.31) σ̄(z1, z2) = z2
1 + z1z2 + z2

2 − 1

and, for its partial derivatives,

(4.32) σ̄z1
(z1, z2) = 2z1 + z2, σ̄z2

(z1, z2) = 2z2 + z1.

The L∞(0, 1)-bound of w(·, t) for t ≥ δ > 0 of the main theorem under the Dirichlet
boundary condition (1.3) follows from the following lemma.

Lemma 4.3. Under the assumptions of Theorem 3.1 and the Dirichlet boundary con-
dition (1.3), for any δ > 0, the function (x, t) 7→ w(x, t) is contained in L∞((0, 1) ×
(δ,∞)).

Proof: For x, y ∈ [0, 1] set

(4.33) q(x, y, t) := µ(w(y, t)− w(x, t)) +

∫ x

y

v(z, t)dz.

From definition (4.33) it follows immediately, that, for

a(x, y, t) =

∫ x

y

v(z, t)dz

we have

(4.34) w(x, t) =
1

µ
[a(x, y, t) − q(x, y, t)] + w(y, t).

In the first step, we will prove the following differential equality:

(4.35)
d

dt
S(q(x, y, t))

= σ(q(x, y, t)) ×
(

(L̂εw)(x, t) − (L̂εw)(y, t)− λ

µ
(a(x, y, t) − q(x, y, t))

+σ(
1

µ
[a(x, y, t) − q(x, y, t)] + w(y, t)) − σ(w(y, t))

)

.
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From v ∈ L∞(0,∞;L2(0, 1)) we know that there exists a constant K > 0 not depending
on (x, y, t) such that

|a(x, y, t)| ≤ K.

Due to (4.29), there exists a point y ∈ (0, 1) and a strictly positive finite real number
C such that

|w(y, t)| ≤ C a.e. on (0, 1).

For x ∈ [0, 1] and t ∈ [0,∞) set

V (x, t) =

∫ x

0

v(z, t)dz = a(x, 0, t).

By integration of the second equation of (1.1) in the spatial variable we get for almost
every t ∈ (0,∞) and x, y ∈ (0, 1)

d

dt

∫ x

y

v(z, t)dz = Vt(x, t) − Vt(y, t)

= σ(w(x, t)) + (Lεw)(x, t) + µvx(x, t)

− (σ(w(y, t)) + (Lεw)(y, t) + µvx(y, t)).

Recalling also the first equation of (1.1) we summarize for convenience of the reader:

(4.36)

wt = vx in (0, 1),

d

dt

∫ x

z=y

v(z, t)dz = σ(w(x, t)) + (Lεw)(x, t) + µvx(x, t)

− (σ(w(y, t)) + (Lεw)(y, t) + µvx(y, t)).

With these identities at hand, we get for almost all t ∈ (0,∞) and x, y ∈ (0, 1)



Global existence and uniqueness of solutions for a viscoelastic two-phase model 17

d

dt
q(x, y, t)

(4.33)
= µ(wt(y, t) − wt(x, t)) +

d

dt

∫ x

z=y

v(z, t)dz

(4.36)
= µ(vx(y, t) − vx(x, t)) + σ(w(x, t)) + (Lεw)(x, t) + µvx(x, t)

− (σ(w(y, t)) + (Lεw)(y, t) + µvx(y, t))

= σ(w(x, t)) + (Lεw)(x, t) − (σ(w(y, t)) + (Lεw)(y, t))

(4.34)
=

λ

µ
(q(x, y, t) − a(x, y, t)) + (L̂εw)(x, t) − (L̂εw)(y, t)

+σ(
1

µ
(a(x, y, t) − q(x, y, t)) + w(y, t)) − σ(w(y, t)),

where L̂ε is given by relation (3.2).

In particular, relation (4.35) follows for almost all t ∈ (0,∞) and x, y ∈ (0, 1).

In the second step, by means of relation (4.35), we will show that there exist real

numbers K̂ and K̃ depending on the initial values (v0, w0) such that

(4.37) |q(x, y, t)| ≥ K̂ ⇒ d

dt
(S(q(x, y, t))) ≤ −K̃ |S(q(x, y, t))|

3

2 .

From w ∈ L∞(0,∞;L2(0, 1)) we conclude that

(4.38) sup
(x,y,t)∈(0,1)×(0,1)×(0,∞)

∥

∥

∥
(L̂εw)(x, t) − (L̂εw)(y, t)

∥

∥

∥

L2(0,1)
<∞.

Recall from (1.5) that

σ(z) = z3 − z.

Let c1, c2 and c3 be given real numbers. Then, we obtain

(4.39) σ(z) (σ(c1 − z) + c2 + c3z) = −z6 + P (c1, c2, c3, z),

where z 7→ P (c1, c2, c3, z) is a fifth-order polynomial function with coefficients depend-
ing on c1, c2 and c3.

From (4.39) it easily follows that there exist strictly positive real numbers K̂ =

K̂(|c1|, |c2|, |c3|) and K̃ = K̃(|c1|, |c2|, |c3|) (where K̂ and K̃ are monotone increasing
in |ci| for any i ∈ {1, 2, 3}) such that
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(4.40) |z| ≥ K̂ ⇒ σ(z) (σ(c1 − z) + c2 + c3z) ≤ −K̃ |S(z)|
3

2 .

In particular, the negative contribution from the z6-term on the right-hand side of
relation (4.39) dominates in the following sense:

(4.41) |z| ≥ K̂ ⇒ σ(z) (σ(c1 − z) + c2 + c3z) < 0.

Due to (4.35), (4.38) and (4.40), relation (4.37) follows for some strictly positive real

numbers K̂ and K̃.

The L∞ bound now easily follows from Lemma 4.4 below. 2

Lemma 4.4. Let α,C and y0 be strictly positive real numbers with α ∈ (1,∞). Then,
any solution of the differential inequality

d

dt
y ≤ −C |y|α , y(0) = y0

is majorized by the solution of the differential equality

d

dt
ȳ = −Cȳα, ȳ(0) = y0

given by

ȳ(t) = C (α− 1)

(

t +

(

C(α− 1)

y0

)α−1
)

−1

α−1

.

Proof : elementary calculus 2

4.4. Uniqueness. In this section, we prove part (iii) of Theorem 3.1 under the Dirich-
let boundary condition (1.3).

For i = 1, 2 let (w(i), v(i)) ∈ C0([0,∞);L2(0, 1)) be weak solutions of (1.1) with

sup
t∈[0,∞)

H(w(i)(·, t), v(i)(·, t)) <∞ for i = 1, 2

and

(4.42) w(1)(·, 0) − w(2)(·, 0) = v(1)(·, 0) − v(2)(·, 0) = 0.

Then,

(∆, ∆̃) := (w(1) − w(2), v(1) − v(2))

is a weak solution of the following system:

(4.43)
∆t − ∆̃x = 0,

∆̃t −
[

σ̄(w(1), w(2))∆ + Lε∆
]

x
= µ∆̃xx,
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where σ̄ is given by (4.31).

We have for any θ > 0

∫ 1

0

[(

θ + σ̄(w(1), w(2))
)

∆ + Lε∆
]

∆̃x +
[

σ̄(w(1), w(2))∆ + Lε∆
]

x
∆̃dx

(3.7)
=

∫ 1

0

[(

σ̄(w(1), w(2))
)

∆ + Lε∆
]

∆̃x −
[

σ̄(w(1), w(2))∆ + Lε∆
]

∆̃x + θ∆∆̃xdx =

∫ 1

0

θ∆∆̃xdx.

Hence, after multiplying
(

θ + σ̄(w(1), w(2))
)

∆ + Lε∆ to the first and ∆̃ to the second
equation in (4.43) and spatial integration over (0, 1), we obtain for a.e. t ∈ (0,∞)

∫ 1

0

((

θ + σ̄(w(1), w(2))
)

∆ + Lε∆
)

∆t(x, t) + ∆̃(x, t)∆̃t(x, t) + θ∆∆̃x(x, t)dx =

= µ

∫ 1

0

∆̃(x, t)∆̃xx(x, t)dx.

In particular, due to (3.7),

∫ 1

0

(

θ + σ̄(w(1), w(2))
) d

dt
∆2 +

d

dt
Bε(∆,∆) +

d

dt
∆̃2dx

≤
∫ 1

0

−2µ∆̃2
x + 2θ|∆||∆̃x|dx.

In the last relation, we have exploited the fact that, due to relation (2.6),

d

dt
Bε(∆,∆) = 2Lε∆∆t.

Adding 2µ∆̃2
x − 2θ|∆||∆̃x| + θ2

2µ
∆2 ≥ 0 to the right-hand side of the last relation gives

for K = θ2

2µ

(4.44)

∫ 1

0

(

θ + σ̄(w(1), w(2))
) d

dt
∆2 +

d

dt
Bε(∆,∆) +

d

dt
∆̃2dx ≤ K

∫ 1

0

∆2dx.

Due to Lemma 4.5 below, relation (4.44) implies for some g ∈ L1
loc(0,∞)

(4.45)
d

dt

(
∫ 1

0

(

θ + σ̄(w(1), w(2))
)

∆2 + ∆̃2dx+Bε(∆,∆)

)

≤ g(t)

∫ 1

0

∆2dx.

Note that, due to (4.31) and the boundedness of the bilinear form Bε on L2(0, 1) ×
L2(0, 1), we can choose θ > 0 such that

(4.46)

∫ 1

0

(

θ + σ̄(w(1), w(2))
)

∆2dx +Bε(∆,∆) ≥
∫ 1

0

∆2dx.
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Due to (4.45) and (4.46), we can apply Gronwall’s lemma and obtain from (4.42) the
desired uniqueness. 2

It remains to prove the following

Lemma 4.5. There exists a function f ∈ L1
loc(0,∞) such that, for a.e. x ∈ (0, 1),

(4.47)
d

dt
(σ̄(w(1)(x, t), w(2)(x, t))) ≤ f(t).

Proof : For z ∈ R define

(4.48) S(z) = σ(z) − λz.

Due to (4.48) and (3.2), the stress can be written in the following form:

(4.49) σ(w(x, t)) + (Lεw)(x, t) = S(w(x, t)) + (L̂εw)(x, t).

Recall the definition (4.31) of σ̄ and assume that (v(1), w(1)) and (v(2), w(2)) are solu-
tions of system (1.1).

Analogously as in (4.33) set

(4.50) q(i)(x, y, t) := µ(w(i)(y, t) − w(i)(x, t)) +

∫ x

y

v(i)(z, t)dz.

For i = 1, 2 we have a.e.

(4.51)
d

dt
q(i)(x, y, t) = σ(w(i)(x, t)) + (Lεw

(i))(x, t) − (σ(w(i)(y, t)) − (Lεw
(i))(y, t)).

This relation follows analogously as the third identity in the last section for
d

dt
q(x, y, t)

on p.17.

For

(4.52) g(i)(x, y, t) = (L̂εw
(i))(x, t) − (S(w(i)(y, t)) − (L̂εw

(i))(y, t)),

relation (4.51) can be equivalently written as

(4.53)
d

dt
q(i)(x, y, t) = σ(w(i)(x, t)) + g(i)(x, y, t).

Set

(4.54)

b(i)(x, y, t) =
d

dt

(

1

µ

∫ x

y

v(i)(z, t)dz + w(i)(y, t) +
1

µ

(

L̂εw
(i)(x, t) − L̂εw

(i)(y, t)
)

)

.
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Then we obtain

d

dt
σ̄(w(1)(x, t), w(2)(x, t)) =

2
∑

i=1

σ̄zi
(w(1)(x, t), w(2)(x, t))w

(i)
t (x, t)

(4.34)
=

2
∑

i=1

σ̄zi
(w(1)(x, t), w(2)(x, t))

d

dt

(

1

µ

[
∫ x

y

v(i)(z, t)dz − q(i)(x, y, t)

]

+ w(i)(y, t)

)

(4.53)
=

2
∑

i=1

σ̄zi
(w(1)(x, t), w(2)(x, t))

(

b(i)(x, y, t) +
1

µ
g(i)(x, y, t) − 1

µ
S(w(i)(x, t))

)

.

Due to w(i) ∈ C0(0,∞;L2(0, 1)) and the Green’s function estimates in the next section,
there exists some y ∈ [0, 1] with the following property:

(4.55) b(i)(x, y, ·), g(i)(x, y, ·) ∈ L2
loc(0,∞).

Due to (4.32) and

S(z) = z3 − (1 + λ)z,

there exist finite real numbers Ki = Ki(|c1|, |c2|, |c3|, |c4|) (being monotone increasing
in each entry) with the following property:

(4.56)

2
∑

i=1

σ̄zi
(z1, z2) (c1 + c2S(c3 − c4zi)) ≤ K1 +K2c

2
1.

From (4.55) and (4.56) the claim of Lemma 4.5 follows. 2

4.5. Green’s function estimates. The aim of this section is to prove the following
lemma:

Lemma 4.6. Assume that, for some µ > 0, u = u(x, t) is the weak solution of

(4.57) ut − µuxx = fx in (0, 1) × (0,∞)

to the following initial-boundary value problem:

(4.58) u(·, 0) = u0 ∈ L2(0, 1), u(0, t) = u(1, t) = 0 ∀t ∈ (0,∞).

Furthermore, assume that, for some q ∈ [1,∞), the given right-hand side of equation
(4.57) has the following properties:

(4.59) ft ∈ L2((0, 1) × (0,∞)),

(4.60) f ∈ L∞(0,∞;Lq(0, 1))
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and, for any δ > 0,

(4.61) f ∈ L∞((0, 1) × (δ,∞)).

Then,

(4.62) u ∈ C0([0,∞);H1,q(0, 1))

and, for any δ > 0,

(4.63) u ∈ L∞(δ,∞;H1,∞(0, 1)) ∀t ∈ (0,∞).

Proof: For simplicity we assume that µ = 1. The case of general µ > 0 is analogous.

Fix any t ∈ [0,∞). Then, for any τ ∈ R with t+ τ ∈ [0,∞), f(x, t+ τ) can be written
in the following form:

(4.64) f(x, t+ τ) = f1(t; x) + f2(t; x, τ),

where

(4.65) f2(t; ·, 0) ≡ 0.

For notational convenience, we write f1(x) (resp. f2(x, τ)) instead of f1(t; x) (resp.
f2(t; x, τ)).

From (4.59) we know that

(4.66) ‖f2(·, τ)‖L2(0,1) ≤ K |t− τ |
1

2 ,

where

(4.67) K = K(‖ft‖L2(0,∞;L2(0,1))).

Assume we have shown that for the Green’s function to (4.57) and (4.58) there exists
a strictly positive real number K with the following property:

(4.68) ‖Gxy(x, y, t− τ)‖L2(0,1) ≤ K |t− τ |−
5

4 .

Then, u = u(x, t) can be written in the following form:

(4.69) u(x, t) = u1(x, t) + u2(x) −
∫ t

0

∫ 1

0

Gy(x, y, t− τ)f2(y, τ)dydτ,

where u2 is the solution to the Poisson equation

(4.70) −∂xxu2 = ∂xf1
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with homogeneous Dirichlet boundary conditions

u2(0) = u2(1) = 0,

and u1 is the solution of the following initial-boundary value problem:

(4.71) ∂tu1 − ∂xxu1 = 0, u1(·, 0) = u(·, 0)− u2, u1(0, t) = u1(1, t) = 0.

Derivation of (4.69) gives for ux(x, t) the following expression:

(4.72) ux(x, t) = u1x(x, t) + u2x(x) −
∫ t

0

∫ 1

0

Gyx(x, y, t− τ)f2(y, τ)dydτ.

Due to (4.68), it follows

∣

∣

∣

∣

∫ t

0

∫ 1

0

Gyx(x, y, t− τ)f2(y, τ)dydτ

∣

∣

∣

∣

≤
∫ t

0

∫ 1

0

|Gyx(x, y, t− τ)f2(y, τ)|dydτ

=

∫ t

0

‖Gxy(x, ·, t− τ)f2(·, τ)‖L1(0,1)dτ ≤
∫ t

0

‖Gxy(x, ·, t− τ)‖L2(0,1)‖f2(·, τ)‖L2(0,1)dτ

≤
∫ t

0

K2 |t− τ |−
3

4 dτ ≤ 1

4
K2t

1

4 .

From (4.70) it easily follows that

(4.73) ‖u2x‖Lq(0,1) ≤ ‖f1‖Lq(0,1),

and, in case of f1 ∈ L∞(0, 1),

(4.74) ‖u2x‖L∞(0,1) ≤ ‖f1‖L∞(0,1).

Hence, the claim of Lemma 4.6 follows if we have shown relation (4.68).

In order to show relation (4.68) we recall that G can be written as follows

(4.75) G(x, y, t) =
1

t
5

2

(G1(x, y, t) +G2(x, y, t)) ,

where

(4.76) G1(x, y, t) =
t2

(4π)1/2

∞
∑

n=−∞

exp

(−(x− y + 2n)2

4t

)

and

(4.77) G2(x, y, t) = − t2

(4π)1/2

∞
∑

n=−∞

exp

(−(x + y + 2n)2

4t

)

.
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As the series on the right-hand sides of (4.76) and (4.77) and their derivatives are
uniformly convergent for any t > 0, we may derive them term by term.

In particular,

(4.78) ∂xyG1(x, y, t) =
1

(4π)1/2

∞
∑

n=−∞

(

t

2
− (x− y + 2n)2

4

)

exp

(−(x− y + 2n)2

4t

)

and

(4.79) ∂xyG2(x, y, t) = − 1

(4π)1/2

∞
∑

n=−∞

(

t

2
− (x+ y + 2n)2

4

)

exp

(−(x + y + 2n)2

4t

)

.

From (4.78) and (4.79) it is not hard to see that, for any

(x, y, t) ∈ [0, 1] × [0, 1] × (0, 1],

|Gxy(x, y, t)| can be majorized as follows:

(4.80) |Gxy(x, y, t)| ≤
C

t
5

2

(

t + (x± y)2
)

4
∑

i=1

|Gi(x, y, t)|,

where

(4.81) G1(x, y, t) = exp

(−(x− y)2

4t

)

,

(4.82) G2(x, y, t) = exp

(−(x + y)2

4t

)

,

(4.83) G3(x, y, t) = (x− y)2exp

(−(x− y)2

4t

)

,

(4.84) G4(x, y, t) = (x+ y)2exp

(−(x+ y)2

4t

)

and C does not depend on (x, y, t).

Due to (4.80), there exists a constant C̃ such that

(4.85) Gxy(x, y, t)
2 ≤ C̃

t5
(

t2 + (x± y)4
)

4
∑

i=1

Gi(x, y, t)
2.

From (4.85) we derive the estimate
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(4.86)

∫ 1

0

1√
2t1/2

exp

(−(x± y)2

2t

)

dy ≤
∫ ∞

−∞

e−y2

dy <∞

and

(4.87)

∫ 1

0

1√
2t1/2

(

(x− y)4

4t2

)

exp

(−(x± y)2

2t

)

dy ≤
∫ ∞

−∞

y4e−y2

dy <∞.

Hence,
∫ 1

0
Gxy(x, y, t)

2dy = O(t−
5

2 ), or, in other words,

(4.88) ‖Gxy(x, ·, t)‖L2(0,1) = O(t−
5

4 )

and relation (4.68) follows. 2

5. Treatment of homogeneous Neumann boundary condition

In order to consider the homogeneous Neumann boundary condition (1.4), let v =
v(x, t) and w = w(x, t) be weak solutions of system (1.1) with the following slight
modifications on the domain of definition for (x, t) and the operator Lε

(x, t) ∈ [0, 2] × [0,∞)

(instead of (x, t) ∈ [0, 1]× [0,∞)) and Lεu = L̂εu−λu, where the convolution operator

L̂εu(x) = λ

∫ 1

0

φε(x− y)u(y)dy, ∀x ∈ [0, 1]

is extended by mirroring:

L̂εu(1 + x) = −L̂εu(1 − x) ∀x ∈ (1, 2].

We impose the Dirichlet boundary condition

∫ 2

0

w(x, t)dx =

∫ 2

0

w0(x)dx,

where the initial values (v0, w0) are assumed to have finite energy and to fulfill the
following symmetry conditions:

(5.89) v0(1 + x) = v0(1 − x), w0(1 + x) = −w0(1 − x) for almost every x ∈ (0, 1).

The proof of an analogous claim as in Theorem 3.1 for the modified operator Lε goes
along the lines of the proof of Theorem 3.1 and is left to the reader.

Furthermore, due to (5.89) and straighforward symmetry considerations, for the weak
solution (v, w) there holds for any t ∈ (0,∞) and almost every x ∈ (0, 1):

(5.90) v(1 + x, t) = v(1 − x, t), w(1 + x, t) = −w(1 − x, t).
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We will show the following lemma:

Lemma 5.1. If the initial values (v0, w0) fulfill relation (5.89) and the initial strain
w0 is continuous at x = 1 with

(5.91) lim
x→1

σ(w0(x)) + (Lεw0)(x) = 0,

then, for any t ∈ [0,∞), w(·, t) is continuous at x = 1.

Assume we have shown Lemma 5.1, then, due to (5.90), the homogeneous Neumann
boundary condition is fulfilled:

(5.92) lim
x→1

σ(w(x, t)) + (Lεw)(x, t) = 0

and we are ready with the proof of Theorem 3.1.

Proof of Lemma 5.1:

For convenience of the reader, we recall the definition

q(x, y, t) = µ(w(y, t)− w(x, t)) + a(x, y, t),

where

a(x, y, t) =

∫ x

y

v(z, t)dz,

and the identity following relation (4.36):

(5.93)
d

dt
q(x, y, t) =

λ

µ
(q(x, y, t) − a(x, y, t)) + (L̂εw)(x, t) − (L̂εw)(y, t)

+σ(
1

µ
(a(x, y, t) − q(x, y, t)) + w(y, t)) − σ(w(y, t)).

Due to the definition of q,

(5.94) w(x, t) =
1

µ
[a(x, 1, t) − q(x, 1, t)] + w(1, t).

Due to (5.94) and limx→1 a(x, 1, t) = 0, the continuity of x 7→ w(x, t) at x = 1 is
equivalent to the continuity of x 7→ q(x, 1, t) at x = 1.

The continuity of x 7→ q(x, 1, t) at x = 1 in turn follows from

(5.95) |q(x, 1, t)| ≤
∫ t

0

|g1(x, s)| |q(x, 1, s)| + |g2(x, s)| ds ∀t ∈ (0,∞)
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and Gronwall’s lemma, where, for any finite interval [0, T ], there exists some constant
C not depending on x,

(5.96) ‖g1(x, ·)‖L1(0,T ) + ‖g2(x, ·)‖L1(0,T ) ≤ C

and

(5.97) lim
x→1

‖g2(x, ·)‖L1(0,T ) = 0.

In fact, relation (5.95) directly follows from (5.93): for

g1(x, t) =
λ

µ
+ σ̄(

1

µ
(a(x, 1, t) − q(x, 1, t))),

and

g2(x, t) =
1

µ
σ̄

(

1

µ
(a(x, 1, t) − q(x, 1, t))

)

a(x, 1, t) − λ

µ
a(x, 1, t) + (L̂εw)(x, t)

(where σ̄ is given by (4.31) and L̂ε is the convolutional part of Lε) we have

d

dt
q(x, 1, t) = g1(x, t)q(x, 1, t) + g2(x, t).

Then, relation (5.96) is straightforward.

As t 7→ v(·, t) is uniformly bounded in L2(0, 1), we have

lim
x→1

a(x, 1, t) = lim
x→1

∫ 1

x

v(z, t)dz = 0 uniformly in t for t ∈ [0, T ].

The last relation and the assumptions on the convolution kernel in L̂ε imply relation
(5.97). 2
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