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alar balan
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onvex �ux fun
tion.R.Robyr - UNI Zuri
h - PreprintJanuary 17, 2008Abstra
tIn this work we study the regularity of entropy solutions of the genuinely nonlinears
alar balan
e laws
Dtu(x, t) + Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 in an open set Ω ⊂ R

2.We assume that the sour
e term g ∈ C1(R × R × R
+), that the �ux fun
tion f ∈

C2(R × R × R
+) and that {ui ∈ R : fuu(ui, x, t) = 0} is at most 
ountable for every�xed (x, t) ∈ Ω. Our main result, whi
h is a uni�
ation of two proposed intermediatetheorems, states that BV entropy solutions of su
h equations belong to SBVloc(Ω).Moreover, using the theory of generalized 
hara
teristi
s we prove that for entropysolutions of balan
e laws with 
onvex �ux fun
tion, there exists a 
onstant C > 0su
h that:

u([x + h]+, t) − u(x−, t) ≤ Ch, (h > 0)where C 
an be 
hosen uniformly for (x + h, t), (x, t) in any 
ompa
t subset of Ω.1 Introdu
tionIn [2℄ the authors have shown that entropy solutions u(x, t) of s
alar 
onservation laws
Dtu(x, t) +Dx[f(u(x, t))] = 0 in an open set Ω ⊂ R

2 (1)with lo
ally uniformly 
onvex �ux fun
tion f ∈ C2(R) and f ′′ > 0, are fun
tions oflo
ally spe
ial bounded variation, i.e. the distributional derivative Du has no Cantorpart. In the proof proposed by Ambrosio and De Lellis the good geometri
 stru
tureof the 
hara
teristi
s �eld 
orrelated to the entropy solution play an important role andallows to de�ne a geometri
 fun
tional whi
h jumps every time when a Cantor part ofthe distributional derivative Du(., t) appears in the solution. In parti
ular we re
all heretwo signi�
ant properties of the 
hara
teristi
s: they are straight lines and two di�erent1



ba
kward 
hara
teristi
s 
an 
ross only at t = 0 (the so-
alled no 
rossing property). Wenote also that for equations (1) we 
an take the well-known Oleinik estimate as entropy
riterion, i.e. a distributional solution u(x, t) of (1) is an entropy solution provided that:
u(x+ z, t) − u(x, t) ≤

C̆

t
z, for a C > 0 (2)holds for all t > 0, x, z ∈ R where z > 0. In [2℄ the one-sided estimate (2) is used asentropy 
riterion and it is used to get the proof.In this note we extend this regularity result to a bigger 
lass of hyperboli
 
onservationlaws. At �rst we again 
onsider s
alar 
onservation laws (1) but allowing the 
hange of
onvexity of the �ux fun
tion f at a 
ountable set of points. One of the di�
ulties indealing with these equations is that rarefa
tion waves may appear even for t > 0 and
onsequently the no 
rossing property used in [2℄ does not hold. For instan
e, it is possibleto 
onstru
t a Riemann problem where the �ux fun
tion has two in�e
tions points anda sho
k splits into two 
onta
t dis
ontinuities (see [11℄). As we will see the strategy ofthe proof is not as 
ompli
ated as one 
an expe
t: using an appropriate 
overing of Ωand working lo
ally we redu
e the problem to the 
onvex or 
on
ave 
ase. Thus, our �rstextension theorem states:Theorem 1.1. Let f ∈ C2(R) be a �ux fun
tion, su
h that {ui ∈ R : f ′′(ui) = 0} is atmost 
ountable. Let u ∈ BV (Ω) be an entropy solution of the s
alar 
onservation law (1).Then there exists a set S ⊂ R at most 
ountable su
h that ∀τ ∈ R\S the following holds:

u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (3)In the se
ond part of this paper we fo
us our attention on genuinely nonlinear s
alarbalan
e laws
Dtu(x, t) +Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 in Ω ⊂ R

2 (4)where the sour
e term g belongs to C1(R × R × R
+), the �ux fun
tions f belongs to

C2(R×R×R
+) and fuu(., x, t) > 0 for any �xed (x, t) ∈ Ω. Again the geometri
 stru
tureof the 
hara
teristi
s is not as easy as in the 
ase treated in [2℄: now the 
hara
teristi
sare Lips
hitz 
urves and in general are not straight lines. The di�erent shape of the
hara
teristi
s are due to the presen
e of the sour
e term and to the dependen
e of f on thepoints (x, t) ∈ Ω. Fortunately, we 
an make use of the theory of generalized 
hara
teristi
sintrodu
ed by Dafermos (see [6℄,[7℄,[8℄) to analyze the behavior of the 
hara
teristi
s forentropy solutions of (4). Important for our analysis is the no-
rossing property betweengenuine 
hara
teristi
s. Thanks to this property we 
an expe
t to reprodu
e the geometri
proof proposed in [2℄. All the de�nitions and propositions about the theory of generalized
hara
teristi
s, whi
h are helpful in our work, are listed in se
tion 3. Another problem, dueto the presen
e of the sour
e term and of the (x, t) dependen
e, is that for equations (4)the Oleinik estimate (2) stop to be true. Moreover, the Oleinik estimate 
annot be takenas entropy 
riterion. What we 
an do, is to �nd a suitable generalization of this estimate,i.e. we will prove using the generalized 
hara
teristi
s that:2



Theorem 1.2. Let f ∈ C2(R × R × R
+) be a �ux fun
tion su
h that fuu(.) > 0. Let

g ∈ C1(R × R × R
+) be a sour
e term and let u ∈ L∞(Ω) be an entropy solution of thebalan
e law (4). In any �xed 
ompa
t set K ⊂ Ω there exists a positive 
onstant C > 0su
h that:

u([x+ z]+, t) − u(x−, t) ≤ Cz, (z > 0). (5)for every (x, t), (x+ z, t) ∈ K.However, for balan
e laws it is impossible to re
over a 
onstant of the form C = C̆/t,where C depends only on the time and on the se
ond derivative of f , estimate (5) issu�
ient to obtain all the regularity-results stated in this paper. The se
ond theorem onthe SBV regularity proposed is:Theorem 1.3. Let f ∈ C2(R × R × R
+) be a �ux fun
tion su
h that fuu(.) > 0. Let

g ∈ C1(R × R × R
+) be a sour
e term and let u ∈ L∞(Ω) be an entropy solution of thebalan
e law (4). Then there exists a set S ⊂ R at most 
ountable su
h that ∀τ ∈ R\S thefollowing holds:

u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (6)Combining the two Theorems on the SBV regularity we get a generalized Theorem,whi
h says that also for balan
e laws with a �ux fun
tion whi
h 
hanges 
onvexity atmost 
ountable many times, the entropy solution is a lo
ally SBV fun
tion. Thus, as a
onsequen
e of Theorem 1.3 and 1.1 and of the sli
ing theory of BV fun
tions, we state:Theorem 1.4. Let f ∈ C2(R × R × R
+) be a �ux fun
tion, su
h that

{ui ∈ R : fuu(ui, x, t) = 0}is at most 
ountable for any �xed (x, t). Let g ∈ C1(R× R× R
+) be a sour
e term and let

u ∈ BV (Ω) be an entropy solution of the balan
e law (4):
Dtu(x, t) +Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 in Ω ⊂ R

2. (7)Then there exists a set S ⊂ R at most 
ountable su
h that ∀τ ∈ R\S the following holds:
u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (8)Moreover, u(x, t) ∈ SBVloc(Ω).S
alar 
onservation laws in one spa
e dimension and Hamilton-Ja
obi equations in onedimension are stri
tly 
onne
ted: entropy solutions 
orrespond to vis
osity solutions (see[9℄). Thus, at the end of the paper using Theorem 1.3 we obtain also a regularity statementfor vis
osity solutions u of a 
lass of Hamilton-Ja
obi equations: we prove that the gradient

Du of su
h solutions belongs to SBVloc(Ω). 3



Corollary 1.1 (Hamilton-Ja
obi). Let H(u, x, t) ∈ C2(R × R × R
+) be lo
ally uniformly
onvex in u, i.e. DuuH > 0. If w ∈W 1,∞(Ω) is a vis
osity solution of

wt(x, t) +H(wx(x, t), x, t) = 0, (9)then Dw ∈ SBVloc(Ω).It would be interesting to �nd the same regularity for entropy BV solutions of genuinelynonlinear system of 
onservation laws in one spa
e dimension. We note that there areanalogies between the stru
ture of the generalized 
hara
teristi
s of systems and the oneof the balan
e laws 4 of Theorem 1.4 proposed in here: in both 
ases the 
hara
teristi
s
an interse
t at t 6= 0 and in general they are not straight lines but Lips
hitz 
urves,whi
h are a.e. di�erentiable. Although the geometry of the 
hara
teristi
s �eld of thesetwo problems seems to be similar, the 
ase of systems looks mu
h more di�
ult. Anotheropen question is the lo
al SBV regularity for gradients of vis
osity solutions of uniformly
onvex Hamilton-Ja
obi PDEs in higher spa
e dimensions. In [4℄ the authors have shownthat under strong regularity assumptions on the initial fun
tions u0, the vis
osity solution
u has a gradient Du, whi
h belongs to the 
lass SBV , i.e. D2u is a measure with no Cantorpart (in fa
t the regularity theory of [4℄ and [5℄ gives stronger 
on
lusions).2 Fun
tions with bounded variation and spe
ial fun
-tions of bounded variationIt is well-known that in general we 
annot �nd 
lassi
al smooth solutions for equations (1)and (4): sho
ks appear in �nite time even for smooth initial data u(x, 0) = u0(x). In orderto study all the possible solutions with jump dis
ontinuities, we take the spa
e of fun
tionsof bounded variation BV as working spa
e. We then 
olle
t some de�nitions and theoremsabout BV and SBV fun
tions.De�nition 2.1. Let u ∈ L1(Ω); we say that u is a fun
tion of bounded variation in Ωif the distributional derivative of u, denoted by Du, is representable by a �nite Radonmeasure on Ω. A fun
tion u ∈ L1

loc(Ω) has lo
ally bounded variation in Ω if for ea
hopen set V ⊂⊂ Ω, u is a fun
tion of bounded variation in V . We write u ∈ BV (Ω) and
u ∈ BVloc(Ω) respe
tively.In our proofs we will have to deal with one-dimensional fun
tions of bounded variation,therefore we 
olle
t here some useful properties. Using the Radon-Nikodym Theorem wesplit the Radon measure Du into the absolute 
ontinuous part Dau (with respe
t to L1)and the singular part Dsu:
Du = Dau+Dsu = Du (Ω\S)+Du S where S :=

{
x ∈ Ω : lim

ρ↓0

|Du|(Bρ(x))

ρ
= ∞

}
.4



Let A denote the set of atoms of Du, i.e. x ∈ A if and only if Du({x}) 6= 0. We re
all that
A is at most 
ountable. We now split the singular part Dsu into the purely atomi
 part
Dju and the di�usive part (i.e. without atoms) Dcu:

Du = Dau+Dsu = Dau+Dju+Dcu = Du (Ω\S) +Du A +Du (S\A) (10)where the two measures Dju and Dcu are 
alled respe
tively the jump and the Cantorpart of the measure Du. The above de
omposition is unique and the three measures
Dau,Dju,Dcu are mutually singular. Therefore we have |Du| = |Dau| + |Dju| + |Dcu|.We are now ready to re
all (see for instan
e Theorem 3.28 and Proposition 3.92 of [1℄):Proposition 2.1. Let u ∈ BV (Ω) and let Ω ⊂ R. Let A be the set of atoms of Du. Then:(i) Any good representative u is 
ontinuous in Ω\A and has a jump dis
ontinuity at anypoint of A. Moreover, u has 
lassi
al left and right limits (denoted by uL and uR) at any
x ∈ A.(ii) Dcu vanishes on sets whi
h are σ-�nite with respe
t to H0 and on sets of the form
u−1(E) with E ⊂ R and L1(E) = 0.We 
on
lude with:De�nition 2.2. Let u ∈ BV (Ω), then u is a spe
ial fun
tion of bounded variation and wewrite u ∈ SBV (Ω) if Dcu = 0, i.e. if the Cantor part is zero.Remark 2.1. For similar de�nitions of BV and SBV fun
tions in higher dimensions, weaddress the reader to Chapters 3 and 4 of [1℄.3 Entropy 
ondition and generalized 
hara
teristi
sIn this se
tion, we will 
onsider the balan
e laws (4) and we assume that f : (u, x, t) 7→
f(u, x, t) and g : (u, x, t) 7→ g(u, x, t) are, respe
tively, C2 and C1 smooth fun
tions on
R×R×R

+. Moreover, we pres
ribe that f(., x, t) is stri
tly 
onvex in u, i.e. fuu(., x, t) > 0for �xed (x, t). By the 
lassi
al results on hyperboli
 
onservation laws it is known thatwith a suitable de�nition of weak solution and after the introdu
tion of an admissibility
ondition, the so-
alled entropy 
ondition, the existen
e and the uniqueness of an entropysolution of equations (1) and (4) are assured. Firstly we de�ne the spa
e of admissiblesolutions:De�nition 3.1. The entropy solution u(x, t) of the equation (4) is a lo
ally integrablefun
tion whi
h satis�es the following properties:1. For almost all t ∈ [0,∞) the one-sided limits u(x+, t) and u(x−, t) exist for all x ∈ R.2. u(x, t) solves the balan
e equation (4) in the sense of distributions.5



3. For almost all t ∈ [0,∞) and for all x ∈ R we have that
u(x−, t) ≥ u(x+, t). (11)Throughout the paper we shall denote the entropy solution by u(x, t) and we shall write

u(x+, t) and u(x−, t) for the one-sided limits of u(., t) (also denoted by uR and uL). It isimportant to note that we will be dealing with entropy solutions u(x, t), whi
h belong tothe spa
e BVloc(Ω) and su
h that for every t > 0 the fun
tion u(., t) belongs to BVloc(R).Moreover, we will restri
t our analysis on good representative of solutions and then, underour initial hypothesis we follow the works of Dafermos ([6℄,[7℄,[8℄) giving an introdu
tionto the theory of generalized 
hara
teristi
s and re
alling here some results, whi
h we shalluse in the sequel.De�nition 3.2. A Lips
hitz 
ontinuous 
urve χ(t), de�ned on an interval I ⊂ R
+, is
alled a 
hara
teristi
 if it solveṡ

χ(t) = fu(u(χ(t), t), χ(t), t)in the sense of Filippov [10℄, namely
χ̇(t) ∈ [fu(u(χ(t)+, t), χ(t), t), fu(u(χ(t)−, t), χ(t), t)] (12)for almost all t ∈ I.By the theory of ordinary di�erential equations with dis
ontinuous right-hand side like(12) (see [10℄), we know that through every �xed point (y, τ) ∈ R×R

+ passes at least one
hara
teristi
. We denote a 
hara
teristi
 either by χ(t) or by χ(t; y, τ) when the point
(y, τ) must be spe
i�ed. Every traje
tory is 
on�ned between a maximal and a minimal
hara
teristi
 (not ne
essarily distin
t). Moreover, the speed of a generalized 
hara
teristi
is not free and more pre
isely by Theorem 3.1 in [7℄ a 
hara
teristi
 either propagate atthe 
lassi
al speed or at sho
k speed:Theorem 3.1. Let χ : I → R be a 
hara
teristi
. Then for almost every t ∈ I

χ̇(t) =

{
fu(u(χ(t)±, t), χ(t), t), if u(χ(t)−, t) = u(χ(t)+, t);
f(u(χ(t)+,t),χ(t),t)−f(u(χ(t)−,t),χ(t),t)

u(χ(t)+,t)−u(χ(t)−,t)
, if u(χ(t)−, t) > u(χ(t)+, t). (13)A ba
kward (forward) 
hara
teristi
 trough any point (y, τ) ∈ R×R

+, is a 
hara
teris-ti
 χ de�ned on [0, τ ] (respe
tively [τ,∞)) with χ(τ) = y. We 
all genuine a 
hara
teristi

χ(t) su
h that u(χ(t), t) = u(χ(t)+, t) for almost every t.At this point, we give a list of properties of generalized 
hara
teristi
s of entropy solutions
u(x, t) for the balan
e laws (4). We shall make use of these Theorems and in parti
ular ofthe No-
rossing property of Theorem 3.3, to prove the SBVloc regularity of u(x, t).6



Theorem 3.2. Let χ(.) be a generalized 
hara
teristi
 for (4), asso
iated with the admis-sible solution u, whi
h is genuine on I = [a, b]. Then there is a C1 fun
tion v de�ned on
I su
h that:1. u(χ(a)−, a) ≤ v(a) ≤ u(χ(a)+, a),2. u(χ(t)−, t) = v(t) = u(χ(t)+, t), for a < t < b,3. u(χ(b)−, b) ≥ v(b) ≥ u(χ(b)+, b).Furthermore, (χ(.), v(.)) satisfy the 
lassi
al 
hara
teristi
 equations

{
χ̇(t) = fu(v(t), χ(t), t)
v̇(t) = −fx(v(t), χ(t), t) − g(v(t), χ(t), t)

(14)on (a, b). In parti
ular, χ is a C1 fun
tion on I.Remark 3.1. In [8℄, the generalized 
hara
teristi
 of Theorem 3.2 is assumed to be "sho
k-free". In here we state the Theorem for genuine 
hara
teristi
 be
ause under an appropriatenormalization, the notions of "sho
k-free" and "genuine" are equivalent. To 
on
lude: we
all sho
k-free a 
hara
teristi
 χ(t) su
h that u(χ(t)−, t) = u(χ(t)+, t) for almost every t.Theorem 3.3. Given a �xed point (y, τ) ∈ R × R
+ we have that:1. Through (y, τ) pass a minimal and a maximal ba
kward 
hara
teristi
 denoted, respe
-tively, by χ−(t) and χ+(t). The 
hara
teristi
s χ−, χ+ : [0, τ ] → R are genuine andare the solutions of the ODEs (14) with the following initial 
onditions: χ−(τ) = y,

v−(τ) = u(y−, τ) and χ+(τ) = y, v+(τ) = u(y+, τ).2. (No-
rossing of 
hara
teristi
s). Two genuine 
hara
teristi
s may interse
t only attheir end points.3. For τ > 0 through (y, τ) passes a unique forward 
hara
teristi
. Furthermore, if
u(y+, τ) < u(y−, τ), then u(χ(t)+, t) < u(χ(t)−, t) for all t ∈ [τ,∞).4 Theorem 1.1In this part of the paper we analyze the regularity of the entropy solutions of the 
onser-vation laws (1). We re
all that in [2℄ the �ux fun
tion f ∈ C2 was sele
ted to be stri
tly
onvex and it was proved that entropy solutions are lo
ally SBV . Here, in our �rst exten-sion Theorem 1.1 we 
onsider any �ux fun
tion f ∈ C2, whi
h 
an 
hange its 
onvexity.Indeed, f is sele
ted su
h that #{ui ∈ R : f ′′(ui) = 0} is at most 
ountable.

7



4.1 Stri
tly 
onvex or 
on
ave �ux fun
tionThe �rst step in trying to extend Theorem 1.2 of [2℄ is to state the same result also for a
onservation law with a stri
tly 
on
ave �ux fun
tion, i.e. f ′′ < 0.Lemma 4.1 (Stri
tly 
onvex or 
on
ave �ux). Let f ∈ C2(R) be a �ux fun
tion with
|f ′′(u)| > 0. Let u ∈ L∞(Ω) be an entropy solution of the s
alar 
onservation law (1).Then there exists a set S ⊂ R at most 
ountable su
h that ∀τ ∈ R\S the following holds:

u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (15)Sin
e the arguments are quite standard, we propose only a sket
h of the proof of theabove Lemma:Proof. If f ′′ > 0, i.e. the �ux fun
tion is stri
tly 
onvex, the statement is exa
tly Theorem1.2 of [2℄. If f ′′ < 0, i.e. the �ux fun
tion is stri
tly 
on
ave and we may prove the lemmadire
tly using the 
onvex 
ase. The idea is simple: we re�e
t an entropy solution of thestri
tly 
onvex 
ase about the t-axis, to obtain an entropy solution of the related stri
tly
on
ave problem. Let f be stri
tly 
onvex and assume that u(x, t) is an entropy solution of(1). We de�ne the 
oordinates transformation φ : Ω → Ω̃, φ : (x, t) 7→ (y, t) = (−x, t) andthe 
andidate solution ũ(y, t) := u ◦ φ−1(y, t) = u(−x, t) of the stri
tly 
on
ave problem.Then, we have:
Dtũ(y, t) +Dy[f̃(ũ(y, t))] = Dtũ(y, t) −Dy[f(ũ(y, t))] = Dtũ(−x, t) − (−Dx)[f(ũ(−x, t))] =

= Dtu(x, t) +Dx[f(u(x, t))] = 0With f̃ = −f we denote a stri
tly 
on
ave �ux. Moreover, for a point of Ω on a sho
k x(t)with sho
k speed σ = dx(t)/dt, we must have that the Rankine-Hugoniot σ[uR − uL] =
[f(uR)− f(uL)] and that the Lax-Entropy 
ondition for a stri
tly 
onvex �ux uL > uR aresatis�ed. We set σ̃ = d(−x(t))/dt = −σ, ũL = uR, ũR = uL and f̃ = −f , then after there�e
tion we obtain:

σ[uR − uL] = [f(uR) − f(uL)] ⇔ σ̃[ũR − ũL] = [f̃(ũR) − f̃(ũL)]. (16)and ũR > ũL. This means that if u(x, t) is an entropy solution of (1) for a stri
tly 
onvex�ux f , then ũ(y, t) = u(−x, t) is an entropy solution of the "
orrelate" 
onservation lawwith stri
tly 
on
ave �ux f̃ = −f . In parti
ular by the 
onvex 
ase and the de�nition of
ũ, there exists S̃ = S ⊂ R at most 
ountable su
h that ∀τ ∈ R\S̃ the following holds:

ũ(., τ) ∈ SBVloc(Ω̃τ ) with Ω̃τ := {x ∈ R : (x, τ) ∈ Ω̃}. (17)
8



4.2 Proof of Theorem 1.1Step 1: Preliminary remarks.Let us �x (ξ, τ) ∈ Ω and r su
h that Br(ξ, τ) ⊂ Ω. Thanks to the �nite speed of propa-gation, there exists a positive ρ su
h that the values of u in the ball Bρ(ξ, τ) depend onlyon the values of u on the segment {t = τ − 2ρ} ∩ Br(ξ, τ). Thus, if we denote by w theentropy solution of the Cau
hy problem
{
Dtw(x, t) +Dx[f(w(x, t))] = 0 for t > τ − 2ρ;
w(x, τ − 2ρ) = u(x, τ − 2ρ)1Br(ξ,τ)(x, τ − 2ρ) for every x ∈ R, (18)we get w(x, t) = u(x, t) on Bρ(ξ, τ). Moreover, note that w(., t) ∈ BV for every t > τ −2ρ.Thus, it su�
es to prove the main theorem under the assumptions that Ω = {t > 0} andthat u(., 0) is a bounded 
ompa
tly supported BV fun
tion. By assumption, an entropysolution u of the 
onservation laws (1) belongs to the spa
e BV (Ω). Moreover, u has abetter stru
ture than any 2-dimensional BV -fun
tion. Introdu
ing some notation, we re-
all that if u is an entropy solution of (1), then uτ (.) := u(., τ) ∈ BV (Ωτ ) for all τ , where

Ωτ := {x ∈ R : (x, τ) ∈ Ω}. By Proposition 2.1 for any 1-dim BV fun
tion the set ofatoms A 
oin
ides with the set of the dis
ontinuous points; hen
e for all τ we introdu
e thesets of the jumps Jτ := {x ∈ Ωτ : uL
τ (x) 6= uR

τ (x)} ⊂ R and J := {(x, t) ∈ Ω : x ∈ Jt}. Byassumption the set If := {ui ∈ R : f ′′(ui) = 0}, whi
h 
ontains all the in�e
tion points of
f , is at most 
ountable. We 
on
lude de�ning the set Fτ := {x ∈ Ωτ : uτ(x) = ui, ui ∈ If}.Step 2: Bad points have measure 0.Using the above notation, we introdu
e the sets Cτ := Jτ ∪ Fτ for all τ and C := {(x, t) :
x ∈ Ct}, i.e. the sets of the "bad" points for whi
h either uτ(.) has a jump or f ′′ vanishes.For this two sets we state:Claim 4.1. For any τ we have that |Dc

xuτ |(Cτ ) = 0.Proof. For every τ one has
|Dc

xuτ |(Cτ ) = |Dc
xuτ |(Jτ ∪ Fτ ) ≤ |Dc

xuτ |(Jτ ) + |Dc
xuτ |(Fτ ). (19)Observe that for all τ the Cantor part is zero on the jump sets Jτ , sin
e by (10):

Dc
xuτ = Dxuτ (S\Jτ ) ⇒ Dc

xuτ(Jτ ) = 0 ⇒ |Dc
xuτ |(Jτ) = 0. (20)Using the se
ond statement of Proposition 2.1, we show that even the se
ond term ofinequality (19) vanishes. Sin
e If is a 
ountable set, we may rewrite this set as 
ountableunion of the sets Ei := {ui}, i.e. If =

⋃
iEi. It is 
lear that L1(Ei) = 0 for ea
h i and that

Fτ =
⋃

i u
−1
τ (Ei) =

⋃
i u

−1
τ (ui). By Proposition 2.1, the Cantor part is zero on sets of theform Fτ = u−1

τ (If) with L1(If) = 0. Hen
e, we obtain:
|Dc

xuτ |(Fτ) = |Dc
xuτ |(u

−1
τ (If )) = 0. (21)This 
on
ludes the proof of the 
laim, i.e. |Dc

xuτ |(Cτ ) = 0.9
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Figure 1: Ω\C is 
overed by triangles..Step 3: Lo
ally, more pre
isely in a triangle, we redu
e the problem to the 
ases withstri
tly 
onvex or 
on
ave �ux fun
tions. By Lemma 4.1 the SBV -regularity follows.Given any point (x0, t0) ∈ Ω\C it is always possible to �nd a positive number b0 =
b(x0, t0) > 0 and a positive c0 = c(x0, t0), su
h that the following assertion holds:

|f ′′(ut0(x))| ≥ c0 > 0 for every x ∈ I0 :=] − b0 + x0, x0 + b0[. (22)Sin
e ut0 is a 
ontinuous BV -fun
tion in Ω\Ct0 , we 
an also assume that there exists apositive l0(b0) > 0 (whi
h depends on b0), su
h that |ut0(x) − ui| ≥ l0 > 0 for all x ∈ I0and for any ui ∈ If . This means that we may sele
t b0 > 0, su
h that the small variationof ut0 in I0 allows to 
onsider the Cau
hy problem:
{
Dtw(x, t) +Dx[f0(w(x, t))] = 0 for t > t0;
w(x, t0) = ut0(x)1I0(x, t0) for every x ∈ R, (23)where the �ux fun
tion f0 is either stri
tly 
on
ave or stri
tly 
onvex.The �nite speed of propagation of the 
hara
teristi
s permits to 
onstru
t an isos
elestriangle T0 with base I0, s.t. w(x, t) = u(x, t) on the triangle T0. Let θ(f, ‖u‖L∞) > 0 bethe angle between the base I0 and the diagonal segment. The angle θ depends only on fand on ‖u‖L∞, sin
e the slope of the maximal or the minimal 
hara
teristi
 of the problemde�nes this angle. We de�ne the open triangle

T0 := Tb0(x0, t0) = {(x, t) : |x−x0| < b0 and 0 < t−t0 < tan θ ·min{x−x0+b0, x0+b0−x}}10



By the maximum prin
iple, the values of u in T0 are 
ontrolled by the values of ut0 on I0.Moreover we may apply the statement of Lemma 4.1 on T0, sin
e the Cau
hy problem (23)has either a stri
tly 
onvex or a 
on
ave �ux. In parti
ular in our triangle T0 there existsan at most 
ountable set S0 
onsisting of τ ∈]t0, t0 + b0 · tan θ[ su
h that the solution is not
SBV (Ωτ ∩ T0).Step 4: Using Step 3, we 
onstru
t a triangle for all the points of Ω\C. Let B bethe set of all points of Ω\C, whi
h are 
ontained in at least one of this triangle and divide
Ω\C into the two subsets B and C ′ := Ω\(C ∪ B), i.e. Ω\C = B ∪ C ′.Claim 4.2. The set {τ ∈ R

+ : {t = τ} ∩ C ′ 6= ∅} is at most 
ountable.Proof. Assume that {t : {t = τ}∩C ′ 6= ∅} is not 
ountable. Let {Pα} = {(xα, τα)} ⊂ C ′ bea subset of C ′ ⊂ Ω\C, su
h that τα 6= τβ whenever α 6= β. Moreover, let {P k
α} = {(xα, τα) :

b(xα, τα) ≥ 2−k} ⊂ {Pα} be the subsets of the points, for whi
h the base of the triangle islarger than 2−k+1, where k ∈ N. By assumption there exists a �xed K ∈ N su
h that #PK
αis un
ountable and thus the set PK

α 
ontains an a

umulation point p = (xp, τp). Thisimplies that there exists a sequen
e {pj}j := {(xj, τj)}j∈N ⊂ PK
α of points in C ′, whi
h
onverges to the a

umulation point p. Moreover, any point pj of this sequen
e 
annot be
ontained in the triangle Tp := Tb(xp,τp)(xp, τp), sin
e by de�nition any point of C ′ 
annotlie into a triangle. We then have that the sequen
e {pj}j approa
hes p from below, i.e.

τj < τp for every j > J with J big enough, and the triangles Tj := Tb(xj ,τj)(xj , τj) have abase larger than 2−K+1 for ea
h j. Thus, for a J ∈ N big enough the a

umulation point
p belongs to the triangles Tj for all j > J . This is a 
ontradi
tion to p ∈ C ′.Step 5: Cover with triangles.By de�nition, every (x, t) ∈ B lies into at least one triangle T0 for a (x0, τ0) ∈ B. The set
B is then 
overed by a family of triangles {Tα}α. In parti
ular we 
an �nd a 
ountablesubfamily of triangles {Ti}i ⊂ {Tα}α whi
h 
overs B, i.e. B ⊂

⋃
i Ti. We now divide Ωusing the sets de�ned above:

Ω = (Ω\C) ∪ C = B ∪ C ′ ∪ C ⊂
⋃

i

Ti ∪ C
′ ∪ C.For every τ ∈ R we have that:- by Claim 4.2 the set SC′ = {t : {t = τ} ∩ C ′ 6= ∅} is at most 
ountable;- by Lemma 4.1 for every Ti the set Si := {t : ut /∈ SBV ({t = τ}∩Ti)} is at most 
ountable.Thus, for every time τ /∈ S := SC′ ∪

(⋃
i Si

) we have the following inequality:
|Dc

xuτ |(Ω ∩ {t = τ}) ≤ |Dc
xuτ |

(⋃

i

Ti ∩ {t = τ}
)

+ |Dc
xuτ |(C ∩ {t = τ}) ≤

≤
∑

i

|Dc
xuτ |

(
Ti ∩ {t = τ}

)
+ |Dc

xuτ |(C ∩ {t = τ}) = 0.11



All terms in the sum vanish by Lemma 4.1 and the se
ond term is equal to zero by Claim4.1. Letting Ωτ = Ω ∩ {t = τ} we have shown that ∀τ ∈ R\S the following holds:
uτ(.) = u(., τ) ∈ SBVloc(Ωτ ).5 Proof of Theorem 1.2As far as we know the estimate (5) of Theorem 1.2 has never been proved. In this se
tionwe then use the generalized 
hara
teristi
s to obtain that:Proposition 5.1. Let f, g be as in the statement of Theorem 1.2, in parti
ular in any
ompa
t set K ⊂ Ω there exist 
onstants C1, C2 > 0 with

‖Df‖L∞(K), ‖D
2f‖L∞(K), ‖Dg‖L∞(K) ≤ C1, (24)and

fuu(.) ≥ C2 > 0. (25)If u(x, t) is an entropy solution of the balan
e equation (4), then for all ε > 0 there existsa 
onstant C3 := C3(C1, C2, ε) > 0 with
u([x+ z]+, t) − u(x−, t) ≤ C3z, (z > 0) (26)for every �xed t ∈ [ε, 1] and for all x ∈ R with (x, t), (x+ z, t) ∈ K.5.1 Preparatory for the proof of Proposition 5.1Let t ∈ [ε, 1] be �xed and take x ∈ R and z > 0 with (x, t), (x+z, t) ∈ K. Let us denote by

χ−(s) the minimal ba
kward 
hara
teristi
 passing through (x, t) and by χ+(s) the maximalba
kward 
hara
teristi
 passing through (x+z, t), (instead of χ−(s; x, t) and χ+(s; x+z, t)).Rewriting the ODEs (14) related to the genuine 
hara
teristi
s for χ−(s), χ+(s) : [ε, t] → Rwe obtain {
χ̇±(s) = fu(v±(s), χ±(s), s)
v̇±(s) = −fx(v±(s), χ±(s), s) − g(v±(s), χ±(s), s)

(27)with 



χ−(t) = x
χ+(t) = x+ z
v−(t) = u(x−, t) =: u−

v+(t) = u([x+ z]+, t) =: u+

(28)where by the admissible 
ondition (11), u− > u+. We re
all that by the no 
rossingproperty of Theorem 3.3 of the genuine 
hara
teristi
s, the distan
e between the two 
urvesis positive i.e. χ+(s) > χ−(s) for every s ∈ [ε, t].12



5.2 One Te
hni
al LemmaFor the proof of our theorem we will use the following te
hni
al lemma:Lemma 5.1. Assume that there exists a 
onstant C3 > 0 with
u([x+ z]+, t) − u(x−, t) ≥ C3z, (z > 0). (29)Then there exists δ := δ(C1, C2, ε) with 0 < δ < ε and su
h that
v+(s) − v−(s) ≥

C3

16
z, ∀s ∈ [t− δ, t]. (30)Proof. We subdivide the proof into two steps:Step 1: We 
laim that:Claim 5.1. Let C3 > 0 be su�
iently big and assume that there exists a δ > 0 su
h thatinequality (30) holds. Then, we have

χ̇+(s) − χ̇−(s) > 0, ∀s ∈ [t− δ, t]. (31)If our 
laim were not true, then it would exists τ ∈ [t− δ, t] su
h that
{
χ̇+(s) − χ̇−(s) > 0, ∀s ∈]τ, t];
χ̇+(τ) − χ̇−(τ) = 0.

(32)By the equation of the 
hara
teristi
s (77) it follows that:
χ̇+(τ) − χ̇−(τ) = fu(v+(τ), χ+(τ), τ) − fu(v−(τ), χ−(τ), τ) =: U(τ) +W (τ). (33)The two terms in (33) are de�ned as

U(τ) := fu(v+(τ), χ+(τ), τ) − fu(v−(τ), χ+(τ), τ) ≥ C2(v+(τ) − v−(τ)), (34)and
W (τ) := fu(v−(τ), χ+(τ), τ) − fu(v−(τ), χ−(τ), τ) ≥ −C1|χ+(τ) − χ−(τ)|. (35)Thus by (33),(34),(35) and (30),(32) we obtain that

χ̇+(τ) − χ̇−(τ) ≥ C2(v+(τ) − v−(τ)) − C1|χ+(τ) − χ−(τ)| (36)
≥ C2

C3

16
z − C1z =

(C2C3

16
− C1

)
z.Clearly in the last inequality we have used the bounds (24) and (25). So if we 
hoose

C3 >
16C1

C2
, then

χ̇+(τ) − χ̇−(τ) > 013



and this is in 
ontradi
tion with the de�nition of τ .Step 2: Let us de�ne the time
t0 := sup

s∈[t−δ,t]

{
s : v+(s) − v−(s) <

C3

16
z
}
. (37)If t0 < t− η for any η > 0 then we 
an 
on
lude the proof, be
ause we 
an trivially sele
t

δ = η in (30). Otherwise from Step 1 we know that
0 < χ+(s) − χ−(s) ≤ z, ∀s ∈ [t0, t]. (38)Moreover, by the de�nition of t0 we know even that

v+(t0) − v−(t0) =
C3

16
z. (39)Using the equations of the 
hara
teristi
s (77), the bounds (24), (25) and 
omputing as inStep 1, we 
an state that for every s ∈ [t0, t] it holds that:

|v̇+(s) − v̇−(s)| ≤ 2C1|v+(s) − v−(s)| + 2C1|χ+(s) − χ−(s)|

(38)

≤ 2C1

(
|v+(s) − v−(s)| + z

) (40)Putting E(s) := |v+(s) − v−(s)| + z from the last inequality we get to:
Ė(s) ≤ 2C1E(s). (41)Thus, by Gronwall's Lemma we have that for every s ∈ [t0, t]:

E(s) ≤ e2C1(s−t0)E(t0). (42)Choosing s = t we obtain:
(C3z + z)

(29)

≤ E(t)
(42)

≤ e2C1(t−t0)E(t0)
(39)
= e2C1(t−t0)

(C3

16
z + z

)
. (43)Thus,

t− t0 ≥
1

2C1
log

(16C3 + 16

C3 + 16

) (44)and in parti
ular if C3 is big enough we 
on
lude that t − t0 > 0. This means that thereexists δ > 0 su
h that t− δ ∈ [t0, t] and the inequality (30) is satis�ed.
14



5.3 Proof of Proposition 5.1Case 1: Trivially, if it holds
u([x+ z]+, t) − u(x−, t) ≤ C3z, (z > 0) (45)our proposition is true.Case 2: Otherwise, we 
an 
hoose an α > C3 with
u([x+ z]+, t) − u(x−, t)

z
= α, (z > 0). (46)By Lemma 5.1 there exists 0 < δ < ε su
h that for every s ∈ [t− δ, t] we have the followingtwo estimates:

0 < χ+(s) − χ−(s) ≤ z, (47)
v+(s) − v−(s) ≥

αz

16
. (48)Now, using the same te
hniques and bounds as above we 
ompute:

χ+(t) − χ−(t) =

∫ t

t−δ

fu(v+(s), χ+(s), s) − fu(v−(s), χ−(s), s)ds+ χ+(t− δ) − χ−(t− δ)

≥

∫ t

t−δ

fu(v+(s), χ+(s), s) − fu(v−(s), χ−(s), s)ds

≥ C2
αδ

16
z −

∫ t

t−δ

C1|χ+(s) − χ−(s)|ds ≥ C2
αδ

16
z − δzC1. (49)Sin
e z = χ+(t) − χ−(t) we rewrite (49) as

z(1 + C1δ) ≥ C2
αδ

16
z ⇒ α ≤

16(1 + C1δ)

δC2
, (50)and then

u([x+ z]+, t) − u(x−, t) ≤
16(1 + C1δ)

δC2
z, (z > 0) (51)This 
on
lude the proof.6 Preparatory tools for the proof of Theorem 1.3In the geometri
 proof of the main Theorem in [2℄ the 
hara
teristi
s of the entropy solutionsof the s
alar 
onservation laws (1) played a fundamental role. Using the good and simplestru
ture of these 
hara
teristi
s it was possible to de�ne a monotone geometri
 fun
tional,whi
h jumps when a Cantor part appears in the solution. One of the key Lemmas wasthe No-
rossing-Proposition (see Proposition 2.5 of [2℄), whi
h implies that two di�erent15




hara
teristi
s χ1 : [0, τ1] → R, χ2 : [0, τ2] → R 
annot 
ross for all t ∈ (0, max{τ1, τ2}).The generalized 
hara
teristi
s of a balan
e laws (4) with sour
e term g are in generalno more straight lines, but by Theorem 3.3 we know that the No-
rossing property stillholds for two distin
t genuine 
hara
teristi
s. By the way, for every point (y, τ) ∈ R ×R
+the minimal and maximal ba
kward 
hara
teristi
s are genuine and then the No-
rossingproperty is assured. This suggests us that the 
onstru
tion proposed in [2℄ still works evenfor equations (4) and that we 
an try to restate the main steps of the original proofs. Inparti
ular, a geometri
 approa
h to our problem make sense and in this se
tion we shallthen introdu
e a geometri
 fun
tional de�ned using the generalized 
hara
teristi
s. Webegin by giving some preliminary de�nitions and propositions, whi
h are inspired to thosepresented in [2℄:De�nition 6.1. (Chara
teristi
 
ones and bases). Let τ > 0. For θ ∈ [0, τ ] the ba
kward
hara
teristi
 
one Cθ

y,τ emanating from y ∈ Sτ := {x ∈ R : u(x−, τ) 6= u(x+, τ)} isde�ned as the open "triangle" having
(y, τ), (χ−(θ; y, τ), θ), (χ+(θ; y, τ), θ)as verti
es. The base of a 
hara
teristi
 
one at time θ ∈ [0, τ ] is de�ned as the openinterval:
Iθ
y,τ :=]χ−(θ; y, τ), χ+(θ; y, τ)[. (52)We note that the 
hara
teristi
 
ones are 
on�ned by minimal and maximal ba
kward 
har-a
teristi
s, whi
h are genuine. Then, due to the No-
rossing property of genuine 
hara
-teristi
s two di�erent 
ones Cθ
y1,τ1

and Cθ
y2,τ2

(or two di�erent bases Iθ
y1,τ1

and Iθ
y2,τ2

) areeither one 
ontained in the other or disjoint. We de�ne also
Cθ

τ :=
⋃

y∈Sτ

Cθ
y,τ and Iθ

τ :=
⋃

y∈Sτ

Iθ
y,τ . (53)It is known that entropy solutions u(x, t) of (4) are BV fun
tions. Moreover, for every t thefun
tion u(., t) is also BV on R and then by (10) we 
an split Dxu(., t) in three mutuallysingular parts:

Dxu(., t) = Da
xu(., t) +Dj

xu(., t) +Dc
xu(., t)For 
onvenien
e we denote by µt := Dc

xu(., t) the Cantor part and by νt := Dj
xu(., t)the jump part. Inequality (11) implies that the singular measures µt and νt are bothnonpositive. We re
all also the semi-monotoni
ity of u(., t) that gives

u(y+, t)− u(x−, t) = Du(., t)([x, y]) whenever x < y. (54)Finally we state three te
hni
al lemmas, whi
h are to 
ompare with estimates (3.4), (3.10)and Lemma 3.2 of [2℄. 16
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Figure 2: Chara
teristi
 
ones and bases.Lemma 6.1. Let τ > 0. If y ∈ Sτ , then for all θ ∈ [0, τ ] there exists a positive 
onstant
cj su
h that

L1(Iθ
y,τ ) = χ+(θ; y, τ) − χ−(θ; y, τ) ≤ −cjντ ({y}). (55)Lemma 6.2. Let τ0 > 0. Then for µτ0-a.e. x there exists η := η(x, τ0, τ) > 0 su
h that

]x− η, x+ η[⊂ Iτ0
τ for τ > τ0. (56)De�nition 6.2. We denote by E the set of x's for whi
h Lemma 6.2 applies and su
h that

lim
η↓0

|Du(., τ0) − µτ0 |([x− η, x+ η])

−µτ0([x− η, x+ η])
= 0. (57)The Besi
ovit
h di�erentiation theorem gives that µτ0(R\E) = 0 and with (54) we havefor every x ∈ E that

lim
η↓0

u((x− η)−, τ0) − u((x+ η)+, τ0)

−µτ0([x− η, x+ η])
= 1. (58)Lemma 6.3. Let τ0 > 0. For every x ∈ E, for every η > 0 su
h that x± η /∈ Sτ0 and forall θ ∈ (0, τ0], there exists a positive 
onstant cc(θ) su
h that

L1(Jθ
x,η) = χ+(θ; x+ η, τ0) − χ−(θ; x− η, τ0) ≥ −cc(θ)µτ0([x− η, x+ η]) (59)where Jθ

x,η :=]χ−(θ; x− η, τ0), χ+(θ; x+ η, τ0)[.Note that the proofs of these lemmas are listed in Chapter 9 and that to get theseresults we will use the estimate of Theorem 1.2.17



7 Proof of Theorem 1.3Step 1: Preliminary remarks.Let us �x (ξ, τ) ∈ Ω and a radius r su
h that the ball Br(ξ, τ) ⊂ Ω. Thanks to the �nitespeed of propagation, there exists a positive ρ su
h that the values of u(x, t) in the ball
Bρ(ξ, τ) depend only on the values of u on the segment {t = τ −2ρ}∩Br(ξ, τ). If we write
w for the entropy solution of the problem

{
Dtw(x, t) +Dx[f(w(x, t), x, t)] + g(w(x, t), x, t) = 0, for t > τ − 2ρ;
w(x, τ − 2ρ) = u(x, τ − 2ρ)1Br(ξ,τ)(x, τ − 2ρ), for every x ∈ R. (60)we get that w = u on Bρ(ξ, τ). We also note that w(., t) ∈ BV (R) for every t > τ − 2ρ.Thus it su�
es to prove the theorem under the additional assumptions that Ω = {t > 0}and that u(., 0) is a bounded 
ompa
tly supported BV fun
tion. Sin
e the fun
tion u(., 0)has 
ompa
t support, we know that there exist 
onstants R and cR su
h that the supportof u(., t) is 
ontained in {|x| ≤ R} and

|Du(., t)|(R) ≤ cR. (61)Step 2: De�nition of the geometri
 fun
tional F θ(t).For a �xed θ > 0 we de�ne the fun
tional F θ : [θ,∞[→ R
+ as follows

F θ(t) := L1(Iθ
t ) =

∑

y∈St

L1(Iθ
y,t) (62)where the se
ond equality holds by the No-
rossing property of the 
hara
teristi
s. Ge-ometri
ally the fun
tional F θ(t) measures the total length of the bases at time θ of all
hara
teristi
 
ones 
ontained in Cθ

t . With Lemma 6.1 we observe that this fun
tional isbounded from above:
F θ(t) ≤ −cjνt(R) ≤ cj|Du(., t)|(R) ≤ cjcR for every t ∈ [θ, T ]. (63)Moreover, this geometri
 fun
tional is nonde
reasing. This is a 
onsequen
e of the fa
t thatfor every θ ≤ t1 ≤ t2 we have that Iθ

t1
⊂ Iθ

t2
. Assuming that there exists x ∈ St1 su
h that

x ∈ (I t2
t1

)c, then the sho
k s(t) passing through (x, t1) would be not entirely 
ontained inthe 
hara
teristi
 
ones Ct1
t2
. But by de�nition of 
hara
teristi
 
ones and the No-
rossingproperty, every sho
k in R × [t1, t2] is entirely 
ontained in Ct1

t2
. Therefore, St1 ⊂ I t1

t2
andagain due to the No-
rossing property we 
on
lude that Iθ

t1
⊂ Iθ

t2
. We stateLemma 7.1. For �xed T ≥ θ > 0 the fun
tional F θ : [θ, T ] → R

+ is nonde
reasing andbounded from above.One of the key remarks of the proof given in [2℄ was the 
onne
tion between the jumpsof the geometri
 fun
tional and the Cantor parts 
reated in the solution. We 
an try todes
ribe this geometri
 pro
ess as follows: when a Cantor part is 
reated in the solution18



at time τ0, this part is transformed after an in�nitesimal time into several small jumps.The sum of the measures of these jumps give a 
ontribution big enough to make thegeometri
al fun
tional jump at τ0. Due to the similar 
onstru
tion of our fun
tional F θ(.)and the original fun
tional de�ned in [2℄, we 
an utilize the same idea here. This motivatesa �rst redu
tion of our problem to the following Lemma:Lemma 7.2. For any integer k we have
τ0 ≥

T

k
> θ and µτ0(R) ≤ −

1

k
⇒ F θ(τ0+) ≥ F θ(τ0) + cF (θ) (64)where cF (θ) is a stri
tly positive 
onstant whi
h depends on ‖u‖∞, T, k, f, g and on the
hoi
e of θ > 0.Clearly, Lemma 7.1 and Lemma 7.2 imply that all sets

{
τ ∈

[T
k
, T

[
: µτ (R) ≤ −

1

k

} (65)are �nite.Step 3: Proof of Lemma 7.2.In this step we shall make use of the three te
hni
al Lemmas 6.1, 6.2 and 6.3. We �x
τ > τ0 ≥ T/k ≥ θ. Let x ∈ E, where E is the set de�ned by Lemma 6.1. Consequently toLemma 6.3, for η > 0 small enough we have that

L1(Jθ
x,η) ≥ −cc(θ)µτ0([x− η, x+ η]) (66)where Jθ

x,η :=]χ−(θ; x−η, τ0), χ+(θ; x+η, τ0)[. By the No-
rossing property of 
hara
teristi
swe know that Jθ
x,η 
an only interse
t the bases of the 
ones Iθ

y,τ0
emanating from a point

y ∈ [x− η, x+ η], so that re
alling Lemma 6.1 it follows that
L1(Jθ

x,η ∩ I
θ
τ0

) =
∑

y∈Sτ0
∩[x−η,x+η]

L1(Iθ
y,τ0

) ≤ −cjντ0([x− η, x+ η]). (67)Combining (66) and (67) we �nd that for any x ∈ E we have that
L1(Jθ

x,η\I
θ
τ0

) ≥ −cc(θ)µτ0([x− η, x+ η]) + cjντ0([x− η, x+ η]) ≥

≥ −cc(θ)µτ0([x− η, x+ η]) − cj |ντ0 |([x− η, x+ η]). (68)Finally, invoking the Besi
ovit
h di�erentiation theorem and in parti
ular (57), we obtain
L1(Jθ

x,η\I
θ
τ0

) ≥ −
cc(θ)

2
µτ0([x− η, x+ η]), (69)provided that η is small enough. Using the Besi
ovit
h 
overing lemma, we 
an 
over

µτ0-a.e. E with pairwise disjoint intervals Kθ
j,τ0

:= [xj − ηj, xj + ηj] su
h that (69) and the
on
lusion of Lemma 6.2 both hold for x = xj and η = ηj. Thanks to the No-
rossing19



property all the intervals Jθ
xj ,ηj

are pairwise disjoint and re
alling Lemma 6.2 we note thatall these sets are 
ontained in Iθ
τ . In Lemma 7.2 we assumed that −µτ0(R) ≥ 1/k. Thenfor all θ > 0 the estimates above imply:

F θ(τ) − F θ(τ0) ≥
∑

j

L1(Jθ
xj ,ηj

\Iθ
τ0

) ≥ −
∑

j

cc(θ)

2
µτ0([xj − ηj, xj + ηj ]) ≥

≥ −
cc(θ)

2
µτ0(E) = −

cc(θ)

2
µτ0(R) ≥

cc(θ)

2k
=: cF (θ). (70)Step 4: The end of the proof.In Step 3 we have shown that for any �xed θ > 0 the interval (θ, T ] 
ontains a set Hθ,whi
h is at most 
ountable and su
h that for every τ ∈ (θ, T ]\Hθ the following holds:

u(., τ) ∈ SBVloc(Ωτ,θ) with Ωτ,θ := {x ∈ R : (x, τ) ∈ Ω, τ ∈ (θ, T ]}. (71)Now, we 
onsider the sequen
e (θn)n∈N := T/2n and we de�ne the set S of the mainTheorem 1.3 as the 
ountable union of the 
ountable sets Hθn
⊂ (θn, T ], whi
h is again
ountable:

S := H0 =
⋃

n∈N

H T
2n
. (72)This 
on
ludes the proof.8 Theorem 1.4 and Corollary 1.1The proof of Theorem 1.4 
ombines the ideas of Theorem 1.1 and Theorem 1.3. We repeatit for the reader's 
onvenien
e.Proof. Step 1: [Stri
tly 
on
ave �ux.℄ As in the proof of Theorem 1.1 let us �rst showthat there exists a lo
ally SBV entropy solution for the problem with a stri
tly 
on
ave�ux. By Theorem 1.3 we know that if f(u(x, t), x, t) is stri
tly 
onvex in u and C2, theequation

Dtu(x, t) +Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 (73)has a lo
ally SBV entropy solution u(x, t). Sin
e f1(u(x, t), x, t) := f(u(x, t),−x, t) isagain C2 and stri
tly 
onvex in u and g1(u(x, t), x, t) := g(u(x, t),−x, t) is C1, the solution
u1(x, t) of

Dtu1(x, t) +Dx[f1(u1(x, t), x, t)] + g1(u1(x, t), x, t) = 0 (74)is again a SBVloc fun
tion. Next we 
onsider the 
oordinates transformation φ : Ω →
Ω̃, φ : (x, t) 7→ (y, t) = (−x, t) and we put f̃ := −f, g̃ := g. Then we have for ũ(y, t) :=

20



u1 ◦ φ
−1(y, t) = u1(−x, t):
Dtũ(y, t) +Dy[f̃(ũ(y, t), y, t)] + g̃(ũ(y, t), y, t) =

= Dtũ(y, t) −Dy[f(ũ(y, t), y, t)] + g(ũ(y, t), y, t) =

= Dtũ(−x, t) − (−Dx)[f(ũ(−x, t),−x, t)] + g(ũ(−x, t),−x, t) =

= Dtu1(x, t) +Dx[f(u1(x, t),−x, t)] + g(u1(x, t),−x, t) =

= Dtu1(x, t) +Dx[f1(u1(x, t), x, t)] + g1(u1(x, t), x, t) = 0. (75)Thus ũ is a solution of a balan
e law with stri
tly 
on
ave �ux fun
tion and sin
e u1 islo
ally SBV this implies that also ũ ∈ SBVloc. Moreover, u1 is an entropy solution of (74)and sin
e we have found the solution ũ re�e
ting u1 about the t-axis, as in the proof ofLemma 4.1, we 
an show that even for ũ the entropy and the Rankine-Hugoniot 
onditionshold.Step 2: [u(x, t) ∈ SBVloc(Ωτ ).℄ At this point we 
an repeat the 
onstru
tion given in theproof of Theorem 1.1. Due to the small variation of an entropy solution we 
an restri
tthe solution u(x, t) on triangles Tj 's, where the �ux fun
tion f is either stri
tly 
onvex orstri
tly 
on
ave. Re
alling that C is the set of points (xi, ti) where the solution has jumpsor has a values su
h that fuu(u(xi, ti), xi, ti) = 0, we 
over Ω\C with a 
ountable familyof triangles Tj . For the bad points not 
ontained in one triangle or points of C, we 
anrestate Claim 4.2 and 4.1. We 
on
lude that the entropy solution u(x, t) is lo
ally SBVon Ωτ for every τ ∈ R\S.Step 3: [u ∈ SBVloc(Ω).℄ The sli
ing theory says that the 2-dimensional Cantor part ofthe derivative Dxu(x, t) 
an be re
overed from the 
orresponding 1-dimensional part. ByTheorem 3.108 of [1℄ we have:
Dc

xu(x, t) =

∫
L1 Ωt ⊗Dcu(., t)dt (76)where Ωt is the proje
tion of Ω on {x = 0} × R

+. Sin
e by Step 2 the Cantor part is
Dcu(., t) = 0 for every t /∈ S and S is at most 
ountable, then also the two dimensionalCantor part Dc

xu(x, t) vanishes. With the Vol'perts 
hain rule (see Theorem 3.96 of [1℄) andequation (4) we get that Dc
tu(x, t) = 0. Finally we have obtained that u ∈ SBVloc(Ω).Next, we use Theorem 1.3 to prove 
orollary 1.1.Proof. We di�erentiate the equation (9) by x (in the sense of distributions):

Dxwt(x, t) +DxH(wx(x, t), x, t) = 0 ⇔ Dtwx(x, t) +DxH(wx(x, t), x, t) = 0.Letting u(x, t) = wx(x, t) and H(u(x, t), x, t) = f(u(x, t), x, t), this is exa
tly the balan
eequation of Theorem 1.3, i.e. u(x, t) = wx(x, t) is SBVloc(Ωτ ) for every τ ∈ R\S, where Sis at most 
ountable. As in Step 3 of the proof of Theorem 1.4, it follows that u(x, t) ∈
SBVloc(Ω). 21



9 Proofs of the three te
hni
al lemmas9.1 Proof of Lemma 6.1Let τ > 0 and y ∈ Sτ . To simplify the notation, we denote the minimal and the maximalba
kward 
hara
teristi
s starting from (y, τ) by χ−(t) and χ+(t) instead of χ−(t; y, τ) and
χ+(t; y, τ). Rewriting the ODEs (14) related to the genuine 
hara
teristi
s for χ−(t), χ+(t) :
[0, τ ] → R we obtain

{
χ̇±(t) = fu(v±(t), χ±(t), t)
v̇±(t) = −fx(v±(t), χ±(t), t) − g(v±(t), χ±(t), t)

(77)with 




χ−(τ) = y = χ+(τ)
v−(τ) = u(y−, τ) =: u−

v+(τ) = u(y+, τ) =: u+
(78)where by the admissible 
ondition (11), u− > u+ and −ντ ({y}) = u−−u+. Now we 
hangethe variable in equations (77) putting s = τ − t:

{
ψ̇±(s) = −fu(ω±(s), ψ±(s), τ − s)
ω̇±(s) = fx(ω±(s), ψ±(s), τ − s) + g(ω±(s), ψ±(s), τ − s)

(79)where ψ±(s) := χ±(τ − s) and ω±(s) := v±(τ − s). Then, using (79) we have
d

ds
|ψ−(s) − ψ+(s)| ≤ |ψ̇−(s) − ψ̇+(s)| = |fu(ω−(s), ψ−(s), τ − s) − fu(ω+(s), ψ+(s), τ − s)|

≤ ‖D2f‖L∞(K)︸ ︷︷ ︸
:=c1

(|ω−(s) − ω+(s)| + |ψ−(s) − ψ+(s)|). (80)Repeating the 
omputations also for ω±(s), we �nd that:
d

ds
|ω−(s) − ω+(s)| ≤|fx(ω−(s), ψ−(s), τ − s) − fx(ω+(s), ψ+(s), τ − s)|+

+ |g(ω−(s), ψ−(s), τ − s) − g(ω+(s), ψ+(s), τ − s)| ≤ (81)
≤

[
‖D2f‖L∞(K) + ‖Dg‖L∞(K)

]

︸ ︷︷ ︸
:=c2

(|ω−(s) − ω+(s)| + |ψ−(s) − ψ+(s)|)If we 
hoose a 
ompa
t set
K := [−‖u‖∞, ‖u‖∞] ×

[
min
t∈[0,τ ]

χ−(t), max
t∈[0,τ ]

χ+(t)
]
× [0, τ ] (82)then the above 
onstants c1 and c2 are positive and �nite. Inequalities (80) and (81)together give

d

ds

(
|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)|

)
≤ c3

(
|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)|

) (83)22



where c3 is again a positive 
onstant depending only on ‖D2f‖L∞(K) and ‖Dg‖L∞(K). ByGronwall's lemma and (83) we get
|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)| ≤ ec3s(|ψ−(0) − ψ+(0)| + |ω−(0) − ω+(0)|). (84)Now, we put s = ϑ ∈ [0, τ ] into (84) to �nd the following inequality:

|χ−(τ − ϑ) − χ+(τ − ϑ)| = |ψ−(ϑ) − ψ+(ϑ)| ≤ |ψ−(ϑ) − ψ+(ϑ)| + |ω−(ϑ) − ω+(ϑ)| ≤

≤ ec3τ

︸︷︷︸
:=cτ

(|ψ−(0) − ψ+(0)| + |ω−(0) − ω+(0)|) =

= cτ (|χ−(τ) − χ+(τ)| + |v−(τ) − v+(τ)|). (85)If we set θ = τ − ϑ, then by (78) we 
on
lude:
χ+(θ) − χ−(θ) = |χ−(θ) − χ+(θ)| ≤ cτ (|χ−(τ) − χ+(τ)|︸ ︷︷ ︸

=0

+ |v−(τ) − v+(τ)|︸ ︷︷ ︸
=|u−−u+|

)

≤ cτ (u
− − u+) = −cτντ ({y}). (86)9.2 Proof of Lemma 6.2We prove that the 
on
lusion of the lemma holds for any x whi
h satisfy the following
onditions:

x /∈ Sτ0 and lim
η↓0

u(x+ η, τ0) − u(x− η, τ0)

2η
= −∞. (87)By the Besi
ovit
h di�erentiation theorem on intervals, the measure µτ0 is 
on
entrated on

E. In our proof we �x τ > τ0 and x su
h that (87) holds and our goal is to show that for
η small enough {τ0}×]x− η, x+ η[⊂ Iτ0

τ . To prove that the point x is 
ontained in Iτ0
τ , we
onsider all the possible 
ases:

I : x /∈ Iτ0
τ

II : x ∈ ∂(Iτ0
τ )

III : ∃η > 0 s.t. (]x− η, x+ η[∩Iτ0
τ )c = {x}

IV : x ∈ Iτ0
τand in parti
ular we will show that in the �rst three 
ases we obtain a 
ontradi
tion.Then, by IV the point x is in Iτ0
τ and sin
e Iτ0

τ is open there exists η > 0 su
h that
{τ0}×]x− η, x+ η[⊂ Iτ0

τ .The property (87) may be rewritten pres
ribing that for every positive α > ᾱ > 0 , thereexists η̄ > 0 su
h that for all 0 < η < η̄ holds
u(x− η, τ0) − u(x+ η, τ0) > α2η > ᾱ2η > 0. (88)The positive number ᾱ will be 
hosen later, more pre
isely we will de�ne this 
onstant atthe end of 
ase I. 23



Case I: Sin
e in this 
ase the distan
e dist(x, Iτ0
τ ) is stri
tly positive there exists η > 0small enough su
h that 0 < 2η < η̄ and ]x − η, x + η[∩Iτ0

τ = ∅. Consequently to thede�nition of a 
hara
teristi
 
one, we observe that all possible sho
ks 
reated before τ are
ontained in Cτ0
τ and thus, two di�erent sho
ks starting at x1, x2 /∈ Iτ0

τ , where x1 6= x2,
annot 
ross for all t ∈ [τ0, τ ]. By the way, also the two 
hara
teristi
s passing trough
(x− η, τ0) and (x+ η, τ0), whi
h are genuine, 
annot 
ross in [τ0, τ ]. If we denote by χ1(t)and χ2(t), respe
tively, the two 
hara
teristi
s χ(t; x−η, τ0) and χ(t; x+η, τ0), this implies
χ1(t) < χ2(t) for every t ∈ [τ0, τ ]. This 
on
lusion is 
ontradi
ted by the next 
laim.Claim 9.1. If x is a point su
h that ∃η > 0 with ]x−η, x+η[∩Iτ0

τ = ∅ and (88) holds then
χ1(τ) − χ2(τ) > 0. (89)Proof. Integrating the ODEs of the 
hara
teristi
s (14) we obtain:

∫ τ

τ0

χ̇(t)dt =

∫ τ

τ0

fu(v(t), χ(t), t)dt

χ(τ) = χ(τ0) +

∫ τ

τ0

fu(v(t), χ(t), t)dt (90)and ∫ t

τ0

v̇(s)ds = −

∫ t

τ0

fx(v(s), χ(s), s) + g(v(s), χ(s), s)ds

v(t) = v(τ0) −

∫ t

τ0

fx(v(s), χ(s), s) + g(v(s), χ(s), s)ds. (91)Substituting χ1 and χ2 to χ in (90) and subtra
ting the 
orresponding equations, by themean value theorem there exists ξ su
h that:
χ1(τ) − χ2(τ) = χ1(τ0) − χ2(τ0) +

∫ τ

τ0

fu(v1(t), χ1(t), t) − fu(v2(t), χ2(t), t)dt =

= −2η +

∫ τ

τ0

fuu(ξ)(v1(t) − v2(t)) + fux(ξ)(χ1(t) − χ2(t))dt (92)holds. We observe that by the �nite speed of the 
hara
teristi
s, the distan
e between
χ1(t) and χ2(t) for every t ∈ [τ0, τ ] is 
ontrolled by the distan
e of the 
hara
teristi
s atthe time τ0:

|χ1(t) − χ2(t)| ≤ Cχ|χ1(τ0) − χ2(τ0)| = Cχ2η ∀t ∈ [τ0, τ ] (93)where Cχ is a positive 
onstant. Thus by (92) and (93):
−2η +

∫ τ

τ0

fuu(ξ)(v1(t) − v2(t))dt = χ1(τ) − χ2(τ) −

∫ τ

τ0

fux(ξ)(χ1(t) − χ2(t))dt ≤

≤ χ1(τ) − χ2(τ) +

∫ τ

τ0

|fux(ξ)(χ1(t) − χ2(t))|dt ≤

≤ χ1(τ) − χ2(τ) + (τ − τ0)‖D
2f‖L∞(K)Cχ︸ ︷︷ ︸

:=C̃f

2η (94)24



where K is a 
ompa
t set, for instan
e
K := [−‖u‖∞, ‖u‖∞] ×

[
min

t∈[τ0,τ ]
{χ1(t), χ2(t)}, max

t∈[τ0,τ ]
{χ1(t), χ2(t)}

]
× [τ0, τ ]. (95)Next we employ (91) to estimate the rest of (94). For every t ∈ [τ0, τ ] we have that:

v1(t) − v2(t) =v1(τ0) − v2(τ0) +

∫ t

τ0

fx(v2(s), χ2(s), s) − fx(v1(s), χ1(s), s)ds

︸ ︷︷ ︸
:=A(t)

+

+

∫ t

τ0

g(v2(s), χ2(s), s) − g(v1(s), χ1(s), s)ds

︸ ︷︷ ︸
=:B(t)

. (96)By the mean value theorem for two appropriate σ1 and σ2 the terms A(t) and B(t) areequal to:
A(t) =

∫ t

τ0

fux(σ1)(v2(s) − v1(s)) + fxx(σ1)(χ2(s) − χ1(s))ds (97)
B(t) =

∫ t

τ0

gu(σ2)(v2(s) − v1(s)) + gx(σ2)(χ2(s) − χ1(s))ds (98)and then
|A(t) +B(t)| ≤

∫ t

τ0

∣∣∣(fux(σ1) + gu(σ2))(v2(s) − v1(s)) + (fxx(σ1) + gx(σ2))(χ2(s) − χ1(s))
∣∣∣ds ≤

≤

∫ t

τ0

(‖D2f‖L∞(K) + ‖Dg‖L∞(K))︸ ︷︷ ︸
:=Cf,g

(|v2(s) − v1(s)| + |χ2(s) − χ1(s)|)ds ≤

(5)

≤ Cf,g

∫ t

τ0

(
C + 1

)
|χ2(s) − χ1(s)|ds

(93)

≤ Cf,g

∫ t

τ0

(
C + 1

)
Cχ2ηds ≤

≤ Cf,g(C + 1)
[
τ − τ0

]
Cχ2η =: C̃f,g2η. (99)where the resulting 
onstant C̃f,g is positive. Combining the inequality (99) with (96) and(94) we obtain:

−2η(1 + C̃f) +

∫ τ

τ0

fuu(ξ)(v1(τ0) − v2(τ0))dt ≤

∫ τ

τ0

∣∣∣fuu(ξ)[A(t) +B(t)]
∣∣∣dt+ χ1(τ) − χ2(τ)

(99)

≤ (τ − τ0)‖D
2f‖L∞(K)C̃f,g︸ ︷︷ ︸

:=Ĉf,g

2η + χ1(τ) − χ2(τ).

25



Finally, we take a better form for the last estimate
χ1(τ) − χ2(τ) ≥ −2η(1 + C̃f + Ĉf,g) +

∫ τ

τ0

fuu(ξ)(v1(τ0) − v2(τ0))dt =

= −2η (1 + C̃f + Ĉf,g)︸ ︷︷ ︸
>0

+

∫ τ

τ0

fuu(ξ)︸ ︷︷ ︸
≥γ>0

(u(x− η, τ0) − u(x+ η, τ0))︸ ︷︷ ︸
>0 for η small enough by (88)

dt (100)where γ > 0 is the 
onstant related to the stri
tly 
onvexity of f(u, x, t) in u, i.e.
fuu(u, x, t) ≥ γ > 0for �xed (x, t). Now, we put

ᾱ =
1 + C̃f + Ĉf,g

(τ − τ0)γ
> 0. (101)We note that ᾱ is positive and it depends only on ‖D2f‖L∞(K),‖Dg‖L∞(K),τ0,τ and γ.Re
alling (88) and (100) for ᾱ > 0, there exists η̄ > 0 su
h that for every small η with

0 < η < η̄ we have
χ1(τ) − χ2(τ) > −2η(1 + C̃f + Ĉf,g) + 2ηᾱ(τ − τ0)γ

(101)
= 0Case II: If x belongs to ∂(Iτ

τ0
),then one of the two 
hara
teristi
s χ(t; x − η, τ0) or

χ(t; x+ η, τ0) is not 
ontained in Cτ
τ0
. Moreover, the 
hara
teristi
 χ(t; x, τ0) is a boundary
urve of the 
hara
teristi
 
one Cτ

τ0
and so it is either a minimal or a maximal ba
kward
hara
teristi
. Repeating similar 
omputations as in 
ase I it is possible to show that if(87) holds, either χ(t; x − η, τ0) or χ(t; x + η, τ0) will 
ross with χ(t; x, τ0) for a t ∈]τ0, τ [.Re
alling again the No-
rossing property of genuine 
hara
teristi
, we get a 
ontradi
tion.Case III: By Theorem 3.3 for every τ0 > 0 trough (x, τ0) passes a unique forward 
hara
-teristi
. Consequently 
ase III is to dis
ard.Case IV: In view of the 
ontradi
tions obtained in the previous 
ases, the last possible
ase must be true. In parti
ular x ∈ Iτ

τ0
and sin
e Iτ

τ0
is open there exists a η > 0 smallenough su
h that

]x− η, x+ η[⊂ Iτ
τ0for τ > τ0.Remark 9.1. We remark that in [2℄ Lemma 6.2 was proved using the Hopf-Lax formula.Here we have proposed a more geometri
al 
onstru
tion, whi
h make use of the propertiesof generalized 
hara
teristi
s. This 
hange of strategy is also motivated by the fa
t thatfor system of 
onservation laws the Hopf-Lax does not exists, whereas there is a suitable
on
ept of generalized 
hara
teristi
s (see [8℄).26



9.3 Proof of Lemma 6.3Let τ0 > 0, x ∈ E and η > 0 su
h that x ± η /∈ Sτ0 . To simplify the notation we write
χ−(t) and χ+(t) instead of χ−(t; x− η, τ0) and χ+(t; x+ η, τ0). Our aim is to show that forall θ ∈]0, τ0] there exists a positive 
onstant cc(θ) su
h that

χ+(θ) − χ−(θ) ≥ −cc(θ)µτ0([x− η, x+ η]) (102)holds. By Besi
ovit
h di�erentiation theorem (58) we have
−cµτ0([x− η, x+ η]) ≤ u(x− η, τ0) − u(x+ η, τ0) ≤

≤ |u(x− η, τ0) − u(x+ η, τ0)| + |χ−(τ0) − χ+(τ0)| =

= |v−(τ0) − v+(τ0)| + |χ−(τ0) − χ+(τ0)|. (103)Next we derive analogous estimates as in the proof of Lemma 6.1. Now we �x τ ∈]0, τ0[and we 
hange the variable in equations of the 
hara
teristi
s (77) putting s = t− τ :
{
ψ̇±(s) = fu(ω±(s), ψ±(s), τ + s)
ω̇±(s) = −fx(ω±(s), ψ±(s), τ + s) − g(ω±(s), ψ±(s), τ + s)

(104)where ψ±(s) := χ±(τ + s) and ω±(s) := v±(τ + s). Using Gronwall's Lemma, on the
ompa
t set K de�ned in (82) there exists a positive 
onstant cK , whi
h depends only on
‖D2f‖L∞(K) and ‖Dg‖L∞(K), su
h that

|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)| ≤ ecKs(|ψ−(0) − ψ+(0)| + |ω−(0) − ω+(0)|). (105)We insert s = τ0 − τ in the inequality above and by χ±(τ0) = ψ±(τ0 − τ),χ±(τ) = ψ±(0)and v±(τ0) = ω±(τ0 − τ),v±(τ) = ω±(0), it follows that
|χ−(τ0) − χ+(τ0)| + |v−(τ0) − v+(τ0)| ≤ ecKτ0︸︷︷︸

:=c̄

(|χ−(τ) − χ+(τ)| + |v−(τ) − v+(τ)|) (106)Thus, with (103) we get:
−cµτ0([x− η, x+ η]) ≤ c̄(|χ−(τ) − χ+(τ)| + |v−(τ) − v+(τ)|) ≤

(5)

≤ c̄
(
|χ−(τ) − χ+(τ)| + C|χ−(τ) − χ+(τ)|

)
≤

≤
(
c̄ + C

)
|χ−(τ) − χ+(τ)| (107)We have proved, that for all θ ∈ (0, τ0] there exists a positive 
onstant cc(θ) dependingonly on ‖D2f‖L∞(K), ‖Dg‖L∞(K),τ0 and θ su
h that:

χ+(θ) − χ−(θ) = |χ−(θ) − χ+(θ)| ≥ −cc(θ)µτ0([x− η, x+ η]). (108)27
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