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EITAN TADMOR AND WEIGANG ZHONG

Abstract. We present a systematic development of energy-stable approximations of the two-
dimensional shallow water (SW) equations, which are based on the general framework of entropy
conservative schemes introduced in [Tad03, TZ06]. No artificial numerical viscosity is involved:
stability is dictated solely by eddy viscosity. In particular, in the absence of any dissipative
mechanism, the resulting numerical schemes precisely preserve the total energy, which serves
as an entropy function for the SW equations. We demonstrate the dispersive nature of such
entropy conservative schemes with a series of scalar examples, interesting for their own sake.
We then turn to the SW equations. Numerical experiments of the partial-dam-break problem
with energy-preserving and energy stable schemes, successfully simulate the propagation of
circular shock and the vortices formed on the both sides of the breach.

Contents

1. Introduction 1
2. Entropy dissipation - the general framework 3
2.1. Entropy variables 3
2.2. The example of the shallow water equations 4
3. Entropy conservative schemes - the 1D setup 5
4. Scalar problems 8
4.1. Entropy conservative schemes 8
4.2. Entropy dissipation 9
4.3. Numerical experiments 10
5. 2D shallow water equations 13
5.1. Energy stable schemes 13
5.2. Energy preserving schemes 17
6. Numerical experiments for 2D shallow water equations 17
6.1. Boundary conditions 17
6.2. Time discretization 19
6.3. Numerical results 19
References 23

1. Introduction

Consider a three-dimensional domain in which the homogenous fluid flows with a free-surface
under the influence of gravity. One of the widely used approaches for the description of such un-
steady free-surface flows is that of shallow water. Under the shallow-water approximation that
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refers to the fact that a horizontal scale is in excess of the depth of the fluid, the 3D Navier-
Stokes equations can be simplified to the shallow water equations with the depth-averaged
continuity equation and momentum equations. Neglecting diffusion of momentum due to wind
effects and Coriolis terms, we consider two-dimensional shallow water (SW) equations in the
conservative form for free-surface compressible flow with flat frictionless bottom on two dimen-
sional x-y plane,
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+
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+
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∂
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 .

(1.1)

Here, h = h(x, y, t) is the total water depth which plays the role of density, and (u(x, y, t), v(x, y, t))
are the depth-averaged velocity components along x and y direction. The three equations ex-
press, respectively, conservation laws of mass and momentum in x and y direction for the
shallow water flow, driven by convective fluxes on the LHS together with eddy viscous fluxes
on the RHS. These fluxes involve the constant gravity acceleration g > 0, and ζ > 0 is the
eddy viscosity. By ignoring the small scale vortices in the motion, we calculate a large-scale
flow motion with eddy viscosity ζ that characterizes the transport and dissipation of energy
into the smaller scales of the flow.

If we turn off the eddy viscosity (ζ = 0), system (1.1) is reduced to the inviscid shallow water
equations,

∂

∂t




h
uh
vh


 +

∂

∂x




uh
u2h+ gh2/2

uvh


+

∂

∂y




vh
uvh

v2h+ gh2/2


 = 0. (1.2)

The SW equations (1.1) constitute an incompletely parabolic system, whose solutions can
exhibit discontinuities associated with hydraulic jumps and bores in flows or the propagation
of sharp fronts. In this paper, we are concerned with construction of energy-stable numerical
methods for simulating two dimensional flows, in which initial discontinuities associated with
partial-dam-break need to be evolved in time. The conservation of the total energy, E =
(gh2 + u2h + v2h)/2, guarantees that such numerical simulations of shallow water flows are
nonlinearly stable and free of artificial numerical viscosity, which may dramatically change the
profiles of the solutions in long time integration. In our computation, conservation of the total
energy is enforced by utilizing entropy conservative fluxes which are tailored to preserve the
energy, being an entropy function for the SW equations. The resulting numerical scheme is
energy-stable, free of artificial numerical viscosity in the sense that energy dissipation is driven
solely by the eddy viscous fluxes. In the particular case that eddy viscosity is absent, ζ = 0,
our scheme precisely preserves the total energy E.

A general framework for the construction of entropy-conservative schemes for 1D nonlinear
conservation laws is introduced in Section 3, following [Tad03, TZ06]. We then test these
entropy-conservative schemes for 1D Burgers’ equation being the prototype of scalar nonlinear
conservation laws in Section 4. In Section 5, we generalize the recipe for the entropy-stable
approximations of two dimensional shallow water equations with the energy playing the role
of entropy. The extension is carried out dimension by dimension. The algorithm along each
dimension follows the same recipe outlined in the one-dimensional setup. The key ingredient
behind these schemes is the construction of energy-preserving numerical fluxes. Our main
results on the 2D shallow water equations are summarized in Theorem 5.1. To illustrate the
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performance of the new schemes, we test a two-dimensional partial-dam-break problem in
Section 6. The numerical results, especially those of the fine meshes, successfully simulate both
the circular shock water wave propagations and the vortices formed on both sides of the breach.

2. Entropy dissipation - the general framework

2.1. Entropy variables. We consider a two-dimensional hyperbolic system,

∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u) = 0. (2.1)

We assume that it obeys an additional conservation law where a convex entropy function U(u)
is balanced by entropy fluxes F (u) and G(u),

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) = 0. (2.2)

Note that (2.2) holds if the entropy function U(u) is linked to the entropy fluxes F (u) and
G(u) through the compatibility relations,

U>
u fu = F>

u , U>
u gu = G>

u . (2.3)

In fact, multiplying (2.1) by U>
u on the left, one recovers the equivalence between (2.1) and

(2.3) for all classical solutions u’s of (2.1). These formal manipulations are valid only under the
smooth region. To justify these steps in the presence of shock discontinuities, the conservation
laws (2.1) are realized as appropriate vanishing viscosity limits, u = limζ↓0 uζ, where uζ is
governed by the (possibly incompletely) parabolic system

∂

∂t
uζ +

∂

∂x
f(uζ) +

∂

∂y
g(uζ) = ζ

∂

∂x

(
Q
∂

∂x
uζ

)
+ ζ

∂

∂y

(
Q
∂

∂y
uζ

)
, ζ ≥ 0. (2.4)

Here, ζ ↓ 0 stands for the vanishing viscosity amplitude such as the eddy viscosity coefficient
in the SW equations (1.1)), and Q = Q(u) is any admissible viscosity coefficient which is
H-symmetric positive-definite,

QH = (QH)> ≥ 0, H := (Uuu)−1 . (2.5)

The passage from vanishing viscosity limits to weak entropy solutions of (2.1) is classical,
[Lax73], and we refer to the more comprehensive recent books of e.g., [Ser99, Daf00]. Here,
we shall study these limits in terms of the entropy variables, v(u) := Uu(u). We assume that
the entropy U(u) is convex, so that the nonlinear mapping u 7→ v is one-to-one. Following
[God61, Moc80], we claim that the change of variables, u = u(v), puts the system (2.1) into
the equivalent symmetric form,

∂

∂x
u(v) +

∂

∂x
f(u(v)) +

∂

∂y
g(u(v)) = 0.

The above system is symmetric in the sense that the Jacobian matrices fluxes are,

uv(v) = (uv(v))> , fv(v) = (fv(v))> , and gv(v) = (gv(v))> . (2.6)

Indeed, a straightforward computation using the compatibility relations (2.3) shows that u(v),
f(v), and g(v) are, respectively, the gradients of the corresponding potential functions φ, ψx,
and ψy,

u(v) = φv(v), φ(v) := 〈v,u(v)〉 − U(u(v)), (2.7)
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f(v) = ψx
v(v), ψx(v) := 〈v, f(v)〉 − F (u(v)), (2.8)

g(v) = ψy
v(v), ψy(v) := 〈v,g(v)〉 −G(u(v)). (2.9)

Hence the Jacobian matrices H(v) := uv(v), Ax(v) := fv(v), and Ay(v) := gv(v) in (2.6) are
symmetric, being Hessians of the potentials φ(v), ψx(v) ,and ψy(v). Moreover, the convexity

of U(·) implies that H is positive definite, H = (Uuu)
−1
> 0.

We now introduce the same entropy change of variables, u = u(v), into the associated
parabolic system (2.4), which reads

∂

∂t
u(vζ) +

∂

∂x
f(vζ) +

∂

∂y
g(vζ) = ζ

∂

∂x

(
S(vζ)

∂

∂x
vζ

)
+ ζ

∂

∂y

(
S(vζ)

∂

∂y
vζ

)
. (2.10a)

By (2.6) and admissibility condition (2.5), the system (2.10a) is symmetric in the sense that
the Jacobian matrices involved are all symmetric, namely, (2.6) holds and

S(u(v)) = S>(u(v)) > 0, S(v) := Q(u(v))uv(v). (2.10b)

Integrate (2.4) against the entropy variable v := Uu, employ the compatibility relations (2.3)
and use ‘differentiation by parts’ on the dissipation terms on the RHS to find the following
entropy balance statement,

∂

∂t
U(uζ) +

∂

∂x

(
F (uζ) − ζ

〈
vζ, Quζ

x

〉)
+

∂

∂y

(
G(uζ) − ζ

〈
vζ, Quζ

y

〉)
=

− ζ
[〈

vζ
x, S(vζ)vζ

x

〉
+
〈
vζ

y, S(vζ)vζ
y

〉]
≤ 0. (2.11)

Letting ζ ↓ 0, we obtain the entropy inequality, [God61, Kru70, Lax71]

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) ≤ 0. (2.12)

This shows that weak solution dissipates entropy. The precise amount of entropy decay is
dictated by the specific dissipation: spatial integration of (2.11) yields the entropy decay state-
ment,

d

dt

∫

y

∫

x

U(uζ) dxdy = −ζ
∫

y

∫

x

[〈
vζ

x, S(vζ)vζ
x

〉
+
〈
vζ

y, S(vζ)vζ
y

〉]
dxdy ≤ 0. (2.13)

2.2. The example of the shallow water equations. We consider the 2D shallow water
equations (1.1) for the conservative variables u := (h, uh, vh)> where h is the water-depth and
u, v are depth-averaged velocity components along x and y-direction. The total energy is given
by the depth-averaged sum of the potential and kinetic energies,

E(u) :=
gh2 + u2h+ v2h

2
. (2.14a)

The total energy plays the role of an entropy function for the SW equations. Straightforward
computation gives us the following entropy fluxes, entropy variables and potentials.

• Entropy fluxes

F (u) = guh2 +
u3h+ uv2h

2
, G(u) = gvh2 +

u2vh+ v3h

2
; (2.14b)
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• Entropy variable

v(u) =



gh− u2 + v2

2
u
v


 (2.14c)

with the Jacobian matrices, H := uv and H−1 = vu, given by

H =
1

g




1 u v
u c2 + u2 uv
v uv c2 + v2


 , H−1 =

1

h



c2 + u2 + v2 −u −v

−u 1 0
−v 0 1


 , (2.14d)

where c :=
√
gh is the ‘sound’ speed, or wave celerity.

• The potentials of the temporal and spatial fluxes u(v), f(u(v)) and g(u(v)) are given,
respectively, by

φ(v) =
gh2

2
, ψx(v) =

guh2

2
, ψy(v) =

gvh2

2
. (2.14e)

The general statement of entropy balance, (2.13), amounts to

d

dt

∫

y

∫

x

E(u) dxdy = −ζ
∫

y

∫

x

h(u2
x + u2

y + v2
x + v2

y) dxdy, E(u) =
gh2 + u2h + v2h

2
. (2.15)

Since h ≥ 0, we conclude that the total energy is decreasing in time, thus recovering energy
stability. In fact, the expression on the RHS of (2.15) specifies the precise decay rate, which is
dictated solely by the viscous fluxes through their dependence on the nonnegative eddy viscosity
ζ. Our objective in this paper is to construct “faithful” approximations to the 2D shallow water
equations, which precisely reproduce the energy balance (2.15).

3. Entropy conservative schemes - the 1D setup

Setting g ≡ 0 in (2.1), we consider the one-dimensional system of hyperbolic conservation
laws,

∂u

∂t
+

∂

∂x
f(u) = 0, x ∈ R, t > 0, (3.1)

governing the N -vector of conserved variables u = [u1, · · · , uN ]> and balanced by the flux
functions f = [f1, · · · , fN ]>. We assume it is endowed with an entropy pair, (U,F ), such that
every strong solution of (3.1) satisfies the entropy equality

∂

∂t
U(u) +

∂

∂x
F (u) = 0, (3.2)

whereas weak solutions are sought to satisfy the entropy inequality, U(u)t + F (u)x ≤ 0.
We now turn our attention to consistent approximations of (3.1),(3.2), based on semi-discrete

conservative schemes of the form

d

dt
uν(t) = − 1

∆x

(
fν+ 1

2
− fν− 1

2

)
. (3.3)

Here, uν(t) denotes the discrete solution along the equally spaced grid lines, (xν := ν∆x, t),
and fν+ 1

2
is the Lipschitz-continuous numerical flux which occupies a stencil of 2p-gridvalues,

fν+ 1
2

= f(uν−p+1, · · · ,uν+p).
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The scheme is consistent with the system (3.1) if f(u,u, · · · ,u) = f(u), ∀u ∈ RN . Making
the change of variables uν = u(vν), we obtain the equivalent form of (3.3)

d

dt
u(vν(t)) = − 1

∆x

(
fν+ 1

2
− fν− 1

2

)
. (3.4)

The essential difference lies with the numerical flux, fν+ 1
2
, which is now expressed in terms of

the entropy variables,

fν+ 1
2

= f (vν−p+1, · · · ,vν+p) := f (u (vν−p+1) , · · · ,u (vν+p)) ,

consistent with the differential flux, f(v,v, · · · ,v) = f(v) ≡ f(u(v)). The semi-discrete schemes
(3.3) and (3.4) are completely identical. The entropy variables-based formula (3.4) has the
advantage that it provides a natural ordering of symmetric matrices, which in turn enables
us to compare the numerical viscosities of different schemes, consult [Tad87] for details. In
particular, we will be able to utilize the so called entropy conservative discretization of [Tad03]
for the convective part of the system of conservation laws (3.1), and thus recover the precise
entropy balance dictated by physical dissipative terms of the underlying original systems.

The scheme (3.3) is called entropy-conservative if it satisfies a discrete entropy equality,

d

dt
U (uν(t)) +

1

∆x

(
Fν+ 1

2
− Fν− 1

2

)
= 0, (3.5)

where Fν+ 1
2

= F (uν−p+1, · · · ,uν+p) is a consistent numerical entropy flux, F (u,u, · · · ,u) =

F (u), ∀u ∈ RN . Entropy conservative schemes will play an essential role in the construction
of entropy stable schemes, by adding a judicious amount of physical viscosity.

The key step in the construction of entropy conservative schemes for the systems of con-
servation laws is the choice of an arbitrary piecewise-constant path in phase space. We shall
use the phase space of the entropy variable v to connect two neighboring gridvalues, vν and
vν+1, at the spatial cell [xν, xν+1], through the intermediate states {vj

ν+ 1
2

}N
j=1. To this end, let

{rj ≡ rj

ν+ 1
2

}N
j=1 be an arbitrary set of N linearly independent N -vectors, and let {`j ≡ `j

ν+ 1
2

}N
j=1

be the corresponding orthogonal set. We introduce the intermediate gridvalues, {vj

ν+ 1
2

}N
j=1,

which define a piecewise constant path in phase space across the jump ∆vν+ 1
2

:= vν+1 − vν,




v1
ν+ 1

2
= vν

vj+1

ν+ 1
2

= vj

ν+ 1
2

+
〈
`j,∆vν+ 1

2

〉
rj, j = 1, 2, · · · , N − 1,

vN+1
ν+ 1

2

= vν+1

. (3.6)

Theorem 3.1 (Tadmor2004, Theorem 6.1). Consider the system of conservation laws (3.1).
Given the entropy pair (U, F ), then the conservative scheme

d

dt
uν(t) = − 1

∆xν

(
f∗
ν+ 1

2
− f∗

ν− 1
2

)
(3.7)

with a numerical flux f∗
ν+ 1

2

f∗
ν+ 1

2
=

N∑

j=1

ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j,∆vν+ 1

2

〉 `j (3.8)
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is an entropy-conservative approximation, consistent with (3.1),(3.2). Here, v = Uu(u) are
the entropy variables associated with the entropy U , and ψ(v) := 〈v, f(u(v))〉 − F (u(v)) is the
entropy potential.

The proof is based on the fact that the entropy equality (3.5) holds if and only if
〈
∆vν+ 1

2
, f∗

ν+ 1
2

〉

equals a conservative difference,
〈
∆vν+ 1

2
, f∗

ν+ 1
2

〉
= ∆ψν+ 1

2
, ∆ψν+ 1

2
:= ψ(vν+1) − ψ(vν). (3.9)

Indeed, (3.9) is equivalent to (3.5),
〈
vν, f

∗
ν+ 1

2
− f∗

ν− 1
2

〉
= Fν+ 1

2
− Fν− 1

2
, (3.10a)

where the numerical entropy flux Fν+ 1
2

is given by

Fν+ 1
2

=
1

2

[〈
vν + vν+1, f

∗
ν+ 1

2

〉
−
(
ψ(vν) + ψ(vν+1)

)]
(3.10b)

A straightforward manipulation of the numerical flux (3.8) confirms the desired equality (3.9),

〈
∆vν+ 1

2
, f∗

ν+ 1
2

〉
=

N∑

j=1

ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)

〈
`j,∆vν+ 1

2

〉
〈
`j , ∆vν+ 1

2

〉

=

N∑

j=1

ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
= ψ

(
vN+1

ν+ 1
2

)
− ψ

(
v1

ν+ 1
2

)
= ∆ψν+ 1

2
.

Although the recipe for constructing entropy-conservative fluxes in (3.8) allows an arbitrary
choice of a path in phase space, inappropriate choices of the path may cause the computed
intermediate values to lie outside the physical space, say h < 0 when we these entropy conser-
vative fluxes are computed for the shallow water equations. A ‘physically relevant’ choice is
offered by a Riemann path which consists of {uj

ν+ 1
2

}N
j=1, stationed along an (approximate) set

of right eigenvectors, {r̂j}, of the Jacobian fu(uν+ 1
2
). Set vj

ν+ 1
2

= v(uj

ν+ 1
2

), j = 1, 2, . . . , N ,

and let `j ’s be the orthogonal system to {vj+1 − vj}N
j=1. This will be our choice of a path for

computing entropy stable approximations of shallow water equations in Section 5 below. The
construction of the entropy conservative flux f∗

ν+ 1
2

follows [TZ06, Algorithm 1] which states,

Algorithm 3.1. If uν = uν+1 then f∗
ν+ 1

2

= f(vν); else

• Set u1
ν+ 1

2

:= uν and compute recursively the intermediate states,

uj+1

ν+ 1
2

= uj

ν+ 1
2

+
〈
̂̀

j ,∆uν+ 1
2

〉
r̂j, j = 1, 2, 3. (3.11)

Here, {̂̀j} and {r̂j} are the left and right eigensystems of an averaged Jacobian Ãν+ 1
2
,

given by the Roe matrix, Ãν+ 1
2

= Ã(uν ,uν+1) (see [Roe81]).

• Set rj := v(uj+1

ν+ 1
2

)−v(uj

ν+ 1
2

) and compute {`j}3
j=1 as the corresponding orthogonal system.

(Note that {rj, `j} is the eigen-path in v-space, corresponding to the eigen-path in u-space,

{r̂j , ̂̀j}.)
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• Compute the entropy-conservative numerical flux,

f∗
ν+ 1

2
=

3∑

j=1

ψ(vj+1

ν+ 1
2

) − ψ(vj

ν+ 1
2

)
〈
`j ,∆vν+ 1

2

〉 `j. (3.12)

4. Scalar problems

We test our entropy stable schemes with the prototype example of inviscid Burgers’ equation.
Though very simple, the inviscid Burgers’ equation is often used as the testing ground for
numerical approximations of nonlinear conservation laws.

4.1. Entropy conservative schemes. We consider the inviscid Burgers’ equation,

∂u

∂t
+

∂

∂x
f(u) = 0, f(u) =

1

2
u2. (4.1)

Any convex function U(u) serves as an entropy function for the scalar Burgers equation. The
solutions of (4.1) satisfy, at the formal level,

∂

∂t
U(u) +

∂

∂x
F (u) = 0. (4.2)

These are additional conservation laws balanced by the corresponding entropy flux functions
F (u) satisfying the compatibility relation U ′f ′ = F ′. Spatial integration then yields the total
entropy conservation (ignoring boundary contributions)

∫

x

U(x, t) dx =

∫

x

U(x, 0) dx. (4.3)

We now turn to the discrete framework. Discretization in space yields the semi-discrete
scheme,

d

dt
uν(t) +

1

∆x

(
fν+ 1

2
− fν− 1

2

)
= 0. (4.4)

Clearly,
∑
uν(t)∆x is conserved. We seek a consistent numerical flux fν+ 1

2
, that is entropy

conservative in the sense of satisfying the discrete analogue of (4.2),

d

dt
U(uν(t)) +

1

∆x
(Fν+ 1

2
− Fν− 1

2
) = 0,

so that we have the additional conservation of entropy
∑
U(uν(t))∆x. According to Theorem

3.1, consult (3.9), such 2-point scalar entropy conservative fluxes are uniquely determined,
fν+ 1

2
= f∗

ν+ 1
2

, by

fν+ 1
2

= f∗
ν+ 1

2
:=

ψ(uν+1) − ψ(uν)

v(uν+1) − v(uν)
. (4.5)

Recall that v(u) := U ′(u) is the entropy variable associated with the entropy pair (U,F ), and
ψ(u) := v(u)f(u) − F (u) is the potential function of the flux f(u(v)). We demonstrate the
constructions of above entropy conservative numerical flux with two different choices of entropy
functions.
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• We begin with the logarithmic entropy U(u) = − lnu together with the entropy flux
F (u) = −u. We use the entropy variable v(u) = −1/u. The entropy flux potential in this
case is ψ(u) = −1/2v = u/2. The entropy conservative numerical flux (4.5) then reads,

f∗
ν+ 1

2
:=

ψ(uν+1) − ψ(uν)

v(uν+1) − v(uν)
=

1

2
uνuν+1.

This numerical flux yields the entropy conservative schemes

d

dt
uν(t) = uν(t)

uν+1(t) − uν−1(t)

2∆x
.

This scheme was discussed by Goodman and Lax in [GL88], Hou and Lax in [HL91],
and Levermore and Liu in [LL96] in their study of the dispersive oscillations arising in
numerical solutions of the conservative schemes for the inviscid Burgers’ equation.

• Next, we consider the family of entropy functions,

Up(u) = u2p, p = 1, 2, · · · , (4.6)

with the corresponding entropy flux functions Fp(u) = 2pu2p+1/(2p+1). Using the entropy
variable v(u) := U ′(u) = 2pu2p−1 and the potential function ψ(u) := v(u)f(u) − F (u) =
p(2p−1)
2p+1

u2p+1, we compute the entropy conservative flux

f∗
ν+ 1

2
:=

ψ(uν+1) − ψ(uν)

v(uν+1) − v(uν)
=

2p − 1

2(2p + 1)
·
u2p+1

ν+1 − u2p+1
ν

u2p−1
ν+1 − u2p−1

ν

. (4.7)

The resulting scheme (4.4), (4.7) is entropy conservative in the sense that the discrete analogue
of total entropy conservation (4.3) is satisfied,

∑

ν

u2p
ν (t)∆x =

∑

ν

u2p
ν (0)∆x.

Thus, for each p we obtain its own Up-entropy conservative scheme.

Remark 4.1. Although these schemes with the entropy-conservative flux (4.7) admit the dis-
persive oscillations shown in the numerical results of Section 4.3, we expect the amplitude of
these oscillations to be reduced for increasing p’s, as the conservation of entropies Up,

[∑

ν

u2p
ν (t)∆x

] 1
2p

=

[∑

ν

u2p
ν (0)∆x

] 1
2p

(4.8)

approaches the maximum principle, ||uν(t)||L∞ ≤ ||uν(0)||L∞ (the inequality reflects the small
amount of dissipation due to time discretization). Indeed, as p ↑ ∞, the entropy-conservative
schemes based on (4.7) approach the first-order entropy stable Engquist-Osher scheme [EO80].

4.2. Entropy dissipation. To recover the physical relevant entropy inequality, that is

∂tUp(u) + ∂xFp(u) ≤ 0,

one can add numerical dissipation,

d

dt
uν(t) +

1

∆x

(
f∗

ν+ 1
2
− f∗

ν− 1
2

)
=

ε

(∆x)2

(
d(uν+1) − 2d(uν) + d(uν−1)

)
, ε > 0. (4.9)

This serves as an approximation to the vanishing viscosity regularization

ut + f(u)x = εd(u)xx, d′(u) > 0, ε > 0.
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Sum this scheme (4.9) against the entropy variable vν to find

d

dt

∑

ν

Up(uν(t))∆x+
∑

ν

vν

(
f∗

ν+ 1
2
− f∗

ν− 1
2

)
= ε

∑

ν

vν
d(uν+1) − 2d(uν) + d(uν−1)

∆x
. (4.10)

According to (3.10a), the second term on the left of (4.10) vanishes,
∑(

Fν+ 1
2
−Fν− 1

2

)
∆x = 0.

Summation by parts on the RHS of (4.10) yields

ε
∑

ν

vν
d(uν+1) − 2d(uν) + d(uν−1)

∆x
= − ε

∆x

∑

ν

(
vν+1 − vν

)
·
(
d(uν+1) − d(uν)

)
≤ 0,

since d′(v) = d′(u)u′(v) > 0, and hence (vν+1−vν)·(d(uν+1)−d(uν)) > 0. The resulting entropy
balance that follows reads,

d

dt

∑

ν

Up(uν(t))∆x = − ε

∆x

∑

ν

∆vν+ 1
2
∆dν+ 1

2
≤ 0. (4.11)

Observe that the amount of entropy dissipation on the right is completely determined by the
dissipation term εd(u). No artificial viscosity is introduced by the convective term. If we exclude
any dissipative mechanism (ε = 0), then we are back at the entropy conservative schemes of
Section 4.1.

4.3. Numerical experiments.

4.3.1. Time discretization. To complete the computation of a semi-discrete scheme, the semi-
discrete entropy conservative scheme (4.4), (4.7) needs to be augmented with a proper time
discretization. To enable a large time-stability region and maintain simplicity, the explicit
three-stage third-order Runge-Kutta (RK3) method will be used, Consult [GST01] for more
detail of its strong stability-preserving property,





u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

(4.12a)

where

[L(u)]ν := − 1

∆x
(f∗

ν+ 1
2
− f∗

ν− 1
2
). (4.12b)

We note that this explicit RK3 time discretization produces a negligible amount of entropy
dissipation. For a general framework of entropy conservative fully discrete schemes, consult
[LMR02].

4.3.2. Continuous initial condition. We first solve the inviscid Burgers equation (4.1) in the
domain x ∈ [0, 1] with initial condition, u(0, x) = sin(2πx) and subject to periodic boundary
conditions u(t, 1) = u(t, 0). In figure 4.1 we display the numerical solutions for (4.12a)-(4.12b)
with the numerical flux (4.7) for different choices of p. For small values of p, the dispersive
oscillations become noticeable after the shock is generated in the middle of the figure due to
the absence of any dissipative mechanism in the entropy-conservative scheme. As p increases,
the amplitude of the spurious dispersive oscillations decreases, that indeed demonstrates the
control of L2p-norm through the entropy-conservation (4.8) for each p.
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Figure 4.1: 1D Burger’s equation, sine initial condition, entropy-conservative schemes, 200
spatial grids, U(u) = u2p
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Figure 4.2: 1D Burger’s equation, shock initial condition, entropy-conservative schemes, 200
spatial grids, U(u) = u2p
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4.3.3. Shock initial condition. We solve the 1D inviscid Burgers equation (4.1) in the domain
x ∈ [0, 1] with the shock initial condition,

u(0, x) =

{
2, x ∈ [0, 0.5]

1, x ∈ (0.5, 1]

The boundary values are extrapolated from the interior points.Since we are only interested
in the propagation of the shock wave in the computational domain [0, 1], there is intercation
with the boundary values which do not vary in the time interval under consideration. In figure
4.2, we display the numerical solutions for (4.12a)-(4.12b) with the numerical flux (4.7) for
different choices of p. Those solutions show the same pattern as the sine initial condition case.
Diminishing amplitude of the dispersive oscillations demonstrates the control of the L2p-norm
of the solution with each p.

5. 2D shallow water equations

5.1. Energy stable schemes. We turn to the construction of entropy/energy-stable schemes
for the 2D shallow water equations,

∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u) = ζ

∂

∂x

(
h
∂

∂x
d(u)

)
+ ζ

∂

∂y

(
h
∂

∂y
d(u)

)
, u =




h
uh
vh


 , (5.1)

with convective fluxes f = [uh, u2h+gh2/2, uvh]>, g = [vh, uvh, v2h+gh2/2]>, and additional
diffusive terms d = [0, u, v]>.

The second-order semi-discrete entropy conservative schemes (3.7), (3.8) can be extended to
two dimensional shallow water equations (5.1) in a straightforward manner. Recall that E de-
notes the total energy which is serving as an admissible entropy function with the corresponding
entropy fluxes (F,G) associated with the two dimensional shallow water equations, v := Uv

are the corresponding entropy variables (2.14c), and (ψx, ψy) are the potential pair (2.14e). We
discretize the convective fluxes on the LHS using the entropy-conservative differences indicated
in 1D setup dimension by dimension. For the dissipative terms on the RHS, we employ the
centered differences, while the intermediate h-values are taken to be the arithmetic mean of

two neighboring grid-points, ĥν+ 1
2
,µ := (hν+1,µ + hν,µ)/2. We then obtain the entropy stable

semi-discrete schemes

d

dt
uν, µ(t) +

1

∆x
(f∗

ν+ 1
2
, µ

− f∗
ν− 1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1
2
− g∗

ν, µ− 1
2
)

=
ζ

∆x

(
ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2
, µ

dν, µ − dν−1, µ

∆x

)

+
ζ

∆y

(
ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x

)
, (5.2a)
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with the entropy-conservative fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

outlined in (3.12) along x and y direction,

respectively,

f∗
ν+ 1

2
, µ

=
3∑

j=1

ψx
(
vj+1

ν+ 1
2
,µ

)
− ψx

(
vj

ν+ 1
2
,µ

)

〈
`xj ,∆vν+ 1

2
,µ

〉 `xj =
g

2

3∑

j=1

(hj+1

ν+ 1
2
, µ

)2uj+1

ν+ 1
2
, µ

− (hj

ν+ 1
2
, µ

)2uj

ν+ 1
2
, µ〈

`xj , ∆vν+ 1
2
, µ

〉 `xj ,

(5.2b)

g∗
ν, µ+ 1

2
=

3∑

j=1

ψy
(
vj+1

ν,µ+ 1
2

)
− ψy

(
vj

ν,µ+ 1
2

)

〈
`yj ,∆vν,µ+ 1

2

〉 `yj =
g

2

3∑

j=1

(hj+1

ν, µ+ 1
2

)2vj+1

ν, µ+ 1
2

− (hj

ν, µ+ 1
2

)2vj

ν, µ+ 1
2〈

`yj , ∆vν,µ+ 1
2

〉 `yj ,

(5.2c)

Here, uν, µ(t) denotes the discrete solution at the grid point (xν, yµ, t) with xν := ν∆x, yµ :=
µ∆y, ∆x and ∆y being the uniform mesh sizes, and dν, µ := d(uν, µ). The numerical flux f∗

ν+ 1
2
, µ

and g∗
ν, µ+ 1

2

are constructed separately along two different phase paths dictated by two sets of

vectors {`xj} and {`yj}. Finally, {uj}, {vj}, and {hj} are intermediate values of height and
velocities along paths in the phase space. The physical relevance of the intermediate solutions
along the paths needs to be maintained. To this end, we choose to work along the paths which
are determined by (approximate) Riemann solvers. Specifically, we use the eigensystems of the
Roe matrix in the x and y directions, [Roe81, Gla87],

Ãx =




0 1 0
c̄2
ν+ 1

2
, µ

− ū2
ν+ 1

2
, µ

2ūν+ 1
2
, µ 0

−ūν+ 1
2
, µv̄ν+ 1

2
, µ v̄ν+ 1

2
, µ ūν+ 1

2
, µ


 , Ãy =




0 0 1
−ūν, µ+ 1

2
v̄ν, µ+ 1

2
v̄ν, µ+ 1

2
ūν, µ+ 1

2

c̄2
ν, µ+ 1

2

− v̄2
ν, µ+ 1

2

0 2v̄ν, µ+ 1
2


 .

(5.3a)

Here ū, v̄, and c̄ are the average values of the velocities u, v and the sound speed c :=
√
gh at

Roe-average state,

ū =
uR

√
hR + uL

√
hL√

hR +
√
hL

, v̄ =
vR

√
hR + vL

√
hL√

hR +
√
hL

, c̄ =

√
g(hR + hL)

2
, (5.3b)

where the subscripts (·)R and (·)L represent two neighboring spatial grid-points. The vector
sets {r̂xj}3

j=1 and {r̂yj}3
j=1 are chosen to be the right eigenvectors of the x- and y-Roe matries

(5.3a) (omitting the sub/superscripts of all averaged variables)

r̂x1 =




1
ū− c̄
v̄


 , r̂x2 =




0
0
c̄


 , r̂x3 =




1
ū+ c̄
v̄


 , (5.3c)

r̂y1 =




1
ū

v̄ − c̄


 , r̂y2 =




0
−c̄
0


 , r̂y3 =




1
ū

v̄ + c̄


 , (5.3d)
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with the corresponding left eigenvector sets {̂̀xj}3
j=1 and {̂̀yj}3

j=1 given by

̂̀
x1 =




ū+ c̄

2c̄

− 1

2c̄
0


 , ̂̀x2 =




− v̄
c̄

0
1

c̄


 , ̂̀x3 =




−ū+ c̄

2c̄
1

2c̄
0


 , (5.3e)

̂̀
y1 =




v̄ + c̄

2c̄
0

− 1

2c̄


 , ̂̀y2 =




ū

c̄

−1

c̄
0


 , ̂̀y3 =




−v̄ + c̄

2c̄
0
1

2c̄


 . (5.3f)

We now are able to form the intermediate paths along x and y directions in u-space as in (3.6):
starting with u1

ν+ 1
2
, µ

= u1
ν, µ+ 1

2

= uν, µ, we proceed with

uj+1

ν+ 1
2
, µ

= uj

ν+ 1
2
, µ

+
〈
̂̀

xj , ∆uν+ 1
2
, µ

〉
r̂xj , j = 1, 2, 3, ∆uν+ 1

2
, µ := uν+1, µ − uν, µ,

uj+1

ν, µ+ 1
2

= uj

ν, µ+ 1
2

+
〈
̂̀

yj , ∆uν, µ+ 1
2

〉
r̂yj , j = 1, 2, 3, ∆uν, µ+ 1

2
:= uν, µ+1 − uν, µ.

The construction of the entropy-conservative numerical fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

follows the

algorithm indicated in Algorithm 3.1.

Remark 5.1. We point out that in the case
〈
̂̀

j,∆u
〉

= 0 for certain j’s in u-space, which

may cause 〈`j ,∆v〉 = 0 in v-space, hence fail Algorithm 3.1. Arguing along the same line as
[TZ06, Remark 3.5], we compute the corresponding entropy-conservative numerical fluxes in
the alternate formulas,

f∗
ν+ 1

2
, µ

=
∑

{j|ξxj 6=0}

ψx(vj

ν+ 1
2
, µ

+ ξxjrxj) − ψx(vj

ν+ 1
2
, µ

)

ξxj

`xj , ξxj :=
〈
`xj ,∆vν+ 1

2
, µ

〉
,

g∗
ν, µ+ 1

2
=
∑

{j|ξyj 6=0}

ψy(vj

ν, µ+ 1
2

+ ξyjryj ) − ψy(vj

ν,µ+ 1
2

)

ξyj

`yj , ξyj :=
〈
`yj ,∆vν, µ+ 1

2

〉
,

where the right and left eigensystems {rxj}3
j=1 {ryj}3

j=1 and {`xj}3
j=1 {`yj}3

j=1 are constructed
as the precise mirror images of the Roe-paths in v-space,

rx
j := [H]−1

ν+ 1
2
, µ

r̂xj , `x
j := [H]ν+ 1

2
, µ
̂̀

xj , j = 1, 2, 3

ry
j := [H]−1

ν, µ+ 1
2

r̂yj , `y
j := [H]ν,µ+ 1

2

̂̀
yj , j = 1, 2, 3

where [H]ν+ 1
2
, µ and [H]ν, µ+ 1

2
denote the averaged symmetrizers such that ∆uν+ 1

2
, µ = [H]ν+ 1

2
, µ∆vν+ 1

2
, µ

and ∆uν, µ+ 1
2

= [H]ν, µ+ 1
2
∆vν,µ+ 1

2
.

We summarize our main result on 2D shallow water equations in the following theorem.

Theorem 5.1. Let E = (gh2 + u2h + v2h)/2 be the total energy of the 2D shallow water
equations (5.1). Then, the semi-discrete approximation (5.2a) with entropy conservative fluxes
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f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

given in (5.2b), (5.2c), (5.3), is energy stable, and the following discrete

energy balance is satisfied,

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y = −ζ
∑

ν, µ



ĥν+ 1

2
, µ



(

∆uν+ 1
2
, µ

∆x

)2

+

(
∆vν+ 1

2
, µ

∆x

)2



+ĥν, µ+ 1
2



(

∆uν, µ+ 1
2

∆y

)2

+

(
∆vν,µ+ 1

2

∆y

)2




∆x∆y. (5.4)

Observe that no artificial viscosity is introduced in the sense that the energy dissipation state-
ment (5.4) is the precise discrete analogue of the energy balance statement (2.15).

Proof. Multiply (5.2a) by [Uu]>ν,µ = v>
ν, µ, and sum up all spatial cells to get the balance of

the total entropy,

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y +
∑

ν, µ

〈
vν, µ, f

∗
ν+ 1

2
, µ

− f∗
ν− 1

2
,µ

〉
∆y +

∑

ν, µ

〈
vν,µ,g

∗
ν, µ+ 1

2
− g∗

ν,µ− 1
2

〉
∆x

= ζ
∑

ν, µ

〈
vν,µ, ĥν+ 1

2
, µ∆dν+ 1

2
, µ − ĥν− 1

2
,µ∆dν− 1

2
,µ

〉 ∆y

∆x

+ ζ
∑

ν, µ

〈
vν,µ, ĥν, µ+ 1

2
∆dν, µ+ 1

2
− ĥν,µ− 1

2
∆dν,µ− 1

2

〉 ∆x

∆y
(5.5)

Since the numerical fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

are chosen as the entropy conservative fluxes in x

and y directions respectively, they satisfy the entropy conservative requirement (3.10a), so that
their v-moments on the left of (5.5) amount to perfect differences,

〈
vν, µ, f

∗
ν+ 1

2
, µ

− f∗
ν− 1

2
, µ

〉
= Fν+ 1

2
, µ − Fν− 1

2
, µ, (5.6a)

〈
vν, µ, g

∗
ν, µ+ 1

2
− g∗

ν, µ− 1
2

〉
= Gν, µ+ 1

2
−Gν, µ− 1

2
, (5.6b)

with consistent entropy fluxes given by (consult (3.10b)),

2Fν+ 1
2
, µ =

〈
(vν, µ + vν+1, µ), f∗

ν+ 1
2
, µ

〉
− (ψx(vν, µ) + ψx(vν+1, µ))

2Gν, µ+ 1
2

=
〈
(vν, µ + vν, µ+1), g

∗
ν, µ+ 1

2

〉
− (ψy(vν, µ) + ψy(vν, µ+1)) .
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On the other hand, summation by parts and explicit computation using the entropy variable
(2.14c) on the RHS of (5.5) yield

ζ
∑

ν, µ

〈
vν, µ, ĥν+ 1

2
, µ∆dν+ 1

2
, µ −ĥν− 1

2
,µ∆dν− 1

2
,µ

〉 ∆y

∆x
= −ζ

∑

ν, µ

〈
∆vν+ 1

2
, µ, ĥν+ 1

2
, µ∆dν+ 1

2
, µ

〉 ∆y

∆x

= −ζ
∑

ν, µ

[
1

∆x2 ĥν+ 1
2
, µ

(
∆u2

ν+ 1
2
, µ

+ ∆v2
ν+ 1

2
, µ

)]
∆x∆y (5.7a)

ζ
∑

ν, µ

〈
vν, µ, ĥν, µ+ 1

2
∆dν, µ+ 1

2
−ĥν,µ− 1

2
∆dν,µ− 1

2

〉 ∆x

∆y
= −ζ

∑

ν, µ

〈
∆vν, µ+ 1

2
, ĥν, µ+ 1

2
∆dν, µ+ 1

2

〉 ∆x

∆y

= −ζ
∑

ν, µ

[
1

∆y2 ĥν, µ+ 1
2

(
∆u2

ν,µ+ 1
2

+ ∆v2
ν, µ+ 1

2

)]
∆x∆y (5.7b)

By (5.6),(5.7), the semi-discrete energy balance statement (5.4) now follows,

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y = −ζ
∑

ν, µ



ĥν+ 1

2
, µ



(

∆uν+ 1
2
, µ

∆x

)2

+

(
∆vν+ 1

2
, µ

∆x

)2



+ĥν, µ+ 1
2



(

∆uν, µ+ 1
2

∆y

)2

+

(
∆vν,µ+ 1

2

∆y

)2




∆x∆y.2

5.2. Energy preserving schemes. In the case that the eddy viscosity is absent, ζ = 0, all
the dissipation terms on the RHS of the difference scheme (5.2a) vanish,

d

dt
uν, µ(t) +

1

∆x
(f∗

ν+ 1
2
, µ

− f∗
ν− 1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1
2
− g∗

ν, µ− 1
2
) = 0. (5.8)

The resulting scheme serves as an energy preserving approximation to the inviscid shallow water
equations (1.2) with the discrete energy equality,

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y = 0.

Remark 5.2. We note that energy preserving semi-discrete scheme (5.2),(5.3) may allow a
substantial increase of the potential enstrophy, 1

2

∑
η2

ν, µ/hν, µ, especially for the flow over steep
topography, due to spurious energy cascade into smaller scales, consult [AL77, AL81]. Here,
η is the sum of the relative vorticity vx − uy and the Coriolis parameter at that latitude.
After a long term integration, a significant amount of energy is transferred into the smallest
resolvable scales, where truncation error becomes relevant. It would be desirable to adapt our
energy stable discretization to retain the additional conservation of enstrophy, advocated in
[Ara97, AL81].

6. Numerical experiments for 2D shallow water equations

6.1. Boundary conditions. The numerical treatment of boundaries is intended to be as phys-
ically relevant as possible. We describe two basic types of boundary conditions that are appli-
cable to the two dimensional shallow water problems: the first type simulates a boundary at
infinity or a transmissive boundary; the second type applies in the presence of solid fixed walls.
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6.1.1. Transmissive boundaries. These are cases in which boundaries are supposed to be trans-
parent in the sense that waves are allowed to pass through. The inflow and outflow conditions
need to be described, hence the method of characteristics in two dimension follows. The local
value of the Froude number Fr := V/

√
gL determines the flow regime and, accordingly, the

number of boundary conditions to apply. Here V and L denote the characteristic velocity and
length scales of the phenomenon, respectively. For subcritical flow, two external boundary
conditions are required at inflow boundaries, whereas only one boundary condition is required
at outflow boundaries. Two dimensional supercritical flow requires three inflow boundary con-
ditions and no boundary condition at outflow boundaries where the flow is only influenced by
the information coming from the interior nodes.

6.1.2. Reflective boundaries. This is a particular case in which the flow is confined in a fixed
field by the solid walls. We simply impose the reflective boundary conditions. Since our testing
problems in next section are concern with the flow in a square basin, without losing generality,
we consider the computational domain in the upper-right corner with the solid boundaries along
x and y-direction as shown in figure 6.1. By the three-point stencil used in our semi-discrete
scheme, we try to impose the value of one computational grid point added outside boundary.

Figure 6.1: Right-hand boundary

The reflection is incorporated by changing the sign of the normal component of the velocity,
while the water depth is unaltered. The values at all the (ν, N + 1) points on the right-hand
side of the wall are replaced by the values at interior (ν, N) points and sign of the normal
velocity component u is switched,

hν, N+1 = hν, N , uν, N+1 = −uν, N , vν, N+1 = vν,N ;

the values at all the (N + 1, µ) points on the top of the wall are replaced by the values at
interior (N, µ) points and sign of the normal velocity component v is switched

hN+1, µ = hN,µ, uN+1, µ = uN,µ, vN+1, µ = −vN,µ;

the values at all the (N + 1, N + 1) point in the upper-right corner are given by

hν+1, N+1 = hν, µ, uν+1, N+1 = −uν, µ, vν+1,N+1 = −vν,µ.
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6.2. Time discretization. Similar to the time discretizations of the Burgers’ equation, we in-
tegrate the entropy stable scheme (5.2)-(5.3) with the explicit three-stage Runge-Kutta method
(4.12a) by its high-order accuracy, large stability region and simplicity.





u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

(6.1a)

where

[L(u)]ν, µ = − 1

∆x
(fν+ 1

2
, µ − fν− 1

2
, µ) − 1

∆y
(gν, µ+ 1

2
− gν, µ− 1

2
)

+
ζ

∆x
(ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2
, µ

dν, µ − dν−1, µ

∆x
)

+
ζ

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
). (6.1b)

6.3. Numerical results. We test our entropy-stable schemes with the two dimensional fric-
tionless partial-dam-break problem originally studied by Fennema and Chaudhry in [FC90].
It imposes computational difficulties due to the discontinuous initial conditions. It also in-
volves other computational issues like boundary treatments and positive-water-depth preserving
solver.

Figure 6.2: Geometry configuration and initial setting of 2D Partial-Dam-Break problem

As shown in figure 6.2, the simplified geometry of the problem consists of a 1400 × 1400 m2

basin with a idealized dam in the middle. Water is limited by the fixed, solid, frictionless walls
in this square basin. To prevent any damping by the source terms, a frictionless, horizontal
bottom is used. All walls are assumed to be reflective. The initial water level of the dam is 10m
and the tail water is 9.5m high. Central part of the dam is assumed to fail instantaneously or
the gate in the middle of the dam is opened instantly. Water is released into the downstream
side through a breach 280m wide, located between y = 560 and y = 840, forming a wave that
propagates while spreading laterally. A negative wave propagates upstream at the same time.
For simplicity, the Coriolis force is ignored in the computation. The acceleration due to gravity
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is taken to be 9.8m/s2. Although there is no analytical reference solution for this test problem,
but other numerical results of similar problems are available in [FC90, CK04].

In the following figures, we display the numerical solutions for the fully discrete scheme
(6.1a)-(6.1b) with the numerical fluxes (5.2b)-(5.2c). The sum of potential and kinetic energy
serves as the generalized entropy function in the design of our numerical schemes,

E(u) =
gh2 + u2h+ v2h

2
.

Uniform space and time grid sizes, ∆x = ∆y and ∆t are used. The computational model is
run for up to 50 s after the dam broke when the water waves haven’t reached the boundaries.
Both inviscid and viscous cases are explored. For the viscous cases, the eddy viscosity is taken
to be 10m2s−1. We use different spatial resolutions for the same problem, and adjust time step
according to the CFL condition.

We first solve the inviscid and viscous shallow water equations on the computational domain
consisting of a 50×50 cell square grid with ∆x = ∆y = 28m. We group our numerical results of
inviscid shallow water equations along the left column of figure 6.3. As comparisons, the results
of viscous shallow water equations with eddy viscosity ζ = 10m2s−1 are summarized in the
right column. The first and second row of figure 6.3 depict the perspective plots of water surface
profiles at t = 25s and t = 50s respectively. Remnants of the dam are represented by jumps
near the middle of the plot. The vertical scale is exaggerated with respect to the horizontal
scales. We observe that the numerical solutions of the water depth in figures 6.3(a) and 6.3(c)
successfully simulate both the circular shock water wave propagations and the vortices formed
on the both sides of the breach. The undershoots are also developed near sharp corners of
the remanent dam. These steep degressions in the water surface are noticeable downstream
of the breach at t = 50 s. Similar numerical tests were done in [CK04] by the second-order
central-upwind schemes, which were originally proposed in [KT00].

For the inviscid shallow water equations, dispersive errors of the numerical schemes, in the
form of spurious oscillations in the mesh scale, are noticeable near the breach in figures 6.3(a)
and 6.3(c). For the viscous shallow water equations, as shown in figure 6.3(b) and 6.3(d), the
presence of eddy viscosity causes the oscillations to be dramatically reduced around the breach.
In addition to eliminating the wiggles, the eddy viscosity terms also single out the undershoot
near sharp corners of the remnants of dam without damping it.

We display the total entropy scaled by 104 versus time in figure 6.3(f). Compared with the
same entropy plot of the inviscid problem in figure 6.3(c), the plot of total energy in figure
6.3(f) reveals a O(1) energy decay due to the presence of eddy viscosity, while the negligible
amount of energy decay introduced by RK3 time discretization for the inviscid shallow water
equations is not detectable under the same scale in figure 6.3(c).

Next, in figure 6.4, we display the numerical solutions of the same problem in the refined
spatial mesh with ∆x = ∆y = 14m. Following the same pattern as in figure 6.3, figure 6.4
presents the perspective plots and total energy versus time. For the inviscid case, the profiles of
the water elevation in figure 6.4(a) and 6.4(c) demonstrate smoother numerical solutions due to
the decrease of the grid size, while the spurious oscillations in the mesh scale are still detectable
near the breach because of the energy-preserving shallow water solver with the increase of the
total enstrophy. For the viscous case with ζ = 10m2s−1, figures 6.4(b) and 6.4(d) show the
smoother solutions than inviscid solutions in figure 6.4(a) and 6.4(c). The amplitude of those
wiggles near the breach are significantly reduced though they are still detectable. Further
refinement of the mesh from (100 × 100) to (200× 200) generates very smooth solutions of the
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Figure 6.3: Shallow water equations, ζ = 10m2s−1, Dam-Break, 1400×1400m2 basin, reflective-
slip boundary, ∆x = ∆y = 28m, ∆t = 0.2 s
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Figure 6.4: Shallow water equations, ζ = 10m2s−1, Dam-Break, 1400×1400m2 basin, reflective-
slip boundary, ∆x = ∆y = 14m, ∆t = 0.01 s
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(a) Water depth at t=25 s, viscous case (b) Water depth at t=50 s, viscous case
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Figure 6.5: Viscous shallow water equations, ζ = 10m2s−1, Dam-Break, 1400 × 1400m2 basin,
reflective-slip boundary, ∆x = ∆y = 7m, ∆t = 0.002 s

water depth h in figures 6.5(a) and 6.5(b), when the oscillations are limited in the very small
mesh scale.
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