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Abstract: We consider a piecewise smooth solution to a scalar conservation law, with possibly
interacting shocks. We show that, after the interactions have taken place, vanishing viscosity
approximations can still be represented by a regular expansion on smooth regions and by a singular
perturbation expansion near the shocks, in terms of powers of the viscosity coefficient.

1 - Introduction

Consider a strictly hyperbolic system of conservation laws
ur + f(u)y =0, (1.1)
together with its viscous approximations
uj + f(u®)y = eul, . (1.2)
For a fixed initial data with small total variation

U(Oa ) :ﬂ(')a (1.3)

the convergence u® — u, as ¢ — 0+, was proved in [BB2]. An estimate on the convergence rate
[|u® (t) — u(t)”Ll(]R) =0(1)- (t+ 1)v/e Ine,

was later provided in [BY]. In the scalar case, more detailed results can be found in [NT], [TT],
and [TZ]. For related results on the stability of viscous shocks we refer to [FSe], [Ho], [MZ] and
[Z].

Also for computational purposes, it is interesting to examine whether viscous approximations
admit a power series expansion in the viscosity coefficient €. In the case of a Hamilton-Jacobi
equation on a bounded open domain  C IR™, Fleming and Souganidis [FS] showed that the
solutions of the elliptic problem

(1.4)

—eAu® + H(z,Du®) + u® =0, for z € 2,
u®(z) =0, for z € 092,
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admit an asymptotic expansion of the form
uf = u+evy + 2y + - + vy + o(eF). (1.5)

Here the leading term u is the viscosity solution of the first order equation, formally obtained by
setting e = 0 in (1.4). The expansion (1.5) is valid restricted to suitable subsets of the domain
Q, where the limit solution u is smooth and can be constructed by the method of characteristics.
This result was later used in [SD] to derive a higher order numerical method for Hamilton-Jacobi
equations.

The recent paper [SX] has established a similar result in the context of a scalar conservation
law. Namely, assume that the limit solution u of (1.1), (1.3) is smooth on a region  in the t-z
plane bounded by two characteristics, say,

Q= {(t,m); te0,7], a+ f'(u(a))t<z< b—i—f’(ﬂ(b))t},

with a < b. Then one can determine functions v; such that the expansion (1.5) is uniformly valid
on every compact subset of 2. Indeed, the analysis on [SX] shows that the presence of an arbitrary
number of (possibly interacting) shocks outside the domain © does not affect the validity of the
expansion in the region where v is smooth.

For discontinuous solutions, the viscous approximations clearly cannot converge uniformly on
a neighborhood of a shock. As shown by the analysis of Goodman and Xin [GX], to represent the
u® one needs to introduce a shock layer, described in terms of a stretched variable n = ¢~! (x—g(t)).
The viscous solution u° is obtained by matching the outer expansion (1.5) with an inner expansion
of the form

Here Uy (t,) is the unique viscous shock profile connecting the states u(t,&(¢) — ), u(t,£(t) + ) to
the right and to the left of the shock. The analysis in [GX] applies to isolated, non-interacting
shocks. It is of interest to understand whether a similar inner and outer expansion can still be
performed after several shock interactions have occurred. The present paper provides a positive
answer in the case of a scalar conservation law.

More precisely, we consider a solution u to the conservation law (1.1) which contains arbitrarily
many shock interactions, until at a certain time 7 an isolated shock emerges. In addition, we
consider a second solution 4 containing one single shock, choosing the initial data @(0,-) in such
a way that @ = u for ¢ > 7. Then we show that for ¢ > 7 the viscous approximations u® become
exponentially close to u* as e — 0. Indeed,

Hug(ta ) - aE(ta )|

for every k,v > 1. As a corollary, since u°(¢) admits a singular perturbation expansion, so does
u®(t) for all t > 7.

= o("),

Ccv

2 - The main result

Let the scalar conservation law (1.1) have a smooth, convex flux, so that f”(u) > k > 0 for
all u. For a given time 7 > 0, consider a bounded solution u = u(¢, z) which contains an arbitrary
number of interacting shocks for ¢ < 7, but is piecewise smooth with one single shock for ¢ > T,
say located along the curve z = £(t). We write

+ . .
= 1 t
u™ (1) H?{bi“( ,T),
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for the left and right limits of w across this shock, and let
a=(t) = &(1) = [/ (u™ (7)) (1 — 1), ot (t) = &(r) = f'(u (7)) (T = 1),

be the minimal and maximal backward characteristics through the point (T, ¢ (T)) More precisely
(see fig. 1), we assume that u is piecewise smooth outside the triangular domain bounded by the
two backward characteristics impinging on the shock at time ¢t = 7 :

A= {(t,m); 0<t<T7, z7(t) <$<x+(t)}.

By suitably changing the initial data, we can then construct a second solution @ which is
piecewise smooth with one single shock for all times ¢ > 0, and moreover it coincides with u for
t > 7. Indeed, this can be achieved by choosing a suitable piecewise smooth initial condition @ (0, )
such that

@(0,z) = u(0, ), z ¢ [z7(0), z1(0)], (2.1)

2+ (0) 2+ (0)
/ (0, z) dx = / u(0,z) dx . (2.2)
T z~(0)

—(0)

u(0)

x (0) xT(0) X

Figure 1: The solutions with initial data u(0,-) and (0, ) coincide after time ¢ = 7.

The following theorem shows that, for any time ¢ > 7, the viscous approximations to the two
solutions v and u are extremely close. In particular, any singular perturbation expansion valid for
u° remains valid for u® as well.



Theorem 1. In the above setting, let u® and u° be the solutions to the viscous conservation law
ui + f(u")e = eugy, (2.3)

with initial data
UE({L‘,O) :U(ZE,O), ff(;]j’(]) :ﬂ(:v,O), (24)

related as in (2.1)-(2.2). Let T be the time when the single shock forms in the limit solution u.
Then, for any integers k,v > 0, one has the high order convergence

lim &%

€ ~5‘
e—0+

Njw® —a

coiy =0 (2.5)

uniformly on every compact domain 2 CC {(t,x) s t>T, € R”}
We sketch here the main ideas in the proof. Details will be worked out in Section 3. Call
U™ =u(r, &(1) - ), Ut =u(r, &(1) +), (2.6)

the left and right limits of the non-viscous solution u across the shock, at time ¢ = 7. By possibly
performing the linear rescaling of coordinates

pop AN,

and adding a constant to the flux f, it is not restrictive to assume that

fUt)y=fU")=0, (2.7)

so that the velocity of the shock at time ¢ = 7 is S(T) = 0. In the t-x plane we consider a rectangle
of the form

Q=[r, ma] x [£(T) — b0, &(7) + o] ,

with 7y = 74 £- Cy 8, for £ = 1,2,3,4. Notice that, since £(7) = 0, given any constant Cy > 0 we
can choose 9y > 0 small enough so that

a=E(1) — 8 < E() < £() + 0o = b. (2.8)

for all t € [r, 7+ 4Cydp]. We recall that the asymptotic convergence result proved in [SX] shows
that the solutions u® and @° are extremely close, away from the shock. In particular, for every
v,k > 1 one has

sup ||u®(t,) — @ (t,-)| = 0(1)-~. (2.9)
t€[T,74]

C¥ (IR\[a,b])
Here and in the sequel, we use the Landau symbol O(1) to denote a uniformly bounded quantity.

To estimate the distance u® — ¢ inside the interval [a,b], we shall use a homotopy method.
Define u¢+? as the solution of (2.3) with interpolated initial data

u?(0,2) = uf (0,z) + (1 —0)a°(0,2). (2.10)

Moreover, call



A key step in the proof is to establish the asymptotic estimates
b
/ ‘ZE’G(Tg,.’L‘)‘ dz < Cye®, (2.11)
a
for 73 = 7 + 3Cydy as above and every integer k > 1. Integrating w.r.t. 6 € [0,1], from (2.11) it
follows
b b
/ "LLE(T3,£E)— (13, ‘dm < /
a a

< sup / ‘ZEGTg, ‘d:v<Ck5

1

i 20 0 (15, 2)dO| dx

(2.12)

Using the regularity of the solutions 4%, from the family of integral estimates (2.11), at the later
time 74 > 73 on can derive pointwise estimates of the form

=0(1)- €, (2.13)

|25 (74, )] v ([a,b])

for every k,v > 1. Again integrating w.r.t. € [0, 1], these bounds in turn imply

=0(1)- €. (2.14)

0" () = () o oy

Given the compact domain € in the t-x plane, we can now choose dg > 0 so that
Q C [14,00[ XIR. (2.15)

The bounds
O(1)- ", (2.16)

[ (74, ) = % (74, ) Cv(R) —

which follow from (2.9) and (2.14), will finally imply (2.5).

Observing that each 25 provides a solution to the linearized conservation law

2 + [fl(ug’e)z]m = EZzx (2'17)

to prove the key estimate (2.11) we consider the time intervals with extremal points 7 < 7y < 75 <
73, as illustrated in fig. 2.

During the first interval [, 71], following the analysis in [BD], we show that a viscous shock is
formed. Hence, for all t € 11, 73] and € > 0 small enough, each solution u®-?(t,-) already contains
one large viscous shock, say located around the point £5-%(¢). We can identify a thin region around
the shock, of the form

Acp = {(t,x); telrn,7], z€ [{E’e(t) —Ce, &%)+ Ce]} ,

such that, for (¢,z) € [r1, 73] X [a, b], outside this region we have

U~ - U"]

‘ug’a(t,x) -U7| < -

if z< &%t - Ce, (2.18)

U~ - U]

lusb(t,z) —U*| < -

if > ¢&5%(t) + Ce. (2.19)



b X
Figure 2: A viscous shock solution ¢ and an infinitesimal perturbation 25-¢.
At time ¢ = 71 a viscous shock has formed. At ¢ = 75 most of the perturbation
lies inside a small interval I(72) of length 2¢”. When ¢ = 73 nearly all the
positive part of the perturbation 2% has cancelled with the negative part.

Next, we examine the behavior of the perturbation z = 25 during the remaining time interval
[T1,73]. By (2.18)-(2.19), the characteristics point strictly toward the strip A, g. Indeed,

f'(ue’e(t,m)) ~f(U)>0 for x < &59(t) — Ce,

f(u(t,2)) ~ f(UT) <0 for z > €£9%(t) + Ce.

After some time, for ¢ > 75, we can show that almost all the perturbation is contained inside
a strip of width 2¢7 around the viscous shock, with v = 3/4. Namely, introducing the interval

I(t) = [¢°() — &7, £0(t) + 7],

around the point £5¢, for any k& > 1 we have
/ |2(t, )| dz = O(1) - €F. (2.20)
R\I(t)

It now remains to understand what happens inside the interval I(¢) containing the shock.
According to (2.1)-(2.2), the difference between the two solutions u® and @° has zero total mass.
This implies

/OO 2(t,z)dr =0. (2.21)
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We claim that, during the interval [7o, 73], almost all the positive mass in z = 2°¢ gets cancelled
with the negative mass. To prove this, we divide [73, 73], into equal subintervals of length £2/3,
inserting the points

ti=To+j-3, j=0,1,...,N.. (2.22)

A key step in the proof is to show that

b b
2(tjy1,z)|dz < a- 2(t;,x)| dz (2.23)
j j

for some constant « < 1 and all j =0,1,..., N. — 1. From (2.23) it follows

b b
/ ‘Z(Tg,{]}‘)‘ dx < aNE / ‘Z(T2ax)‘ dz < aNE ||U(0, ) - 12(0, )”Ll(R) = O(l) ' Ekﬂ (224)

for every k > 1. Indeed, N. = (73 — 7'2)/62/3, hence V¢ is an infinitesimal of higher order w.r.t. ¥
for any £ > 1.

We conclude this section with some intuitive explanation about the inequalities (2.23). Calling
[(t,z,s,y) the fundamental solution of the linear parabolic equation (2.17), we can write

Z(tj+1,$) :/F(tj+1,$,tj,y) z(tjay) dy .

Notice that I'(¢, -, s, ) can be interpreted as the probability density at time ¢ of a random particle
which is located at the point y at the initial time s. The motion of the particle is governed by the
stochastic diffusion process

dY = f'(u*?(t,Y ())) dt + V2e dB, (2.25)

where B denotes a Brownian motion.
Counsider the two sets

AF = {m €I(t), #(tj,z)> o}, A7 = {:v €I(t), 2(tj,z)< o}.

Since z(t;,-) has zero total mass, and almost all of this mass is concentrated inside I(¢;), we can
write

z(tj-l-lax) ~ /A"’ F(tj+17$7tjay) ‘z(tjay)‘ dy - /A_ F(tj+1axatj7yl) ‘z(tjﬂyl)‘ dyl : (226)

j i
For any two points y,y’ € I(¢;) we now have the key inequality
/ ‘F(tj+17 Z, tja y) - F(tj+1a Z, tja yl)‘ dx

<2 (1 - Prob.{Y(t) =Y'(t) for some ¢ € [t;, tj+1]}> ’ (2:27)

<2«

for some constant @ < 1. Here Y,Y’ are two independent random paths of the diffusion process
(2.25), starting from the points y,y’ € I(t;) respectively. Applying (2.27) to the case where y € A;r
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and y' € A7, from (2.26) we see that a nontrivial amount of cancellation occurs within each time
interval [¢;, t;4+1]. Indeed, neglecting terms which are exponentially small as € — 0, we have

/‘z(tﬂl,m)‘dm <a (/ ‘z(tj,y)‘der/ ‘z(tj’y/)‘dy/> .
AY AT

Together with (2.20), this yields the estimate (2.23).

3 - Proof of the theorem

The proof of Theorem 1 will be given in several steps. As remarked in the previous section,
we can assume that (2.7) holds, so that the shock has zero speed at the initial time ¢ = 7 when it
is formed.

1. Fix times 7y = 7 + 4T, with £ = 1,2, 3,4, choosing T = Cydg > 0 so that
T <14 <min {t; (t,z) €Q for some z € R}. (3.1)

The precise values of the constants Cj, g will be determined later.

It is convenient to rescale coordinates, and consider t' = (t — 7)/e, ' = (x — &(7))/e. Observe
that the function v (t,z) = u® (T +et, &(1)+ 5:5) provides a solution to the uniformly parabolic
Cauchy problem

vy + f('U)a: = VUzz » (32)
v°(0,z) = u® (1, &(1) +ex) . (3.3)

It is useful to keep in mind that, as € — 0, the derivatives of the functions 4 become arbitrarily
large: ||uS||Le, ||u5,|lLe — oc. However, the derivatives of the rescaled functions v® remain
uniformly bounded.

2. As in [BB1, BB2], in connection with any solution of (3.2) one can consider the planar curve

v(t,z) = <Z,(é?)) = ( f(v(t’;)(t’f)vm(t’x)) : (3.4)

This curve evolves in time, moving in the direction of its curvature. Indeed, along each branch
where v, = f(v) — w has constant sign, the function w = w(¢,v) satisfies the parabolic equation

wy = (w — f(v))wa. (3.5)

Observe that, if v is a viscous travelling wave solution for the equation (3.2), then the corresponding
curve 7 is a straight line, and does not vary in time. The speed of the travelling wave is given by
the constant slope dw/dv. More generally, given any solution v = v(¢, z) of (3.2), for a fixed value
vp, the speed of the level set ¢ — z((¢) implicitly defined by

v(t, zo(t)) = vo,

is given by
d

aiv(](t) = %w(t,vg). (3.6)
8



3. Asin (2.6), let U, U™ be the left and right limits of the inviscid solution u across the shock, at
time ¢ = 7. Since we are assuming that the flux function is strictly convex, we can find intermediate

states
Ut <Vt <Vo< V™ <U",

and a constant 1y > 0 such that

o £(u) < 2 it ow< VY,
F=0. {f’(U) Som i us V- (37)

Since the equation (3.5) is uniformly parabolic when w is bounded away from f(v), we can find
71 > 0 such that the following holds. If w = w(¢,v) is any solution of (3.5) such that

lw(t',v)] <m forallt' e [t—1,1, ve[VT, V], (3.8)

then 5
|t Vo)| < o (3.9)

v

4. Given two families of viscous solutions u®, 4, to estimate the distance between the correspond-
ing rescaled solutions v°,#° we shall use a homotopy method. Define v* as the solution of (3.2)
with interpolated initial data

v5(0,2) = Ou (1, &(T) +ex) + (1 — 0) @ (7, &(T) +ex) . (3.10)
Moreover, call
0
€.0 - €,0
z w0 (3.11)

Then z = 259 satisfies the linear equation
2+ [ (v*f) 2| = Zeas (3.12)
together with the initial condition (independent of 6)
2(0,2) = v (1, &(7) +ex) — (7, &(T) + ex) . (3.13)

Observe that, for all ¢ > 0 and all €, 6, the assumptions (2.1)-(2.2) imply

/ 0t x)de = / 25000, z)dx = 0. (3.14)

— 00 —0C

5. We recall that the stretching of time and space variables defined in Step 1 transforms the
domain

{(t,x); ter,m+4T], =z € [5(7’)—60, §(T)+50]},

into the domain 5
{(ta); tefoar], o) <2},
€

with T, = T'/e.



Away from the shock, i.e. for |z| > d¢/e in the stretched coordinates, the result in [SX]
guarantees the high order convergence v® — ¢ = O(e¥) for every k > 1. The heart of the matter
is to show that

60/6
/ 250 (3T%, 2) | dw = O(F), (3.15)
—(50/6

for every integer k > 1 and uniformly for 8 € [0,1]. As soon as the integral estimate (3.15) is
proved, one can easily achieve similar pointwise estimates, because the coefficients f'(v°-?) of the
equation are uniformly smooth. The strategy for proving the bounds (3.15) can be outlined as
follows.

(i) At time ¢t = T, = T /e each solution v*>? develops a large viscous shock. In the (¢,v) variables,
the graph of the corresponding curve « at (3.4) becomes very close to a straight segment.
More precisely, for ¢ > T, the functions w?(t,v) satisfy

|w? (t,v)| <m forallt >T., ve VT, V7], (3.16)

Hence, by (3.8)-(3.9)
0
|50 (1. Vo) < - (3.17)
ov
We can thus define the approximate location ¢5:9(¢) of the viscous shock, in terms of the

identity
v (L, 0(1) = V. (3.18)

According to (3.17), this viscous shock moves with speed

£9(8)| < mo. (3.19)

(ii) At time ¢t > 27., nearly all the mass in 25 is located within the strip

I0(t) = [90(t) — e €50 () + 711 (3.20)

(iii) During the time interval [2T., 37:] nearly all the positive mass of 25¢ is cancelled with the
negative mass. As a consequence, at time ¢t = 3T, the asymptotic estimates (3.15) hold.

6. We show here that each solution v*? develops one large viscous shock within time 7.. This
process of shock formation has been analyzed in detail in [BD]. The main differences between
the situation analyzed in [BD] and the present one are the following: (i) Here we are assuming a
strictly convex flux. This simplifies the proof, because we can use the classical one-sided Oleinik
estimates on the gradient of the solution. (ii) We are not assuming anything about the behavior
of the solution v*?(t,z) for + — #oo. Instead, we know that, at the endpoints of the interval
[—do/e, do/¢], the function v=*? takes values very close to U~, UT. Moreover its derivative is

vl = eu? = O(1)-«. (3.21)

In the following, n; is the constant introduced at (3.8). We choose §; > 0 small enough so
that

ful < I, (3.22)
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whenever ‘w - f(u)‘ < 4y for some u such that either |u — U~| < 6; or |[u — UT| < 6;. Of course
this is possible because f(U~) = f(U*) = 0.

As in (2.8), consider an interval [a, b] containing the point £(7) in its interior, and define the
stretched interval I. = [a., b.] according to

g =80 _ % LGS
9 £ € €

Choosing d2 > 0 and the interval [a, b] small enough, in the rescaled variables we shall have

01

v (t,ac) — U~ |+ |00 (t,b.) = UT| < 2 for all t € [0,02/€]. (3.23)

Since we are assuming f” > k > 0, after time 7 in the original variables the function u®? satisfies
us? < (k7)71. Hence, in the stretched variables, v5:? < e(k7)~1. Together with (3.23), this yields

5 26
U+—3—F§v5’9(t,m)§U_+El+ﬁ—:, (3.24)

valid for 0 < ¢ < §3/e and |z| < §p/e. Choosing §g sufficiently small, we can thus achieve

vl (t,z) € [UT =61, U™ +64]. (3.25)
Next, we claim that, if (2.8) holds, then the curve v = 4% in (3.4) corresponding to v+
satisfies
10t0) € Ay, =70l (u, fw)+8); we Ut b, U +a), <DL (3:26)
whenever Cobe Crd P
000 000 ~[_% %o
t e [ 26 7 € ] ? x E IE - [ e ? € } 7

and € > 0 is sufficiently small.

Indeed, for z = +8y/e we have v5? = O(e), and the estimate (3.26) follows from (3.25). To
prove that (3.26) holds for all intermediate values of x, we need to construct suitable upper and
lower solutions for the parabolic equation (3.5).

We first observe that, since f”' > k > 0, the function

w (t0) = f(v) — —

Kt
is a lower solution of (3.5). Hence every branch of the curve 7 satisfies

w(tn) > w(t,0) = ) — = > f(o) = I, (3.27)

for t > 4(kny)~t. For any choice of Cy, &y, this is certainly true when t > Cydy/2¢, with € sufficiently
small.
Next, let f* be the affine function which coincides with f at the two points v = U™ — §; and
v = U~ + §;. Moreover, consider the polynomial p(v) = A + Bv — (v2/2), choosing the constants
A, B so that
p(U* —61) =p(U™ +61) =1,

11



For v € [UT — 61, U™ + 41], consider a function of the form

wt (o) = 15 (0) + L+ B(1) p(v).

Computing

wi = B(t) p(v), (wt = f(0)) 2w, < = (B(t) p(v))*B(t)

we deduce that the function w™ is an upper solution of (3.5) provided that
B(t) p(v) > —p3(t) p?(v) t>0, velUt =6, U +4d].

Since p(v) > 1, this is certainly the case if B> —f33, hence if B(t) = t=1/2,

Concerning the endpoints, when z = +6y/e we already know that f(v) — w = v5% = O(1) - e.
By a comparison argument, the portion of the curve w = w(t,v) corresponding to the solution v+
as x € I, lies entirely below the upper solution w™. For ¢ sufficiently large we thus have

w(t,v) < wt(t,v) < fT(v) +t Y% max {p(u); ue R} + 1—1 (3.28)

In particular, this is true when ¢t > C(dg/2¢, for e sufficiently small. This achieves the proof of
(3.26).

We now analyze the second phase of shock formation. We claim that, if (2.8) continues to
hold, then the curve v = v°¢ corresponding to v*-? satisfies

Y(tw) € g, = {(ww); welU* —a, U™ +6], |uwl <m}. (3.29)

for all ¢t > [0060/5, 40050/5] and z € I. = [—dg/e, 0o/e]. Indeed, this result follows from the
analysis in [BD], which we briefly recall here. Let n; > 0 be given and assume that the curve «y
already lies in the convex set As, at (3.26) and that the values of 7 at the endpoints z = +4d¢/e
are sufficiently close to (Ui, f(Ui)). Then, according to Lemma 5 in [BD], the additional length
of time At needed to achieve the inclusion (3.29) grows linearly with the length of the interval
I. = [—d¢/e, do/e], say At < C -2dp/e.

To achieve the desired estimate (3.29) for all ¢ > 0 sufficiently small, we thus choose the
constants in the following order: 71,1, Cy, and finally g, in such a way that (2.8) is satisfied for
all t € [T, T+ 40050]

For future purpose, it is convenient to choose here the constant Cj large enough so that it
satisfies the additional inequality

Co > 8/mp. (3.30)

7. Having proved that, after time T. = Cydg/e, each solution v*? contains a large viscous shock,
we now study the behavior of the first order perturbations z°?. The solution of the linear equation
(3.12) can be expressed in term of the fundamental solutions. Indeed, for 0 < s < ¢ one has

2(t,x) = /FE’B(t,m,s,y) 2(s,y) dy. (3.31)

Here I'%(t,z,s,y) is the fundamental solution of (3.12) corresponding to a Dirac mass initially
located the point y at time s. It is useful here to observe that, for ¢t € [7, 7+4Cydg], the location of

12



the shock in the original solutions v = 4 remains strictly inside the fixed interval [—dg, dp]. By the
analysis in [SX] we know that, for ¢t € [0,47.], nearly all the perturbation lies within a bounded
interval:

/ ‘zg’e(t, m)‘ dz = o(e¥), (3.32)
|z|>(d0—c)/e

for every k > 1. We can thus assume that, in all rescaled solutions v*¢, the viscous shocks are
centered at points ¢5¢ such that

Jo — Jo —
4 +ce! = — 06 C <ot < OTC = b —ce Y, (3.33)

for some constant 0 < ¢ < dy. In this step we show that, as e — 0, for ¢ € [27., 47.] we have the
stronger asymptotic estimate

/| . ) ‘ze’e(t,m)‘ dz = o(e¥). (3.34)
r—£:0(t)|>e—1/4

This shows that nearly all of the perturbation 25 is concentrated in a narrow strip around the

viscous shock in v®+%. To establish (3.34), consider any point y € [a., b.]. Because of (3.31)-(3.32),
it suffices to show that, as ¢ — 0,

/| R e (2T, 2, T., y) dz = o(e"). (3.35)
x—E59(t)|>e—

uniformly as the initial point y varies in the interval [aE +ce7t, b, — cs_l].

2T, +

T,

€ a

Y, b, X

Figure 3: Outside a small strip of width O(1) the characteristic speed points toward the shock.

We now recall that, by the choice of VT,V ™ and n9,n; at (3.7)—(3.9), we have

1£0(t)| < o, (3.36)
€,0 o (. e,0 Z 27’0 if z € [(Lg 3 56’6 - p] 9
Xty ) = f' (v (t,m)){ < o, it o ¢4 p. 0. (3.37)

for some constant p and all ¢ € [T, , 4T].
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To prove (3.35), we use the representation I'*"Y = Z,, where Z provides the solution to the
linear parabolic Cauchy problem

0 if <y,

1 if z>4y. (3.38)

Zy + XNV (t,2) Zy = Za Z(0,z) = {

We begin by examining the special case where y = y; = a. + ce~!. Thanks to (3.30), we can
construct a smooth path ¢ — o(¢) such that (see fig. 3)

U(TE) =Y, 0(2TE) = 5670(2TE) — P U(t) € [Oa 770/2]a for all t € [TE ) 2TE] . (3'39)

For t € [T., 2T.], consider the two functions (see fig. 4)

Zy(ta) = e(no/2)(z=0o(t)) L BT. if z<o(t),
1\¢%, - 1+/BTE if «'L'Za(t)a
[ B(t-T.) it z<a.,
Bl ) = {mt “T)+B—-a)?2 i z>a..
With ’I’]O C
R

Set yi = (a- + y1)/2. In connection with the parabolic equation in (3.38), a straightforward
computation now shows that

e 7 is an upper solution for z € [a., oo,
e 75 is an upper solution for z €] — 0o, y1],
o Zy(t,a.) < Zyi(t,a.), while Z1(t,y}) < Za(t,v}).
We conclude that the function
Z%(t,z) = min {Zl(t,m), Zg(t,.’L‘)},
is an upper solution of the Cauchy problem (3.38). In particular, as ¢ — 0 it satisfies the asymptotic

estimate
Z(2T., &02T) —p—e'*) < 2V (2T, o(2T.) —e7V/*)

(=B { B2} R - o,

for any positive integer k. Next, consider the other extreme case where y = yo = b, — ce™%. An
entirely similar estimate yields

Z(2T., &902T) +p+e %) > 1 - o),
for any k£ > 1.

Finally, consider any initial point y € [y, y2]. By comparison with the two above cases, we
conclude that the corresponding solution of the Cauchy problem (3.39) satisfies

Z(2T., €0(2T.) —p—e™M*) = o(e), Z(2T., €0 2T.) +p+e M4 > 1-o(¥). (3.40)

14



a y y ) X

Figure 4: Two upper solutions for the parabolic equation (3.38).

Recalling that T'*¢ = Z,, from (3.40) we deduce (3.35), as claimed.

8. In preparation for the next comparison estimate, we study a specific Cauchy problem. Let
M > ng > 0 and p > 0 be given. Define the points

P =74, Q- =244 p,
and consider the equation
— _ ) 7o if =ze [Oa 2P€]7
Wi+ Mx) Wy = Wey Mz) = { Y it x¢[0, 2P, (3.41)
with initial condition
_Jo it z<P;,
W(0,z) = { 1 if z>P.. (3-42)

We claim that, as € — 0, at time ¢ = ¢~'/3 the solution satisfies
W (™3, 0) = o(c"), W3, Q) <a<l, (3.43)

for some constant « independent of € and any £ > 1.
The first estimate in (3.43) is proved by constructing a suitable supersolution, as in the previous
step. Set
O’(t) - {Ps+(770t/2) lf le [01 2PE/770]7
2P, if te[2P./ny, e~ 1/3].

For t € [0, £~'/3], consider the two functions (see fig. 4)

(no/2D)(a=a(t)) 4 ge—1/3 -
_Je + Be it z<o(t),
Walt.x) = { 14 pe=1/3 it x>0,
| pt if <0,
W2(t’$)_{5t+ﬁx2/2 i z>0,

with
ﬁiexp{ - %)-5_1/4}.
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In connection with the parabolic equation (3.41), a straightforward computation now shows that
e W is an upper solution for z € [0, oo,
e W5 is an upper solution for z €] — oo, 2P.],
o Wy(t,0) < Wi(t,0), while Wy(t, P.) < Ws(t, P.).
We conclude that the function
W (t,z) = min {Wi(t,z), Wa(t,z)},

is an upper solution of the Cauchy problem (3.41). Therefore, as ¢ — 0 we have the asymptotic
estimate

W3, 0)<Wt(Ee 3, 0) = 5_1/3-exp{ - 172—0-5_1/4} = o(e").

for any positive integer k.
To prove the second inequality in (3.43) we observe that, when ¢ > 2P./n and o(t) = 2P,

one has
14 em/2

W+(t7 2PE_1) S Wl(ta 2PE_1) = €_n0/2+,65_1/3 < 5 ,

for all € > 0 sufficiently small. On the domain
. —1/3 M -1/3
D= {(ta); tel2P /o, e, 2 22P —1+ (t-c)},
consider the function
8 . * M —-1/3
Wo(t,z) =14 € — " exp —2M(m—(2PE—1)—7(t—6 ) .

with §* = (1 — e~"/2)/4. For ¢ > 0 sufficiently small, one checks that the function W* provides
an upper solution to (3.41) on the domain D. Moreover, W* > W on the parabolic boundary of
D. We thus conclude that

W (t,z) < min {WT(t,2), Wu(t,m)},
for all (¢,z) € D. In particular, this implies

W(5_1/37Q6) < Wu(f’:_l/aaQE) = 1+6_,3*‘€_2M(1+p) < «, (344)

with 12
a=1-— & 6_2M(1+p) <1
5 b

and for all € > 0 sufficiently small.
9. We now divide the time interval [27;, 37.] into equal subintervals, inserting the times

tj = 2T, +j-e /3, j=0,1,...,N..
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We also define the intervals
I = [650(t) —p—e 4, ¢0(t)) + p+ 7M. (3.45)

We claim that, for each j and every couple of points y,y" € I;_; one has
/ P9t 2, t;-1,y) do = o(e"), (3.46)
R\I;
for all £ > 1, and moreover
/ ‘Fg’a(tj, x, tj—l, y) — FE’e(tj, x, tj—la yl) ‘dib S 20 . (347)
R

To prove (3.46), define

o459 (b1 4t)—p—2e71/4
Y(t,z) = /

FE’G(tj_l +1, ZBI, ti—1, y) dz'.

— 00

Observe that Y is a lower solution of the Cauchy problem (3.41)-(3.42). Hence ¥ < W. In
particular, taking = = 0 we conclude

£,60 N —1/4
£5°(tj)—p—2e
/ Te0(t),2,tj—1,y)de = Y(e71/%,0) < W(e7/3,0) = o(e"),

— 00
for any k > 1. By reversing the direction of the z-axis we obtain the symmetric estimate
o0
/ FE’e(tj,m,tj_l,y) dz = o(e") .
£2:0(t))+p+2e 1/t

Together, the two above estimates yield (3.46).
To prove (3.47), assume y < y’ and consider the function
T* (t, .’L‘) = FE’G(tj_l + 1z, tj—la yl) — FE’G(tj_l + 1, x, tj—l, y)

Observe that ~
/ I*(t,z)dz = 0.

— o0
Moreover, for each ¢ > 0 this function has exactly one intersection with the z-axis, say located at
x = ((t), so that
I'(t,z) >0 if z>((tj—1+1),
I'*(t,z) <0 if =z <{(tj_1+1).

At time t = £71/3 we consider two cases. If ((t;) < £59(t;), then

¢(t5) (t5)
/‘I‘*(E_l/?’,x)‘dx = 2/ ‘I’*(s_lm,m)‘dm < 2/ 050t x,t;_1,y') da

— 00 — 00

IN

£0(t))
2/ FE’B(tjawatj—lvyl)dx < 2Y(6_1/37 p+26_1/4)

— 00

IA

QW (e7Y3, p+2e7YY) < 2a,
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because of (3.44). The alternative case, where ((t;) > £5%(¢;), can be handled in an entirely similar
way, reversing the direction of the z-axis.
Because of the representation

ZE’G(tjax) :/FE’G(tjamatj—lay) dya

the two estimates (3.46)-(3.47) show that, during each time interval [¢;_;, t;], the amount of mass
25% that creeps out of the interval I, at (3.45) is asymptotically o(e*), for every k > 1. Moreover,

/ 2% (t;, @) da < a/ 250 (t;_q, x) dx.

I_]' Ij,1

2/3

Since the total number of subintervals is N, ~ £74/°, we conclude that at time ¢ = 37, one has

the asymptotic estimate

/ 259 (3T, 2)| do = oe"), (3.48)
for any k£ > 1.

10. Working still in the stretched variables, from the representation formula

2t 4 1,0) = / D90t + 1, ) 2(t,y) dy,

it follows the estimate

6m+n

< ||l ———T%t + 1, ¢,

zf’e(t+ 1,-) . HzE’B

H am-l—n
L (IR)

ox™Ot™

(ta )HLl(R) .

Observing that the map ¢ — Hze’f(t, -)HL1 is non-increasing, and using the uniform bounds

am+n
‘Wf(t +1,2,t,9)| < Cnpm,

for suitable constants C,, ,, we deduce

0°(t, x) = O(1)-€*,

< Cmon HZE’9(3TE’ ')”Ll(JR)

am+n . am+n
‘ oV 40" Gamarm

for ¢ > 4T, > 3T, + 1 and for any positive integer k. Returning to the original variables, for ¢ > 74
we have

8m+n am+n i (mtn)
€ ~E — —(m+n
‘W“ () = Ggmgn ™ (1)) = O) -en e
Since the integers k,m,n > 0 are arbitrary, this achieves the proof. (]
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