
SBV regularity of entropy solutions for a lassof genuinely nonlinear salar balane laws withnon-onvex �ux funtion.R.Robyr - UNI Zurih - PreprintJanuary 17, 2008AbstratIn this work we study the regularity of entropy solutions of the genuinely nonlinearsalar balane laws
Dtu(x, t) + Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 in an open set Ω ⊂ R

2.We assume that the soure term g ∈ C1(R × R × R
+), that the �ux funtion f ∈

C2(R × R × R
+) and that {ui ∈ R : fuu(ui, x, t) = 0} is at most ountable for every�xed (x, t) ∈ Ω. Our main result, whih is a uni�ation of two proposed intermediatetheorems, states that BV entropy solutions of suh equations belong to SBVloc(Ω).Moreover, using the theory of generalized harateristis we prove that for entropysolutions of balane laws with onvex �ux funtion, there exists a onstant C > 0suh that:

u([x + h]+, t) − u(x−, t) ≤ Ch, (h > 0)where C an be hosen uniformly for (x + h, t), (x, t) in any ompat subset of Ω.1 IntrodutionIn [2℄ the authors have shown that entropy solutions u(x, t) of salar onservation laws
Dtu(x, t) +Dx[f(u(x, t))] = 0 in an open set Ω ⊂ R

2 (1)with loally uniformly onvex �ux funtion f ∈ C2(R) and f ′′ > 0, are funtions ofloally speial bounded variation, i.e. the distributional derivative Du has no Cantorpart. In the proof proposed by Ambrosio and De Lellis the good geometri strutureof the harateristis �eld orrelated to the entropy solution play an important role andallows to de�ne a geometri funtional whih jumps every time when a Cantor part ofthe distributional derivative Du(., t) appears in the solution. In partiular we reall heretwo signi�ant properties of the harateristis: they are straight lines and two di�erent1



bakward harateristis an ross only at t = 0 (the so-alled no rossing property). Wenote also that for equations (1) we an take the well-known Oleinik estimate as entropyriterion, i.e. a distributional solution u(x, t) of (1) is an entropy solution provided that:
u(x+ z, t) − u(x, t) ≤

C̆

t
z, for a C > 0 (2)holds for all t > 0, x, z ∈ R where z > 0. In [2℄ the one-sided estimate (2) is used asentropy riterion and it is used to get the proof.In this note we extend this regularity result to a bigger lass of hyperboli onservationlaws. At �rst we again onsider salar onservation laws (1) but allowing the hange ofonvexity of the �ux funtion f at a ountable set of points. One of the di�ulties indealing with these equations is that rarefation waves may appear even for t > 0 andonsequently the no rossing property used in [2℄ does not hold. For instane, it is possibleto onstrut a Riemann problem where the �ux funtion has two in�etions points anda shok splits into two ontat disontinuities (see [11℄). As we will see the strategy ofthe proof is not as ompliated as one an expet: using an appropriate overing of Ωand working loally we redue the problem to the onvex or onave ase. Thus, our �rstextension theorem states:Theorem 1.1. Let f ∈ C2(R) be a �ux funtion, suh that {ui ∈ R : f ′′(ui) = 0} is atmost ountable. Let u ∈ BV (Ω) be an entropy solution of the salar onservation law (1).Then there exists a set S ⊂ R at most ountable suh that ∀τ ∈ R\S the following holds:

u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (3)In the seond part of this paper we fous our attention on genuinely nonlinear salarbalane laws
Dtu(x, t) +Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 in Ω ⊂ R

2 (4)where the soure term g belongs to C1(R × R × R
+), the �ux funtions f belongs to

C2(R×R×R
+) and fuu(., x, t) > 0 for any �xed (x, t) ∈ Ω. Again the geometri strutureof the harateristis is not as easy as in the ase treated in [2℄: now the harateristisare Lipshitz urves and in general are not straight lines. The di�erent shape of theharateristis are due to the presene of the soure term and to the dependene of f on thepoints (x, t) ∈ Ω. Fortunately, we an make use of the theory of generalized harateristisintrodued by Dafermos (see [6℄,[7℄,[8℄) to analyze the behavior of the harateristis forentropy solutions of (4). Important for our analysis is the no-rossing property betweengenuine harateristis. Thanks to this property we an expet to reprodue the geometriproof proposed in [2℄. All the de�nitions and propositions about the theory of generalizedharateristis, whih are helpful in our work, are listed in setion 3. Another problem, dueto the presene of the soure term and of the (x, t) dependene, is that for equations (4)the Oleinik estimate (2) stop to be true. Moreover, the Oleinik estimate annot be takenas entropy riterion. What we an do, is to �nd a suitable generalization of this estimate,i.e. we will prove using the generalized harateristis that:2



Theorem 1.2. Let f ∈ C2(R × R × R
+) be a �ux funtion suh that fuu(.) > 0. Let

g ∈ C1(R × R × R
+) be a soure term and let u ∈ L∞(Ω) be an entropy solution of thebalane law (4). In any �xed ompat set K ⊂ Ω there exists a positive onstant C > 0suh that:

u([x+ z]+, t) − u(x−, t) ≤ Cz, (z > 0). (5)for every (x, t), (x+ z, t) ∈ K.However, for balane laws it is impossible to reover a onstant of the form C = C̆/t,where C depends only on the time and on the seond derivative of f , estimate (5) issu�ient to obtain all the regularity-results stated in this paper. The seond theorem onthe SBV regularity proposed is:Theorem 1.3. Let f ∈ C2(R × R × R
+) be a �ux funtion suh that fuu(.) > 0. Let

g ∈ C1(R × R × R
+) be a soure term and let u ∈ L∞(Ω) be an entropy solution of thebalane law (4). Then there exists a set S ⊂ R at most ountable suh that ∀τ ∈ R\S thefollowing holds:

u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (6)Combining the two Theorems on the SBV regularity we get a generalized Theorem,whih says that also for balane laws with a �ux funtion whih hanges onvexity atmost ountable many times, the entropy solution is a loally SBV funtion. Thus, as aonsequene of Theorem 1.3 and 1.1 and of the sliing theory of BV funtions, we state:Theorem 1.4. Let f ∈ C2(R × R × R
+) be a �ux funtion, suh that

{ui ∈ R : fuu(ui, x, t) = 0}is at most ountable for any �xed (x, t). Let g ∈ C1(R× R× R
+) be a soure term and let

u ∈ BV (Ω) be an entropy solution of the balane law (4):
Dtu(x, t) +Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 in Ω ⊂ R

2. (7)Then there exists a set S ⊂ R at most ountable suh that ∀τ ∈ R\S the following holds:
u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (8)Moreover, u(x, t) ∈ SBVloc(Ω).Salar onservation laws in one spae dimension and Hamilton-Jaobi equations in onedimension are stritly onneted: entropy solutions orrespond to visosity solutions (see[9℄). Thus, at the end of the paper using Theorem 1.3 we obtain also a regularity statementfor visosity solutions u of a lass of Hamilton-Jaobi equations: we prove that the gradient

Du of suh solutions belongs to SBVloc(Ω). 3



Corollary 1.1 (Hamilton-Jaobi). Let H(u, x, t) ∈ C2(R × R × R
+) be loally uniformlyonvex in u, i.e. DuuH > 0. If w ∈W 1,∞(Ω) is a visosity solution of

wt(x, t) +H(wx(x, t), x, t) = 0, (9)then Dw ∈ SBVloc(Ω).It would be interesting to �nd the same regularity for entropy BV solutions of genuinelynonlinear system of onservation laws in one spae dimension. We note that there areanalogies between the struture of the generalized harateristis of systems and the oneof the balane laws 4 of Theorem 1.4 proposed in here: in both ases the harateristisan interset at t 6= 0 and in general they are not straight lines but Lipshitz urves,whih are a.e. di�erentiable. Although the geometry of the harateristis �eld of thesetwo problems seems to be similar, the ase of systems looks muh more di�ult. Anotheropen question is the loal SBV regularity for gradients of visosity solutions of uniformlyonvex Hamilton-Jaobi PDEs in higher spae dimensions. In [4℄ the authors have shownthat under strong regularity assumptions on the initial funtions u0, the visosity solution
u has a gradient Du, whih belongs to the lass SBV , i.e. D2u is a measure with no Cantorpart (in fat the regularity theory of [4℄ and [5℄ gives stronger onlusions).2 Funtions with bounded variation and speial fun-tions of bounded variationIt is well-known that in general we annot �nd lassial smooth solutions for equations (1)and (4): shoks appear in �nite time even for smooth initial data u(x, 0) = u0(x). In orderto study all the possible solutions with jump disontinuities, we take the spae of funtionsof bounded variation BV as working spae. We then ollet some de�nitions and theoremsabout BV and SBV funtions.De�nition 2.1. Let u ∈ L1(Ω); we say that u is a funtion of bounded variation in Ωif the distributional derivative of u, denoted by Du, is representable by a �nite Radonmeasure on Ω. A funtion u ∈ L1

loc(Ω) has loally bounded variation in Ω if for eahopen set V ⊂⊂ Ω, u is a funtion of bounded variation in V . We write u ∈ BV (Ω) and
u ∈ BVloc(Ω) respetively.In our proofs we will have to deal with one-dimensional funtions of bounded variation,therefore we ollet here some useful properties. Using the Radon-Nikodym Theorem wesplit the Radon measure Du into the absolute ontinuous part Dau (with respet to L1)and the singular part Dsu:
Du = Dau+Dsu = Du (Ω\S)+Du S where S :=

{
x ∈ Ω : lim

ρ↓0

|Du|(Bρ(x))

ρ
= ∞

}
.4



Let A denote the set of atoms of Du, i.e. x ∈ A if and only if Du({x}) 6= 0. We reall that
A is at most ountable. We now split the singular part Dsu into the purely atomi part
Dju and the di�usive part (i.e. without atoms) Dcu:

Du = Dau+Dsu = Dau+Dju+Dcu = Du (Ω\S) +Du A +Du (S\A) (10)where the two measures Dju and Dcu are alled respetively the jump and the Cantorpart of the measure Du. The above deomposition is unique and the three measures
Dau,Dju,Dcu are mutually singular. Therefore we have |Du| = |Dau| + |Dju| + |Dcu|.We are now ready to reall (see for instane Theorem 3.28 and Proposition 3.92 of [1℄):Proposition 2.1. Let u ∈ BV (Ω) and let Ω ⊂ R. Let A be the set of atoms of Du. Then:(i) Any good representative u is ontinuous in Ω\A and has a jump disontinuity at anypoint of A. Moreover, u has lassial left and right limits (denoted by uL and uR) at any
x ∈ A.(ii) Dcu vanishes on sets whih are σ-�nite with respet to H0 and on sets of the form
u−1(E) with E ⊂ R and L1(E) = 0.We onlude with:De�nition 2.2. Let u ∈ BV (Ω), then u is a speial funtion of bounded variation and wewrite u ∈ SBV (Ω) if Dcu = 0, i.e. if the Cantor part is zero.Remark 2.1. For similar de�nitions of BV and SBV funtions in higher dimensions, weaddress the reader to Chapters 3 and 4 of [1℄.3 Entropy ondition and generalized harateristisIn this setion, we will onsider the balane laws (4) and we assume that f : (u, x, t) 7→
f(u, x, t) and g : (u, x, t) 7→ g(u, x, t) are, respetively, C2 and C1 smooth funtions on
R×R×R

+. Moreover, we presribe that f(., x, t) is stritly onvex in u, i.e. fuu(., x, t) > 0for �xed (x, t). By the lassial results on hyperboli onservation laws it is known thatwith a suitable de�nition of weak solution and after the introdution of an admissibilityondition, the so-alled entropy ondition, the existene and the uniqueness of an entropysolution of equations (1) and (4) are assured. Firstly we de�ne the spae of admissiblesolutions:De�nition 3.1. The entropy solution u(x, t) of the equation (4) is a loally integrablefuntion whih satis�es the following properties:1. For almost all t ∈ [0,∞) the one-sided limits u(x+, t) and u(x−, t) exist for all x ∈ R.2. u(x, t) solves the balane equation (4) in the sense of distributions.5



3. For almost all t ∈ [0,∞) and for all x ∈ R we have that
u(x−, t) ≥ u(x+, t). (11)Throughout the paper we shall denote the entropy solution by u(x, t) and we shall write

u(x+, t) and u(x−, t) for the one-sided limits of u(., t) (also denoted by uR and uL). It isimportant to note that we will be dealing with entropy solutions u(x, t), whih belong tothe spae BVloc(Ω) and suh that for every t > 0 the funtion u(., t) belongs to BVloc(R).Moreover, we will restrit our analysis on good representative of solutions and then, underour initial hypothesis we follow the works of Dafermos ([6℄,[7℄,[8℄) giving an introdutionto the theory of generalized harateristis and realling here some results, whih we shalluse in the sequel.De�nition 3.2. A Lipshitz ontinuous urve χ(t), de�ned on an interval I ⊂ R
+, isalled a harateristi if it solveṡ

χ(t) = fu(u(χ(t), t), χ(t), t)in the sense of Filippov [10℄, namely
χ̇(t) ∈ [fu(u(χ(t)+, t), χ(t), t), fu(u(χ(t)−, t), χ(t), t)] (12)for almost all t ∈ I.By the theory of ordinary di�erential equations with disontinuous right-hand side like(12) (see [10℄), we know that through every �xed point (y, τ) ∈ R×R

+ passes at least oneharateristi. We denote a harateristi either by χ(t) or by χ(t; y, τ) when the point
(y, τ) must be spei�ed. Every trajetory is on�ned between a maximal and a minimalharateristi (not neessarily distint). Moreover, the speed of a generalized harateristiis not free and more preisely by Theorem 3.1 in [7℄ a harateristi either propagate atthe lassial speed or at shok speed:Theorem 3.1. Let χ : I → R be a harateristi. Then for almost every t ∈ I

χ̇(t) =

{
fu(u(χ(t)±, t), χ(t), t), if u(χ(t)−, t) = u(χ(t)+, t);
f(u(χ(t)+,t),χ(t),t)−f(u(χ(t)−,t),χ(t),t)

u(χ(t)+,t)−u(χ(t)−,t)
, if u(χ(t)−, t) > u(χ(t)+, t). (13)A bakward (forward) harateristi trough any point (y, τ) ∈ R×R

+, is a harateris-ti χ de�ned on [0, τ ] (respetively [τ,∞)) with χ(τ) = y. We all genuine a harateristi
χ(t) suh that u(χ(t), t) = u(χ(t)+, t) for almost every t.At this point, we give a list of properties of generalized harateristis of entropy solutions
u(x, t) for the balane laws (4). We shall make use of these Theorems and in partiular ofthe No-rossing property of Theorem 3.3, to prove the SBVloc regularity of u(x, t).6



Theorem 3.2. Let χ(.) be a generalized harateristi for (4), assoiated with the admis-sible solution u, whih is genuine on I = [a, b]. Then there is a C1 funtion v de�ned on
I suh that:1. u(χ(a)−, a) ≤ v(a) ≤ u(χ(a)+, a),2. u(χ(t)−, t) = v(t) = u(χ(t)+, t), for a < t < b,3. u(χ(b)−, b) ≥ v(b) ≥ u(χ(b)+, b).Furthermore, (χ(.), v(.)) satisfy the lassial harateristi equations

{
χ̇(t) = fu(v(t), χ(t), t)
v̇(t) = −fx(v(t), χ(t), t) − g(v(t), χ(t), t)

(14)on (a, b). In partiular, χ is a C1 funtion on I.Remark 3.1. In [8℄, the generalized harateristi of Theorem 3.2 is assumed to be "shok-free". In here we state the Theorem for genuine harateristi beause under an appropriatenormalization, the notions of "shok-free" and "genuine" are equivalent. To onlude: weall shok-free a harateristi χ(t) suh that u(χ(t)−, t) = u(χ(t)+, t) for almost every t.Theorem 3.3. Given a �xed point (y, τ) ∈ R × R
+ we have that:1. Through (y, τ) pass a minimal and a maximal bakward harateristi denoted, respe-tively, by χ−(t) and χ+(t). The harateristis χ−, χ+ : [0, τ ] → R are genuine andare the solutions of the ODEs (14) with the following initial onditions: χ−(τ) = y,

v−(τ) = u(y−, τ) and χ+(τ) = y, v+(τ) = u(y+, τ).2. (No-rossing of harateristis). Two genuine harateristis may interset only attheir end points.3. For τ > 0 through (y, τ) passes a unique forward harateristi. Furthermore, if
u(y+, τ) < u(y−, τ), then u(χ(t)+, t) < u(χ(t)−, t) for all t ∈ [τ,∞).4 Theorem 1.1In this part of the paper we analyze the regularity of the entropy solutions of the onser-vation laws (1). We reall that in [2℄ the �ux funtion f ∈ C2 was seleted to be stritlyonvex and it was proved that entropy solutions are loally SBV . Here, in our �rst exten-sion Theorem 1.1 we onsider any �ux funtion f ∈ C2, whih an hange its onvexity.Indeed, f is seleted suh that #{ui ∈ R : f ′′(ui) = 0} is at most ountable.

7



4.1 Stritly onvex or onave �ux funtionThe �rst step in trying to extend Theorem 1.2 of [2℄ is to state the same result also for aonservation law with a stritly onave �ux funtion, i.e. f ′′ < 0.Lemma 4.1 (Stritly onvex or onave �ux). Let f ∈ C2(R) be a �ux funtion with
|f ′′(u)| > 0. Let u ∈ L∞(Ω) be an entropy solution of the salar onservation law (1).Then there exists a set S ⊂ R at most ountable suh that ∀τ ∈ R\S the following holds:

u(., τ) ∈ SBVloc(Ωτ ) with Ωτ := {x ∈ R : (x, τ) ∈ Ω}. (15)Sine the arguments are quite standard, we propose only a sketh of the proof of theabove Lemma:Proof. If f ′′ > 0, i.e. the �ux funtion is stritly onvex, the statement is exatly Theorem1.2 of [2℄. If f ′′ < 0, i.e. the �ux funtion is stritly onave and we may prove the lemmadiretly using the onvex ase. The idea is simple: we re�et an entropy solution of thestritly onvex ase about the t-axis, to obtain an entropy solution of the related stritlyonave problem. Let f be stritly onvex and assume that u(x, t) is an entropy solution of(1). We de�ne the oordinates transformation φ : Ω → Ω̃, φ : (x, t) 7→ (y, t) = (−x, t) andthe andidate solution ũ(y, t) := u ◦ φ−1(y, t) = u(−x, t) of the stritly onave problem.Then, we have:
Dtũ(y, t) +Dy[f̃(ũ(y, t))] = Dtũ(y, t) −Dy[f(ũ(y, t))] = Dtũ(−x, t) − (−Dx)[f(ũ(−x, t))] =

= Dtu(x, t) +Dx[f(u(x, t))] = 0With f̃ = −f we denote a stritly onave �ux. Moreover, for a point of Ω on a shok x(t)with shok speed σ = dx(t)/dt, we must have that the Rankine-Hugoniot σ[uR − uL] =
[f(uR)− f(uL)] and that the Lax-Entropy ondition for a stritly onvex �ux uL > uR aresatis�ed. We set σ̃ = d(−x(t))/dt = −σ, ũL = uR, ũR = uL and f̃ = −f , then after there�etion we obtain:

σ[uR − uL] = [f(uR) − f(uL)] ⇔ σ̃[ũR − ũL] = [f̃(ũR) − f̃(ũL)]. (16)and ũR > ũL. This means that if u(x, t) is an entropy solution of (1) for a stritly onvex�ux f , then ũ(y, t) = u(−x, t) is an entropy solution of the "orrelate" onservation lawwith stritly onave �ux f̃ = −f . In partiular by the onvex ase and the de�nition of
ũ, there exists S̃ = S ⊂ R at most ountable suh that ∀τ ∈ R\S̃ the following holds:

ũ(., τ) ∈ SBVloc(Ω̃τ ) with Ω̃τ := {x ∈ R : (x, τ) ∈ Ω̃}. (17)
8



4.2 Proof of Theorem 1.1Step 1: Preliminary remarks.Let us �x (ξ, τ) ∈ Ω and r suh that Br(ξ, τ) ⊂ Ω. Thanks to the �nite speed of propa-gation, there exists a positive ρ suh that the values of u in the ball Bρ(ξ, τ) depend onlyon the values of u on the segment {t = τ − 2ρ} ∩ Br(ξ, τ). Thus, if we denote by w theentropy solution of the Cauhy problem
{
Dtw(x, t) +Dx[f(w(x, t))] = 0 for t > τ − 2ρ;
w(x, τ − 2ρ) = u(x, τ − 2ρ)1Br(ξ,τ)(x, τ − 2ρ) for every x ∈ R, (18)we get w(x, t) = u(x, t) on Bρ(ξ, τ). Moreover, note that w(., t) ∈ BV for every t > τ −2ρ.Thus, it su�es to prove the main theorem under the assumptions that Ω = {t > 0} andthat u(., 0) is a bounded ompatly supported BV funtion. By assumption, an entropysolution u of the onservation laws (1) belongs to the spae BV (Ω). Moreover, u has abetter struture than any 2-dimensional BV -funtion. Introduing some notation, we re-all that if u is an entropy solution of (1), then uτ (.) := u(., τ) ∈ BV (Ωτ ) for all τ , where

Ωτ := {x ∈ R : (x, τ) ∈ Ω}. By Proposition 2.1 for any 1-dim BV funtion the set ofatoms A oinides with the set of the disontinuous points; hene for all τ we introdue thesets of the jumps Jτ := {x ∈ Ωτ : uL
τ (x) 6= uR

τ (x)} ⊂ R and J := {(x, t) ∈ Ω : x ∈ Jt}. Byassumption the set If := {ui ∈ R : f ′′(ui) = 0}, whih ontains all the in�etion points of
f , is at most ountable. We onlude de�ning the set Fτ := {x ∈ Ωτ : uτ(x) = ui, ui ∈ If}.Step 2: Bad points have measure 0.Using the above notation, we introdue the sets Cτ := Jτ ∪ Fτ for all τ and C := {(x, t) :
x ∈ Ct}, i.e. the sets of the "bad" points for whih either uτ(.) has a jump or f ′′ vanishes.For this two sets we state:Claim 4.1. For any τ we have that |Dc

xuτ |(Cτ ) = 0.Proof. For every τ one has
|Dc

xuτ |(Cτ ) = |Dc
xuτ |(Jτ ∪ Fτ ) ≤ |Dc

xuτ |(Jτ ) + |Dc
xuτ |(Fτ ). (19)Observe that for all τ the Cantor part is zero on the jump sets Jτ , sine by (10):

Dc
xuτ = Dxuτ (S\Jτ ) ⇒ Dc

xuτ(Jτ ) = 0 ⇒ |Dc
xuτ |(Jτ) = 0. (20)Using the seond statement of Proposition 2.1, we show that even the seond term ofinequality (19) vanishes. Sine If is a ountable set, we may rewrite this set as ountableunion of the sets Ei := {ui}, i.e. If =

⋃
iEi. It is lear that L1(Ei) = 0 for eah i and that

Fτ =
⋃

i u
−1
τ (Ei) =

⋃
i u

−1
τ (ui). By Proposition 2.1, the Cantor part is zero on sets of theform Fτ = u−1

τ (If) with L1(If) = 0. Hene, we obtain:
|Dc

xuτ |(Fτ) = |Dc
xuτ |(u

−1
τ (If )) = 0. (21)This onludes the proof of the laim, i.e. |Dc

xuτ |(Cτ ) = 0.9
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Figure 1: Ω\C is overed by triangles..Step 3: Loally, more preisely in a triangle, we redue the problem to the ases withstritly onvex or onave �ux funtions. By Lemma 4.1 the SBV -regularity follows.Given any point (x0, t0) ∈ Ω\C it is always possible to �nd a positive number b0 =
b(x0, t0) > 0 and a positive c0 = c(x0, t0), suh that the following assertion holds:

|f ′′(ut0(x))| ≥ c0 > 0 for every x ∈ I0 :=] − b0 + x0, x0 + b0[. (22)Sine ut0 is a ontinuous BV -funtion in Ω\Ct0 , we an also assume that there exists apositive l0(b0) > 0 (whih depends on b0), suh that |ut0(x) − ui| ≥ l0 > 0 for all x ∈ I0and for any ui ∈ If . This means that we may selet b0 > 0, suh that the small variationof ut0 in I0 allows to onsider the Cauhy problem:
{
Dtw(x, t) +Dx[f0(w(x, t))] = 0 for t > t0;
w(x, t0) = ut0(x)1I0(x, t0) for every x ∈ R, (23)where the �ux funtion f0 is either stritly onave or stritly onvex.The �nite speed of propagation of the harateristis permits to onstrut an isoselestriangle T0 with base I0, s.t. w(x, t) = u(x, t) on the triangle T0. Let θ(f, ‖u‖L∞) > 0 bethe angle between the base I0 and the diagonal segment. The angle θ depends only on fand on ‖u‖L∞, sine the slope of the maximal or the minimal harateristi of the problemde�nes this angle. We de�ne the open triangle

T0 := Tb0(x0, t0) = {(x, t) : |x−x0| < b0 and 0 < t−t0 < tan θ ·min{x−x0+b0, x0+b0−x}}10



By the maximum priniple, the values of u in T0 are ontrolled by the values of ut0 on I0.Moreover we may apply the statement of Lemma 4.1 on T0, sine the Cauhy problem (23)has either a stritly onvex or a onave �ux. In partiular in our triangle T0 there existsan at most ountable set S0 onsisting of τ ∈]t0, t0 + b0 · tan θ[ suh that the solution is not
SBV (Ωτ ∩ T0).Step 4: Using Step 3, we onstrut a triangle for all the points of Ω\C. Let B bethe set of all points of Ω\C, whih are ontained in at least one of this triangle and divide
Ω\C into the two subsets B and C ′ := Ω\(C ∪ B), i.e. Ω\C = B ∪ C ′.Claim 4.2. The set {τ ∈ R

+ : {t = τ} ∩ C ′ 6= ∅} is at most ountable.Proof. Assume that {t : {t = τ}∩C ′ 6= ∅} is not ountable. Let {Pα} = {(xα, τα)} ⊂ C ′ bea subset of C ′ ⊂ Ω\C, suh that τα 6= τβ whenever α 6= β. Moreover, let {P k
α} = {(xα, τα) :

b(xα, τα) ≥ 2−k} ⊂ {Pα} be the subsets of the points, for whih the base of the triangle islarger than 2−k+1, where k ∈ N. By assumption there exists a �xed K ∈ N suh that #PK
αis unountable and thus the set PK

α ontains an aumulation point p = (xp, τp). Thisimplies that there exists a sequene {pj}j := {(xj, τj)}j∈N ⊂ PK
α of points in C ′, whihonverges to the aumulation point p. Moreover, any point pj of this sequene annot beontained in the triangle Tp := Tb(xp,τp)(xp, τp), sine by de�nition any point of C ′ annotlie into a triangle. We then have that the sequene {pj}j approahes p from below, i.e.

τj < τp for every j > J with J big enough, and the triangles Tj := Tb(xj ,τj)(xj , τj) have abase larger than 2−K+1 for eah j. Thus, for a J ∈ N big enough the aumulation point
p belongs to the triangles Tj for all j > J . This is a ontradition to p ∈ C ′.Step 5: Cover with triangles.By de�nition, every (x, t) ∈ B lies into at least one triangle T0 for a (x0, τ0) ∈ B. The set
B is then overed by a family of triangles {Tα}α. In partiular we an �nd a ountablesubfamily of triangles {Ti}i ⊂ {Tα}α whih overs B, i.e. B ⊂

⋃
i Ti. We now divide Ωusing the sets de�ned above:

Ω = (Ω\C) ∪ C = B ∪ C ′ ∪ C ⊂
⋃

i

Ti ∪ C
′ ∪ C.For every τ ∈ R we have that:- by Claim 4.2 the set SC′ = {t : {t = τ} ∩ C ′ 6= ∅} is at most ountable;- by Lemma 4.1 for every Ti the set Si := {t : ut /∈ SBV ({t = τ}∩Ti)} is at most ountable.Thus, for every time τ /∈ S := SC′ ∪

(⋃
i Si

) we have the following inequality:
|Dc

xuτ |(Ω ∩ {t = τ}) ≤ |Dc
xuτ |

(⋃

i

Ti ∩ {t = τ}
)

+ |Dc
xuτ |(C ∩ {t = τ}) ≤

≤
∑

i

|Dc
xuτ |

(
Ti ∩ {t = τ}

)
+ |Dc

xuτ |(C ∩ {t = τ}) = 0.11



All terms in the sum vanish by Lemma 4.1 and the seond term is equal to zero by Claim4.1. Letting Ωτ = Ω ∩ {t = τ} we have shown that ∀τ ∈ R\S the following holds:
uτ(.) = u(., τ) ∈ SBVloc(Ωτ ).5 Proof of Theorem 1.2As far as we know the estimate (5) of Theorem 1.2 has never been proved. In this setionwe then use the generalized harateristis to obtain that:Proposition 5.1. Let f, g be as in the statement of Theorem 1.2, in partiular in anyompat set K ⊂ Ω there exist onstants C1, C2 > 0 with

‖Df‖L∞(K), ‖D
2f‖L∞(K), ‖Dg‖L∞(K) ≤ C1, (24)and

fuu(.) ≥ C2 > 0. (25)If u(x, t) is an entropy solution of the balane equation (4), then for all ε > 0 there existsa onstant C3 := C3(C1, C2, ε) > 0 with
u([x+ z]+, t) − u(x−, t) ≤ C3z, (z > 0) (26)for every �xed t ∈ [ε, 1] and for all x ∈ R with (x, t), (x+ z, t) ∈ K.5.1 Preparatory for the proof of Proposition 5.1Let t ∈ [ε, 1] be �xed and take x ∈ R and z > 0 with (x, t), (x+z, t) ∈ K. Let us denote by

χ−(s) the minimal bakward harateristi passing through (x, t) and by χ+(s) the maximalbakward harateristi passing through (x+z, t), (instead of χ−(s; x, t) and χ+(s; x+z, t)).Rewriting the ODEs (14) related to the genuine harateristis for χ−(s), χ+(s) : [ε, t] → Rwe obtain {
χ̇±(s) = fu(v±(s), χ±(s), s)
v̇±(s) = −fx(v±(s), χ±(s), s) − g(v±(s), χ±(s), s)

(27)with 



χ−(t) = x
χ+(t) = x+ z
v−(t) = u(x−, t) =: u−

v+(t) = u([x+ z]+, t) =: u+

(28)where by the admissible ondition (11), u− > u+. We reall that by the no rossingproperty of Theorem 3.3 of the genuine harateristis, the distane between the two urvesis positive i.e. χ+(s) > χ−(s) for every s ∈ [ε, t].12



5.2 One Tehnial LemmaFor the proof of our theorem we will use the following tehnial lemma:Lemma 5.1. Assume that there exists a onstant C3 > 0 with
u([x+ z]+, t) − u(x−, t) ≥ C3z, (z > 0). (29)Then there exists δ := δ(C1, C2, ε) with 0 < δ < ε and suh that
v+(s) − v−(s) ≥

C3

16
z, ∀s ∈ [t− δ, t]. (30)Proof. We subdivide the proof into two steps:Step 1: We laim that:Claim 5.1. Let C3 > 0 be su�iently big and assume that there exists a δ > 0 suh thatinequality (30) holds. Then, we have

χ̇+(s) − χ̇−(s) > 0, ∀s ∈ [t− δ, t]. (31)If our laim were not true, then it would exists τ ∈ [t− δ, t] suh that
{
χ̇+(s) − χ̇−(s) > 0, ∀s ∈]τ, t];
χ̇+(τ) − χ̇−(τ) = 0.

(32)By the equation of the harateristis (77) it follows that:
χ̇+(τ) − χ̇−(τ) = fu(v+(τ), χ+(τ), τ) − fu(v−(τ), χ−(τ), τ) =: U(τ) +W (τ). (33)The two terms in (33) are de�ned as

U(τ) := fu(v+(τ), χ+(τ), τ) − fu(v−(τ), χ+(τ), τ) ≥ C2(v+(τ) − v−(τ)), (34)and
W (τ) := fu(v−(τ), χ+(τ), τ) − fu(v−(τ), χ−(τ), τ) ≥ −C1|χ+(τ) − χ−(τ)|. (35)Thus by (33),(34),(35) and (30),(32) we obtain that

χ̇+(τ) − χ̇−(τ) ≥ C2(v+(τ) − v−(τ)) − C1|χ+(τ) − χ−(τ)| (36)
≥ C2

C3

16
z − C1z =

(C2C3

16
− C1

)
z.Clearly in the last inequality we have used the bounds (24) and (25). So if we hoose

C3 >
16C1

C2
, then

χ̇+(τ) − χ̇−(τ) > 013



and this is in ontradition with the de�nition of τ .Step 2: Let us de�ne the time
t0 := sup

s∈[t−δ,t]

{
s : v+(s) − v−(s) <

C3

16
z
}
. (37)If t0 < t− η for any η > 0 then we an onlude the proof, beause we an trivially selet

δ = η in (30). Otherwise from Step 1 we know that
0 < χ+(s) − χ−(s) ≤ z, ∀s ∈ [t0, t]. (38)Moreover, by the de�nition of t0 we know even that

v+(t0) − v−(t0) =
C3

16
z. (39)Using the equations of the harateristis (77), the bounds (24), (25) and omputing as inStep 1, we an state that for every s ∈ [t0, t] it holds that:

|v̇+(s) − v̇−(s)| ≤ 2C1|v+(s) − v−(s)| + 2C1|χ+(s) − χ−(s)|

(38)

≤ 2C1

(
|v+(s) − v−(s)| + z

) (40)Putting E(s) := |v+(s) − v−(s)| + z from the last inequality we get to:
Ė(s) ≤ 2C1E(s). (41)Thus, by Gronwall's Lemma we have that for every s ∈ [t0, t]:

E(s) ≤ e2C1(s−t0)E(t0). (42)Choosing s = t we obtain:
(C3z + z)

(29)

≤ E(t)
(42)

≤ e2C1(t−t0)E(t0)
(39)
= e2C1(t−t0)

(C3

16
z + z

)
. (43)Thus,

t− t0 ≥
1

2C1
log

(16C3 + 16

C3 + 16

) (44)and in partiular if C3 is big enough we onlude that t − t0 > 0. This means that thereexists δ > 0 suh that t− δ ∈ [t0, t] and the inequality (30) is satis�ed.
14



5.3 Proof of Proposition 5.1Case 1: Trivially, if it holds
u([x+ z]+, t) − u(x−, t) ≤ C3z, (z > 0) (45)our proposition is true.Case 2: Otherwise, we an hoose an α > C3 with
u([x+ z]+, t) − u(x−, t)

z
= α, (z > 0). (46)By Lemma 5.1 there exists 0 < δ < ε suh that for every s ∈ [t− δ, t] we have the followingtwo estimates:

0 < χ+(s) − χ−(s) ≤ z, (47)
v+(s) − v−(s) ≥

αz

16
. (48)Now, using the same tehniques and bounds as above we ompute:

χ+(t) − χ−(t) =

∫ t

t−δ

fu(v+(s), χ+(s), s) − fu(v−(s), χ−(s), s)ds+ χ+(t− δ) − χ−(t− δ)

≥

∫ t

t−δ

fu(v+(s), χ+(s), s) − fu(v−(s), χ−(s), s)ds

≥ C2
αδ

16
z −

∫ t

t−δ

C1|χ+(s) − χ−(s)|ds ≥ C2
αδ

16
z − δzC1. (49)Sine z = χ+(t) − χ−(t) we rewrite (49) as

z(1 + C1δ) ≥ C2
αδ

16
z ⇒ α ≤

16(1 + C1δ)

δC2
, (50)and then

u([x+ z]+, t) − u(x−, t) ≤
16(1 + C1δ)

δC2
z, (z > 0) (51)This onlude the proof.6 Preparatory tools for the proof of Theorem 1.3In the geometri proof of the main Theorem in [2℄ the harateristis of the entropy solutionsof the salar onservation laws (1) played a fundamental role. Using the good and simplestruture of these harateristis it was possible to de�ne a monotone geometri funtional,whih jumps when a Cantor part appears in the solution. One of the key Lemmas wasthe No-rossing-Proposition (see Proposition 2.5 of [2℄), whih implies that two di�erent15



harateristis χ1 : [0, τ1] → R, χ2 : [0, τ2] → R annot ross for all t ∈ (0, max{τ1, τ2}).The generalized harateristis of a balane laws (4) with soure term g are in generalno more straight lines, but by Theorem 3.3 we know that the No-rossing property stillholds for two distint genuine harateristis. By the way, for every point (y, τ) ∈ R ×R
+the minimal and maximal bakward harateristis are genuine and then the No-rossingproperty is assured. This suggests us that the onstrution proposed in [2℄ still works evenfor equations (4) and that we an try to restate the main steps of the original proofs. Inpartiular, a geometri approah to our problem make sense and in this setion we shallthen introdue a geometri funtional de�ned using the generalized harateristis. Webegin by giving some preliminary de�nitions and propositions, whih are inspired to thosepresented in [2℄:De�nition 6.1. (Charateristi ones and bases). Let τ > 0. For θ ∈ [0, τ ] the bakwardharateristi one Cθ

y,τ emanating from y ∈ Sτ := {x ∈ R : u(x−, τ) 6= u(x+, τ)} isde�ned as the open "triangle" having
(y, τ), (χ−(θ; y, τ), θ), (χ+(θ; y, τ), θ)as verties. The base of a harateristi one at time θ ∈ [0, τ ] is de�ned as the openinterval:
Iθ
y,τ :=]χ−(θ; y, τ), χ+(θ; y, τ)[. (52)We note that the harateristi ones are on�ned by minimal and maximal bakward har-ateristis, whih are genuine. Then, due to the No-rossing property of genuine hara-teristis two di�erent ones Cθ
y1,τ1

and Cθ
y2,τ2

(or two di�erent bases Iθ
y1,τ1

and Iθ
y2,τ2

) areeither one ontained in the other or disjoint. We de�ne also
Cθ

τ :=
⋃

y∈Sτ

Cθ
y,τ and Iθ

τ :=
⋃

y∈Sτ

Iθ
y,τ . (53)It is known that entropy solutions u(x, t) of (4) are BV funtions. Moreover, for every t thefuntion u(., t) is also BV on R and then by (10) we an split Dxu(., t) in three mutuallysingular parts:

Dxu(., t) = Da
xu(., t) +Dj

xu(., t) +Dc
xu(., t)For onveniene we denote by µt := Dc

xu(., t) the Cantor part and by νt := Dj
xu(., t)the jump part. Inequality (11) implies that the singular measures µt and νt are bothnonpositive. We reall also the semi-monotoniity of u(., t) that gives

u(y+, t)− u(x−, t) = Du(., t)([x, y]) whenever x < y. (54)Finally we state three tehnial lemmas, whih are to ompare with estimates (3.4), (3.10)and Lemma 3.2 of [2℄. 16
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Figure 2: Charateristi ones and bases.Lemma 6.1. Let τ > 0. If y ∈ Sτ , then for all θ ∈ [0, τ ] there exists a positive onstant
cj suh that

L1(Iθ
y,τ ) = χ+(θ; y, τ) − χ−(θ; y, τ) ≤ −cjντ ({y}). (55)Lemma 6.2. Let τ0 > 0. Then for µτ0-a.e. x there exists η := η(x, τ0, τ) > 0 suh that

]x− η, x+ η[⊂ Iτ0
τ for τ > τ0. (56)De�nition 6.2. We denote by E the set of x's for whih Lemma 6.2 applies and suh that

lim
η↓0

|Du(., τ0) − µτ0 |([x− η, x+ η])

−µτ0([x− η, x+ η])
= 0. (57)The Besiovith di�erentiation theorem gives that µτ0(R\E) = 0 and with (54) we havefor every x ∈ E that

lim
η↓0

u((x− η)−, τ0) − u((x+ η)+, τ0)

−µτ0([x− η, x+ η])
= 1. (58)Lemma 6.3. Let τ0 > 0. For every x ∈ E, for every η > 0 suh that x± η /∈ Sτ0 and forall θ ∈ (0, τ0], there exists a positive onstant cc(θ) suh that

L1(Jθ
x,η) = χ+(θ; x+ η, τ0) − χ−(θ; x− η, τ0) ≥ −cc(θ)µτ0([x− η, x+ η]) (59)where Jθ

x,η :=]χ−(θ; x− η, τ0), χ+(θ; x+ η, τ0)[.Note that the proofs of these lemmas are listed in Chapter 9 and that to get theseresults we will use the estimate of Theorem 1.2.17



7 Proof of Theorem 1.3Step 1: Preliminary remarks.Let us �x (ξ, τ) ∈ Ω and a radius r suh that the ball Br(ξ, τ) ⊂ Ω. Thanks to the �nitespeed of propagation, there exists a positive ρ suh that the values of u(x, t) in the ball
Bρ(ξ, τ) depend only on the values of u on the segment {t = τ −2ρ}∩Br(ξ, τ). If we write
w for the entropy solution of the problem

{
Dtw(x, t) +Dx[f(w(x, t), x, t)] + g(w(x, t), x, t) = 0, for t > τ − 2ρ;
w(x, τ − 2ρ) = u(x, τ − 2ρ)1Br(ξ,τ)(x, τ − 2ρ), for every x ∈ R. (60)we get that w = u on Bρ(ξ, τ). We also note that w(., t) ∈ BV (R) for every t > τ − 2ρ.Thus it su�es to prove the theorem under the additional assumptions that Ω = {t > 0}and that u(., 0) is a bounded ompatly supported BV funtion. Sine the funtion u(., 0)has ompat support, we know that there exist onstants R and cR suh that the supportof u(., t) is ontained in {|x| ≤ R} and

|Du(., t)|(R) ≤ cR. (61)Step 2: De�nition of the geometri funtional F θ(t).For a �xed θ > 0 we de�ne the funtional F θ : [θ,∞[→ R
+ as follows

F θ(t) := L1(Iθ
t ) =

∑

y∈St

L1(Iθ
y,t) (62)where the seond equality holds by the No-rossing property of the harateristis. Ge-ometrially the funtional F θ(t) measures the total length of the bases at time θ of allharateristi ones ontained in Cθ

t . With Lemma 6.1 we observe that this funtional isbounded from above:
F θ(t) ≤ −cjνt(R) ≤ cj|Du(., t)|(R) ≤ cjcR for every t ∈ [θ, T ]. (63)Moreover, this geometri funtional is nondereasing. This is a onsequene of the fat thatfor every θ ≤ t1 ≤ t2 we have that Iθ

t1
⊂ Iθ

t2
. Assuming that there exists x ∈ St1 suh that

x ∈ (I t2
t1

)c, then the shok s(t) passing through (x, t1) would be not entirely ontained inthe harateristi ones Ct1
t2
. But by de�nition of harateristi ones and the No-rossingproperty, every shok in R × [t1, t2] is entirely ontained in Ct1

t2
. Therefore, St1 ⊂ I t1

t2
andagain due to the No-rossing property we onlude that Iθ

t1
⊂ Iθ

t2
. We stateLemma 7.1. For �xed T ≥ θ > 0 the funtional F θ : [θ, T ] → R

+ is nondereasing andbounded from above.One of the key remarks of the proof given in [2℄ was the onnetion between the jumpsof the geometri funtional and the Cantor parts reated in the solution. We an try todesribe this geometri proess as follows: when a Cantor part is reated in the solution18



at time τ0, this part is transformed after an in�nitesimal time into several small jumps.The sum of the measures of these jumps give a ontribution big enough to make thegeometrial funtional jump at τ0. Due to the similar onstrution of our funtional F θ(.)and the original funtional de�ned in [2℄, we an utilize the same idea here. This motivatesa �rst redution of our problem to the following Lemma:Lemma 7.2. For any integer k we have
τ0 ≥

T

k
> θ and µτ0(R) ≤ −

1

k
⇒ F θ(τ0+) ≥ F θ(τ0) + cF (θ) (64)where cF (θ) is a stritly positive onstant whih depends on ‖u‖∞, T, k, f, g and on thehoie of θ > 0.Clearly, Lemma 7.1 and Lemma 7.2 imply that all sets

{
τ ∈

[T
k
, T

[
: µτ (R) ≤ −

1

k

} (65)are �nite.Step 3: Proof of Lemma 7.2.In this step we shall make use of the three tehnial Lemmas 6.1, 6.2 and 6.3. We �x
τ > τ0 ≥ T/k ≥ θ. Let x ∈ E, where E is the set de�ned by Lemma 6.1. Consequently toLemma 6.3, for η > 0 small enough we have that

L1(Jθ
x,η) ≥ −cc(θ)µτ0([x− η, x+ η]) (66)where Jθ

x,η :=]χ−(θ; x−η, τ0), χ+(θ; x+η, τ0)[. By the No-rossing property of harateristiswe know that Jθ
x,η an only interset the bases of the ones Iθ

y,τ0
emanating from a point

y ∈ [x− η, x+ η], so that realling Lemma 6.1 it follows that
L1(Jθ

x,η ∩ I
θ
τ0

) =
∑

y∈Sτ0
∩[x−η,x+η]

L1(Iθ
y,τ0

) ≤ −cjντ0([x− η, x+ η]). (67)Combining (66) and (67) we �nd that for any x ∈ E we have that
L1(Jθ

x,η\I
θ
τ0

) ≥ −cc(θ)µτ0([x− η, x+ η]) + cjντ0([x− η, x+ η]) ≥

≥ −cc(θ)µτ0([x− η, x+ η]) − cj |ντ0 |([x− η, x+ η]). (68)Finally, invoking the Besiovith di�erentiation theorem and in partiular (57), we obtain
L1(Jθ

x,η\I
θ
τ0

) ≥ −
cc(θ)

2
µτ0([x− η, x+ η]), (69)provided that η is small enough. Using the Besiovith overing lemma, we an over

µτ0-a.e. E with pairwise disjoint intervals Kθ
j,τ0

:= [xj − ηj, xj + ηj] suh that (69) and theonlusion of Lemma 6.2 both hold for x = xj and η = ηj. Thanks to the No-rossing19



property all the intervals Jθ
xj ,ηj

are pairwise disjoint and realling Lemma 6.2 we note thatall these sets are ontained in Iθ
τ . In Lemma 7.2 we assumed that −µτ0(R) ≥ 1/k. Thenfor all θ > 0 the estimates above imply:

F θ(τ) − F θ(τ0) ≥
∑

j

L1(Jθ
xj ,ηj

\Iθ
τ0

) ≥ −
∑

j

cc(θ)

2
µτ0([xj − ηj, xj + ηj ]) ≥

≥ −
cc(θ)

2
µτ0(E) = −

cc(θ)

2
µτ0(R) ≥

cc(θ)

2k
=: cF (θ). (70)Step 4: The end of the proof.In Step 3 we have shown that for any �xed θ > 0 the interval (θ, T ] ontains a set Hθ,whih is at most ountable and suh that for every τ ∈ (θ, T ]\Hθ the following holds:

u(., τ) ∈ SBVloc(Ωτ,θ) with Ωτ,θ := {x ∈ R : (x, τ) ∈ Ω, τ ∈ (θ, T ]}. (71)Now, we onsider the sequene (θn)n∈N := T/2n and we de�ne the set S of the mainTheorem 1.3 as the ountable union of the ountable sets Hθn
⊂ (θn, T ], whih is againountable:

S := H0 =
⋃

n∈N

H T
2n
. (72)This onludes the proof.8 Theorem 1.4 and Corollary 1.1The proof of Theorem 1.4 ombines the ideas of Theorem 1.1 and Theorem 1.3. We repeatit for the reader's onveniene.Proof. Step 1: [Stritly onave �ux.℄ As in the proof of Theorem 1.1 let us �rst showthat there exists a loally SBV entropy solution for the problem with a stritly onave�ux. By Theorem 1.3 we know that if f(u(x, t), x, t) is stritly onvex in u and C2, theequation

Dtu(x, t) +Dx[f(u(x, t), x, t)] + g(u(x, t), x, t) = 0 (73)has a loally SBV entropy solution u(x, t). Sine f1(u(x, t), x, t) := f(u(x, t),−x, t) isagain C2 and stritly onvex in u and g1(u(x, t), x, t) := g(u(x, t),−x, t) is C1, the solution
u1(x, t) of

Dtu1(x, t) +Dx[f1(u1(x, t), x, t)] + g1(u1(x, t), x, t) = 0 (74)is again a SBVloc funtion. Next we onsider the oordinates transformation φ : Ω →
Ω̃, φ : (x, t) 7→ (y, t) = (−x, t) and we put f̃ := −f, g̃ := g. Then we have for ũ(y, t) :=

20



u1 ◦ φ
−1(y, t) = u1(−x, t):
Dtũ(y, t) +Dy[f̃(ũ(y, t), y, t)] + g̃(ũ(y, t), y, t) =

= Dtũ(y, t) −Dy[f(ũ(y, t), y, t)] + g(ũ(y, t), y, t) =

= Dtũ(−x, t) − (−Dx)[f(ũ(−x, t),−x, t)] + g(ũ(−x, t),−x, t) =

= Dtu1(x, t) +Dx[f(u1(x, t),−x, t)] + g(u1(x, t),−x, t) =

= Dtu1(x, t) +Dx[f1(u1(x, t), x, t)] + g1(u1(x, t), x, t) = 0. (75)Thus ũ is a solution of a balane law with stritly onave �ux funtion and sine u1 isloally SBV this implies that also ũ ∈ SBVloc. Moreover, u1 is an entropy solution of (74)and sine we have found the solution ũ re�eting u1 about the t-axis, as in the proof ofLemma 4.1, we an show that even for ũ the entropy and the Rankine-Hugoniot onditionshold.Step 2: [u(x, t) ∈ SBVloc(Ωτ ).℄ At this point we an repeat the onstrution given in theproof of Theorem 1.1. Due to the small variation of an entropy solution we an restritthe solution u(x, t) on triangles Tj 's, where the �ux funtion f is either stritly onvex orstritly onave. Realling that C is the set of points (xi, ti) where the solution has jumpsor has a values suh that fuu(u(xi, ti), xi, ti) = 0, we over Ω\C with a ountable familyof triangles Tj . For the bad points not ontained in one triangle or points of C, we anrestate Claim 4.2 and 4.1. We onlude that the entropy solution u(x, t) is loally SBVon Ωτ for every τ ∈ R\S.Step 3: [u ∈ SBVloc(Ω).℄ The sliing theory says that the 2-dimensional Cantor part ofthe derivative Dxu(x, t) an be reovered from the orresponding 1-dimensional part. ByTheorem 3.108 of [1℄ we have:
Dc

xu(x, t) =

∫
L1 Ωt ⊗Dcu(., t)dt (76)where Ωt is the projetion of Ω on {x = 0} × R

+. Sine by Step 2 the Cantor part is
Dcu(., t) = 0 for every t /∈ S and S is at most ountable, then also the two dimensionalCantor part Dc

xu(x, t) vanishes. With the Vol'perts hain rule (see Theorem 3.96 of [1℄) andequation (4) we get that Dc
tu(x, t) = 0. Finally we have obtained that u ∈ SBVloc(Ω).Next, we use Theorem 1.3 to prove orollary 1.1.Proof. We di�erentiate the equation (9) by x (in the sense of distributions):

Dxwt(x, t) +DxH(wx(x, t), x, t) = 0 ⇔ Dtwx(x, t) +DxH(wx(x, t), x, t) = 0.Letting u(x, t) = wx(x, t) and H(u(x, t), x, t) = f(u(x, t), x, t), this is exatly the balaneequation of Theorem 1.3, i.e. u(x, t) = wx(x, t) is SBVloc(Ωτ ) for every τ ∈ R\S, where Sis at most ountable. As in Step 3 of the proof of Theorem 1.4, it follows that u(x, t) ∈
SBVloc(Ω). 21



9 Proofs of the three tehnial lemmas9.1 Proof of Lemma 6.1Let τ > 0 and y ∈ Sτ . To simplify the notation, we denote the minimal and the maximalbakward harateristis starting from (y, τ) by χ−(t) and χ+(t) instead of χ−(t; y, τ) and
χ+(t; y, τ). Rewriting the ODEs (14) related to the genuine harateristis for χ−(t), χ+(t) :
[0, τ ] → R we obtain

{
χ̇±(t) = fu(v±(t), χ±(t), t)
v̇±(t) = −fx(v±(t), χ±(t), t) − g(v±(t), χ±(t), t)

(77)with 




χ−(τ) = y = χ+(τ)
v−(τ) = u(y−, τ) =: u−

v+(τ) = u(y+, τ) =: u+
(78)where by the admissible ondition (11), u− > u+ and −ντ ({y}) = u−−u+. Now we hangethe variable in equations (77) putting s = τ − t:

{
ψ̇±(s) = −fu(ω±(s), ψ±(s), τ − s)
ω̇±(s) = fx(ω±(s), ψ±(s), τ − s) + g(ω±(s), ψ±(s), τ − s)

(79)where ψ±(s) := χ±(τ − s) and ω±(s) := v±(τ − s). Then, using (79) we have
d

ds
|ψ−(s) − ψ+(s)| ≤ |ψ̇−(s) − ψ̇+(s)| = |fu(ω−(s), ψ−(s), τ − s) − fu(ω+(s), ψ+(s), τ − s)|

≤ ‖D2f‖L∞(K)︸ ︷︷ ︸
:=c1

(|ω−(s) − ω+(s)| + |ψ−(s) − ψ+(s)|). (80)Repeating the omputations also for ω±(s), we �nd that:
d

ds
|ω−(s) − ω+(s)| ≤|fx(ω−(s), ψ−(s), τ − s) − fx(ω+(s), ψ+(s), τ − s)|+

+ |g(ω−(s), ψ−(s), τ − s) − g(ω+(s), ψ+(s), τ − s)| ≤ (81)
≤

[
‖D2f‖L∞(K) + ‖Dg‖L∞(K)

]

︸ ︷︷ ︸
:=c2

(|ω−(s) − ω+(s)| + |ψ−(s) − ψ+(s)|)If we hoose a ompat set
K := [−‖u‖∞, ‖u‖∞] ×

[
min
t∈[0,τ ]

χ−(t), max
t∈[0,τ ]

χ+(t)
]
× [0, τ ] (82)then the above onstants c1 and c2 are positive and �nite. Inequalities (80) and (81)together give

d

ds

(
|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)|

)
≤ c3

(
|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)|

) (83)22



where c3 is again a positive onstant depending only on ‖D2f‖L∞(K) and ‖Dg‖L∞(K). ByGronwall's lemma and (83) we get
|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)| ≤ ec3s(|ψ−(0) − ψ+(0)| + |ω−(0) − ω+(0)|). (84)Now, we put s = ϑ ∈ [0, τ ] into (84) to �nd the following inequality:

|χ−(τ − ϑ) − χ+(τ − ϑ)| = |ψ−(ϑ) − ψ+(ϑ)| ≤ |ψ−(ϑ) − ψ+(ϑ)| + |ω−(ϑ) − ω+(ϑ)| ≤

≤ ec3τ

︸︷︷︸
:=cτ

(|ψ−(0) − ψ+(0)| + |ω−(0) − ω+(0)|) =

= cτ (|χ−(τ) − χ+(τ)| + |v−(τ) − v+(τ)|). (85)If we set θ = τ − ϑ, then by (78) we onlude:
χ+(θ) − χ−(θ) = |χ−(θ) − χ+(θ)| ≤ cτ (|χ−(τ) − χ+(τ)|︸ ︷︷ ︸

=0

+ |v−(τ) − v+(τ)|︸ ︷︷ ︸
=|u−−u+|

)

≤ cτ (u
− − u+) = −cτντ ({y}). (86)9.2 Proof of Lemma 6.2We prove that the onlusion of the lemma holds for any x whih satisfy the followingonditions:

x /∈ Sτ0 and lim
η↓0

u(x+ η, τ0) − u(x− η, τ0)

2η
= −∞. (87)By the Besiovith di�erentiation theorem on intervals, the measure µτ0 is onentrated on

E. In our proof we �x τ > τ0 and x suh that (87) holds and our goal is to show that for
η small enough {τ0}×]x− η, x+ η[⊂ Iτ0

τ . To prove that the point x is ontained in Iτ0
τ , weonsider all the possible ases:

I : x /∈ Iτ0
τ

II : x ∈ ∂(Iτ0
τ )

III : ∃η > 0 s.t. (]x− η, x+ η[∩Iτ0
τ )c = {x}

IV : x ∈ Iτ0
τand in partiular we will show that in the �rst three ases we obtain a ontradition.Then, by IV the point x is in Iτ0
τ and sine Iτ0

τ is open there exists η > 0 suh that
{τ0}×]x− η, x+ η[⊂ Iτ0

τ .The property (87) may be rewritten presribing that for every positive α > ᾱ > 0 , thereexists η̄ > 0 suh that for all 0 < η < η̄ holds
u(x− η, τ0) − u(x+ η, τ0) > α2η > ᾱ2η > 0. (88)The positive number ᾱ will be hosen later, more preisely we will de�ne this onstant atthe end of ase I. 23



Case I: Sine in this ase the distane dist(x, Iτ0
τ ) is stritly positive there exists η > 0small enough suh that 0 < 2η < η̄ and ]x − η, x + η[∩Iτ0

τ = ∅. Consequently to thede�nition of a harateristi one, we observe that all possible shoks reated before τ areontained in Cτ0
τ and thus, two di�erent shoks starting at x1, x2 /∈ Iτ0

τ , where x1 6= x2,annot ross for all t ∈ [τ0, τ ]. By the way, also the two harateristis passing trough
(x− η, τ0) and (x+ η, τ0), whih are genuine, annot ross in [τ0, τ ]. If we denote by χ1(t)and χ2(t), respetively, the two harateristis χ(t; x−η, τ0) and χ(t; x+η, τ0), this implies
χ1(t) < χ2(t) for every t ∈ [τ0, τ ]. This onlusion is ontradited by the next laim.Claim 9.1. If x is a point suh that ∃η > 0 with ]x−η, x+η[∩Iτ0

τ = ∅ and (88) holds then
χ1(τ) − χ2(τ) > 0. (89)Proof. Integrating the ODEs of the harateristis (14) we obtain:

∫ τ

τ0

χ̇(t)dt =

∫ τ

τ0

fu(v(t), χ(t), t)dt

χ(τ) = χ(τ0) +

∫ τ

τ0

fu(v(t), χ(t), t)dt (90)and ∫ t

τ0

v̇(s)ds = −

∫ t

τ0

fx(v(s), χ(s), s) + g(v(s), χ(s), s)ds

v(t) = v(τ0) −

∫ t

τ0

fx(v(s), χ(s), s) + g(v(s), χ(s), s)ds. (91)Substituting χ1 and χ2 to χ in (90) and subtrating the orresponding equations, by themean value theorem there exists ξ suh that:
χ1(τ) − χ2(τ) = χ1(τ0) − χ2(τ0) +

∫ τ

τ0

fu(v1(t), χ1(t), t) − fu(v2(t), χ2(t), t)dt =

= −2η +

∫ τ

τ0

fuu(ξ)(v1(t) − v2(t)) + fux(ξ)(χ1(t) − χ2(t))dt (92)holds. We observe that by the �nite speed of the harateristis, the distane between
χ1(t) and χ2(t) for every t ∈ [τ0, τ ] is ontrolled by the distane of the harateristis atthe time τ0:

|χ1(t) − χ2(t)| ≤ Cχ|χ1(τ0) − χ2(τ0)| = Cχ2η ∀t ∈ [τ0, τ ] (93)where Cχ is a positive onstant. Thus by (92) and (93):
−2η +

∫ τ

τ0

fuu(ξ)(v1(t) − v2(t))dt = χ1(τ) − χ2(τ) −

∫ τ

τ0

fux(ξ)(χ1(t) − χ2(t))dt ≤

≤ χ1(τ) − χ2(τ) +

∫ τ

τ0

|fux(ξ)(χ1(t) − χ2(t))|dt ≤

≤ χ1(τ) − χ2(τ) + (τ − τ0)‖D
2f‖L∞(K)Cχ︸ ︷︷ ︸

:=C̃f

2η (94)24



where K is a ompat set, for instane
K := [−‖u‖∞, ‖u‖∞] ×

[
min

t∈[τ0,τ ]
{χ1(t), χ2(t)}, max

t∈[τ0,τ ]
{χ1(t), χ2(t)}

]
× [τ0, τ ]. (95)Next we employ (91) to estimate the rest of (94). For every t ∈ [τ0, τ ] we have that:

v1(t) − v2(t) =v1(τ0) − v2(τ0) +

∫ t

τ0

fx(v2(s), χ2(s), s) − fx(v1(s), χ1(s), s)ds

︸ ︷︷ ︸
:=A(t)

+

+

∫ t

τ0

g(v2(s), χ2(s), s) − g(v1(s), χ1(s), s)ds

︸ ︷︷ ︸
=:B(t)

. (96)By the mean value theorem for two appropriate σ1 and σ2 the terms A(t) and B(t) areequal to:
A(t) =

∫ t

τ0

fux(σ1)(v2(s) − v1(s)) + fxx(σ1)(χ2(s) − χ1(s))ds (97)
B(t) =

∫ t

τ0

gu(σ2)(v2(s) − v1(s)) + gx(σ2)(χ2(s) − χ1(s))ds (98)and then
|A(t) +B(t)| ≤

∫ t

τ0

∣∣∣(fux(σ1) + gu(σ2))(v2(s) − v1(s)) + (fxx(σ1) + gx(σ2))(χ2(s) − χ1(s))
∣∣∣ds ≤

≤

∫ t

τ0

(‖D2f‖L∞(K) + ‖Dg‖L∞(K))︸ ︷︷ ︸
:=Cf,g

(|v2(s) − v1(s)| + |χ2(s) − χ1(s)|)ds ≤

(5)

≤ Cf,g

∫ t

τ0

(
C + 1

)
|χ2(s) − χ1(s)|ds

(93)

≤ Cf,g

∫ t

τ0

(
C + 1

)
Cχ2ηds ≤

≤ Cf,g(C + 1)
[
τ − τ0

]
Cχ2η =: C̃f,g2η. (99)where the resulting onstant C̃f,g is positive. Combining the inequality (99) with (96) and(94) we obtain:

−2η(1 + C̃f) +

∫ τ

τ0

fuu(ξ)(v1(τ0) − v2(τ0))dt ≤

∫ τ

τ0

∣∣∣fuu(ξ)[A(t) +B(t)]
∣∣∣dt+ χ1(τ) − χ2(τ)

(99)

≤ (τ − τ0)‖D
2f‖L∞(K)C̃f,g︸ ︷︷ ︸

:=Ĉf,g

2η + χ1(τ) − χ2(τ).
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Finally, we take a better form for the last estimate
χ1(τ) − χ2(τ) ≥ −2η(1 + C̃f + Ĉf,g) +

∫ τ

τ0

fuu(ξ)(v1(τ0) − v2(τ0))dt =

= −2η (1 + C̃f + Ĉf,g)︸ ︷︷ ︸
>0

+

∫ τ

τ0

fuu(ξ)︸ ︷︷ ︸
≥γ>0

(u(x− η, τ0) − u(x+ η, τ0))︸ ︷︷ ︸
>0 for η small enough by (88)

dt (100)where γ > 0 is the onstant related to the stritly onvexity of f(u, x, t) in u, i.e.
fuu(u, x, t) ≥ γ > 0for �xed (x, t). Now, we put

ᾱ =
1 + C̃f + Ĉf,g

(τ − τ0)γ
> 0. (101)We note that ᾱ is positive and it depends only on ‖D2f‖L∞(K),‖Dg‖L∞(K),τ0,τ and γ.Realling (88) and (100) for ᾱ > 0, there exists η̄ > 0 suh that for every small η with

0 < η < η̄ we have
χ1(τ) − χ2(τ) > −2η(1 + C̃f + Ĉf,g) + 2ηᾱ(τ − τ0)γ

(101)
= 0Case II: If x belongs to ∂(Iτ

τ0
),then one of the two harateristis χ(t; x − η, τ0) or

χ(t; x+ η, τ0) is not ontained in Cτ
τ0
. Moreover, the harateristi χ(t; x, τ0) is a boundaryurve of the harateristi one Cτ

τ0
and so it is either a minimal or a maximal bakwardharateristi. Repeating similar omputations as in ase I it is possible to show that if(87) holds, either χ(t; x − η, τ0) or χ(t; x + η, τ0) will ross with χ(t; x, τ0) for a t ∈]τ0, τ [.Realling again the No-rossing property of genuine harateristi, we get a ontradition.Case III: By Theorem 3.3 for every τ0 > 0 trough (x, τ0) passes a unique forward hara-teristi. Consequently ase III is to disard.Case IV: In view of the ontraditions obtained in the previous ases, the last possiblease must be true. In partiular x ∈ Iτ

τ0
and sine Iτ

τ0
is open there exists a η > 0 smallenough suh that

]x− η, x+ η[⊂ Iτ
τ0for τ > τ0.Remark 9.1. We remark that in [2℄ Lemma 6.2 was proved using the Hopf-Lax formula.Here we have proposed a more geometrial onstrution, whih make use of the propertiesof generalized harateristis. This hange of strategy is also motivated by the fat thatfor system of onservation laws the Hopf-Lax does not exists, whereas there is a suitableonept of generalized harateristis (see [8℄).26



9.3 Proof of Lemma 6.3Let τ0 > 0, x ∈ E and η > 0 suh that x ± η /∈ Sτ0 . To simplify the notation we write
χ−(t) and χ+(t) instead of χ−(t; x− η, τ0) and χ+(t; x+ η, τ0). Our aim is to show that forall θ ∈]0, τ0] there exists a positive onstant cc(θ) suh that

χ+(θ) − χ−(θ) ≥ −cc(θ)µτ0([x− η, x+ η]) (102)holds. By Besiovith di�erentiation theorem (58) we have
−cµτ0([x− η, x+ η]) ≤ u(x− η, τ0) − u(x+ η, τ0) ≤

≤ |u(x− η, τ0) − u(x+ η, τ0)| + |χ−(τ0) − χ+(τ0)| =

= |v−(τ0) − v+(τ0)| + |χ−(τ0) − χ+(τ0)|. (103)Next we derive analogous estimates as in the proof of Lemma 6.1. Now we �x τ ∈]0, τ0[and we hange the variable in equations of the harateristis (77) putting s = t− τ :
{
ψ̇±(s) = fu(ω±(s), ψ±(s), τ + s)
ω̇±(s) = −fx(ω±(s), ψ±(s), τ + s) − g(ω±(s), ψ±(s), τ + s)

(104)where ψ±(s) := χ±(τ + s) and ω±(s) := v±(τ + s). Using Gronwall's Lemma, on theompat set K de�ned in (82) there exists a positive onstant cK , whih depends only on
‖D2f‖L∞(K) and ‖Dg‖L∞(K), suh that

|ψ−(s) − ψ+(s)| + |ω−(s) − ω+(s)| ≤ ecKs(|ψ−(0) − ψ+(0)| + |ω−(0) − ω+(0)|). (105)We insert s = τ0 − τ in the inequality above and by χ±(τ0) = ψ±(τ0 − τ),χ±(τ) = ψ±(0)and v±(τ0) = ω±(τ0 − τ),v±(τ) = ω±(0), it follows that
|χ−(τ0) − χ+(τ0)| + |v−(τ0) − v+(τ0)| ≤ ecKτ0︸︷︷︸

:=c̄

(|χ−(τ) − χ+(τ)| + |v−(τ) − v+(τ)|) (106)Thus, with (103) we get:
−cµτ0([x− η, x+ η]) ≤ c̄(|χ−(τ) − χ+(τ)| + |v−(τ) − v+(τ)|) ≤

(5)

≤ c̄
(
|χ−(τ) − χ+(τ)| + C|χ−(τ) − χ+(τ)|

)
≤

≤
(
c̄ + C

)
|χ−(τ) − χ+(τ)| (107)We have proved, that for all θ ∈ (0, τ0] there exists a positive onstant cc(θ) dependingonly on ‖D2f‖L∞(K), ‖Dg‖L∞(K),τ0 and θ suh that:

χ+(θ) − χ−(θ) = |χ−(θ) − χ+(θ)| ≥ −cc(θ)µτ0([x− η, x+ η]). (108)27
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