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Abstract

In this work we study the regularity of entropy solutions of the genuinely nonlinear
scalar balance laws

Dyu(z,t) + Do[f (u(zx, t), z,t)] + g(u(z,t),x,t) =0 in an open set Q C R2.

We assume that the source term g € C'(R x R x RT), that the flux function f €
C?*R x R x R") and that {u; € R : fuu(u;,x,t) = 0} is at most countable for every
fixed (z,t) € Q. Our main result, which is a unification of two proposed intermediate
theorems, states that BV entropy solutions of such equations belong to SBV],.(2).
Moreover, using the theory of generalized characteristics we prove that for entropy
solutions of balance laws with convex flux function, there exists a constant C' > 0
such that:
u([xr + hl+,t) —u(x—,t) < Ch, (h>0)

where C' can be chosen uniformly for (z + h,t), (x,t) in any compact subset of (.

1 Introduction
In [2]| the authors have shown that entropy solutions wu(z,t) of scalar conservation laws
Diu(z,t) + D, [f(u(z,t))] =0 in an open set Q C R? (1)

with locally uniformly convex flux function f € C?*(R) and f” > 0, are functions of
locally special bounded variation, i.e. the distributional derivative Du has no Cantor
part. In the proof proposed by Ambrosio and De Lellis the good geometric structure
of the characteristics field correlated to the entropy solution play an important role and
allows to define a geometric functional which jumps every time when a Cantor part of
the distributional derivative Du(.,t) appears in the solution. In particular we recall here
two significant properties of the characteristics: they are straight lines and two different



backward characteristics can cross only at ¢ = 0 (the so-called no crossing property). We
note also that for equations (1) we can take the well-known Oleinik estimate as entropy
criterion, i.e. a distributional solution u(z,t) of (1) is an entropy solution provided that:

u(x + z,t) —u(z,t) < fora C >0 (2)

=+ | Q)
w

holds for all t > 0, x,z € R where z > 0. In |2| the one-sided estimate (2) is used as
entropy criterion and it is used to get the proof.

In this note we extend this regularity result to a bigger class of hyperbolic conservation
laws. At first we again consider scalar conservation laws (1) but allowing the change of
convexity of the flux function f at a countable set of points. One of the difficulties in
dealing with these equations is that rarefaction waves may appear even for ¢ > 0 and
consequently the no crossing property used in [2| does not hold. For instance, it is possible
to construct a Riemann problem where the flux function has two inflections points and
a shock splits into two contact discontinuities (see [11]). As we will see the strategy of
the proof is not as complicated as one can expect: using an appropriate covering of €2
and working locally we reduce the problem to the convex or concave case. Thus, our first
extension theorem states:

Theorem 1.1. Let f € C*(R) be a flux function, such that {u; € R : f"(u;) = 0} is at
most countable. Let u € BV () be an entropy solution of the scalar conservation law (1).
Then there ezists a set S C R at most countable such that Y7 € R\S the following holds:

u(.,7) € SBVje(2;) with Q, == {zr e R: (z,7) € Q}. (3)

In the second part of this paper we focus our attention on genuinely nonlinear scalar
balance laws

Dou(z,t) + Do[f (u(x,t), 2,t)] + g(u(z,t),z,t) =0  in Q C R? (4)

where the source term g belongs to C'(R x R x RY), the flux functions f belongs to
C?’(RxR xRT) and fu,(.,2,t) > 0 for any fixed (x,t) € Q. Again the geometric structure
of the characteristics is not as easy as in the case treated in [2]: now the characteristics
are Lipschitz curves and in general are not straight lines. The different shape of the
characteristics are due to the presence of the source term and to the dependence of f on the
points (x,t) € Q. Fortunately, we can make use of the theory of generalized characteristics
introduced by Dafermos (see [6],]7],[8]) to analyze the behavior of the characteristics for
entropy solutions of (4). Important for our analysis is the no-crossing property between
genuine characteristics. Thanks to this property we can expect to reproduce the geometric
proof proposed in [2|. All the definitions and propositions about the theory of generalized
characteristics, which are helpful in our work, are listed in section 3. Another problem, due
to the presence of the source term and of the (z,¢) dependence, is that for equations (4)
the Oleinik estimate (2) stop to be true. Moreover, the Oleinik estimate cannot be taken
as entropy criterion. What we can do, is to find a suitable generalization of this estimate,
i.e. we will prove using the generalized characteristics that:



Theorem 1.2. Let f € C*(R x R x RT) be a flur function such that fu(.) > 0. Let
g € CY(R x R x RY) be a source term and let w € L>®(Q) be an entropy solution of the
balance law (4). In any fized compact set K C Q there exists a positive constant C > 0
such that:
u(lr + 2]+, t) —u(z—,t) < C=z, (z>0). (5)
for every (x,t), (x + 2,t) € K.
However, for balance laws it is impossible to recover a constant of the form C' = é’/t,
where C' depends only on the time and on the second derivative of f, estimate (5) is

sufficient to obtain all the regularity-results stated in this paper. The second theorem on
the SBV regularity proposed is:

Theorem 1.3. Let f € C*(R x R x RT) be a flur function such that fu(.) > 0. Let
g € CY(R x R x RY) be a source term and let w € L>®(Q) be an entropy solution of the
balance law (4). Then there exists a set S C R at most countable such that Y7 € R\S the

following holds:
u(.,7) € SBVje(2,) with Q, :=={zx € R: (z,7) € Q}. (6)

Combining the two Theorems on the SBV regularity we get a generalized Theorem,
which says that also for balance laws with a flux function which changes convexity at
most countable many times, the entropy solution is a locally SBV function. Thus, as a
consequence of Theorem 1.3 and 1.1 and of the slicing theory of BV functions, we state:

Theorem 1.4. Let f € C?(R x R x RT) be a flux function, such that
{u; € R: fuu(ui, x,t) =0}

is at most countable for any fived (z,t). Let g € CY(R x R x RT) be a source term and let
u € BV () be an entropy solution of the balance law (4):

Diu(x,t) + D [f (u(z,t), x,t)] + g(u(x,t),z,t) =0 in Q C R?. (7)
Then there ezists a set S C R at most countable such that VY7 € R\S the following holds:
u(.,7) € SBVj0e(2;) with Q, :=={z e R: (z,7) € Q}. (8)

Moreover, u(z,t) € SBVi..(€2).

Scalar conservation laws in one space dimension and Hamilton-Jacobi equations in one
dimension are strictly connected: entropy solutions correspond to viscosity solutions (see
[9]). Thus, at the end of the paper using Theorem 1.3 we obtain also a regularity statement
for viscosity solutions u of a class of Hamilton-Jacobi equations: we prove that the gradient
Du of such solutions belongs to SBV,,.(2).



Corollary 1.1 (Hamilton-Jacobi). Let H(u,x,t) € C*(R x R x RY) be locally uniformly
conver in u, i.e. Dy, H >0. If w e WH*(Q) is a viscosity solution of

wy(x,t) + H(w,(x,t),z,t) =0, 9)
then Dw € SBV,.()).

It would be interesting to find the same regularity for entropy BV solutions of genuinely
nonlinear system of conservation laws in one space dimension. We note that there are
analogies between the structure of the generalized characteristics of systems and the one
of the balance laws 4 of Theorem 1.4 proposed in here: in both cases the characteristics
can intersect at ¢ # 0 and in general they are not straight lines but Lipschitz curves,
which are a.e. differentiable. Although the geometry of the characteristics field of these
two problems seems to be similar, the case of systems looks much more difficult. Another
open question is the local SBV regularity for gradients of viscosity solutions of uniformly
convex Hamilton-Jacobi PDEs in higher space dimensions. In [4] the authors have shown
that under strong regularity assumptions on the initial functions ug, the viscosity solution
u has a gradient Du, which belongs to the class SBV, i.e. D?u is a measure with no Cantor
part (in fact the regularity theory of |4] and |5] gives stronger conclusions).

2 Functions with bounded variation and special func-
tions of bounded variation

It is well-known that in general we cannot find classical smooth solutions for equations (1)
and (4): shocks appear in finite time even for smooth initial data u(z,0) = ug(z). In order
to study all the possible solutions with jump discontinuities, we take the space of functions
of bounded variation BV as working space. We then collect some definitions and theorems
about BV and SBYV functions.

Definition 2.1. Let u € LY(Q); we say that u is a function of bounded variation in Q
if the distributional derivative of w, denoted by Du, is representable by a finite Radon
measure on ). A function uw € L}, .(Q) has locally bounded variation in Q if for each

open set V.CC Q, w is a function of bounded variation in V. We write w € BV () and
u € BVpe(2) respectively.

In our proofs we will have to deal with one-dimensional functions of bounded variation,
therefore we collect here some useful properties. Using the Radon-Nikodym Theorem we
split the Radon measure Du into the absolute continuous part D% (with respect to £!)
and the singular part D%u:

Du = D*u+D*u = DulL(Q\S)+DuLS  where S := {x €Q: li{glw = oo}.
p



Let A denote the set of atoms of Du, i.e. © € A if and only if Du({x}) # 0. We recall that
A is at most countable. We now split the singular part D*u into the purely atomic part
Diu and the diffusive part (i.e. without atoms) Du:

Du = D+ D*u = D + Du + DU = Dul(Q\S) + DuL A+ Dul(S\A) (10)

where the two measures D7y and D°u are called respectively the jump and the Cantor

part of the measure Du. The above decomposition is unique and the three measures

D%, DIu, Dy are mutually singular. Therefore we have |Du| = |D%u| + |D7u| + | D¢ul.
We are now ready to recall (see for instance Theorem 3.28 and Proposition 3.92 of |1]):

Proposition 2.1. Let u € BV(Q) and let Q@ C R. Let A be the set of atoms of Du. Then:

(i) Any good representative W is continuous in Q\A and has a jump discontinuity at any
point of A. Moreover, U has classical left and right limits (denoted by u* and u®t) at any
x e A

(ii) Du vanishes on sets which are o-finite with respect to H® and on sets of the form
u N(F) with ECR and L'(E) = 0.

We conclude with:

Definition 2.2. Let u € BV (Q2), then u is a special function of bounded variation and we
write u € SBV(Q) if Du =0, i.e. if the Cantor part is zero.

Remark 2.1. For similar definitions of BV and SBV functions in higher dimensions, we
address the reader to Chapters 8 and 4 of [1].

3 Entropy condition and generalized characteristics

In this section, we will consider the balance laws (4) and we assume that f : (u,z,t) —
flu,z,t) and g : (u,x,t) — g(u,z,t) are, respectively, C? and C' smooth functions on
R x R x RT. Moreover, we prescribe that f(.,z,t) is strictly convex in u, i.e. fu.(.,z,t) >0
for fixed (z,t). By the classical results on hyperbolic conservation laws it is known that
with a suitable definition of weak solution and after the introduction of an admissibility
condition, the so-called entropy condition, the existence and the uniqueness of an entropy
solution of equations (1) and (4) are assured. Firstly we define the space of admissible
solutions:

Definition 3.1. The entropy solution w(z,t) of the equation (4) is a locally integrable
function which satisfies the following properties:

1. For almost allt € [0,00) the one-sided limits u(z+,t) and u(x—,t) exist for all x € R.

2. u(x,t) solves the balance equation (4) in the sense of distributions.



3. For almost all t € [0,00) and for all x € R we have that

u(x—,t) > u(x+,t). (11)

Throughout the paper we shall denote the entropy solution by w(z,t) and we shall write
u(x+,t) and u(x—,t) for the one-sided limits of u(.,t) (also denoted by uf* and ul). It is
important to note that we will be dealing with entropy solutions u(x,t), which belong to
the space BV,.(€2) and such that for every ¢ > 0 the function u(.,t) belongs to BVj,.(R).
Moreover, we will restrict our analysis on good representative of solutions and then, under
our initial hypothesis we follow the works of Dafermos ([6],[7],[8]) giving an introduction
to the theory of generalized characteristics and recalling here some results, which we shall
use in the sequel.

Definition 3.2. A Lipschitz continuous curve x(t), defined on an interval I C R, is
called a characteristic if it solves

X(t) = fulu(x(t),1), x(t), 1)

in the sense of Filippov [10], namely

X(8) € [fululx(@)+,1), x(t), 1), fulu(x(t)—, 1), x(1), )] (12)
for almost all t € 1.

By the theory of ordinary differential equations with discontinuous right-hand side like
(12) (see [10]), we know that through every fixed point (y,7) € R x R passes at least one
characteristic. We denote a characteristic either by x(¢) or by x(¢;y,7) when the point
(y, 7) must be specified. Every trajectory is confined between a maximal and a minimal
characteristic (not necessarily distinct). Moreover, the speed of a generalized characteristic
is not free and more precisely by Theorem 3.1 in |7] a characteristic either propagate at
the classical speed or at shock speed:

Theorem 3.1. Let x : [ — R be a characteristic. Then for almost everyt € I

X(t)> ) ifu(X(t)_’t) = U(X(t)_l_?t);

X(t , 13
RO iy ((t)- 1) > ulx(@) . (O

. u(u(x ()£, )

X(t) = { O+ (1)1
u(x(t)+,t

A backward (forward) characteristic trough any point (y,7) € R x RT | is a characteris-

tic x defined on [0, 7] (respectively [1,00)) with x(7) = y. We call genuine a characteristic
X (t) such that u(x(t),t) = u(x(t)+,t) for almost every ¢.

At this point, we give a list of properties of generalized characteristics of entropy solutions
u(z,t) for the balance laws (4). We shall make use of these Theorems and in particular of
the No-crossing property of Theorem 3.3, to prove the SBV},. regularity of u(z,t).



Theorem 3.2. Let x(.) be a generalized characteristic for (4), associated with the admis-
sible solution w, which is genuine on I = [a,b]. Then there is a C' function v defined on
I such that:

1. U(X(a)_a CL) < U((I) < U(X(a>+a CL),
2. u(x(t)—,t) = v(t) = u(x(t)+,t), for a <t <b,
3. u(x(b)=,b) > v(b) = u(x(b)+,b).

Furthermore, (x(.),v(.)) satisfy the classical characteristic equations

{40 = hitx0 )

on (a,b). In particular, x is a C* function on I.

Remark 3.1. In [8], the generalized characteristic of Theorem 3.2 is assumed to be "shock-
free". In here we state the Theorem for genuine characteristic because under an appropriate
normalization, the notions of "shock-free" and "genuine"” are equivalent. To conclude: we
call shock-free a characteristic x(t) such that u(x(t)—,t) = u(x(t)+,t) for almost every t.

Theorem 3.3. Given a fived point (y,7) € R x RT we have that:

1. Through (y,T) pass a minimal and a mazimal backward characteristic denoted, respec-
tiely, by x—(t) and x+(t). The characteristics x—, x+ : [0,7] — R are genuine and
are the solutions of the ODEs (14) with the following initial conditions: x_ (1) = vy,

v (1) = u(y—,7) and x+(7) = y, v(7) = uly+,7).

2. (No-crossing of characteristics). Two genuine characteristics may intersect only at
their end points.

3. For 7 > 0 through (y,T) passes a unique forward characteristic. Furthermore, if
u(y+,7) < u(y—, ), then u(x(t)+,t) < u(x(t)—,t) for all t € [1,00).

4 Theorem 1.1

In this part of the paper we analyze the regularity of the entropy solutions of the conser-
vation laws (1). We recall that in [2] the flux function f € C? was selected to be strictly
convex and it was proved that entropy solutions are locally SBV. Here, in our first exten-
sion Theorem 1.1 we consider any flux function f € C?, which can change its convexity.
Indeed, f is selected such that #{u; € R: f”’(u;) = 0} is at most countable.



4.1 Strictly convex or concave flux function

The first step in trying to extend Theorem 1.2 of [2] is to state the same result also for a
conservation law with a strictly concave flux function, i.e. f” < 0.

Lemma 4.1 (Strictly convex or concave flux). Let f € C*(R) be a fluz function with
|f"(w)] > 0. Let u € L>®(Q) be an entropy solution of the scalar conservation law (1).
Then there exists a set S C R at most countable such that Y7 € R\S the following holds:

u(.,7) € SBVje(2;) with Q, == {zr e R: (z,7) € Q}. (15)

Since the arguments are quite standard, we propose only a sketch of the proof of the
above Lemma:

Proof. If f” > 0, i.e. the flux function is strictly convex, the statement is exactly Theorem
1.2 of [2]. Tf f” < 0, i.e. the flux function is strictly concave and we may prove the lemma
directly using the convex case. The idea is simple: we reflect an entropy solution of the
strictly convex case about the t-axis, to obtain an entropy solution of the related strictly
concave problem. Let f be strictly convex and assume that u(z,t) is an entropy solution of
(1). We define the coordinates transformation ¢ : Q@ — Q, ¢ : (z,t) — (y,t) = (—,t) and
the candidate solution u(y,t) := uo ¢~1(y,t) = u(—z,t) of the strictly concave problem.
Then, we have:

Dyu(y, t) + Dy[f (u(y,t))] = Dyuly,t) — Dy[f (u(y, )] = Diu(—=,t) = (=Dz)[f (u(—2,1))] =
= Dywu(z,t) + D[f(u(x,t))] =0

With f: —f we denote a strictly concave flux. Moreover, for a point of Q on a shock z(t)
with shock speed o = dz(t)/dt, we must have that the Rankine-Hugoniot o[u® — u*] =
[f(uf) — f(u")] and that the Lax-Entropy condition for a strictly convex flux u” > u® are
satisfied. We set & = d(—=z(t))/dt = —o, u* = u®, G% = v’ and f = —f, then after the
reflection we obtain:

ofu’ —u'] = [f(u) = f(u")] & F[a" -] = [f(@") - f@"). (16)

and u® > wL. This means that if u(x,t) is an entropy solution of (1) for a strictly convex
flux f, then u(y,t) = u(—=x,t) is an entropy solution of the "correlate" conservation law

with strictly concave flux f = —f. In particular by the convex case and the definition of
w, there exists S =S C R at most countable such that V7 € R\S the following holds:

(., 7) € SBVioe(Q,)  with Q, :={z e R: (z,7) € Q}. (17)

O



4.2 Proof of Theorem 1.1

Step 1: Preliminary remarks.

Let us fix (§,7) € Q and r such that B,.(,7) C . Thanks to the finite speed of propa-
gation, there exists a positive p such that the values of u in the ball B,({, ) depend only
on the values of u on the segment {t = 7 — 2p} N B,.(&, 7). Thus, if we denote by w the
entropy solution of the Cauchy problem

{ Dyw(x,t) + D[ f(w(z,t))] =0 for t > 7 — 2p;

w(z, 7 —2p) = u(x, T — 2p)1p, e (x, 7 —2p) for every x € R, (18)

we get w(z,t) = u(z,t) on B,(£, 7). Moreover, note that w(.,t) € BV for every t > 7 —2p.
Thus, it suffices to prove the main theorem under the assumptions that Q = {t > 0} and
that u(.,0) is a bounded compactly supported BV function. By assumption, an entropy
solution u of the conservation laws (1) belongs to the space BV (). Moreover, u has a
better structure than any 2-dimensional BV -function. Introducing some notation, we re-
call that if u is an entropy solution of (1), then w,(.) := u(.,7) € BV (Q,) for all 7, where
Q :={xr € R: (z,7) € Q}. By Proposition 2.1 for any 1-dim BV function the set of
atoms A coincides with the set of the discontinuous points; hence for all 7 we introduce the
sets of the jumps J, := {z € Q, : ul(z) #uf(2x)} CRand J := {(z,t) € Q: 2z € J;}. By
assumption the set Iy := {u; € R: f”(u;) = 0}, which contains all the inflection points of
f, is at most countable. We conclude defining the set F; := {z € Q; : u,(z) = u;,u; € I}

Step 2: Bad points have measure 0.

Using the above notation, we introduce the sets C, := J, U F; for all 7 and C := {(z,1) :
x € Ci}, i.e. the sets of the "bad" points for which either u.(.) has a jump or f” vanishes.
For this two sets we state:

Claim 4.1. For any T we have that |Déu.|(C;) = 0.
Proof. For every 7 one has
IDEu|(Cr) = | Dt | U Fy) < (DS (J2) + [ D (). (19)
Observe that for all 7 the Cantor part is zero on the jump sets J,, since by (10):
Déu, = DyuL(S\J,) = Diu.(J;) =0 = |Déu,|(J;) = 0. (20)

Using the second statement of Proposition 2.1, we show that even the second term of
inequality (19) vanishes. Since I is a countable set, we may rewrite this set as countable
union of the sets F; := {w;}, i.e. I; =J,; E;. It is clear that £'(E;) = 0 for each i and that
F, =, u; Y (E;) = U; u;*(u;). By Proposition 2.1, the Cantor part is zero on sets of the
form F, = u7'(I;) with £'(I;) = 0. Hence, we obtain:

| Dy | (Fr) = [ D |(u " (1)) = 0. (21)

This concludes the proof of the claim, i.e. |DSu,|(C;) = 0. O

9



Y

Zo - bo o Zo + bo

Figure 1: Q\C is covered by triangles..

Step 3: Locally, more precisely in a triangle, we reduce the problem to the cases with
strictly convex or concave flux functions. By Lemma 4.1 the SBV-regularity follows.

Given any point (xg,tg) € Q\C it is always possible to find a positive number by =
b(xo,tp) > 0 and a positive ¢y = ¢(xg, to), such that the following assertion holds:

|f" (uge ()] > o > 0 for every z € Iy :=] — by + g, 2o + bo|. (22)

Since wuy, is a continuous BV -function in Q\Cy,, we can also assume that there exists a
positive ly(by) > 0 (which depends on by), such that |u, () —w;| > ly > 0 for all x € I
and for any u; € Iy. This means that we may select by > 0, such that the small variation
of u, in I allows to consider the Cauchy problem:

Dyw(z,t) + D[ fo(w(x,t))] =0 for t > to; (23)
w(z, ty) = ug, ()1, (2, to) for every x € R,

where the flux function fj is either strictly concave or strictly convex.

The finite speed of propagation of the characteristics permits to construct an isosceles
triangle Ty with base Iy, s.t. w(x,t) = u(x,t) on the triangle Ty. Let 0(f, ||u||z~) > 0 be
the angle between the base Iy and the diagonal segment. The angle 6 depends only on f
and on ||u|| e, since the slope of the maximal or the minimal characteristic of the problem
defines this angle. We define the open triangle

To = T, (0, t0) = {(x,t) : |x—z0| < bp and 0 < t—t¢ < tan@-min{x—xo+by,zo+bo—2}}

10



By the maximum principle, the values of u in T are controlled by the values of u;, on I;.
Moreover we may apply the statement of Lemma 4.1 on Tj, since the Cauchy problem (23)
has either a strictly convex or a concave flux. In particular in our triangle 7 there exists
an at most countable set Sy consisting of T €]tg, to + by - tan 8] such that the solution is not
SBV (2, NTy).

Step 4: Using Step 3, we construct a triangle for all the points of Q\C. Let B be
the set of all points of Q\C', which are contained in at least one of this triangle and divide

O\C into the two subsets B and C" := Q\(C' U B), i.,e. Q\C' = BUC(C".
Claim 4.2. The set {T € Rt : {t =7} N C" # 0} is at most countable.

Proof. Assume that {t : {t = 7}NC" # (0} is not countable. Let {P,} = {(za,74)} C C’ be
a subset of C" C Q\C, such that 7, # 75 whenever a # 3. Moreover, let {P*} = {(z4, 7o) :
b(Ta,Ta) = 277} C {P,} be the subsets of the points, for which the base of the triangle is
larger than 27%*+! where k € N. By assumption there exists a fixed K € N such that #PX
is uncountable and thus the set PX contains an accumulation point p = (x,,7,). This
implies that there exists a sequence {p;}; := {(zj,7;)}jen C PX of points in C’, which
converges to the accumulation point p. Moreover, any point p; of this sequence cannot be
contained in the triangle T}, := Ty, )(2p, 7,), since by definition any point of C” cannot
lie into a triangle. We then have that the sequence {p;}; approaches p from below, i.e.
7; < 7p for every j > J with J big enough, and the triangles T} := Ty, ,,)(z;, 7;) have a
base larger than 275! for each j. Thus, for a J € N big enough the accumulation point
p belongs to the triangles T; for all j > J. This is a contradiction to p € C". O

Step 5: Cover with triangles.

By definition, every (z,t) € B lies into at least one triangle T for a (zg,79) € B. The set
B is then covered by a family of triangles {7}, },. In particular we can find a countable
subfamily of triangles {7}, C {7}, which covers B, i.e. B C |J,7;. We now divide
using the sets defined above:

Q=(@Q\C)uCc=BucC'uccl|Jruc'uc.

For every 7 € R we have that:
- by Claim 4.2 the set S¢v = {t : {t =7} N C" # 0} is at most countable;
- by Lemma 4.1 for every T; the set S; := {t : uy ¢ SBV ({t = 7}N7T;)} is at most countable.
Thus, for every time 7 ¢ S := S U (UZ Si) we have the following inequality:
D5l (@0 {t = 7)) < [Duel (U0 {t = 7}) + D5 (€N {t = 7)) <

< Y IDsu (T {t =73 ) + [D5u (O {1 = 73) =0

11



All terms in the sum vanish by Lemma 4.1 and the second term is equal to zero by Claim
4.1. Letting Q, = QN {t = 7} we have shown that V7 € R\S the following holds:

ur(.) = u(.,7) € SBViee(§2s).

5 Proof of Theorem 1.2

As far as we know the estimate (5) of Theorem 1.2 has never been proved. In this section
we then use the generalized characteristics to obtain that:

Proposition 5.1. Let f,g be as in the statement of Theorem 1.2, in particular in any
compact set K C ) there exist constants Cp,Cy > 0 with

1D | oo (i), | D | oo (i), | D9l ooy < Ch,s (24)

and
If u(x,t) is an entropy solution of the balance equation (4), then for all e > 0 there exists
a constant Cs := C5(Cy, Cy,€) > 0 with

U([I + Z]—l—, t) o U(I‘—,t) < 0327 (Z > O) (26)

for every fized t € [e,1] and for all x € R with (z,t), (z + 2,t) € K.

5.1 Preparatory for the proof of Proposition 5.1

Let t € [e,1] be fixed and take z € R and z > 0 with (z,t), (x+2,t) € K. Let us denote by
X—(s) the minimal backward characteristic passing through (x,t) and by x. (s) the maximal
backward characteristic passing through (x+z,t), (instead of x_(s;z,t) and x4 (s;x+2,1)).
Rewriting the ODEs (14) related to the genuine characteristics for x_(s), x4+(s) : [e,] = R

we obtain
X (s) = Fulve(s), X2 (5). 9)
{ 62(5) = — fol(02(), x2 (3). 8) — 9(v2(5). x2(5), ) (27)

with

X_ Et% =z

X+(1) =2+

00 = ulo—rt) = - (28)

vy (t) = u([x + 2]+, t) =

where by the admissible condition (11), = > u®. We recall that by the no crossing
property of Theorem 3.3 of the genuine characteristics, the distance between the two curves
is positive i.e. x4(s) > x_(s) for every s € [¢,].
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5.2 One Technical Lemma

For the proof of our theorem we will use the following technical lemma:

Lemma 5.1. Assume that there exists a constant C3 > 0 with
u(lx + 2]+, 1) —u(z—,t) > Csz, (z>0). (29)
Then there exists 6 := 6(Cy, Ca,e) with 0 < § < ¢ and such that

vy(s) —v_(s) > f—é’z, Vs € [t —o,t]. (30)

Proof. We subdivide the proof into two steps:
Step 1: We claim that:

Claim 5.1. Let C5 > 0 be sufficiently big and assume that there exists a 6 > 0 such that
inequality (30) holds. Then, we have

()~ X(5) >0, Vselt—b1l (31)
If our claim were not true, then it would exists 7 € [t — 0, ¢] such that

{ >:<+(s) (s) > %, Vs €]t t];

— X
() — X (7) (32)

By the equation of the characteristics (77) it follows that:
X+(7) = X=(7) = fulv(7), x4 (7), ) = fulv-(7), x-(7),7) = U(7) + W(7). (33)
The two terms in (33) are defined as
U(7) == fu(ve(7), x4(7), 7) = fulv-(7), x4 (7), 7) = Ca(v4(T) — v-(7)), (34)
and
W(T) == fulv—(7), x+(7). 7) = fulv-(7), x=(7),7) = =Ci|x+(7) = x-(7)[.  (35)

Thus by (33),(34),(35) and (30),(32) we obtain that

X+(7) = X=(7) = C2(v4+(7) = v-(7)) = Cilx+(7) — x=(7)] (36)
Cs CyC4
ZCQEZ—CLZ: ( 16 —Cl)z.

Clearly in the last inequality we have used the bounds (24) and (25). So if we choose
Cs > Héi, then
2 . .
X+(1) =X-(7) >0

13



and this is in contradiction with the definition of 7.
Step 2: Let us define the time

Cs
to:= s S:vi(s) —v_(s) < —z¢. 37
o= sw {sivs(s) = v-(s) < gz} (37)

If ty <t —n for any n > 0 then we can conclude the proof, because we can trivially select
d =nin (30). Otherwise from Step 1 we know that

0 < x+(s) —x=(s) <z, Vs € [to, t]. (38)

Moreover, by the definition of ¢ty we know even that

vy (to) — v_(to) = %”z. (39)

Using the equations of the characteristics (77), the bounds (24), (25) and computing as in
Step 1, we can state that for every s € [to, t] it holds that:

[04(s) — 0-(s)| < 2Ch[v4(s) — v-(s)| + 2C1 x4 (s) — x-(5)]
(38)

< 20 <|v+(s) —u_(s)] + z) (40)

Putting E(s) := |v4(s) — v_(s)| 4+ z from the last inequality we get to:

E(s) < 2C1E(s). (41)

Thus, by Gronwall’s Lemma we have that for every s € [to, t]:

E(s) < 20 B (1), (42)

Choosing s =t we obtain:

(29) (42) C
(Cyz + 2) < E(t) < Ot g & e2cl<t—to>(1—gz ¥ z) (43)
Thus,
1 16C5 + 16

Lty o (1908 10) "
°=20, UG+ 16 (44)
and in particular if C5 is big enough we conclude that t — ¢y > 0. This means that there
exists > 0 such that ¢t — ¢ € [to, t] and the inequality (30) is satisfied. O

14



5.3 Proof of Proposition 5.1
Case 1: Trivially, if it holds
u([r + 2]+, 1) —u(z—,t) < Csz, (z>0) (45)

our proposition is true.
Case 2: Otherwise, we can choose an o > C3 with

u([z + 2]+, t) — u(x—,t)

= q, (z>0). (46)

By Lemma 5.1 there exists 0 < 0 < € such that for every s € [t —,t] we have the following
two estimates:

0 < x+(s) =x-(s) < 2, (47)
ve(s) —v_(s) > ?—62. (48)

Now, using the same techniques and bounds as above we compute:
t
X+(t) = x-(t) = / Ju(vi(5),X4(5), ) = fu(v-(s), x=(s), s)ds + x4.(t = 6) — x—(t — 0)
t—6
t
>

= fu(v+(5)>X+(3)a5) —fu('U_(S),X_(S),S)dS

t—4

t
> 020‘_52 _ / Cilxs(s) — x—(s)|ds > Cga—(sz — 620}. (49)
16 s 16

Since z = x4 (t) — x_(t) we rewrite (49) as

ad 16(1 + C16)
> — < - -
2(14 C16) > Cy 167 = a < 50 : (50)
and then L6(1 4 C-6
W[z + 2]+, 1) — u(a—, ) < %z (2> 0) (51)
2

This conclude the proof.

6 Preparatory tools for the proof of Theorem 1.3

In the geometric proof of the main Theorem in |2| the characteristics of the entropy solutions
of the scalar conservation laws (1) played a fundamental role. Using the good and simple
structure of these characteristics it was possible to define a monotone geometric functional,
which jumps when a Cantor part appears in the solution. One of the key Lemmas was
the No-crossing-Proposition (see Proposition 2.5 of [2|), which implies that two different
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characteristics x; : [0, 7] — R, x2 : [0,72] — R cannot cross for all t € (0, max{m, 2}).
The generalized characteristics of a balance laws (4) with source term ¢ are in general
no more straight lines, but by Theorem 3.3 we know that the No-crossing property still
holds for two distinct genuine characteristics. By the way, for every point (y,7) € R x Rt
the minimal and maximal backward characteristics are genuine and then the No-crossing
property is assured. This suggests us that the construction proposed in |2| still works even
for equations (4) and that we can try to restate the main steps of the original proofs. In
particular, a geometric approach to our problem make sense and in this section we shall
then introduce a geometric functional defined using the generalized characteristics. We
begin by giving some preliminary definitions and propositions, which are inspired to those
presented in |2]:

Definition 6.1. (Characteristic cones and bases). Let 7 > 0. For 6 € [0, 7] the backward
characteristic cone Cf _ emanating from y € S; = {z € R : u(z—,7) # u(z+,7)} is
defined as the open "triangle" having

(ya T)> (X—(& Y, T)a 9)7 (X-i—(e; Y, T)a 0)

as vertices. The base of a characteristic cone at time 6 € [0,7] is defined as the open
interval:

I =Ix-(0;y,7), x+(0; 9, 7). (52)

We note that the characteristic cones are confined by minimal and maximal backward char-
acteristics, which are genuine. Then, due to the No-crossing property of genuine charac-
teristics two different cones C% _ and C° _ (or two different bases I? _ and I _ ) are

Y1,7T1 Y2,72 Y1,7T1 Y2,72
either one contained in the other or disjoint. We define also
cl=Jcy, and 1= | I . (53)
yeSr YyES,

It is known that entropy solutions u(x,t) of (4) are BV functions. Moreover, for every ¢ the
function u(.,t) is also BV on R and then by (10) we can split D,u(.,t) in three mutually
singular parts:

Dyu(.,t) = D%u(.,t) + Dlu(.,t) + Diuf(.,t)

For convenience we denote by p; := DSu(.,t) the Cantor part and by v, := Diu(.,t)
the jump part. Inequality (11) implies that the singular measures p; and v, are both
nonpositive. We recall also the semi-monotonicity of u(.,t) that gives

u(y—+,t) — u(x—,t) = Du(., t)([z,y]) whenever x < y. (54)

Finally we state three technical lemmas, which are to compare with estimates (3.4), (3.10)
and Lemma 3.2 of [2].
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Figure 2: Characteristic cones and bases.

Lemma 6.1. Let 7 > 0. If y € S., then for all 0 € [0, 7| there exists a positive constant
(55)

c; such that

LY(Iy) = x+(0;y,7) = x-(6;9,7) < —cv-({y})-
Lemma 6.2. Let 7o > 0. Then for p,,-a.e. x there exists n:=n(x,79,7) > 0 such that
lt —n,z+n[C I° for T > 1. (56)

Definition 6.2. We denote by E the set of x’s for which Lemma 6.2 applies and such that
(57)

DU (et
nlo —himy ([# =1, 2 + 1))
The Besicovitch differentiation theorem gives that . (R\E) = 0 and with (54) we have
77) 77-0) — U((ZL’ + 77)"’77-0) -1 (58)

for every x € E that
lim ullz =
— o ([2 =1, 2+ 1))

nl0
Lemma 6.3. Let 70 > 0. For every x € E, for every n > 0 such that v £n ¢ S, and for
(59)

all 0 € (0, 70|, there exists a positive constant c.(0) such that
‘Cl(‘]me 77) = X+(97 T+ m, 7-0) - X—(ev r—mn, 7-0) Z _CC(Q)MT()([I - nx + 77])

=Ix=(0; 2 =0, 70), X+ (052 +1,70)[.
Note that the proofs of these lemmas are listed in Chapter 9 and that to get these

where ijn =

results we will use the estimate of Theorem 1.2.
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7 Proof of Theorem 1.3

Step 1: Preliminary remarks.

Let us fix (§,7) € Q and a radius r such that the ball B, (£, 7) C Q. Thanks to the finite
speed of propagation, there exists a positive p such that the values of u(x,t) in the ball
B,(&,7) depend only on the values of u on the segment {t =7 —2p} N B, (£, 7). If we write
w for the entropy solution of the problem

{ Dyw(z,t) + D[ f(w(x,t),z,t)] + g(w(x,t),z,t) =0, fort>71—2p; (60)

w(z, 7 —=2p) =u(x, T —2p)1p, (e (x, T — 2p), for every x € R,

we get that w = w on B,(§, 7). We also note that w(.,t) € BV(R) for every t > 7 — 2p.
Thus it suffices to prove the theorem under the additional assumptions that = {t > 0}
and that u(.,0) is a bounded compactly supported BV function. Since the function u(.,0)
has compact support, we know that there exist constants R and cg such that the support
of u(.,t) is contained in {|z| < R} and

[ Du(.,t)[(R) < cg. (61)

Step 2: Definition of the geometric functional F(¢).
For a fixed § > 0 we define the functional F? : [0, co[— R as follows

F(t) = £N(1]) = Y £H(1,) (62)

yESt

where the second equality holds by the No-crossing property of the characteristics. Ge-
ometrically the functional FY(t) measures the total length of the bases at time @ of all
characteristic cones contained in C?. With Lemma 6.1 we observe that this functional is
bounded from above:

FO(t) < —cjui(R) < ¢j|Du(.,t)|(R) < ¢jep  for every t € [0,T]. (63)

Moreover, this geometric functional is nondecreasing. This is a consequence of the fact that
for every 0 < t; <ty we have that Ifl C If2. Assuming that there exists x € S;, such that
x € (I;?)°, then the shock s(¢) passing through (z,t;) would be not entirely contained in
the characteristic cones C’f; But by definition of characteristic cones and the No-crossing
property, every shock in R x [t1, 5] is entirely contained in C’f; Therefore, S, C IZ’; and
again due to the No-crossing property we conclude that [fl C If;. We state

Lemma 7.1. For fited T > 6 > 0 the functional F° : [0, T] — RT is nondecreasing and
bounded from abowve.

One of the key remarks of the proof given in [2| was the connection between the jumps
of the geometric functional and the Cantor parts created in the solution. We can try to
describe this geometric process as follows: when a Cantor part is created in the solution
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at time 7, this part is transformed after an infinitesimal time into several small jumps.
The sum of the measures of these jumps give a contribution big enough to make the
geometrical functional jump at 75. Due to the similar construction of our functional F?(.)
and the original functional defined in [2], we can utilize the same idea here. This motivates
a first reduction of our problem to the following Lemma:

Lemma 7.2. For any integer k we have
T 1 0 0
To > > 0 and p,(R) < % = F(1o+) > F°(79) + cr(0) (64)
where cp(0) is a strictly positive constant which depends on ||u|loo, T, k, f,g and on the
choice of 6 > 0.

Clearly, Lemma 7.1 and Lemma 7.2 imply that all sets

{re [%T[ i (R) < —%} (65)

are finite.

Step 3: Proof of Lemma 7.2.

In this step we shall make use of the three technical Lemmas 6.1, 6.2 and 6.3. We fix
T>71>T/k>0. Let x € E, where E is the set defined by Lemma 6.1. Consequently to
Lemma 6.3, for n > 0 small enough we have that

LNID,) > —co(0) pin ([x — 0, + 1)) (66)

where Jg,n =|x-(0;2—n,70), x+(6; x+n, 70)[. By the No-crossing property of characteristics
we know that ngn can only intersect the bases of the cones I;TO emanating from a point
y € [x —n,x + )], so that recalling Lemma 6.1 it follows that

NI = S LNl < e ((m =+, (67)
YESryN[z—n,z+1]

Combining (66) and (67) we find that for any x € E we have that

LT\ (O) iy ([2 = 1,2+ n]) + cjum ([v = n, 2+ n)) =

Z —Ce
> —ce(0)pm ([ =, + 1)) = ¢ lvr | ([2 = 0, 2 4 1)) (68)

Finally, invoking the Besicovitch differentiation theorem and in particular (57), we obtain

ce(0)
LU N 2 =57 =, 2+ ), (69)
provided that 7 is small enough. Using the Besicovitch covering lemma, we can cover

fir-a.e. E with pairwise disjoint intervals K? = [z; —n;,z; +7;] such that (69) and the
conclusion of Lemma 6.2 both hold for x = z; and n = 7;. Thanks to the No-crossing
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property all the intervals Jgj,nj are pairwise disjoint and recalling Lemma 6.2 we note that

all these sets are contained in I?. In Lemma 7.2 we assumed that —u.,(R) > 1/k. Then
for all & > 0 the estimates above imply:

F(r) — Fr) 2 YD L0 N0 2 = 30 D (a4 2

- _ c.(0) c.(6) c.(0)
- 2 2 2k

IUTO(E) =

Moz (R) >

—: cp(6). (70)

Step 4: The end of the proof.
In Step 3 we have shown that for any fixed § > 0 the interval (6,T] contains a set Hy,
which is at most countable and such that for every 7 € (0, T\ Hy the following holds:

u(.,7) € SBVjoe(270) with Q, g :={zx eR: (z,7) € Q,7 € (0,T]}. (71)

Now, we consider the sequence (0,),en = T/2" and we define the set S of the main
Theorem 1.3 as the countable union of the countable sets Hy, C (6,,7], which is again
countable:

neN

This concludes the proof.

8 Theorem 1.4 and Corollary 1.1

The proof of Theorem 1.4 combines the ideas of Theorem 1.1 and Theorem 1.3. We repeat
it for the reader’s convenience.

Proof. Step 1: |Strictly concave flux.| As in the proof of Theorem 1.1 let us first show
that there exists a locally SBV entropy solution for the problem with a strictly concave
flux. By Theorem 1.3 we know that if f(u(x,t),z,t) is strictly convex in u and C?, the
equation

Dyu(z,t) + Dy[f (u(x, t), x,t)] + g(u(x,t),xz,t) =0 (73)

has a locally SBV entropy solution w(z,t). Since fi(u(x,t),z,t) = f(u(x,t), —x,t) is
again C? and strictly convex in u and gy (u(x,t),z,t) := g(u(z,t), —z,t) is C', the solution
uy(z,t) of

Dyuy(z,t) + D[ fi(ui(z,t), 2, t)] + g1 (us (2, t), 2, t) =0 (74)

is again a SBVj, function. Next we consider the coordinates transformation ¢ :  —
Q¢ (z,t) — (y,t) = (—x,t) and we put f := —f, g := g. Then we have for u(y,t) :=
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w0 ¢y, t) = uy(—x,t):

Dyu(y,t) + Dy[f(uly, 1)y, )] + g(uly, t),y, 1) =
= Dyi(y,t) — Dy[f(u(y, t),y. )] + g(uly,t),y,t) =
= Dyu(—z,t) — (=D)[f (u(—=z,t), —z, )] + g(u(-2,t), —z,1) =
= Dyui(z,t) + D[ f(ur(z, 1), —x, )] +9(u1(l’ t), —x,t) =
= Dyuy(z,t) + D[ fi(ui(x,t), 2, t)] + g1 (ui (2, 1), :B,t) =0. (75)

Thus u is a solution of a balance law with strictly concave flux function and since u; is
locally SBV this implies that also u € SBV},.. Moreover, u; is an entropy solution of (74)
and since we have found the solution w reflecting u; about the t-axis, as in the proof of
Lemma 4.1, we can show that even for @ the entropy and the Rankine-Hugoniot conditions
hold.

Step 2: |u(x,t) € SBV,,.(£2;).] At this point we can repeat the construction given in the
proof of Theorem 1.1. Due to the small variation of an entropy solution we can restrict
the solution u(x,t) on triangles 7j’s, where the flux function f is either strictly convex or
strictly concave. Recalling that C' is the set of points (x;,¢;) where the solution has jumps
or has a values such that f,,(u(z;,t;),x;,t;) = 0, we cover Q\C with a countable family
of triangles T;. For the bad points not contained in one triangle or points of C, we can
restate Claim 4.2 and 4.1. We conclude that the entropy solution wu(z,t) is locally SBV
on 2, for every 7 € R\S.

Step 3: [u € SBV,.(2).] The slicing theory says that the 2-dimensional Cantor part of
the derivative D,u(x,t) can be recovered from the corresponding 1-dimensional part. By
Theorem 3.108 of |1| we have:

Diu(z,t) = /ﬁll_Qt ® Du(.,t)dt (76)

where € is the projection of Q on {x = 0} x R*. Since by Step 2 the Cantor part is
Deu(.,t) = 0 for every t ¢ S and S is at most countable, then also the two dimensional
Cantor part Déu(x,t) vanishes. With the Vol’perts chain rule (see Theorem 3.96 of [1]) and
equation (4) we get that Dfu(x,t) = 0. Finally we have obtained that u € SBV,.(2). O

Next, we use Theorem 1.3 to prove corollary 1.1.

Proof. We differentiate the equation (9) by z (in the sense of distributions):
Dywi(x,t) + Dy H (wy(x,t), 2,t) =0 & Dywy(z,t) + Dy H(wy(x,t),x,t) = 0.

Letting u(z,t) = wy(z,t) and H(u(z,t),x,t) = f(u(z,t),z,t), this is exactly the balance
equation of Theorem 1.3, i.e. u(z,t) = w,(z,t) is SBVj,e(€);) for every 7 € R\S, where S
is at most countable. As in Step 3 of the proof of Theorem 1.4, it follows that u(z,t) €

SBViee(€2). 0
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9 Proofs of the three technical lemmas

9.1 Proof of Lemma 6.1

Let 7 > 0 and y € S,. To simplify the notation, we denote the minimal and the maximal
backward characteristics starting from (y,7) by x_(¢) and x. (¢) instead of x_(¢;y,7) and
X+ (t;y, 7). Rewriting the ODEs (14) related to the genuine characteristics for y_(¢), x+(¢) :
[0, 7] — R we obtain

{ X=(t) = fulve(t), x£(t), 1) (77)
D:I:@) = _fm(v:l:(t>v X:I:(t)v t) - g(v:l:(t)v X:I:(t>7 t)

with

X-(7) =y = x+(7)
v u(y—,7) = u” (78)

where by the admissible condition (11), v~ > u™ and —v,({y}) = u~ —u". Now we change
the variable in equations (77) putting s = 7 — :

{ Vi(s) = = fulws(s), ¢2(s), 7 — ) (79)
we(s) = falws(s), Yx(s), 7 — ) + g(we(s), P (s), 7 — 8)

where 94 (s) := x+(7 — $) and w4 (s) := vL (7 — s). Then, using (79) we have

%W—(S) = s ()] < [-(5) = ¥4 (8)] = [ fulw(5),¥-(5), T = 8) = fulw(5), ¥4 (5), 7 = 3)]
< ID* fllpe iy (Jw—(s) — wi ()] + - (s) = ¥ (s)])- (80)
—_———

=c1
Repeating the computations also for w.(s), we find that:

Ll (5) = ws ()] <l falw(8), ¥—(8), 7 = ) = Fulws(8), (), 7 — )|+

ds
+ |g(w-(s),¥-(5), 7 — s) — g(w+(s), P+ (s), 7 = s)| < (81)
< [1D% it + 1Dl 0| (w—(5) = )]+ [9—(5) = ()

7

~
1=c2

If we choose a compact set

K = [—lullss, [[ullo] x [min X—(t), max x4 (¢)| x [0, 7] (82)
t€[0,7] te[0,7]

then the above constants ¢; and ¢y are positive and finite. Inequalities (80) and (81)
together give

@ (o) = 0 5)] + o () — s (5)1) < s ({0 5) = (9] + () — . (5)])  (89)
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where ¢3 is again a positive constant depending only on ||[D?f|| k) and ||Dg|| (k). By
Gronwall’s lemma and (83) we get

V- (s) = ()] + lw-(s) —wi(s)] < e?*([9-(0) = ¢4 (0)] + [w-(0) —wi(0)]).  (84)
Now, we put s = € [0, 7] into (84) to find the following inequality:

IX- (T =0) = x4 (7 = D) = [~ (V) = ¢4 (V)| < |- () = P4 (D)] + [w- (V) —wi (V)] <
< 22(19-(0) = 1 (0)] + |w-(0) —wi(0)]) =

=cr

= (= (7) = x4 (7)) + [o-(7) — vy (7)]). (85)

If we set § = 7 — 9, then by (78) we conclude:

X+(0) = x=(0) = [x-(0) = x+(0)| < cr([x=(7) = x+(7)| + |v_(7) — vi.(7)])

J/ (. J/
-~

-
= —fu=—u|

<er(u” —uh) = = ({y}). (86)

9.2 Proof of Lemma 6.2

We prove that the conclusion of the lemma holds for any = which satisfy the following

conditions:
x & Sy and lim u@ + 1, 70) = ule = m,7) = —00. (87)
110 2n
By the Besicovitch differentiation theorem on intervals, the measure p,, is concentrated on
E. In our proof we fix 7 > 7y and x such that (87) holds and our goal is to show that for
n small enough {70} x|z —n, x4+ n[C I. To prove that the point z is contained in I, we

consider all the possible cases:

I:x¢IP

IT: 2 € d(IP)

IIT:3n>0st. (Jr —n,x+nNIP)° = {x}

IV :zel®
and in particular we will show that in the first three cases we obtain a contradiction.
Then, by IV the point z is in I’ and since I° is open there exists 7 > 0 such that
{ro}x]z —n,z+n[C I,
The property (87) may be rewritten prescribing that for every positive a > @ > 0 , there
exists 7 > 0 such that for all 0 < n < 7 holds

u(x —n, 1) —u(r +n,7) > a2n > a2n > 0. (88)

The positive number & will be chosen later, more precisely we will define this constant at
the end of case 1.
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Case I: Since in this case the distance dist(x, I°) is strictly positive there exists n > 0
small enough such that 0 < 2n < 7 and |z — n,z + n[ﬂI_TTO = (). Consequently to the
definition of a characteristic cone, we observe that all possible shocks created before 7 are
contained in C™ and thus, two different shocks starting at a1, 25 ¢ I;°, where z; # o,
cannot cross for all ¢ € [y, 7]. By the way, also the two characteristics passing trough
(x —n, 1) and (x + 1, 79), which are genuine, cannot cross in |7, 7]. If we denote by x1(t)
and y»(t), respectively, the two characteristics x(¢;z —n, 1) and x(t; z+mn, 7), this implies
X1(t) < xa(t) for every t € [y, 7]. This conclusion is contradicted by the next claim.

Claim 9.1. If x is a point such that In > 0 with |x —n,z+n[NI° = 0 and (88) holds then

X1(7) — x2(7) > 0. (89)
Proof. Integrating the ODEs of the characteristics (14) we obtain:

/ ()t = / " fulo(t), x(0), t)dt
A7) = x(m0) + / " Fuo(t), x(0), £)dt (90)

and

/ 0(s)ds = — fx(v(s),x( ), 8) + g(v(s), x(s), s)ds
) = v(ro) / Fo(0(5), X(5), 5) + g(v(s), X(5), 5)ds. (91)

Substituting x; and ys to x in (90) and subtracting the corresponding equations, by the
mean value theorem there ex1sts & such that:

(1) = xa(r) = xa(70) = x2(70) / Fulor(0) 31 (0, 8) — Fuv(t), xa(0), )t =
~ ot / Fun€)(02(t) = 0a() + Fue(©)0r(8) — xa()d (92)

holds. We observe that by the finite speed of the characteristics, the distance between
x1(t) and x2(t) for every t € [1p, 7] is controlled by the distance of the characteristics at
the time 7q:

X1 (t) = x2(t)] < Cylxalmo) — xa(mo)| = G20Vt € [ro, 7] (93)
where () is a positive constant. Thus by (92) and (93):
204 [ Ll ©n(0) = )it = x0(7) = xa(r) = [ L0 (0) - a0t <
() =)+ [ 1el0al) = )l <
< xa(7) = xa(7) + 7__7'0>HD2fHL°° Oy 2 (94)
=0
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where K is a compact set, for instance

K o= [l Julld x [ min O (0, %20}, max Oa (). xa(@}] x .7 95)

[T0

Next we employ (91) to estimate the rest of (94). For every t € [ry, 7| we have that:

v1(t) — va(t) =v1(10) — va2(70) —I—/ fe(va(s), x2(8),8) — fe(vi(s), x1(8), s)ds+

J/

::X(t)

4 / 9(02(5), x2(5), 5) — 92 (5), xa(s), 8)ds . (96)

S

~~

=:B(t)

By the mean value theorem for two appropriate oy and oq the terms A(t) and B(t) are
equal to:

AW) = [ furlr) ) = (5D + Fanln)as) = 1 (5))ds (97)
B = [ gu(m2)(02(5) = 1(5) + 02(02)s) — 1 (5))ds (98)

and then

|A(t) + B(t)| < / (fux(gl) + gu(g2))(v2(s) - 'Ul(s)) + (fxx(al) + gx(UQ))(XQ(S) - Xl(s)) ds <

< [ (Dm0 + 10900 fals) = (5] + als) = xa(s) s <

=Crq
(5) t (93) t
< Cfvg/ <C+ 1)|X2($) —x1(s)lds < Cfvg/ (C+ I)CXQnds <
< CrgC +1)|7 = 70| C2n = Cr2m. (99)

where the resulting constant C},, is positive. Combining the inequality (99) with (96) and
(94) we obtain:

~20(14 G+ [ funl©n(m) — ea(m)it < [ [ AW + B+ xa(7)  xa(r)
< (7 D im0 Crg 20+ 0 () = X7

(.

=Crq4
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Finally, we take a better form for the last estimate
a(r) = xalr) 2 <2001+ Gy Cry) + [ fd€)(en(m) = en(m)t =
70

— 214G+ Cry)+ [ funl(ule = n 1)~ ule ) de (100)

-

>0 >v>0 >0 for 1 small enough by (88)

where v > 0 is the constant related to the strictly convexity of f(u,x,t) in u, i.e.
fuu(w, 1) 27 >0

for fixed (z,t). Now, we put

1+Cy+Cpy
(=0

We note that @ is positive and it depends only on || D?f]| k.|| Dg|l (), 70,7 and 7.

Recalling (88) and (100) for & > 0, there exists 7 > 0 such that for every small 7 with
0 <n < 7 we have

a =

> 0. (101)

(1) = xa(7) > =2n(1+ Gy + Cry) + 20a(r — 1)y "= 0

O

Case II: If  belongs to 9(I7,),then one of the two characteristics x(t;z — 1,7) or
x(t; x4+, 7o) is not contained in C7 . Moreover, the characteristic x(t; x,7) is a boundary
curve of the characteristic cone C7 and so it is either a minimal or a maximal backward
characteristic. Repeating similar computations as in case I it is possible to show that if
(87) holds, either x(t;z —n, 1) or x(t;x +n,79) will cross with x(¢;z, ) for a t €], 7[.
Recalling again the No-crossing property of genuine characteristic, we get a contradiction.
Case III: By Theorem 3.3 for every 75 > 0 trough (z, 79) passes a unique forward charac-
teristic. Consequently case III is to discard.

Case IV: In view of the contradictions obtained in the previous cases, the last possible
case must be true. In particular z € IT and since I is open there exists a n > 0 small
enough such that

Jx —n,x+n[C I,

for 7 > 7.

Remark 9.1. We remark that in [2] Lemma 6.2 was proved using the Hopf-Laz formula.
Here we have proposed a more geometrical construction, which make use of the properties
of generalized characteristics. This change of strateqy is also motivated by the fact that
for system of conservation laws the Hopf-Lazx does not exists, whereas there is a suitable
concept of generalized characteristics (see [8]).
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9.3 Proof of Lemma 6.3

Let 7o > 0, z € E and n > 0 such that z =7 ¢ S,,. To simplify the notation we write
X—(t) and x4 (t) instead of x_(t;x —n, 1) and x4 (¢;x+n, 7). Our aim is to show that for
all # €]0, 7] there exists a positive constant c¢.(f) such that

X+(0) = x=(0) > —ce(O) piry ([x — 1, 2 + 7)) (102)

holds. By Besicovitch differentiation theorem (58) we have

u(z —n,70) —u(z +n,7) <
\u(z —n,70) —u(z +n,7)| + [x-(70) — x+(70)| =
= |v-(70) — v+(70)| + [X~(70) — x+(70)]- (103)

_C/J’To([x —n,T+ n]) <
<

Next we derive analogous estimates as in the proof of Lemma 6.1. Now we fix 7 €]0, 19|
and we change the variable in equations of the characteristics (77) putting s =t — 7:

Gi(s) = fulws(s), s (s) 7 +9)
{ W () = — folw(s), P (), 7+ 8) — glw(s), e (s), 7+ 5) (104)

where ©4(s) := x+(7 + s) and wi(s) := v (7 + s). Using Gronwall’s Lemma, on the
compact set K defined in (82) there exists a positive constant cx, which depends only on
||D2f||L°°(K) and ||Dg||L°°(K); SllCh that

V- (s) = i (s)] + |w-(s) — wi(s)] < e™([9-(0) = Y1 (0)] + [w-(0) —wy (0)]).  (105)

We insert s = 79 — 7 in the inequality above and by x4 (1) = ¥+ (70 — 7),x+(7) = ¥+(0)
and vy (1) = wi (10 — 7),0+(7) = w+(0), it follows that

IX~(70) = x+(70)[ + [v-(70) — v4-(70)| < @UX—(T) =X+ (D) + [v-(7) = vy (7)])  (106)

=C

Thus, with (103) we get:
—ctimy ([ = w4 ) < ellx- () = x ()] + o (7) = va(7)]) <
< &(Ix-(7) = x4 (1] + Clx- (1) = x4 (7)]) <

< (64 C) - (1) = x| (107)

We have proved, that for all § € (0, 7] there exists a positive constant c.(f) depending
only on | D?f|| k), [[Dg|lLe(x),70 and @ such that:

X+(0) = x-(0) = [x-(0) = x+(0)] = —ce(0) pim ([ — 1, 2 + 7)) (108)
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