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Abstract. The classical Lighthill-Witham-Richards (LWR) kinematic traffic

model is extended to a unidirectional road on which the maximum density

a(x) represents road inhomogeneities, such as variable numbers of lanes, and
is allowed to vary discontinuously. The evolution of the car density φ = φ(x, t)

can then be described by the initial value problem

φt +
`
φv(φ/a(x)

´
x

= 0, φ(x, 0) = φ0(x), x ∈ R, t ∈ (0, T ). (∗)

Here v(z) is the velocity function, where it is assumed that v(z) ≥ 0 and v(z)

is nonincreasing. Since a(x) is allowed to have a jump discontinuity, (∗) is a
scalar conservation law with a spatially discontinuous flux. Herein we adapt

to (∗) the notion of entropy solutions of type (A, B) put forward in Bürger,

Karlsen, Towers [Submitted, 2007], which involves a Kružkov-type entropy in-
equality based on a specific flux connection (A, B). We interpret our entropy

theory in terms of traffic flow. The driver’s ride impulse, which has been used

to justify the standard Lax-Oleinik-Kružkov entropy solutions when a(x) is
constant, cannot be used directly to determine the correct jump condition at

the interface where a(x) is discontinuous. We show by a parameter smooth-

ing argument that our entropy conditions are consistent with the driver’s ride
impulse. Alternatively, we show that our notion of entropy solution is consis-

tent with the desire of drivers to speed up. We prove that entropy solutions
of type (A, B) are uniquely determined by their initial data. Although other

(equivalent) solution concepts exist, the one used herein makes it possible to

provide simple and transparent convergence proofs for numerical schemes. In-
deed, we adjust to (∗) a variant of the Engquist-Osher (EO) scheme introduced

recently in Bürger, Karlsen, Towers [Submitted, 2007], as well as a variant of

the Hilliges-Weidlich (HW) scheme analyzed by the authors in Bürger, Garćıa,
Karlsen, Towers [J. Engrg. Math., to appear]. We improve the design, anal-

ysis, and performance of the HW scheme, while maintaining its simplicity.

It is proven that these EO and HW schemes, as well as a related Godunov
scheme, converge to the unique entropy solution of type (A, B) of (∗). Via
our entropy and compactness theory, we give a unifying analysis of the three

difference schemes. In the case of the popular Godunov version of the scheme,
this represents the first convergence and well-posedness result that is rigor-

ous in that no unnecessarily restrictive regularity assumptions are imposed
on the solution. Results of numerical experiments are presented for first order

schemes and for MUSCL/Runge-Kutta versions that are formally second order
accurate.
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1. Introduction

1.1. Scope. The well-known LWR kinematic model [49, 58] for traffic flow on a
single-lane, uniform highway starts from the principle of conservation of cars, φt +
(φv)x = 0, where x ∈ R is position, t is time, φ = φ(x, t) is the local density of cars
at position x at time t, and v = v(x, t) is the velocity of the car located at (x, t).
It is then assumed that each driver immediately adjusts his velocity to the local
density, such that v(x, t) = v(φ(x, t)). This yields the scalar conservation law

φt +
(
φv(φ)

)
x

= 0, x ∈ R, t > 0. (1.1)

We assume that v(0) = vmax, where vmax is a maximum freeway velocity that
without loss of generality we assume to equal one, and v(a) = 0 if a denotes the
maximum car density, corresponding to a bumper-to-bumper situation. The sim-
plest relationship satisfying these assumptions is v(φ) = 1−φ/a. For the remainder
of the paper, we assume that v depends on φ/a, so that (1.1) turns into

φt +
(
φv(φ/a)

)
x

= 0, x ∈ R, t > 0. (1.2)

In recent years, numerous extensions of the LWR model were proposed and
analyzed, including traffic flow with heterogeneous road surface conditions [9, 36,
54], multi-species traffic models [7, 15, 64, 65], and traffic flow on networks [16, 19,
24, 25, 34, 35]. These extensions lead to conservation laws with a flux that depends
(possibly discontinuously) on x, strongly coupled systems of conservation laws, and
weakly coupled systems of conservation laws, respectively; combinations of these
ingredients have also been considered [8, 33, 66]. Despite an abundance of further
extensions to second-order traffic models with diffusive terms and velocity balance
equations, we herein limit the discussion to first-order kinematic models.

In this paper, we consider the following initial value problem which arises from
(1.2) if the maximum density a is allowed to depend on the position x:

φt +
(
φv(φ/a(x))

)
x

= 0, φ(x, 0) = φ0(x), x ∈ R, t ∈ (0, T ), (1.3)

Here, a(x) is allowed to have discontinuities. For example, a(x) could be propor-
tional to the number of lanes, so that a(x) would be discontinuous at any location
x where the number of lanes changes. We sometimes write the flux of (1.3) as

f
(
a(x), φ

)
= φv

(
φ/a(x)

)
(1.4)

in order to simplify notation. Thus, the problem under study is a special case of
conservation laws with discontinuous flux of the type

ut + f
(
a(x), u

)
x

= 0, (1.5)

where a(x) is a vector of discontinuous parameters.
The basic difficulty is that the well-posedness of (1.5) does not emerge as a

straightforward limit case of the standard theory for conservation laws with a flux
that depends smoothly on x. In fact, several extensions of the entropy solution
concept of Kružkov [45] to conservation laws with a discontinuous flux have been
proposed [3, 5, 6, 26, 28, 29, 37, 38, 39, 40, 41, 44, 48, 53, 55, 59, 62]. Most of
these solution concepts are supported by a convergence analysis of a numerical
scheme; the differences between the concepts appear in the respective admissibility
conditions for stationary jumps of the solution across the discontinuities of a. There
has been particular interest in (1.5) in the context of so-called clarifier-thickener
models [12, 13, 22].
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We may also write (1.3) as a non-strictly hyperbolic system, which has been the
starting point of several analyses of (1.5) [10, 20, 21, 28, 29, 43, 44, 61]. Godunov-
type schemes originating from the system formulation were analyzed in [50, 51].
Of particular relevance for our study is the paper by Jin and Zhang [65], who
studied (1.3) in the traffic context as a resonant hyperbolic system, resulting in
an enumeration of the types of waves that are generated by Riemann problems.
Based on their solution of the Riemann problem, Jin and Zhang [65] constructed a
Godunov scheme for (1.3).

Several authors including Daganzo [18, 19] and Lebacque [46] proposed discrete
models for the traffic problem that are ultimately equivalent to the Godunov scheme
for a scalar conservation law. When a(x) is constant, it is well known that the
Godunov scheme converges to the standard entropy solution as the discretization
parameters tend to zero. For the inhomogeneous problem (1.3), both Daganzo [19]
and Lebacque [46] extended the behavioral principles from their discrete models to
the inhomogeneous case. On the other hand, the approach by Jin and Zhang [65]
leads to the same solution concept. In [65] it is shown that, at least for Riemann
problems, all these solution concepts are the same. In addition, the solution to the
Riemann problem given in [65] is essentially the one given in [28, 29, 44].

The purpose of the present paper is to focus our recent work [8, 14] related to
conservation laws with discontinuous flux on the specific problem described above,
especially within the context of traffic flow modeling. Our main objectives are the
following:

• Define a notion of entropy solution for (1.3), and prove that it implies
uniqueness.

• Demonstrate that our notion of entropy solution is relevant for traffic mod-
eling.

• Provide a unified analysis for three difference schemes, including the Go-
dunov scheme mentioned above, demonstrating convergence to a unique
entropy solution, and thus obtaining a rigorous well-posedness theory for
(1.3).

• Demonstrate via a few representative numerical experiments the practical
effectiveness of the three difference schemes, including simple higher order
accurate extensions of the algorithms.

A result of this program is the first completely rigorous convergence proof for the
Godunov scheme mentioned above. Given the popularity of this scheme, we view
this as a primary contribution of this paper. The other two schemes analyzed in
this paper are versions ofthe Engquist-Osher (EO) and the Hilliges-Weidlich (HW)
scheme, each one adapted via a special interface flux. The EO version was analyzed
previously [14], for a somewhat different problem. An earlier version of the HW flux,
which did not include the special interface flux, was also analyzed previously [8],
again for a slightly different problem. The new interface flux for the HW scheme was
motivated by our entropy theory, and turns out to also produce improved numerical
results. This improved HW scheme is one of the novel contributions of the paper.

1.2. Entropy solutions of type (A,B). Before discussing our concept of solution,
let us make the assumption that the coefficient a(x) is a piecewise constant function
with just one discontinuity located at x = 0, with a(0−) := aL and a(0+) := aR.
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It will become clear that our analysis and numerical schemes are readily extended
to the case where a(x) is piecewise constant with finitely many jumps.

We shall need the following function associated with a specific connection (A,B):

cAB(x) := H(x)B +
(
1−H(x)

)
A =

{
A for x ≤ 0,
B for x > 0,

(1.6)

where H denotes the Heaviside function. Roughly speaking, after Adimurthi,
Mishra, and Gowda [2], a connection is a valid (in a sense that we will specify
in Section 2.2) pair (A,B) of φ-arguments for which equality of fluxes to either side
of a jump in a(x) holds. Valid connections (A,B) form a one-parameter family,
and each choice of (A,B) leads to a different solution concept. The proper choice
of (A,B) for a given model depends on the “physics” that dictates the transition
across x = 0. For the traffic model, we limit ourselves to such connections where
either A or B coincides with the maximum (with respect to φ) of the adjacent
fluxes. We use cAB(x) to form the function φ 7→ |φ− cAB(x)|, which is an example
of what Audusse and Perthame [5] call an adapted entropy. Now, we say that a
function φ is an entropy solution of type (A,B) of (1.3) provided it is a weak so-
lution, it satisfies the usual Kružkov entropy condition on {x < 0} × [0, T ) and on
{x > 0} × [0, T ), and it satisfies the Kružkov-type inequality∣∣φ− cAB(x)

∣∣
t
+

(
sgn

(
φ− cAB(x)

) (
f(a(x), φ)− f(a(x), cAB(x))

))
x
≤ 0 in D′

(1.7)
on ΠT := R × (0, T ), where we recall that f(a(x), φ) = φv(φ/a(x)). This integral
inequality, which is founded on a single adapted entropy |φ − cAB(x)|, eventually
defines which jumps of the solution across x = 0 are admissible.

The notion of an entropy solution of type (A,B) is at the core of our approach,
and it should be compared with the entropy concept utilized, e.g., in [39, 40, 41, 62],
which reads

|φ− c|t +
(
sgn(φ− c)

(
f(a(x), φ)− f(a(x), c)

))
x

−
∣∣f(aR, c)− f(aL, c)

∣∣ ≤ 0, ∀c ∈ R,
(1.8)

in the sense of distributions on ΠT . In the present context (no “flux crossings”), the
two entropy conditions (1.7) and (1.8) identify the same solutions. An advantage
of (1.7) is that the term |f(aR, c)− f(aL, c)| in (1.8) does not appear. Our solution
concept (1.7) is generally equivalent to that of Adimurthi, Mishra, and Gowda [2]
(see also Garavello, Natalini, Piccoli, and Terracina [26]), with one vital difference.
We use the Kružkov-type entropy inequality (1.7) to capture the interface entropy
condition, whereas [2] uses a pointwise entropy jump condition which we derive from
(1.7). As pointed out in [14], the advantage of our approach is that we can prove
the L1 contraction property (uniqueness) without requiring an artificial regularity
assumption of the type stated in [2], where the solution is required to be “piecewise
smooth”, that is, continuous except for a set of Lipschitz curves. Consequently,
in [14] and herein we are in a position to give rigorous convergence proofs for
our difference schemes. For a comprehensive discussion of the notion of entropy
solutions of type (A,B) and its relation to other solution concepts, see [14].

If we assume that the fluxes f(aL, ·) and f(aR, ·) are genuinely nonlinear, then
the results in [56, 57, 63] ensure the existence of strong traces of the solution from
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either sides at x = 0. Equipped with these traces, we establish the Rankine-
Hugoniot condition and, exploiting our choice of the connection (A,B), adapted
entropy jump conditions across x = 0. Then, in light of arguments similar to those
of [12], we prove L1 stability and uniqueness of entropy solutions.

1.3. Speedup impulse. In the case where the coefficient a(x) is constant and

the mapping φ 7→ f(a, φ) is concave, (1.9)

Ansorge [4] argued that the standard Lax-Oleinik-Kružkov entropy condition

φ− < φ+ (1.10)

is the proper one for traffic modeling. Here we denote by φ± the left and right
spatial limits of the solution φ at a discontinuity. Ansorge’s argument is based on
the so-called driver’s ride impulse, which states that drivers smooth a discontinuous
solution to a continuous one if φ− > φ+, but not if φ− < φ+. In the more general
situation considered in this paper, the driver’s ride impulse does not apply to the
jump at the discontinuity in a. Due to the Rankine-Hugoniot condition

f(aL, φ−) = f(aR, φ+), (1.11)

it is not generally possible to completely smooth the discontinuity at x = 0; there
will always be a discontinuity except in the special case φ− = φ+ = 0. Thus it
is not obvious that our notion of entropy is appropriate for traffic modeling. We
show in two different ways that the entropy condition (1.7), and the entropy jump
condition implied by it, is indeed relevant for traffic modeling. The first method
involves smoothing the parameter a(x), assuming that the driver’s ride impulse
remains valid for smooth but nonconstant a(x), and then passing to the limit as the
smoothing parameter approaches zero. The second method singles out the relevant
solution based on driver behavior, specifically the desire of drivers to speed up; we
call this the speedup impulse. The decisive point is that neither approach depends
on a viscous regularization, in contrast, e.g., to a model of flow in heterogeneous
media and a clarifier-thickener model (see [11] for further discussion).

1.4. Numerical schemes. A chief purpose of this paper is to introduce and an-
alyze numerical schemes for (1.3). The basic discretization is a simple explicit
conservative marching formula on a rectangular grid, where the numerical flux for
all cells may be given by a known scheme for conservation laws, with the exception
of the cell interface that is associated with the flux discontinuity, and for which an
interface numerical flux f̄int has to be devised. This flux is designed to be mono-
tone and preserve certain steady-state solutions. We consider interface fluxes based
on three different schemes, namely those of Hilliges and Weidlich [34], Godunov
[36], and Engquist and Osher [23]. We show that all three schemes converge to
entropy solutions of type (A,B). By our uniqueness theorem (Theorem 3.1), all
of these schemes converge to the same solution, which moreover coincides with the
solution constructed in [19, 36, 46] (at least for the Riemann problems considered
there). Our solution concept is somewhat more general than that of the authors of
[19, 36, 46], because it is valid for more general types of initial data φ0. Moreover,
our results represent a rigorous proof of convergence to an entropy solution for the
popular Godunov flux discussed in [19, 36, 46].

We emphasize that our unified convergence analysis of the three schemes for
a conservation law with discontinuous flux is a novel contribution of this paper.
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The main contributing ingredient here is the numerical interface flux, which in
each case causes the associated scheme to preserve certain steady solutions, the
most important of which is a discrete version of cAB defined by (1.6). This special
property of the interface flux implies that each scheme satisfies a discrete version of
the adapted entropy inequality (1.7). In the case of the HW scheme, the interface
flux is a novel contribution of this paper.

The numerical schemes that we analyze are only first-order accurate, so a very
fine mesh is required in order to accurately resolve some features of the solution. To
improve on this situation, we propose formally second order schemes, constructed
by using MUSCL [47] spatial differencing, and Runge-Kutta temporal differencing.

We present several numerical examples in which we compare the difference
schemes. These examples have in part been adapted from [25, 65]. It turns out that
our interface version of the Hilliges-Weidlich (HW) scheme produces less overshoots
than the unmodified version introduced in [8]. In general, the HW scheme is more
diffusive than the Godunov or Engquist-Osher (EO) scheme, but easier to imple-
ment. An L1 error record confirms that the second-order MUSCL/RK versions of
the schemes produce consistently smaller errors than the first-order versions.

1.5. Outline of the paper. The remainder of this paper is organized as follows.
In Section 2 we precisely state the problem under consideration and introduce the
entropy solution concept. In Section 3, we prove uniqueness of entropy solutions of
type (A,B). In Section 4, we interpret our entropy theory (specifically, the jump
requirements at the interface x = 0) in terms of traffic flow. In Section 5, we
introduce the numerical schemes for the approximation of (1.3). We show that the
(first order versions of the) schemes converge to entropy solutions of type (A,B) in
Section 6. Finally, we present in Section 7 several numerical examples and compare
the difference schemes.

2. Assumptions, connections, and the notion of solution

2.1. Assumptions on the data. We assume that the parameter a is piecewise
constant with a single jump located at the origin x = 0, i.e.,

a(x) =

{
aL for x < 0,
aR for x > 0,

where we assume that 0 < min{aL, aR} =: a ≤ a(x) ≤ a := max{aL, aR}.
We assume that the velocity v : [0, 1] → [0, vmax] is Lipschitz continuous, strictly

decreasing, and v(0) = vmax, v(1) = 0. Furthermore, we assume that

@α, β ∈ R : ∃0 ≤ z1 < z2 ≤ 1 : v(z) = αz−1 + β for z ∈ (z1, z2). (2.1)

Moreover, we assume that

z 7→ zv(z) has exactly one maximum in (0, 1), (2.2)

so that for a fixed, the flux (1.4) is not linear on any φ-interval of positive length.

Remark 2.1. The assumptions on v(z) are met by the most commonly used ele-
mentary nonlinear velocity functions, including Greenshield’s model, v(z) = 1−zn,
and the formula v(z) = (1− z)n, n ≥ 0, which includes the linear interpolation

v(z) = 1− z. (2.3)
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The analysis does not apply to exponential velocity functions like Underwood’s model
v(z) = exp(−Cz), C > 0, and the involved formula by Kerner and Konhäuser [42],
see (7.1) in Section 7.3, since these equations do not satisfy v(1) = 0. (Having said
this, we mention that our numerical experiments performed for the latter equation
produced reasonable results, since the chosen data do not attain z = 1.) The so-
called “California model” v(z) = (1−z)/(az) and the Dick-Greenberg model v(z) =
min{1,−C ln z}, C > 0, which was used in [9], do not satisfy the assumptions of
our analysis either, since they violate (2.1). We refer to [9, 35, 52] for details and
references to these models and their experimental support.

The assumptions on v stated so far imply that the flux f(a, φ) = φv(φ/a) is
nonnegative for φ ∈ [0, a], and f(a, 0) = f(a, a) = 0. Furthermore, (2.1) implies
that to the left and right of x = 0, the flux function f is genuinely nonlinear in the
sense of [56, 57], that is,

f(aL, ·), f(aR, ·) are not linear on non-degenerate intervals. (2.4)

Next, (2.2) implies that there is a unique φ∗L ∈ (0, aL) such that fφ(aL, φ
∗
L) = 0,

and the mapping φ 7→ f(aL, φ) is strictly increasing for φ ∈ (0, φ∗L) and strictly
decreasing for φ ∈ (φ∗L, aL). Similarly, there is a unique φ∗R ∈ (0, aR) such that
fφ(aR, φ

∗
R) = 0, and the mapping φ 7→ f(aR, φ) is strictly increasing for φ ∈ (0, φ∗R)

and strictly decreasing for φ ∈ (φ∗R, aR). From the relationship

fφ(a, φ) = (φ/a)v′(φ/a) + v(φ/a),

it is clear that φ∗L/aL = φ∗R/aR, and thus sgn(φ∗R − φ∗L) = sgn(aR − aL). Another
useful relationship is

sgn
(
f(aR, φ)− f(aL, φ)

)
= sgn

(
aR − aL

)
for φ ∈ (0, a). (2.5)

To verify this, suppose for example that 0 < φ ≤ aL < aR. Then v(φ/aL) <
v(φ/aR), and thus φv(φ/aL) < φv(φ/aR).

Finally, we assume that the initial function φ0 ∈ L∞(R) satisfies

φ0(x) ∈

{
[0, aL] for a.e. x ∈ (−∞, 0),
[0, aR] for a.e. x ∈ (0,∞),

(2.6)

which will be the condition used for the L1 stability result. Additionally, for the
convergence analysis of the difference schemes, we will assume that

φ0(x) ∈ L1(R) ∩BV (R). (2.7)

2.2. Connections. The concept of connections, which plays an important role in
the entropy and uniqueness theory of conservation laws with discontinuous flux, is
due to Adimurthi, Mishra, and Gowda [2].

Definition 2.1 (Connection (A,B), after [2]). Assume that the function f has all
the properties stated in Section 2.1. Then a pair of states (A,B) ∈ [0, aL]× [0, aR]
is called a connection if

f(aL, A) = f(aR, B), A ≥ φ∗L, B ≤ φ∗R.

Fixing a time t ∈ (0, T ), let φ± := φ(0±, t). Any weak solution will satisfy
the Rankine-Hugoniot condition (1.11). It is well known that this condition is not
sufficient to guarantee uniqueness, and so additional conditions are required.The
following characteristic condition is associated with a connection (A,B), and at
least for piecewise smooth solutions, can be used to single out a unique solution.
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Figure 1. The flux functions f(aL, φ) and f(aR, φ). The case
aL < aR is shown in (a), and the case aR < aL is shown in (b).

Definition 2.2 (Characteristic condition). Assume that the pair (φ−, φ+) satisfies
the Rankine-Hugoniot condition (1.11), and that (A,B) is a connection in the sense
of Definition 2.1. We say that (φ−, φ+) satisfies the characteristic condition if

min
{
0, fφ(aL, φ−)

}
max

{
0, fφ(aR, φ+)

}
= 0. (2.8)

This says that the characteristics must lead backward toward the x-axis on at
least one side of the jump. Below we derive (2.8) from the definition of an entropy
solution of type (A,B).

For the present application, Figure 1 shows two typical configurations of the
fluxes f(aL, ·) and f(aR, ·), corresponding to the respective cases aL < aR and
aL > aR. Though in both situations, there is a certain degree of freedom in selecting
a connection (A,B), we consider that connection as relevant for traffic modelling
in which the flux across x = 0 is, in general, as large as possible. This implies that
either A or B should coincide with the argument of the smaller of the two maxima
f(aL, φ

∗
L) and f(aR, φ

∗
R). This consideration leads us to define the connection (A,B)

relevant for our model as follows.

Definition 2.3 (Definition of the states A and B). For the traffic model, we define
the connection (A,B) as follows. If aL < aR, then A = φ∗L, and B is the solution of
the equation f(aR, B) = f(aL, A) satisfying B < φ∗R. In the reverse situation, i.e.,
aL < aR, then B = φ∗R, and A is the solution of the equation f(aR, B) = f(aL, A)
satisfying A > φ∗L.

Note that we always have f(aR, B) = f(aL, A) and B < A. The first of these
relationships follows directly from Definition 2.3, and the second follows from the
same definition, sgn(φ∗R − φ∗L) = sgn(aR − aL) and (2.5).

In the remainder of the paper, it is always understood that the connection (A,B)
is chosen according to Definition 2.3, and several proofs will appeal to this special
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choice. However, Definition 2.1 admits other (A,B) connections in addition to the
one given by Definition 2.3. Adimurthi, Mishra, and Gowda [2] show that each of
these connections, when associated with its (A,B) characteristic condition, leads to
a different solution concept, and a different L1 contraction semigroup of solutions.
In fact, a slight modification of the present analysis, combined with arguments
from [14], will be sufficient to include alternative connections (A,B) for the present
model. We will come back to this in a separate paper.

2.3. The entropy solution concept. In order to state our concept of entropy
solution, we use cAB(x) to form the function φ 7→ |φ−cAB(x)|, which is an example
of what Audusse and Perthame [5] call an adapted entropy.

Definition 2.4 (Entropy solution of type (A,B)). Denote by f(a(x), φ) the flux
function φv(φ/a(x)). A function φ : ΠT → R is an entropy solution of type (A,B)
of the initial value problem (1.3) if it satisfies the following conditions:

(D.1) φ ∈ L∞(ΠT ); more precisely,

φ(x, t) ∈

{
[0, aL] for a.e. (x, t) ∈ (−∞, 0)× (0, T ),
[0, aR] for a.e. (x, t) ∈ (0,∞)× (0, T ).

(2.9)

(D.2) For all test functions ψ ∈ D(R× [0, T ))∫∫
ΠT

(
φψt + f

(
a(x), φ

)
ψx

)
dx dt+

∫
R
φ0(x)ψ(x, 0) dx = 0. (2.10)

(D.3) For all test functions 0 ≤ ψ ∈ D(ΠT ) which vanish for x ≥ 0∫∫
ΠT

(
|φ− c|ψt + sgn(φ− c)

(
f(aL, φ)− (f(aL, c)

)
ψx

)
dx dt

+
∫

R
|φ− φ0(x)|ψ(x, 0) dx ≥ 0, ∀c ∈ R,

(2.11)

and for all test functions 0 ≤ ψ ∈ D(ΠT ) which vanish for x ≤ 0∫∫
ΠT

(
|φ− c|ψt + sgn(φ− c)

(
f(aR, φ)− f(aR, c)

)
ψx

)
dx dt

+
∫

R
|φ− φ0(x)|ψ(x, 0) dx ≥ 0, ∀c ∈ R,

(2.12)

(D.4) The following Kružkov-type entropy inequality holds for all test functions
0 ≤ ψ ∈ D(ΠT ):∫∫

ΠT

(∣∣φ− cAB(x)
∣∣ψt

+ sgn
(
φ− cAB(x)

)(
f
(
a(x), φ

)
− f

(
a(x), cAB(x)

))
ψx

)
dx dt ≥ 0, ∀c ∈ R.

(2.13)

A function u : ΠT → R satisfying (D.1)–(D.2) is called a weak solution of the
initial value problem (1.3).
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Remark 2.2. Although we fix the particular connection (A,B) of Definition 2.3
for our analysis because it leads to solutions that are relevant for traffic modeling,
these particular values of A and B do not enter Definition 2.4. Rather, the only
ingredient of our specific model that appears here are the different supports of the
fluxes adjacent to x = 0, see (D.1). Consequently, Definition 2.4 would be the same
if we had decided to use the same flux, but a different connection (A,B). Of course,
such an alternative definition would single out different entropy solutions.

3. Uniqueness

In this section the conditions listed in Subsection 2.1 are assumed to hold.

Lemma 3.1. Let φ be an entropy solution of (1.3). For a.e. t ∈ (0, T ), the function
φ(·, t) has strong traces from the left and right at x = 0, i.e., the following limits
exist for a.e. t ∈ (0, T ):

φ(0−, t) := ess lim
x↑0

φ(x, t), φ(0+, t) := ess lim
x↓0

φ(x, t).

Similarly, φ has a strong trace at the initial hyperplane t = 0.

Proof. The claims follow from the genuine nonlinearity of the fluxes (2.4) and the
results in [56, 57] (see also [63]); for additional details, see [14]. �

With the existence of strong traces guaranteed, it is possible to describe the
behavior of solutions at x = 0 (where the interface is located), which is the subject
of the following lemma.

Lemma 3.2. Let φ± = φ±(t) = φ(0±, t).
(J.1) The following Rankine-Hugoniot condition holds for a.e. t ∈ (0, T ):

f
(
aR, φ+(t)

)
= f

(
aL, φ−(t)

)
. (3.1)

(J.2) The following entropy jump condition holds for a.e. t ∈ (0, T ):

sgn
(
φ+(t)−B

)(
f(aR, φ+(t))− f(aR, B)

)
− sgn

(
φ−(t)−A

)(
f(aL, φ−(t))− f(aL, A)

)
≤ 0.

(3.2)

(J.3) For a.e. t ∈ (0, T ), the following characteristic condition is satisfied:

min
{
0, fφ(aL, φ−(t))

}
max

{
0, fφ(aR, φ+(t))

}
= 0. (3.3)

Remark 3.1. The characteristic condition (3.3) says that the characteristics must
lead backward toward the x-axis on at least one side of the jump at the location of
the jump in the parameter a.

Proof of Lemma 3.2. The Rankine-Hugoniot condition (3.1) is a consequence of
the weak formulation (2.10), while the entropy jump condition (3.2) follows from
(2.13). We omit the details of the proofs of these facts; they can be found (with
slight modifications where necessary) in Lemmas 2.4 and 2.6 of [40], see also [14].

In what follows, we write φ± := φ±(t). wherever there is no danger of confusion.
To prove (3.3), it suffices to show that φ− > A while φ+ < B is impossible (see
Figure 1). By way of contradiction, assume that φ− > A while φ+ < B. Combining
this assumption with the entropy inequality (3.2), we have(

f(aR, B)− f(aR, φ+)
)

+
(
f(aL, A)− f(aL, φ−)

)
≤ 0. (3.4)
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However, from φ− > A and φ+ < B, it is clear that f(aR, B) > f(aR, φ+) and
f(aL, A) > f(aL, φ−) (see Figure 1). Combining these inequalities with (3.4) gives
the desired contradiction. �

Theorem 3.1 (L1 stability). Let φ and φ̂ be two entropy solutions in the sense of
Definition 2.4 with initial data φ0 and φ̂0, respectively, both satisfying (2.6). Let
M denote the least upper bound on |fφ|. Then, for a.e. t ∈ (0, T ),∫ r

−r

∣∣φ(x, t)− φ̂(x, t)
∣∣ dx ≤ ∫ r+Mt

−r−Mt

∣∣φ0(x)− φ̂0(x)
∣∣ dx, r > 0.

In particular, there exists at most one entropy solution of type (A,B) of (1.3).

Proof. Following [40], we can prove for any 0 ≤ φ ∈ D(ΠT )

−
∫∫

ΠT

(
|φ− φ̂|ψt + sgn(φ− φ̂)

(
f(a(x), φ)− f(a(x), φ̂)

)
ψx

)
dt dx ≤ E, (3.5)

where

E :=
∫ T

0

[
sgn(φ− φ̂)

(
f(a(x), φ)− f(a(x), φ̂)

)]x=0+

x=0−
ψ(0, t) dt,

where the notation [·]x=0+
x=0− indicates the limit from the right minus the limit from

the left at x = 0. Recall that Lemma 3.1 ensures the existence of these limits. In
what follows, we prove that E ≤ 0. Once this has been shown, the L1 contraction
property is a standard consequence of (3.5).

For almost every t ∈ (0, T ), the contribution to E at the jump x = 0 is

S :=
[
sgn(φ− φ̂)

(
f(a(x), φ)− f(a(x), φ̂)

)]x=0+

x=0−
.

Let us fix t ∈ (0, T ), and use the notation φ±(t) = φ±. Then

S =sgn(φ+ − φ̂+)
(
f(aR, φ+)− f(aR, φ̂+)

)
− sgn(φ− − φ̂−)

(
f(aL, φ−)− f(aL, φ̂−)

)
.

Our goal at this point is to show that S ≤ 0, which implies E ≤ 0 since t is arbitrary.
It is then standard to conclude from (3.5) that the theorem holds, see [40].

If f(aR, φ+) − f(aR, φ̂+) = 0, then f(aL, φ−) − f(aL, φ̂−) also vanishes by the
Rankine-Hugoniot condition, yielding S = 0. So assume without loss of generality
that

f(aR, φ+) > f(aR, φ̂+). (3.6)
By the Rankine-Hugoniot condition again, we also have

f(aL, φ−) > f(aL, φ̂−). (3.7)

By way of contradiction, assume that S > 0. Then (3.6) and (3.7) imply that

sgn(φ+ − φ̂+) > 0, sgn(φ− − φ̂−) < 0. (3.8)

Combining the inequalities (3.6), (3.7), (3.8), we must have at least one of φ+ < B,
φ̂+ < B, and we must also have at least one of φ− > A, φ̂− > A. In fact, since
sgn(φ+− φ̂+) > 0, it must be that φ̂+ < B, and since sgn(φ−− φ̂−) < 0, it must be
that φ̂− > A. Combining these last two inequalities, we conclude that the pair of
states (φ̂−, φ̂+) violates the entropy jump condition (3.2), and we have the desired
contradiction. �
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Remark 3.2. We point out that this proof differs from that of the analogous L1

stability statement in [14] (Theorem 3.1 of that paper). The basic difference is that
flux crossings do not occur here, and that we consider only one fixed connection
(A,B), namely the one established by Definition 2.3. This admits a simpler proof.

4. The interface entropy condition and traffic flow

The purpose of this section is to show that our notion of entropy solution is
relevant for traffic modeling. In Section 4.1, we derive our entropy conditions by
studying weak solutions that result from smoothing the discontinuous parameter
a(x). In Section 4.2, we take an alternative approach, arguing that our entropy
conditions can be justified based on the desire of drivers to speed up whenever
possible. Finally, in Section 4.3 we discuss the Riemann problem from the point of
view of our entropy theory.

In this section we will focus on the characteristic condition (3.3) as the most
convenient criterion for determining solutions defined by our entropy theory. Note
that according to the characteristic condition (3.3) and Remark 3.1, among two-
state solutions (φ−, φ+) of the form

φ(x, t) = φ− for x < 0, φ(x, t) = φ+ for x > 0,

such that the Rankine-Hugoniot condition f(aL, φ−) = f(aR, φ+) is satisfied, the
only ones that are excluded by our entropy theory are ones where φ− > A and
φ+ < B.

4.1. Entropy condition derived by smoothing the parameter a(x). In this
section, we derive our entropy condition by parameter smoothing. More specifically,
we smooth the parameter a(x), assume that the driver’s ride impulse remains in
force when we generalize from constant to smooth a(x), and then pass to the limit
as the regularization parameter approaches zero. We find that the limit solution
satisfies the characteristic entropy condition (3.3). We interpret this as strong
evidence that our notion of entropy solution is relevant for traffic modeling, at least
when the concavity condition (1.9) holds.

To carry out this program, let

aδ(x) :=
(
1−Hδ(x)

)
aL +Hδ(x)aR, δ > 0

be a regularized approximation to a(x). Here Hδ(x) is a C1 regularization of the
Heaviside function H(x) such that

d

dx
Hδ(x) ≥ 0, and Hδ → H boundedly a.e.

At least for the case where the flux satisfies the concavity condition (1.9), we ex-
pect the driver’s ride impulse rationale to generalize to weak solutions φδ of the
regularized conservation law

φδ
t + f(aδ, φδ)x = 0. (4.1)

In other words, we expect that the relevant solutions φδ to (4.1) for traffic modeling
are the standard Lax-Oleinik-Kružkov solutions.
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Such a solution φδ will satisfy the following Kružkov entropy inequality for all
test functions 0 ≤ ψ ∈ D((0, T )× R):∫∫

ΠT

(
|φδ − c|ψt + sgn(φδ − c)

(
f(aδ, φδ)− f(aδ, c)

)
ψx

)
dx dt

−
∫∫

ΠT

sgn(φδ − c)f(aδ, c)xψ dx dt ≥ 0, ∀c ∈ R.
(4.2)

Lemma 4.1. Let {φδ : δ > 0} be a set of regularized weak solutions to the con-
servation law (4.1) that additionally satisfy the entropy condition (4.2). Assume
that as δ ↓ 0, φδ → φ boundedly a.e. in ΠT , where φ is a weak solution to the
conservation law (1.3). Also assume that the limit function φ has traces from the
right and left along the half-line x = 0, t > 0. Then the characteristic condition
(3.3) is satisfied.

Proof. First, note that (4.2) implies the weaker inequality∫∫
ΠT

(
|φδ − c|ψt + sgn(φδ − c)

(
f(aδ, φδ)− f(aδ, c)

)
ψx

)
dx dt

≥ −
∫∫

ΠT

∣∣f(aδ, c)x

∣∣ψ dx dt ∀c ∈ R.
(4.3)

Now consider the limit as δ ↓ 0 in (4.3). By the bounded convergence theorem, the
left-hand side of (4.3) converges to∫∫

ΠT

(
|φ− c|ψt + sgn(φ− c)

(
f(a, φ)− f(a, c)

)
ψx

)
dx dt. (4.4)

Concerning the right-hand side of (4.3), note that f(aδ, c)x is either nonnegative
or nonpositive. This follows from

f(aδ(x), c)x = cv′(c/aδ(x))
(

−c
aδ(x)2

)
d

dx
aδ(x),

which reveals that sgn(f(aδ(x), c)x) = sgn(aR−aL) wherever f(aδ(x), c)x is nonzero.
For the right-hand side of (4.3) this observation yields

−
∫∫

ΠT

∣∣f(aδ, c)x

∣∣ψ dx dt = − sgn(aR − aL)
∫∫

ΠT

f(aδ, c)xψ dx dt

= sgn(aR − aL)
∫∫

ΠT

f(aδ, c)ψx dx dt.

(4.5)

Here we have used integration by parts to get the second equality. Finally, we can
apply the bounded convergence theorem to the second expression on the right-hand
side of (4.5), which yields

−
∫∫

ΠT

∣∣f(aδ, c)x

∣∣ψ dx dt δ↓0−→ sgn(aR − aL)
∫∫

ΠT

f(a, c)ψx dx dt. (4.6)

Combining (4.4) and (4.6), we have∫∫
ΠT

(
|φ− c|ψt + sgn(φ− c)

(
f(a, φ)− f(a, c)

)
ψx

)
dx dt

≥ sgn(aR − aL)
∫∫

ΠT

f(a, c)ψx dx dt.

(4.7)
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For ε > 0, we define the test function ψε(x, t) := ρ(t)θε(x) where

θε(x) :=


1
ε (ε+ x) if x ∈ [−ε, 0],
1
ε (ε− x) if x ∈ [0, ε],
0 if |x| ≥ ε,

and ρ ≥ 0 is a smooth function with support contained in (0, T ). If we substitute
ψε for ψ in (4.7), and then let ε ↓ 0, the result is∫ T

0

(
F (aL, φ−, c)− F (aR, φ+, c)

)
ρ(t) dt ≥ −

∫ T

0

∣∣f(c, aR)− f(c, aL)
∣∣ρ(t) dt, (4.8)

where F (a, φ, c) := sgn(φ−c)(f(a, φ)−f(a, c)). Since ρ is an arbitrary nonnegative
test function on (0, T ), we have from (4.8) that

F (aR, φ+, c)− F (aL, φ−, c) ≤
∣∣f(c, aR)− f(c, aL)

∣∣ for a.e. t ∈ (0, T ). (4.9)

To conclude the proof, we will show that the characteristic condition (3.3) follows
directly from (4.9). For this, it suffices to show that we cannot have φ− > A and
φ+ < B. Take the case where aL < aR; the case where aL > aR is similar and we
omit it. If φ− > A and φ+ < B, then with the choice c = A, (4.9) becomes

−
(
f(φ+, aR)−f(A, aR)

)
−

(
f(φ−, aL)−f(A, aL)

)
≤

∣∣f(A, aR)−f(A, aL)
∣∣. (4.10)

Since aL < aR, f(A, aR) > f(A, aL), and (4.10) simplifies to f(A, aL) < f(φ−, aL),
which is a contadiction. �

Remark 4.1. A key ingredient in the proof above is the assumed structure of the
flux (1.4), especially that the mapping z 7→ v(z) is nonincreasing. With this assum-
pion, we are ensured that f(aδ, c)x is either nonnegative or nonpositive. In [14],
we considered more general fluxes f(a(x), φ), and studied the possibility of deriv-
ing entropy solutions via the SVV (smoothing and vanishing viscosity) method. In
other words, in addition to smoothing the coefficient as we have done here, we also
regularized the problem with small viscosity. The SVV method has also been used
in several others works, see for example [6, 13, 38, 59]. To amplify the importance
of the condition that f(aδ, c)x is either nonnegative or nonpositive, we remarked
in [14] that if a monotonicity condition like this does not hold, the so-called SVV
solution will not in general be the same as the entropy solution of type (A,B).

4.2. Entropy condition derived from speedup impulse. In this section, we
justify our entropy condition based on driver behavior, specifically the desire to
reach one’s destination as quickly as possible, which we state as:

Speedup impulse. Drivers approaching the interface will speed up if possible.
Here we have in mind a scenario where drivers speed up some small distance

before (to the left of) the interface. This makes sense if we think of the traffic flow
as a sequence of cars with finite distance between them. At almost any time t, the
next car to enter the interface is some finite distance to the left of the interface,
and thus can change its velocity before actually reaching the interface. This of
course changes the solution to the conservation law. At the mathematical level,
the possibility of modifying the solution in this way is precisely a reflection of the
non-uniqueness of solutions to the conservation law.

For the remainder of this section we assume that the flux f(a, φ) satisfies the con-
cavity condition (1.9). We formalize the relationship between the speedup impulse
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and the stability of steady two-state solutions of the form

φ(x, t) =

{
φ0
− for x < 0,
φ0

+ for x > 0.
(4.11)

with the following definition. (We are assuming here that (φ0
−, φ

0
+) satisfies the

Rankine-Hugoniot condition (1.11).)

Definition 4.1. A steady two-state solution (φ0
−, φ

0
+) has speedup potential if there

is a weak solution φ of the conservation law (1.3) such that the following conditions
hold:
(U.1) The weak solution φ starts with initial data given by the steady two-state

solution (φ0
−, φ

0
+):

φ(x, 0) =

{
φ0
− for x < 0,
φ0

+ for x > 0.

(U.2) The weak solution φ is a similarity solution (φ(x, t) = ϕ(x/t) for some
function ϕ) constructed by connecting φ0

− to φ1
− via a left-facing wave,

f(aL, φ
1
−)− f(aL, φ

0
−)

φ1
− − φ0

−
< 0,

and connecting φ0
+ to φ1

+ via a right-facing wave,

f(aR, φ
1
+)− f(aR, φ

0
+)

φ1
+ − φ0

+

> 0.

(U.3) The weak solution φ is a standard Lax-Oleinik-Kružkov solution away from
the interface, i.e., any discontinuities located away from x = 0 satisfy
(1.10).

(U.4) The initial solution φ(x, 0) evolves to one with increased velocity for drivers
immediately to the left of the interface, i.e.,

v(φ1
−/aL) > v(φ0

−/aL). (4.12)

Remark 4.2. In this definition, it is condition (U.4) that captures the speedup
impulse. We have stated (4.12) in terms of velocity, but since φ 7→ v(φ/aL) is
nonincreasing, we could have equivalently stated the condition as

φ1
− < φ0

− (4.13)

meaning that φ evolves to a solution with decreased density to the left of the inter-
face.

The next lemma tells us that a weak solution that does not have speedup poten-
tial can legitimately be referred to as stable with respect to the speedup impulse.

Lemma 4.2. Steady state solutions of the form (4.11) that have (do not have)
speedup potential are precisely those that are inadmissible (admissible) under the
characteristic condition (3.3).

Proof. The proof is a study in cases. Examination of Figures 2 through 5 will
convince the reader that Cases 1 through 4 below cover all relevant steady two
state solutions of the type (4.11). The left-facing arrows in the figures are included
to remind us of the equivalent conditions (4.12), (4.13), i.e., the speedup impulse.
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Figure 2. Case 1. Inadmissible two-state solutions (φ0
−, φ

0
+) for

the cases (a) aL < aR and (b) aL > aR.

Case 1. In both panels of Figure 2, the pair (φ0
−, φ

0
+) is a steady two state

solution that violates the characteristic condition (3.3). Panel (a) shows the case
aL < aR, while Figure 2 (b) shows the case aL > aR. We claim that in either
case, the state (φ0

−, φ
0
+) has speedup potential (i.e., is not stable). Indeed in both

cases, it is possible to construct a weak solution φ by connecting φ0
− to φ1

− using a
left-facing rarefaction wave, and connecting φ0

+ to φ1
+ via a right-facing rarefaction.

The resulting weak solution clearly satisfies all of the conditions of Definition 4.1.
Case 2. In contrast to Figure 2, Figure 3 shows a type of two-state solution

(φ0
−, φ

0
+) that satisfies the characteristic condition (3.3). In either case, any choice

of a left state φ1
+ that yields a right-facing wave when connected to φ0

+ also yields a
right-facing wave when the resulting φ1

− is connected to φ0
− (assuming that (4.13)

is satisfied). This violates condition (U.2). Thus this type of two state solution
does not have speedup potential (i.e., is stable).

Case 3. Figure 4 shows another type of two-state solution (φ0
−, φ

0
+), which again

satisfies the characteristic condition (3.3). To see why this configuration does not
have speedup potential (i.e., is stable), note that if we attempt to connect φ0

− to
a state φ1

− satisfying condition (U.4), we get a right-facing wave, which violates
condition (U.2).

Case 4. Figure 5 shows the final type of two state solution (φ0
−, φ

0
+). This

solution also satisfies the characteristic condition (3.3), and it does not have speedup
potential (i.e., is stable) for the same reason as Case 3.

�

Remark 4.3. In the proof above, we showed three types of steady solutions (φ0
−, φ

0
+)

that are admissible (Cases 2–4), but the third one (Case 4, shown in Figure 5) is
in some sense not generic, by which we mean that it exists mathematically, but
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Figure 3. Case 2. Admissible two-state solutions (φ0
−, φ

0
+) for

the cases (a) aL < aR and (b) aL > aR.
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Figure 4. Case 3. Admissible two-state solutions (φ0
−, φ

0
+) for

the cases (a) aL < aR and (b) aL > aR.

would be unlikely to be observed in an actual traffic flow. To explain this comment,
suppose that we perturb the steady solution by a small amount resulting in the initial
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Figure 5. Case 4. Admissible two-state solutions (φ0
−, φ

0
+) for

the cases (a) aL < aR and (b) aL > aR.

data (φ̃0
−, φ̃

0
+), and then seek the solution φ̃(x, t) to the resulting Riemann problem,

which we require to be in accordance with our entropy theory. Let (φ̃1
−, φ̃

1
+) denote

the intermediate states

φ̃1
− = φ̃(0−, t), φ̃1

+ = φ̃(0+, t), t > 0.

In Cases 2 and 3, (φ̃1
−, φ̃

1
+) will be close to (φ̃0

−, φ̃
0
+). However, in Case 4, if the

Rankine-Hugoniot condition is not satisfied for the initial data (φ̃0
−, φ̃

0
+), this will

not be the case since small waves connected to φ̃0
− can only be right-facing and small

waves connected to φ̃0
− can only be left-facing. To see this, refer to Figure 5 and

recall that (φ̃0
−, φ̃

0
+) is near (φ0

−, φ
0
+). As a result (φ̃1

−, φ̃
1
+) will be an admissible

pair of states of the type considered in Case 2 or Case 3. Thus only Cases 2 and 3
represent generic steady solutions.

Remark 4.4. Concentrating on the situation away from the interface (where a is
constant), the driver’s ride impulse gives a jump condition that is different from
that dictated by the standard Lax-Oleinik-Kružkov theory if the flux is not strictly
concave. This was pointed out by Gasser [27]. Note that away from the jump in a,
the entropy solutions of the present paper satisfy the classical jump conditions, and
so if the flux is not strictly concave (we are allowing for this in our setup), our
entropy theory will give jumps that may not be completely in agreement with our
motivation in terms of traffic flow. In the case of a nonconvex flux with constant
a, the question of how to modify the definition of entropy solution, and also the
difference schemes described below, so that the entropy theory completely agrees
with our notion of driver behavior is an interesting open problem.

4.3. Comments on the Riemann problem. In this section, we discuss the Rie-
mann problem, which is the conservation law (1.3) along with initial data of the
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form (4.11). In the previous section, we generally assumed that the initial data sat-
isfied the Rankine-Hugoniot condition, but we do not generally assume that here.
We continue to assume that the concavity assumption (1.9) holds. We state the
following lemma without proof. It can be proven in a straightforward (but tedious)
manner by a study of cases.

Lemma 4.3. The solution to the Riemann problem with initial data (φ0
−, φ

0
+) can

be constructed in a unique way as follows:
(R.1) If the initial data (φ0

−, φ
0
+) satisfies the Rankine-Hugoniot condition (1.11)

and the characteristic condition (3.3), then the steady solution represented
by (φ0

−, φ
0
+) is the solution to the Riemann problem.

(R.2) If not, the solution φ is a weak solution φ satisfying conditions (U.1), (U.2),
(U.3) of Definition 4.1, and such that the states (φ1

−, φ
1
+) satisfy the char-

acteristic condition (3.3).
The solution constructed in this way is an entropy solution in the sense of Defi-

nition 2.4.

Within the context of traffic flow, the Riemann problem associated with the
conservation law (1.3) has been studied in depth by both Lebacque [46] and Jin and
Zhang [36]. Due to nonuniqueness, the key ingredient in any such construction is a
principle for selecting among the infinite choice of solutions. Clearly our selection
principle is the characteristic condition (3.3).

Lebacque’s selection principle is flux maximization. In other words, instead of the
characteristic condition (3.3), his solution is required to maximize, among all solu-
tions satisfying (U.1), (U.2), (U.3) of Definition 4.1, the flux f(aL, φ

1
−) = f(aR, φ

1
+)

across the interface.
Jin and Zhang studied the Riemann problem from the point of view of a system

of the form
φt + f

(
a(x), φ

)
x

= 0, at = 0,
which is somewhat different from our approach, but it is still possible to com-
pare their selection principle to ours. They call states φ such that fφ(a, φ) < a
(fφ(a, φ) > a) undercritical (overcritical). For their selection principle, they re-
quire that traffic conditions upstream and downstream of the jump in a(x) are
both of the same type, i.e. both undercritical or both overcritical. Note that this
is similar to, but more restrictive than our characteristic condition (3.3). The sin-
gle case that our entropy theory allows that is excluded by theirs is the situation
described in Remark 4.3. As we explained there, this case is in some sense non-
generic. Thus ignoring this case is probably harmless, and this most likely explains
why it was not considered by Jin and Zhang [36]. Thus, once this discrepancy is
accounted for, we see that our entropy solutions are the same as those of Jin and
Zhang. Moreover, by a careful study of cases, Jin and Zhang showed that their
solution to the Riemann problem was the same as that of Lebacque [46], which
means that all three entropy theories (i.e., that of Lebacque [46], Jin and Zhang
[36], and ours) are effectively the same.

Finally, the agreement of solutions to the Riemann problem in all three cases (i.e.,
Lebacque, Jin and Zhang, and ours) has significant consequences for the numerical
schemes that we will discuss in what follows. Both Lebacque and Jin and Zhang
constructed (equivalent) Godunov schemes based on their (equivalent) solutions
to the Riemann problem. Moreover, it is generally agreed [36, 46] that for the
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inhomogeneous problem considered here, the cell transmission model of Daganzo
[18, 19] yields yet another equivalent representation of the same Godunov scheme.

However none of [19], [36] and [46] considers whether these Godunov schemes
converge to entropy solutions. In the sections that follow, we will analyze this
Godunov scheme, along with two other schemes. We will show for the first time
that the approximations generated the Godunov scheme of Daganzo [19], Lebacque
[46], and Jin and Zhang [36] converges to an entropy solution.

5. Difference schemes

In this section, we describe three first order difference schemes used to generate
approximate entropy solutions of the conservation law (1.3). We then discuss the
construction of more accurate extensions of these schemes, using MUSCL spatial
differencing and Runge-Kutta time differencing. Of the three first order schemes,
two of them (the Godunov and Engquist-Osher versions) have been proposed previ-
ously in forms very similar to what we will present here. The remaining algorithm,
the Hilliges-Weidlich scheme, has been proposed before for problems of this type,
but our interface version of the numerical flux is novel. This interface flux provides
a significant improvement to an earlier version of the scheme in that it eliminates
spurious overshoots. Our purpose in discussing all three schemes, not just the
new version of the Hilliges-Weidlich scheme, is to highlight the similarities of these
schemes, see Lemma 5.1 and Proposition 5.2. This paves the way for a unified anal-
ysis of the schemes, which we initiate in this section, and complete in Section 6.
This unified analysis is one of the main contributions of this paper.

5.1. Marching formula and interface flux. We discretize the spatial domain
R into cells Ij := [xj−1/2, xj+1/2), j ∈ Z, where xj±1/2 = (j ± 1/2)∆x. The
centers of these cells are located at xj = j∆x. Similarly, the time interval (0, T ) is
discretized via tn = n∆t for n = 0, . . . , N , where N = bT/∆tc + 1, which results
in the time strips In := [tn, tn+1), n = 0, . . . , N − 1. Here ∆x > 0 and ∆t > 0
denote the spatial and temporal discretization parameters, respectively. When
sending ∆ ↓ 0 we will do so with the ratio λ := ∆t/∆x kept constant. Let χj(x)
and χn(t) be the characteristic functions for the intervals Ij and In, respectively.
Define χn

j (x, t) := χj(x)χn(t) to be the characteristic function for the rectangle
Rn

j := Ij × In. We denote by Φn
j the finite difference approximation of φ(xj , t

n).
We discretize the initial data in cell averages:

Φ0
j :=

1
∆x

∫
Ij

φ0(x) dx, (5.1)

and the parameter a(x) according to

aj =

{
aL for j ≤ 0,
aR for j > 0.

We then define

φ∆(x, t) :=
N∑

n=0

∑
j∈Z

Φn
j χ

n
j (x, t).

Our difference scheme is an explicit time-marching algorithm of the type

Φn+1
j = Φn

j − λ∆−h
n
j+1/2, (5.2)
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where we define the difference operators ∆−Vj := Vj−Vj−1 and ∆+Vj := Vj+1−Vj ,
and the numerical flux has the form

hn
j+1/2 := hj+1/2

(
Φn

j+1,Φ
n
j

)
=


f̄

(
aL,Φn

j+1,Φ
n
j

)
for j < 0,

f̄int

(
aR, aL,Φn

j+1,Φ
n
j

)
for j = 0,

f̄
(
aR,Φn

j+1,Φ
n
j

)
for j > 0.

(5.3)

Next, we study three variants of the scheme, based on the numerical flux f̄(a, q, p),
and an associated interface version f̄int(aR, aL, q, p). In each case the numerical
flux f̄(a, q, p) is a two-point monotone flux (the mapping p 7→ f̄(a, q, p) is non-
decreasing, and the mapping q 7→ f̄(a, q, p) is nonincreasing), Lipschitz contin-
uous, and consistent in the sense that f̄(a, p, p) = f(a, p). Similarly, the inter-
face flux f̄int(aR, aL, q, p) is monotone with respect to the variables p and q as
described above, and is designed to preserve certain discrete steady state solutions,
see Lemma 5.1.

5.2. Numerical fluxes and first-order schemes. We next specify the three nu-
merical fluxes. Each of them corresponds to a standard monotone scheme away
from the jump of a(x), and has a particular standing in the literature. To accom-
modate the jump in a(x), each of these fluxes is extended to an interface version.
The Godunov version of the resulting interface flux has been proposed a number
of times in the past [1, 19, 36, 46], the EO version has appeared once before [14]
in relation to a slightly different problem, and the HW interface version is a novel
contribution of this paper. We reiterate that a primary contribution of this paper
is a rigorous, unified proof of convergence of each scheme to the entropy solution
in the sense of Definition 2.4. The decisive improvement in comparison with some
related analyses [1, 2, 3] is that we do not assume any solution structure a priori,
for example, that the solution would be piecewise smooth with a finite number of
discontinuities. Our treatment not only applies to a wider class of problems, but
also admits simpler proofs. Moreover, our analysis shows for the first time that all
three of the equivalent Godunov schemes designed for traffic modeling by Daganzo
[19], Lebacque [46], and Zin and Zhang [36] converge, and in fact converge to the
same entropy solution.

As a final notational preliminary before giving the details of the numerical
schemes, we define

φ∗j :=

{
φ∗L for j ≤ 0,
φR for j > 0,

f∗j = f(φ∗j ),

Aj+1/2 :=

{
φ∗j for j 6= 0,
A for j = 0,

Bj+1/2 :=

{
φ∗j for j 6= 0,
B for j = 0.

Flux I: Hilliges-Weidlich flux. Away from the interface, the numerical flux in
this case is defined by

f̄HW(a, q, p) := pv(q/a). (5.4)

This flux was originally proposed in [34] (see also [8, 32]) for constructing discrete
traffic flow models. We define the interface flux as

f̄HW
int (aR, aL, q, p) := min

{
pv(q/aR), f(aL, A)

}
= min

{
pv(q/aR), f(aR, B)

}
. (5.5)
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That f̄HW is monotone and consistent is readily verified by inspection of (5.4),
keeping in mind our assumptions about the mapping z 7→ v(z). To verify mono-
tonicity of f̄HW

int , we start by the monotonicity of the mapping (q, p) 7→ pv(q/aR)
in the sense defined above, and then observe that taking the min with f(aR, B)
preserves this property. (See Figure 6 for a visual check that the interface flux is
monotone.)

In [8] we proposed a scheme using this flux (Scheme 3 of that paper), but without
special processing for the interface. More specifically, we proposed the flux

h̃n
j+1/2 = Φn

j v
(
Φn

j+1/aj+1

)
, (5.6)

which defines the same scheme as the one being proposed in this paper, except at the
interface. We will not analyze herein Scheme 3 of [8]. The advantages of the scheme
proposed above over Scheme 3 of [8] are twofold. First, the special processing at the
interface (the interface flux) greatly diminishes, and many cases removes entirely
certain small spurious traveling overshoots that occur with Scheme 3 of [8]. Second,
the fact that the interface flux preserves the steady solution P 0

j defined below
allows for a simpler entropy theory. Furthermore, we emphasize that convergence
of Scheme 3 of [8] was proved in that paper for a flux that depends only linearly
on the discontinuous parameter, while that dependence is fully nonlinear in the
present analysis.

The scheme that results by combining (5.4) away from the interface and (5.5) at
the interface is easily combined into a simple modified version of (5.6) that can be
applied globally, i.e., without requiring logic to detect interface points:

hn
j+1/2 = min

{
Φn

j v
(
Φn

j+1/aj+1

)
, f∗j , f

∗
j+1

}
. (5.7)

Although we will concentrate on the case where a(x) is piecewise constant with a
single jump, the scheme defined by (5.7) is readily applied to the case where the
coefficient is a piecewise continuous function.

From the expression (5.7), we see that for the HW numerical flux, the partial
derivatives satisfy

0 ≤
∂hn

j+1/2

∂Φn
j

≤ v(Φn
j+1/aj+1), (5.8)

0 ≥
∂hn

j+1/2

∂Φn
j+1

≥
Φn

j

aj+1
v′(Φn

j+1/aj+1) ≥ αv′
(
Φn

j+1/aj+1

)
, α := a/a. (5.9)

Flux II: Godunov flux. In this case f̄ is the well-known Godunov flux

f̄G(a, q, p) =

{
minr∈[p,q] f(a, r) for p ≤ q,
maxr∈[q,p] f(a, r) for q ≤ p,

(5.10)

and the interface flux is

f̄G
int = min

{
f
(
aL,min{p, φ∗L}

)
, f

(
aR,max{q, φ∗R}

)}
. (5.11)

This formula for f̄G
int is given in [65], see Eqns. (27)–(29) of that paper, where it is

observed that this interface flux was already used in [19, 46]. Adimurthi et al. [1] also
proposed an interface flux of Godunov type. Although they use slightly different
assumptions about the fluxes at the endpoints, the interface flux given above can
also be found in at least one of their formulations, see [1, Eq. (3.3)]. We include
the Godunov flux in our analysis to demonstrate that it fits within our theoretical



INHOMOGENEOUS KINEMATIC TRAFFIC MODEL 23

framework. Moreover, with our approach we are able to give a proof of convergence
to an entropy solution for this scheme that does not require unnecessarily restrictive
assumptions about the regularity of the solution. More specifically, the proof of [1]
requires piecewise smoothness; we make no such assumption.

Both numerical fluxes f̄G and f̄G
int are Lipschitz continuous. That f̄G(a, q, p) is

monotone is well known and readily verified, in fact,

0 ≤ ∂pf̄
G(a, p, q) ≤ max

{
0, ∂pf(a, p)

}
, 0 ≥ ∂q f̄

G(a, q, p) ≥ min
{
0, ∂qf(a, q)

}
.

(5.12)
To see that the interface flux f̄G

int is monotone, note that the mapping p 7→
f(aL,min{p, φ∗L}) is nondecreasing and the mapping q 7→ f(aR,max{q, φ∗R}) is
nonincreasing, and finally that these relationships remain true when we take the
minimum to form f̄G

int. (See also Figure 6 concerning monotonicity.) The partial
derivatives of the interface flux satisfy

0 ≤ ∂pf̄
G
int ≤ max

{
0, ∂pf(aL, p)

}
, 0 ≥ ∂q f̄

G
int ≥ min

{
0, ∂qf(aR, q)

}
. (5.13)

As we did for the HW flux, we can define a global version of the flux via

hn
j+1/2 = min

{
f
(
aj ,min

{
Φn

j , φ
∗
j

})
, f

(
aj+1,max

{
Φn

j+1, φ
∗
j+1

})}
, (5.14)

and in this form the partial derivatives satisfy

0 ≤
∂hn

j+1/2

∂Φn
j

≤ max
{

0,
∂f(aj ,Φn

j )
∂Φn

j

}
, 0 ≥

∂hn
j+1/2

∂Φn
j+1

≥ min
{

0,
∂f(aj+1,Φn

j+1)
∂Φn

j+1

}
.

(5.15)

Flux III: Engquist-Osher flux. For this scheme, we use the standard EO flux
[23]

f̄EO(a, q, p) =
1
2
(
f(a, p) + f(a, q)

)
− 1

2

∫ q

p

∣∣fφ(a, φ)
∣∣ dφ (5.16)

away from the interface. For the interface flux, we use

f̄EO
int (aR, aL, q, p) =

1
2
(
f̃(aR, q) + f̃(aL, p)

)
− 1

2

[∫ q

B

∣∣f̃φ(aR, φ)
∣∣ dφ− ∫ p

A

∣∣f̃φ(aL, φ)
∣∣ dφ]

,

f̃(aL, p) := min
{
f(aL, p), f(aL, A)

}
,

f̃(aR, q) := min
{
f(aR, q), f(aR, B)

}
.

(5.17)

Modulo the parallel effort [14], this Engquist-Osher scheme is one of the contri-
butions of this paper. The flux f̄EO is a standard monotone flux, with partial
derivatives satisfying

0 ≤ ∂pf̄
EO(a, q, p) = max

{
0, ∂pf(a, p)

}
,

0 ≥ ∂q f̄
EO(a, q, p) = min

{
0, ∂qf(a, q)

}
.

(5.18)

To verify that the interface flux f̄EO
int is monotone, note that

∂pf̄
EO
int =

1
2
f̃φ(aL, p) +

1
2

∣∣f̃φ(aL, p)
∣∣ ≥ 0, ∂q f̄

EO
int =

1
2
f̃φ(aR, q)−

1
2

∣∣f̃φ(aR, q)
∣∣ ≤ 0.
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(See also Figure 6 concerning monotonicity.) It is clear from these relationships
that the partial derivatives EO interface flux satisfy the same type of inequalities
(5.13) as for the Godunov interface flux:

0 ≤ ∂pf̄
EO
int ≤ max

{
0, ∂pf(aL, p)

}
, 0 ≥ ∂q f̄

EO
int ≥ min

{
0, ∂qf(aR, q)

}
.

The EO version of the flux also has a global version hj+1/2 like (5.7) and (5.14):

hn
j+1/2 =

1
2
(
f̃j+1/2(aj+1,Φn

j+1) + f̃j+1/2(aj ,Φn
j )

)
− 1

2

[∫ Φn
j+1

Bj+1/2

∣∣∂φf̃j+1/2(aj+1, φ)
∣∣ dφ

−
∫ Φn

j

Aj+1/2

∣∣∂φf̃j+1/2(aj , φ)
∣∣ dφ]

,

f̃j+1/2(aj , φ) := min
{
f(aj , φ), f(aj , Aj+1/2)

}
,

f̃j+1/2(aj+1, φ) := min
{
f(aj+1, φ), f(aj+1, Bj+1/2)

}
.

(5.19)

Note that relationship (5.15) also holds for the partial derivatives of the EO flux.
When letting (∆x,∆t) → (0, 0), we keep the ratio λ := ∆t/∆x fixed and assume

that the CFL condition for the HW version

λv(z) ≤ 1/2, αλ |v′(z)| ≤ 1/2, z ∈ [0, 1] (5.20)

or the CFL condition for the Godunov and EO version

λ |v(z) + zv′(z)| ≤ 1, z ∈ [0, 1] (5.21)

is satisfied, respectively. Note that in contrast to (5.20), the CFL condition for the
Godunov and EO schemes, (5.21), does not depend on a(x).

For an approximation at time level n, {Φn
j }j∈Z, we denote the time advance

operator that applies one timestep of our scheme by Γj , i.e. Γj(Φn) = Φn+1
j .

Lemma 5.1. Each of the interface fluxes f̄int = f̄HW
int , f̄G

int, f̄
EO
int satisfies

f̄int(aR, aL, B,A) = f(aL, A) = f(aR, B),

f̄int(aR, aL, aR, aL) = 0, f̄int(aR, aL, 0, 0) = 0.
(5.22)

Moreover, if we define

P 0
j =

{
A for j ≤ 0,
B for j > 0,

Q0
j =

{
aL for j ≤ 0,
aR for j > 0,

R0
j = 0, j ∈ Z,

(5.23)
then the scheme (5.2), (5.3) using any of the three variants leaves each of these grid
functions fixed, i.e,

Γj(P 0) = P 0
j , Γj(Q0) = Q0

j , Γj(R0) = R0
j , j ∈ Z. (5.24)

Proof. The proof of (5.22) in each case is a straightforward calculation starting
from the definition of the specific interface flux, and using that A ≥ φ∗L, B ≤ φ∗R.
We omit the details.

For the proof of (5.24), the first condition in (5.22) implies that j ∈ Z, Γj(P 0) =
P 0

j , the second condition implies that Γj(Q0) = Q0
j , and the third condition implies

that Γj(R0) = R0
j . �
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Lemma 5.2. Each of the interface fluxes f̄int = f̄HW
int , f̄G

int, f̄
EO
int satisfies

f̄int ≤ f(aL, A) = f(aR, B) = min
{
f(aL, φ

∗
L), f(aR, φ

∗
R)

}
.

Proof. For f̄HW
int and f̄G

int this is readily verified from the respective definitions (5.5)
and (5.11). For the EO interface flux, starting from the monotonicity of the flux, the
maximum value of f̄EO

int over (q, p) ∈ [0, aR]× [0, aL] must occur at (q, p) = (0, aL),
and so from the definition (5.17) we have

f̄EO
int ≤ f̄int(aR, aL, 0, aL)

=
1
2
(
f̃(aR, 0) + f̃(aL, aL)

)
− 1

2

[∫ 0

B

∣∣f̃φ(aR, φ)
∣∣ dφ− ∫ aL

A

∣∣f̃φ(aL, φ)
∣∣ dφ]

= −1
2

[∫ 0

B

∣∣f̃φ(aR, φ)
∣∣ dφ− ∫ aL

A

∣∣f̃φ(aL, φ)
∣∣ dφ]

=
1
2
(
f(aR, B) + f(aL, A)

)
.

�

Remark 5.1. Lemma 5.2 is not required for our subsequent analysis, but shows
that each interface flux simulates an important property of the continuous solution,
namely that the flux across the interface cannot exceed min{f(aL, φ

∗
L), f(aR, φ

∗
R)};

this is a consequence of the Rankine-Hugoniot condition (1.11). In the case of the
HW flux, the version (5.6) that we used in [8] does not always satisfy this constraint.
Indeed, our interface flux f̄HW

int can be seen as a way of enforcing this constraint.

Figure 6 shows contour plots of the three interface fluxes (q, p) 7→ f̄int(aR, aL, q, p)
for f(a, φ) = φ(1−φ/a). The first row shows f̄HW

int with (aR, aL) = (2, 1) on the left
and (aR, aL) = (1, 2) on the right. The second and third rows are f̄G

int and f̄EO
int . The

0.25 contour which is labelled in each plot is the maximum value of the numerical
flux, which agrees with Lemma 5.2, since max{f(aL, φ

∗
L), f(aR, φ

∗
R)} = 0.25 for

this example. Both the HW and Godunov flux vanish along the left boundary
(p = 0) and the upper boundary (a = aR). The EO flux vanishes along portions
of those boundaries but actually takes on negative values (the minimum value
being 0.25) near the upper left corner (p, q) = (0, aR). Finally, it is clear from the
plots that in each case the mapping p 7→ f̄int(aR, aL, q, p) is nondecreasing, and
q 7→ f̄int(aR, aL, q, p) is nonincreasing.

5.3. A MUSCL/Runge-Kutta extension of the schemes. The MUSCL ver-
sion of the flux hj+1/2 reads

hm
j+1/2(Φj+2,Φj+1,Φj ,Φj−1) = hj+1/2

(
Φj+1 −

1
2
σj+1,Φj +

1
2
σj

)
,

where h is the first order version of the flux, and we define the slope σj by the
VanLeer limiter

σj :=
|φj − φj−1|(φj+1 − φj) + |φj+1 − φj |(φj − φj−1)

|φj − φj−1|+ |φj+1 − φj |
.

This MUSCL scheme is formally second-order accurate in space, but not in time.
To achieve formal second order accuracy in time also, we use second order Runge-
Kutta time stepping. More specifically, if we write our scheme with first order Euler
time differencing and second order spatial differencing abstractly as

Φn+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
,
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Figure 6. The numerical flux f̄int(aR, aL, q, p) as a function of
(q, p). In the left column (aR, aL) = (2, 1), and in the right column
(aR, aL) = (1, 2). First row: f̄int = f̄HW

int , second row: f̄int = f̄G
int,

third row: f̄int = f̄EO
int .

then the Runge-Kutta version takes the two-step form

Φ̃n+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
,

Φn+1
j =

1
2
Φn

j +
1
2
Φ̃n+1

j − 1
2
Γj

(
Φ̃n+1

j+2 , Φ̃
n+1
j+1 , Φ̃

n+1
j , Φ̃n+1

j−1 , Φ̃
n+1
j−2

)
.

For the Godunov and EO versions, we halve the timestep allowed by the CFL
condition (5.21). For the HW version, we can use the timestep allowed by the CFL
condition (5.20).

6. Convergence analysis

In this section we prove that the difference schemes converge to entropy solu-
tions as the discretization parameters tend to zero. In addition to (2.6), for the
convergence analysis leading up to Theorem 6.1, we assume (2.7). Furthermore, for
the analysis—but not in the statement of Theorem 6.1—we assume that the initial
function φ0 is compactly supported, which implies that all subsequent sums over j
are finite. In view of Theorem 3.1, there is no loss of generality in doing so.

The compactness part of the convergence analysis is based on traditional BV
estimates away from the flux discontinuity, along with the time translation invariant
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property of the schemes/equation. This approach deviates from most analyses of
equations with discontinuous flux experiencing resonant behavior, which uses the
singular mapping or compensated compactness methods. To show that the schemes
converge to an entropy solution of type (A,B), the key point is that they preserve
the discontinuous steady-state solution connecting A to B. Finally, our solution
framework allows us to work in a setting in which we do not have to assume that
the solutions are “piecewise smooth”, as is done for example in [2, 3].

Recall that the difference scheme (5.2) is monotone [17, 30] if

Φn
j ≤ Ψn

j ∀j ∈ Z =⇒ Γj(Φn) ≤ Γj(Ψn) ∀j ∈ Z.

Lemma 6.1. Assume that φ0(x) ∈ [0, aL] for x < 0 and φ0(x) ∈ [0, aR] for x > 0,
and that Φn

j is generated by any of the three variants of the difference scheme (5.2),
(5.3). Then for n ≥ 0

Φn
j

{
∈ [0, aL] for j ≤ 0,
∈ [0, aR] for j > 0.

(6.1)

Moreover, the difference scheme is monotone.
In addition, we have the following discrete time continuity estimate:∑

j∈Z

∣∣Φn+1
j − Φn

j

∣∣ ≤ C, n = 0, 1, . . . , N (6.2)

where the constant C is independent of the mesh size ∆ and the time level n.

Proof. To prove the monotonicity assertion, it suffices to show that

∂Φn+1
j

∂Φn
j+i

≥ 0, i = −1, 0, 1. (6.3)

From (5.2), it is clear that

∂Φn+1
j

∂Φn
j−1

= λ
∂hj−1/2

∂Φn
j−1

,
∂Φn+1

j

∂Φn
j+1

= −λ
∂hn

j+1/2

∂Φn
j+1

∂Φn+1
j

∂Φn
j

= 1− λ
∂hn

j+1/2

∂Φn
j

+ λ
∂hn

j−1/2

∂Φn
j

. (6.4)

That the inequalities in (6.3) for i = −1, 1 hold for the HW version is clear from
(5.8) and (5.9), and for the Godunov and EO version, this is evident from (5.15).

To prove (6.3) for i = 0 for the HW version, we use (6.4), along with (5.8) and
(5.9) to compute

∂Φn+1
j

∂Φn
j

≥ 1− λv(Φn
j+1/aj+1) + αλv′(Φn

j /aj),

and this last quantity is nonnegative thanks to the CFL condition (5.20).
To prove (6.3) for i = 0 for the Godunov and EO versions, we use (6.4) and

(5.15) to compute

∂Φn+1
j

∂Φn
j

≥1− λmin
{

0,
∂f(aj ,Φn

j )
∂Φn

j

}
+ λmax

{
0,
∂f(aj ,Φn

j )
∂Φn

j

}
=1− λ

∣∣∣∣∂f(aj ,Φn
j )

∂Φn
j

∣∣∣∣,
and this last quantity is nonnegative thanks to the CFL condition (5.21).
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Due to our method of discretizing the initial data, we will have

R0
j ≤ Φ0

j ≤ Q0
j , j ∈ Z. (6.5)

Here {R0
j} and {Q0

j} are the discrete steady solutions defined by (5.23). Since each
of the three schemes is a monotone function of the data at the lower time level,
i.e., Φ1

j = Γj(Φ0
j+1,Φ

0
j ,Φ

0
j−1) is a nondecreasing function of the arguments Φ0

j+1,
Φ0

j and Φ0
j−1, the ordering in (6.5) will be preserved when we apply Γj . Recalling

that Γj leaves Q0 and R0 fixed (Lemma 5.1), we see that R0
j ≤ Φ1

j ≤ Q0
j for j ∈ Z.

Continuing this way by induction, we may complete the proof of (6.1).
For the proof of (6.2), we combine the conservativity of the scheme,∑

j∈Z
Φn+1

j =
∑
j∈Z

Φn
j ,

the monotonicity of the time advance operator Φn 7→ Φn+1, and the boundedness of
the variation of the initial data. This allows us to apply the Crandall-Tartar lemma
[17]. The proof is similar to that of Lemma 3.3 of [39], so we omit the details. �

Let V b
a (z) denote the total variation of the function z(x) over the interval [a, b].

The following lemma is essentially Lemma 4.2 of [8], where a proof can be found.

Lemma 6.2. Let {ξ1, . . . , ξM} be a finite set of real numbers. Suppose that Φn
j is

generated by an algorithm which can be written in incremental form

Φn+1
j = Φn

j + Cn
j+1/2∆+Φn

j −Dn
j−1/2∆−Φn

j , (6.6)

except at finitely many indices j such that |xj − ξm| ≤ ρ∆x for some m = 1, . . . ,M ,
where ρ > 0. Assume that the incremental coefficients satisfy

Cn
j+1/2 ≥ 0, Dn

j+1/2 ≥ 0, Cn
j+1/2 +Dn

j+1/2 ≤ 1. (6.7)

Finally, assume that the approximations Φn
j satisfy the time-continuity estimate

(6.2). Then for any interval [a, b] such that {ξ1, . . . , ξM} ∩ [a, b] = ∅, and any
t ∈ [0, T ] we have a spatial variation bound of the form

V b
a (φ∆(·, t)) ≤ C(a, b), (6.8)

where C(a, b) is independent of ∆ and t for t ∈ [0, T ].

The following lemma provides a spatial variation bound that holds in any interval
not containing the origin, where the jump in a(x) occurs.

Lemma 6.3. For any interval [a, b] such that 0 /∈ [a, b], and any t ∈ [0, T ] we have
a spatial variation bound of the form (6.8), where C(a, b) is independent of ∆ and
t for t ∈ [0, T ].

Proof. Lemma 6.2 is readily applicable here. We only need to verify that for j 6= 0, 1
it is possible to write the scheme in the incremental form (6.6), where the coefficients
satisfy (6.7). For j < 0, the incremental coefficients are given by Harten [31]:

Cn
j+1/2 = λ

f̄(aL,Φn
j ,Φ

n
j )− f̄(aL,Φn

j+1,Φ
n
j )

∆+Φn
j

,

Dn
j+1/2 = λ

f̄(aL,Φn
j+1,Φ

n
j+1)− f̄(aL,Φn

j+1,Φ
n
j )

∆+Φn
j

.

(6.9)

The first two inequalities in (6.7) are immediate since the flux f̄(aL,Φn
j+1,Φ

n
j ) is

monotone, i.e., nondecreasing with respect to Φn
j and nonincreasing with respect to
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Φn
j+1. For f̄G and f̄EO, in order to verify the third inequality (6.7), we use (5.12),

(5.18) and (6.9) to find that

Cn
j+1/2 +Dn

j+1/2 ≤ λ

∫ 1

0

∣∣∣∂φf
(
aL,Φn

j + θ(Φn
j+1 − Φn

j )
)∣∣∣ dθ.

It is clear from this last inequality, along with the CFL condition (5.21), that the
desired inequality holds. Still assuming that j < 0, the incremental coefficients for
f̄HW are given by

Cn
j+1/2 = λΦn

j

v(Φn
j /aL)− v(Φn

j+1/aL)
Φn

j+1 − Φn
j

, Dn
j+1/2 = λv(Φn

j+1/aL).

The first two inequalities in (6.7) follow from the fact that Φn
j ≥ 0, Φn

j+1 ≥ 0, and
the mapping z 7→ v(z) is nonincreasing. Clearly, the third inequality in (6.7) will
hold if we force Cn

j+1/2 ≤ 1/2, Dn
j+1/2 ≤ 1/2. Note that for some θ between Φn

j

and Φn
j+1, C

n
j+1/2 = −λ(Φn

j /aL)v′(θ/aL), and that Φn
j /aL ∈ [0, 1]. Thus the third

inequality in (6.7) is verified due to (5.20).
We can then repeat these calculations for j > 1, replacing aL by aR. �

The following lemma provides a discrete version of the adapted entropy inequality
(2.13). Before stating it, we discretize the function cAB(x) according to

cj =

{
A for j ≤ 0,
B for j > 0.

(6.10)

Lemma 6.4. With cj defined by (6.10), the following cell entropy inequality is
satisfied by approximate solutions Φn

j generated by the scheme (5.2):∣∣Φn+1
j − cj

∣∣ ≤ ∣∣Φn
j − cj

∣∣− λ∆−Hn
j+1/2, (6.11)

where the numerical entropy flux Hn
j−1/2 is defined by

Hn
j−1/2 = hj−1/2

(
Φn

j ∨ cj ,Φn
j−1 ∨ cj−1

)
− hj−1/2

(
Φn

j ∧ cj ,Φn
j−1 ∧ cj−1

)
.

Proof. We adapt the proof by Crandall and Majda [17] to the situation at hand.
Recalling that Φn+1

j depends on the values at the three neighboring cells at the lower
time level, we write (5.2) as Φn+1

j = Γj(Φn
j+1,Φ

n
j ,Φ

n
j−1). According to Lemma 6.1,

Γj is a nondecreasing function of each of its three arguments, implying that

Φn+1
j ∨ Γj(cj+1, cj , cj−1) ≤ Γj

(
Φn

j+1 ∨ cj+1,Φn
j ∨ cj ,Φn

j−1 ∨ cj−1

)
, (6.12)

Φn+1
j ∧ Γj(cj+1, cj , cj−1) ≥ Γj

(
Φn

j+1 ∧ cj+1,Φn
j ∧ cj ,Φn

j−1 ∧ cj−1

)
. (6.13)

Subtracting (6.13) from (6.12), and using the identity ρ ∨ σ − ρ ∧ σ = |ρ− σ|,
yields∣∣Φn+1

j − Γj(cj+1, cj , cj−1)
∣∣ ≤Γj

(
Φn

j+1 ∨ cj+1,Φn
j ∨ cj ,Φn

j−1 ∨ cj−1

)
− Γj

(
Φn

j+1 ∧ cj+1,Φn
j ∧ cj ,Φn

j−1 ∧ cj−1

)
.

(6.14)

Now Γj(cj+1, cj , cj−1) = cj follows from Lemma 5.1 once we identify cj = P 0
j .

Thus, the left-hand side of (6.14) simplifies to |Φn+1
j − cj | for all j. It is easy to

check from the definitions that the right-hand side of (6.14) agrees with that of
(6.11). �
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Theorem 6.1. Suppose the conditions listed in Subsection 2.1 hold, in particular
(2.6) and (2.7). Let the function φ∆ be defined by (5.1)–(5.3) and (5.4), (5.5) for
the HW version, or (5.10), (5.11) for the Godunov version, or (5.16), (5.17) for the
EO version. Assume that ∆ := (∆x,∆t) → 0 with the ratio λ fixed and satisfying
the appropriate CFL condition (5.20) or (5.21). Then φ∆ → φ in L1(ΠT ) and a.e.,
where φ is the unique entropy solution of type (A,B) to the initial value problem
(1.3) in the sense of Definition 2.4.

Proof. The portion of the proof concerning convergence to a limit function φ is very
similar to the corresponding portion of the proof of Theorem 5.1 of [14], and so we
will omit it. It is clear that any limit function φ must satisfy property (2.9); this is
a direct consequence of Lemma 6.1. Hence, (D.1) holds.

That the limit solution φ satisfies the weak form of the conservation law (2.10)
follows from a standard Lax-Wendroff type of calculation that we omit, see the
proof of Lemma 4.2 of [40], so (D.2) is valid.

Although not requested by Definition 2.4, the time continuity estimate (6.2)
implies that the limit function u belongs to C(0, T ;L1(R)). Additionally, the initial
data u0 is taken by u in the strong L1(R) sense.

Let us turn our attention to the entropy inequalities. Since, as pointed out above,
u(t) → u0 in L1(R) as t→ 0, it is sufficient to work with nonnegative test functions
from D(ΠT ) (vanishing on {t = 0}). To verify that the limit solution satisfies the
entropy inequalities (2.11) and (2.12), note that if the interface flux is not involved
each version of the scheme is a standard three-point monotone scheme, and thus
satisfies a discrete entropy inequality [17]. Thus two more (standard) Lax-Wendroff
calculations yield (2.11) and (2.12), i.e., we have verified (D.3).

It only remains to prove that the limit solution φ satisfies (D.4), i.e. the entropy
inequality (2.13). Let 0 ≤ ψ ∈ D(ΠT ), and ψn

j = ψ(xj , t
n). Proceeding as in

the proof of the Lax-Wendroff theorem, we move all of the terms in (6.11) to the
left-hand side of the inequality, multiply by ψn

j ∆x, and sum over j ∈ Z, n ≥ 0,
and finally sum by parts to get

∆x∆t
∑
j∈Z

∑
n≥0

∣∣Φn+1
j − cj

∣∣ ψn+1
j − ψn

j

∆t
+ ∆x∆t

∑
j∈Z

∑
n≥0

Hn
j+1/2

∆+ψ
n
j

∆x
≥ 0.

By the bounded convergence theorem, the first sum converges to

∫∫
ΠT

∣∣φ− cAB(x)
∣∣ψt dx dt.

For the second sum, note that the interface flux is only involved on a set whose
measure will approach zero when we let ∆ ↓ 0. Thus we can ignore the interface
contribution, and consider separately the contribution for xj to the left of the
interface, where the discrete entropy flux will be f̄(aL,Φn

j ∨A,Φn
j−1∨A)−f̄(aL,Φn

j ∧
A,Φn

j−1 ∧ A) and the contribution for xj to the right of the interface, where the
discrete entropy flux will be f̄(aR,Φn

j ∨ B,Φn
j−1 ∨ B)− f̄(aR,Φn

j ∧ B,Φn
j−1 ∧ B)).

With this observation, and the bounded convergence theorem again, we find that
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Figure 7. Example 1 (Riemann problem: HW flux): (a) HW
scheme without interface fix, (b) HW scheme with interface fix.

the second sum converges to∫∫
ΠT∩{x<0}

sgn(φ−A)
(
f(aL, φ)− f(aL, A)

)
ψx dx dt

+
∫∫

ΠT∩{x>0}
sgn(φ−B)

(
f(aR, φ)− f(aR, B)

)
ψx dx dt,

and this quantity is equal to∫∫
ΠT

sgn
(
φ− cAB(x)

)(
f
(
a(x), u

)
− f

(
a(x), cAB(x)

))
ψx dx dt,

thus completing the verification of the adapted entropy condition (2.13).
Finally, by Theorem 3.1 the entire computed sequence φ∆ converges to φ in

L1(ΠT ) and boundedly a.e. in ΠT . �

7. Numerical Examples

7.1. Example 1 (Riemann problem: HW flux). In Example 1, we apply the
first-order HW flux to the Riemann problem

φ0(x) =

{
0.75 for x < 0,
0.15 for x > 0,

a(x) =

{
1 for x < 0,
2 for x > 0.

The velocity is given by (2.3), so the flux is f(a, φ) = φ(1 − φ/a). We used ∆x =
0.005, ∆t = 0.0025, and ran both versions of the scheme for 1600 steps. Figure 7
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Figure 8. Example 2 (Riemann problem: comparison of
schemes): (a) HW scheme, (b) Godunov scheme, (c) EO scheme.
First-order schemes (◦) and second-order MUSCL/RK versions
(×). The solid line is the reference solution.

(a) shows the numerical result of the unmodified version (5.6) of the HW interface
flux used in our previous paper [8], while Figure 7 (b) shows the result produced
by the new modified version (5.5). The unmodified version shows a small spurious
overshoot that occurs at the shock. Overshoots like these are observed on some
(not all) Riemann problems. With the modified version of the flux, the overshoot
is not present. The modified flux seems to fix most overshoots of this type, with
a few remaining cases where there are very small overshoots of the same type that
occur when the left and right states of the inital data φ0 are close to a steady state
solution.

7.2. Example 2 (Riemann problem: comparison of schemes). For Exam-
ple 2, we again use the flux f(a, φ) = φ(1 − φ/a). This time the data are defined
by the Riemann problem

φ0(x) =

{
0.45 for x < 0,
0.15 for x > 0,

a(x) =

{
2 for x < 0,
1 for x > 0.

Figure 8 (a) shows both the fixed version of the HW scheme, and its formally
second order MUSCL/RK version. Figure 8 (b) shows the Godunov scheme and its
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Figure 9. Example 3 (bottleneck problem, after [36]): (a) mesh
plot using MUSCL/RK version of HW scheme, (b) MUSCL/RK
versions of Godunov (dashed line) and HW (solid line) schemes
after t = 50τ .

MUSCL/RK version, and plot (c) shows the EO and its MUSCL/RK version. The
HW scheme is somewhat more diffusive than the Godunov and EO schemes. Its
main advantage is that it is simpler to implement. We used ∆x = 0.16, ∆t = 0.08,
and ran the schemes for 50 steps. The thin solid line in Figures 8 (a)–(c) is the
reference solution, which was calculated with the parameters ∆x = 0.0025, ∆t =
0.00125.

7.3. Example 3 (bottleneck problem, after [36]). Example 3 is the bottleneck
problem studied in [36]. A circular road of length L = 22.4 km is supposed to have
two lanes for most of its length, but reduces to one lane over a small interval. The
so-called jam density (where the velocity is zero) is 180 vehicles per kilometer and
lane. The flux is defined by f(a, φ) = φv(φ/a), where v(z) is given by the velocity
function

v(z) = 5.0461

[(
1 + exp

{
z − 0.25

0.06

})−1

− 3.72× 10−6

]
l

τ
, (7.1)

due to Kerner and Konhäuser [42], where l and τ are a unit length and a relaxation
time, respectively. In our case, the parameter a(x) is given by

a(x) =

{
180 cars/km for x ∈ [320l, 400l),
360 cars/km otherwise.
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Figure 10. Example 4 (bottleneck problem, after [25]): simu-
lated car density using MUSCL/RK version of Godunov scheme
for ∆x = 1/160.

The initial datum is

φ0(x) =
a(x)
180

(
28 + 3 sin

2πx
L

)
.

Following [36], we take L = 800l = 22.4 km, l = 0.028 km, τ = 5 s, ∆x = 0.224 km
and ∆t = τ/2. We enforce periodic boundary conditions modeling a circular road of
length L. Figure 9 (a) shows a plot of the solution computed over 300 time steps,
using the MUSCL/RK version of the HW scheme, while Figure 9 (b) shows the
solution after 100 time steps, t = 50τ . The portion of the solution that is hidden
from view in Figure 9 (a) is a steady profile similar to the decreasing portion of
Figure 9 (b). Also, in Figure 9 (b), we see that the HW version is more diffusive
than the Godunov version. The advantage of the HW version is that it is much
easier to implement.

7.4. Example 4 (bottleneck problem: comparison of schemes, after [25]).
Example 4 is a bottleneck problem studied in [25]. The original example is tackled
as an initial and boundary problem, but here we treat it as a Riemann problem.
We use the flux f(a, φ) = φ(1− φ/a) and

φ0(x) =

{
0.25 for x < −1,
0.66 for x > −1,

a(x) =

{
1 for x < 0,
2/3 for x > 0.

In this example, we record approximate L1 errors defined with respect to a reference
solution, and convergence rates to study the performance of the numerical schemes.
The L1 error is defined by

e1 := ∆̃x
MR∑

j=ML

m∑
i=1

∣∣φ̃n
m(j−1)+i − φn

j

∣∣,



INHOMOGENEOUS KINEMATIC TRAFFIC MODEL 35

Figure 11. Example 4 (bottleneck problem, after [25]): simulated
car density. Plots (a, c): first-order schemes (HW, Godunov and
EO). Plots (b, d): second-order schemes (MUSCL/RK versions of
HW, Godunov and EO). Plots (a, b): solutions at t = 0.1. Plots
(c, d): solutions at t = 0.5.

where φ̃n
l̃

and φn
l are the reference solution at x = xl̃ and the approximate solution

at x = xl, respectively, at t = tn; m is the value of ∆x of the approximate solution
divided by that of the reference solution; ML andMR are the indices of the positions
between which we calculate the errors of the numerical approximation; and ∆̃x is
the spatial discretization parameter of the reference solution.

Here and in Example 5, the reference solution was calculated using the MUSCL-
RK versions of the Godunov scheme with ∆̃x = 1/960. For the reference solution
and all other computations of this example, we use λ = 1/3.

Figure 10 shows the plot of the reference solution computed until t = 4, using
the MUSCL/RK version of the Godunov scheme. Since for x ∈ [−1, 0],

f(aL, φ0(x)) = 0.2244 > 1/6 = max
φ∈[0,2/3]

f(aR, φ),

a formation of traffic jam from t = 0 can be observed.
Figures 11 and 12 show the numerical simulation of the car density at t = 0.1, t =

0.5, and t = 1, t = 4, respectively, produced by the first-order HW, Godunov and
EO schemes, and the MUSCL/RK version of the HW, Godunov and EO schemes.
Table 1 displays the approximate L1 errors for this example, measured over the
interval [−1, 1].

It is clear from Figures 11 and 12 that Godunov and EO schemes and their
second order versions are less dissipative than their counterparts based on the HW
flux. Table 1 corroborates what we see in the plots, specifically, smaller errors and



36 BÜRGER, GARCÍA, KARLSEN, AND TOWERS

Figure 12. Example 4 (bottleneck problem, after [25]): simulated
car density. Plots (a, c): first-order schemes (HW, Godunov and
EO). Plots (b, d): second-order schemes (MUSCL/RK versions of
HW, Godunov and EO). Plots (a, b): solutions at t = 1. Plots (c,
d): solutions at t = 4.

faster rates of convergence for Godunov and EO schemes and their second order
versions than the HW flux based schemes. Moreover, we observe that at t = 4
Godunov and EO schemes give the same results, the same for their second order
versions. It is interesting that for t = 0.1 and t = 4 the Godunov scheme, which
is formally first order accurate, has smaller errors than the second order accurate
version of the HW scheme.

7.5. Example 5 (bottleneck problem with zero initial condition, after
[25]). Example 5 is another bottleneck problem studied in [25]. As in Example 4,
the original problem is considered as an initial and boundary problem, but here
we treat it as a Riemann problem. We use the flux f(a, φ) = φ(1 − φ/a) with the
same parameter a(x) as in Example 4, but now our initial condition is φ0(x) = 0.4
for x < −1 and φ0(x) = 0 for x > −1. Figure 13 shows the plot of the reference
solution computed until t = 10, using the MUSCL/RK version of the Godunov
scheme. Since for x < −1,

f(aL, φ0(x)) = 0.24 > 1/6 = max
φ∈[0,2/3]

f(aR, φ),

also in this case there is a formation of traffic jam from t = 2 approximately.
Figures 14 and 15 shows the numerical simulation of the car density at t = 0.1,
t = 2, and t = 4, t = 10, respectively, produced by the first-order HW, Godunov and
EO schemes, and the MUSCL/RK version of the HW, Godunov and EO schemes.
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t = 0.1 t = 0.5 t = 1 t = 4

Scheme J e1 Conv. e1 Conv. e1 Conv. e1 Conv.

= L
∆x

10−3 rate 10−3 rate 10−3 rate 10−3 rate

20 80.617 131.992 128.608 33.215
40 52.017 0.632 73.557 0.844 72.633 0.824 16.434 1.015

HW 80 31.472 0.725 39.635 0.892 41.159 0.819 8.044 1.031

160 17.052 0.884 20.509 0.951 20.745 0.988 3.850 1.063
240 11.779 0.913 13.556 1.021 13.511 1.058 2.453 1.112

320 9.031 0.923 9.974 1.067 10.006 1.044 1.755 1.164

20 79.916 113.196 115.266 32.989
40 49.387 0.694 57.937 0.966 57.914 0.993 16.321 1.015

Godunov 80 27.255 0.858 28.418 1.028 28.628 1.016 7.988 1.031
160 13.412 1.023 13.770 1.045 13.878 1.045 3.822 1.063
240 8.805 1.038 8.850 1.090 8.901 1.095 2.434 1.113
320 6.367 1.127 6.394 1.130 6.446 1.122 1.741 1.165

20 80.222 113.617 112.981 32.989

40 49.705 0.691 57.965 0.971 57.926 0.964 16.321 1.015

EO 80 27.407 0.859 28.444 1.027 28.695 1.013 7.988 1.031
160 13.429 1.029 13.802 1.043 14.005 1.035 3.822 1.063
240 8.867 1.024 8.904 1.081 8.910 1.116 2.434 1.113

320 6.403 1.132 6.479 1.106 6.491 1.101 1.741 1.165

20 79.118 122.294 123.847 33.101
40 49.852 0.666 63.638 0.942 63.955 0.953 16.377 1.015

HW 80 29.141 0.775 31.380 1.020 27.794 1.202 8.015 1.031

MUSCL/ 160 14.827 0.975 13.346 1.233 12.888 1.109 3.834 1.064
RK 240 9.844 1.010 8.290 1.174 8.031 1.166 2.440 1.114

320 7.213 1.081 5.942 1.158 5.842 1.106 1.743 1.169

20 78.168 107.400 108.829 32.988
40 47.304 0.725 53.818 0.997 53.107 1.035 16.321 1.015

Godunov 80 26.029 0.862 25.989 1.050 26.019 1.029 7.987 1.031

MUSCL/ 160 12.483 1.060 12.444 1.062 12.492 1.059 3.820 1.064
RK 240 8.067 1.077 7.931 1.111 7.979 1.105 2.431 1.115

320 5.732 1.188 5.677 1.162 5.722 1.156 1.736 1.170

20 78.452 107.840 109.870 32.988

40 47.597 0.721 53.874 1.001 53.196 1.046 16.321 1.015
EO 80 26.176 0.863 26.034 1.049 26.040 1.031 7.987 1.031

MUSCL/ 160 12.506 1.066 12.454 1.064 12.542 1.054 3.820 1.064

RK 240 8.131 1.062 7.944 1.109 7.996 1.110 2.431 1.115
320 5.772 1.191 5.700 1.154 5.742 1.151 1.736 1.170

Table 1. Example 4 (bottleneck problem, after [25]): approxi-
mate L1 errors.

It is clear from Figures 14 and 15 that Godunov and EO schemes and their
second order versions are more accurate than those based on the HG flux.
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