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Abstract. The equations of ideal radiation magnetohydrodynamics (RMHD) serve as a
fundamental mathematical model in many astrophysical applications. It is well-known that
radiation can have a damping effect on solutions of associated initial-boundary-value prob-
lems. In other words, singular solutions like shocks can be prohibited.

In this paper, we consider discrete-ordinate approximations of the RMHD-system for
general equations of state. If the magnetic fields are absent (i.e., if we consider radiation
hydrodynamics), we prove the existence of global-in-time classical solutions for the Cauchy
problem in one space dimension under an appropriate smallness condition on the inital data.
We also show that counterparts of the compressive shock waves for the full RHD case and
counterparts of the slow and fast MHD shock waves for the full RMHD-system can have
structures in the presence of radiation if the amplitude is sufficiently small. Moreover, a
new entropy function for the RMHD-system is presented.

1. Introduction

Consider an inviscid, quasi-neutral plasma of infinite conductivity. If we take into account
the energy exchange due to the absorption of radiation, the dynamics of the plasma is
governed by the equations of ideal magnetohydrodynamics coupled to a family of radiation
transport equations [9, 11]:

(1.1)

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v + P) = 0,

Bt + div(vBT − BvT ) = 0,

(ρE)t + div(ρEv + Pv) = ρ

∮

S2

(I(x, t, ω) − b(θ))dω,

It + cω · ∇I = cρ(b(θ) − I).

Here the unknowns are the density function of the fluid ρ = ρ(x, t) > 0, the velocity v =
v(x, t) ∈ R

3, the magnetic field B = B(x, t) ∈ R
3, the temperature θ = θ(x, t) > 0, and the

radiation intensity I = I(x, t, ω) ≥ 0 for (x, t) ∈ R
3 × (0,∞) and ω ∈ S2. The subscript t

denotes the partial derivative with respect to the time variable t, while div and ∇ are the
usual divergence and gradient operators with respect to the spatial variable x. ⊗ stands for
the tensor product, the superscript T denotes the transpose of vectors (or matrices), and
the dot “·” between two vectors means the scalar product. c is the speed of light. The
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generalized pressure tensor P is given by

(1.2)

P := pI3 + Pmag,

Pmag :=
1

8π
|B|2I3 −

1

4π
BBT

with I3 being the unit matrix in R
3×3;

(1.3) E = e +
1

8πρ
|B|2, e = ε +

1

2
|v|2;

while p = p(ρ, θ), b = b(θ) and ε = ε(ρ, θ) are three given smooth functions denoting the
hydrodynamical pressure, the Planck function and the specific energy, respectively.

Throughout this paper, we make the standard thermodynamical assumptions (cf. [3])

(1.4) θ, pρ(ρ, θ), εθ(ρ, θ), pθ(ρ, θ) > 0.

Recall that the specific entropy s = s(ρ, ε) is determined through the Gibbs relation

θds = dε + pdτ, τ := 1/ρ,

from which we can easily get the following formula

(1.5) p = θpθ + ρ2ερ.

For the Planck function b = b(θ), we assume that

(1.6) b(θ) > 0, b′(θ) > 0

for all θ under consideration.
On the physical grounds, it is usually assumed that the initial magnetic field B(x, 0) is

solenoidal. In this case, the B-equation in (1.1) implies that the possible solution satisfies

(1.7) div B(·, t) = 0 ∀t > 0.,

This, together with the thermodynamical assumptions (1.4), ensures that −ρs(ρ, ε) is a
strictly convex entropy function for the homogeneous MHD system

(1.8)

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v + P) = 0,

Bt + div(vBT − BvT ) = 0,

(ρE)t + div(ρEv + Pv) = 0.

.

By using such an entropy function for (1.8), it was proved in [12, 17] that the initial-value
problem for (1.1) has a local-in-time classical solution. Moreover, it was shown in [17] that
for large enough initial data, the classical solutions cannot persist for all times. On the
other hand, it was indicated in the astrophysical literature (cf. the rather old work [5] or the
more recent contributions [1]) that system (1.1) can have smooth traveling wave solutions
if the far-field states are sufficiently close together. However, except [6, 7, 8], these merely
numerical observations have not been verified rigorously up to our knowledge. We believe
that these phenomena are due to the dissipative effects of radiation.

The goal of this paper is to analyse dissipative effects of radiation at a rigorous level.
The main results will be presented for a class of discrete-ordinate approximations of (1.1).
Such discrete-ordinate approximations are of the form of hyperbolic systems of balance



Smooth Solutions for Radiation Magnetohydrodynamics 3

laws. By introducing a new disspative entropy function, we show that the discrete-ordinate
approximations possess the stability structure proposed in [15] for general hyperbolic systems
of balance laws. Moreover, the Kawashima condition [13] is examined for the discrete-
ordinate approximations. With these discussions, we use the existence theories developed in
[15, 16, 2] to obtain the following conclusions:

(A): The Cauchy problem for one-dimensional discrete-ordinate RHD-systems (i.e., (1.1)
with B ≡ 0) has a unique smooth solution, provided that the initial data are close
to a constant equilibrium state in a certain Sobolev space (see Theorem 5.3).

(B): Both the discrete ordinate RHD- and RMHD-systems have smooth planar solutions
of traveling wave type, if one of the two asymptotic states is static and the two are
close to each other (see Theorem 6.2 for the RHD case and Theorem 7.2 for the
RMHD case).

About these results, we comment as follows. The discrete-ordinate approximations can be
regarded as approximate models for radiation (magneto)hydrodynamics and are often used
in practical numerical simulations [1]. The new dissipative entropy function is interesting
on its own and is an essential tool in the subsequent discussions. The result in (A) do
not apply to the multi-dimensional case and not to the MHD-system, since the Kawashima
condition does not hold here. This, however, implies by no means that radiation does not
prohibit the development of singularities in multiple space dimensions. The results in (B)
can be interpreted in the sense that compressive shock waves of the Euler equations or the
equations of ideal magnetohyrodynamics can have structure in the presence of radiation.
They are analoguous to those on the existence of viscous profiles for the same kind of shock
waves (cf. Part IV of [14]). Moreover, the results in (B) can be viewed as applications of
the existence theory developed in [2], which does not contain any applications. In fact, the
abstract result in [2] requires a technical condition and this condition has not been verified
for any specific problems before.

This paper is organized as follows. In Sect. 2 we review the existence theories in [15, 16, 2].
The discrete-ordinate approximations will be presented in Sect. 3. In Sect. 4 we introduce a
new dissipative entropy function for the discrete-ordinate approximations. Sect. 5 is devoted
to the Cauchy problem for the one-dimensional RHD-system. In Sect. 6 we address the
question of existence of smooth planar solutions of traveling wave type for the discrete
ordinate RHD- and RMHD-systems.

2. Existence Theories for Hyperbolic Balance Laws

In this section, we review the existence theories developed in [2, 15, 16] for general hyper-
bolic systems of balance laws:

(2.1) Ut +

d
∑

j=1

Fj(U)xj
= Q(U), in R

d × (0,∞),

subject to the initial condition

(2.2) U(x, 0) = U0(x).

Here x = (x1, x2, · · · , xd) and the unknown U = U(x, t) : R
d × [0,∞) → U takes values in

an open set U ⊂ R
n. We assume, throughout this section, that F1, . . . , Fd, Q ∈ C∞(U , Rn).

More assumptions on U0 : R
d → U will be specified below. In what follows, we denote by
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0l×m a matrix of dimension l × m, which has only zeros as entries and by Il the identity
matrix of dimension l.

As is well-known, global solutions of the initial-value problem (2.1) with (2.2) can contain
discontinuities like shock and contact waves. Under appropriate structural conditions on
(2.1), the formation of discontinuities can be prevented if the initial data are close to a
constant state Ū satisfying Q(Ū) = 0. A general result in this aspect is

Theorem 2.1. [15, Theorem 3.1] Let U0 ∈ Hs(Rd) with s ≥ [d/2] + 2 an integer and Ū ∈ U
be such that Q(Ū) = 0. Suppose the following conditions are satisfied.

(i) There exists a positive integer r ≤ n, two constant matrices E1 ∈ R
(n−r)×n and

E2 ∈ R
r×n such that E1Q(U) = 0 for all U , and both

E =

(

E1

E2

)

∈ R
n×n and E2QU(Ū)E−1

(

0(n−r)×r

Ir

)

∈ R
r×r

are invertible,
(ii) there is a strictly convex function η ∈ C2(U , R) and a function Ψj ∈ C2(U , R) such

that
ηU(U)T FjU(U) = ΨjU(U)T , j = 1, . . . , d,

holds for all U ∈ U ,
(iii) for a certain neighborhood G ⊂⊂ U of Ū , there is a constant cG such that

(

ηU (U) − ηU(Ū)
)

· Q(U) ≤ −cG|Q(U)|2

holds for all U ∈ G,
(iv) the kernel of the Jacobian QU(Ū) contains no eigenvectors of the matrices

d
∑

j=1

ξjFjU(Ū) (ξ ∈ Sd−1).

Then there exists a constant C > 0 such that for any initial data U0(x) satisfying

‖U0 − Ū‖Hs(R) ≤ C,

the initial-value problem (2.1) with (2.2) has a unique global solution U = U(x, t) satisfying
U − Ū ∈ C([0,∞); Hs(Rd)).

Remark 2.1. (1). With the matrix E from condition (i) above, we define
(

u
v

)

= EU, q(u, v) = E2Q(U) = E2Q

(

E−1

(

u
v

))

.

Then

qv(u, v) = E2QU(U)E−1

(

0(n−r)×r

Ir

)

is invertible at Ū . This is the requirement of Theorem 3.1 in [15].
(2). Condition (iv) of Theorem 2.1 is usually referred to as Kawashima’s condition. It is

a convenient condition in many applications. However, this condition seems not a
necessary, but just a sufficient, condition for the global existence result. In fact, it
will fail to hold true for the multidimensional RMHD-system as we will show below.
Nevertheless, we believe that the Cauchy problem for the RMHD system still have
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globally defined smooth solutions with initial data close to a constant equilibrium
state.

Now let Ū be a constant equilibrium state as in Theorem 2.1. Condition (i) implies in
particular that E2U can be expressed in terms of E1U , say,

(2.3) E2U = h(E1U)

with h = h(u) a certain given (n − r)-vector valued function of u. Thus, as in Remark 2.1
we set u = E1U and v = E2U . In particular, we have

v̄ := E2Ū = h(E1Ū) = h(ū).

Then we call

(2.4) ut +

d
∑

j=1

fj(u)xj
= 0 in R

d × (0,∞)

with

fj(u) = E1Fj

(

M−1

(

u
h(u)

))

the equilibrium system associated to (2.1). By analysing the (possibly simpler) equilibrium
systems, one can prove the existence of traveling-wave solutions for (2.1). More precisely,
we have

Theorem 2.2. [16, 2] Under conditions (i), (ii) and (iii) of Theorem 2.1, fix Ū and ξ ∈ Sd−1,
let λ be an isolated eigenvalue of the characteristic matrix

∑

j

ξjfju(ū), ū = E1Ū .

Assume that the piecewise constant function

u(x, t) =

{

ū,
∑

j ξjxj ≤ s∗t

u+,
∑

j ξjxj ≥ s∗t

is a weak solution for the equilibrium system (2.4) with s∗ = s∗(ū, u+) < λ = lim
u→ū

s∗(u−, u).

Then the following holds true.

(a) If λ is not an eigenvalue of the characteristic matrix
∑

j ξjFjU(Ū), then for any u+

close to ū, the system (2.1) has a unique classical solution of the form

U(x, t) = φ

(

∑

j

ξjxj − s∗t

)

,

where φ ∈ C1(R) satisfies φ(−∞) = Ū and φ(+∞) = E−1(u+, h(u+))T .
(b) In case λ is an eigenvalue of

∑

j ξjFjU(Ū), if λ is isolated also for
∑

j ξjFjU(Ū) and

Ker(QU (Ū)) ∩ Ker

(

d
∑

j=1

ξjFjU(Ū) − λIn

)

= {0},

then (2.1) still has a smooth solution of the above form.
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Remark 2.2. As was pointed out in [2], the assumption that λ is isolated for
∑

j ξjFjU(Ū)

can be relaxed to be that the eigenvalues Λ(U) of
∑d

j=1 ξjFjU(U) tending to λ as U goes to

Ū are identical for all U close to Ū .

3. Discrete-Ordinate Approximations

In this section, we present two model systems derived from (1.1), which can be viewed as
an system of infinitely many balance laws. Note that the energy equation in (1.1) has an
integral-type source term. In practical computations [11, 1], the integral is often replaced
with a quadrature formula, i.e., a finite sum of the form

L
∑

l=1

cl(I(x, t, ωl) − b(θ))

with cl > 0 and ωl ∈ S2.
For the sake of simplicity, we assume that all cl are equal, which corresponds to an equal-

sized partition of the sphere. About such partitions, we remark as follows.

Remark 3.1. For our purposes, it does not matter how the discrete ordinates ωl are chosen.
However, for concrete numerical schemes, it might be desirable to start from an equal-sized
partition of the sphere and to take the directions ωl as vectors through the middel points of
the single surface elements. For such constructions, we refer to [10].

Substituting the integral in (1.1) with the finite sum and setting Il = clI(x, t, ωl), we
obtain the following discrete-ordinate system of (8 + L) equations:

(3.1)

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v + P) = 0,

Bt + div(vBT −BvT ) = 0,

(ρE)t + div(ρEv + Pv) = ρ
∑L

l=1(Il − b(θ)),

Ilt + cωl · ∇Il = cρ(b(θ) − Il), l = 1, . . . , L,

together with the divergence-free constraint in (1.7): divB(x, t) = 0.
We are interested in planar solutions of (3.1). Without loss of generality, we assume that

all quantities are independent of the (x2, x3)-variables. Note that then the divergence-free
constraint leads to B1(x, t) = const. If we assume B1(x, t) 6= 0 and rescale the transversal
velocity field w := (v2, v3)

T and the transversal magnetic field c := (B2, B3)
T appropriately,

we get with x = x1 the system

(3.2)

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p + |c|2/2)x = 0,

(ρw)t + (ρvw − c)x = 0,

ct + (vc− w)x = 0,

(ρE)t + (ρEv + vp + v|c|2/2 − w · c)x = ρ
∑L

l=1(Il − b(θ)),

Ilt + cωlIlx = cρ(b(θ) − Il), l = 1, . . . , L.
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Note that we have used v := v1 for the longitudinal velocity and ωl := ωl,1. This system is
closed by

(3.3) E = ε +
1

2

(

v2 + |w|2
)

+
1

2ρ
|c|2.

We also consider the case with vanishing magnetic fields, which leads to the radiative
hydrodynamical (RHD-) system

(3.4)

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v + pI3) = 0,

(ρe)t + div(ρev + pv) = ρ
∑L

l=1(Il − b(θ)),

Ilt + cωl · ∇Il = cρ(b(θ) − Il), l = 1, . . . , L,

with

(3.5) e = ε +
1

2
|v|2.

4. Entropy Structure of the Discrete-Ordinate Approximations

In this section, we show that the discrete-ordinate systems (3.2) and (3.4), as systems of
balance laws, admit the conditions (i)–(iii) in Theorem 2.1. In particular, we will introduce
a new entropy function for (3.2) and (3.4).

4.1. The RHD-System. The discrete-ordinate model (3.4) is of the form (2.1) with n =
5 + L and

(4.1) U =

























ρ
ρv1

ρv2

ρv3

ρe
I1
...

IL

























, Fj(U) =

























ρvj

ρv1vj + δ1jp
ρv2vj + δ2jp
ρv3vj + δ3jp
ρevj + pvj

cω1jI1
...

cωLjIL

























, Q(U) =

























0
0
0
0

ρ
∑L

l=1(Il − b(θ))
−cρ(I1 − b(θ))

...
−cρ(IL − b(θ))

























.

Here δij is the standard Kronecker symbol. For this system, the state space is

U := {U ∈ (0,∞) × R
3 × (0,∞)L+1 | θ ≥ θ0}

with θ0 a given positive constant.
Thanks to the strict monotonicity of b = b(θ) assumed in (1.6), b = b(θ) has an inverse

function b∗ = b∗(y), that is,

θ = b∗(b(θ)), ∀ θ ≥ θ0.

Note that b∗ = b∗(y) is also strictly increasing. Let s = s(ρ, ε) be the specific entropy
introduced in (1.5). Define

(4.2) η(U) = −ρs(ρ, ε) −
L
∑

l=1

∫ Il

b(θ0)

dy

cb∗(y)
.
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For later use, we compute

(4.3) ηρe(U) = −1

θ
, ηIl

(U) = − 1

cb∗(Il)
.

With η = η(U) defined above, we turn to verify the conditions (i)–(iii) in Theorem 2.1.

Proposition 4.1. The function η : U → R defined in (4.2) is strictly convex. The functions
Ψj : U → R defined by

Ψj(U) = −ρs(ρ, ε)vj −
L
∑

l=1

ωl,j

∫ Il

b(θ0)

dy

cb∗(y)
.

satisfy

(4.4) ηU(U)T FjU(U) = ΨjU(U)T (j = 1, . . . , 3)

for all U ∈ U . Moreover, for any constant equilibrium state Ū and its any neighborhood
G ⊂⊂ U , there is a constant cG such that

(4.5)
(

ηU (U) − ηU(Ū)
)

· Q(U) ≤ −cG|Q(U)|2

holds for all U ∈ G.

Proof: To see the strict convexity, it suffices to show that the two summands in (4.2)
are both strictly convex with respect to the hydrodynamical variables and the radiation
intensities, respectivley. Note that η = η(U) contains no cross terms of the hydrodynamical
variables and the radiation intensities. It is well-known (see, e.g., [3]) that the strict convexity
of the first summand with respect to the hydrodynamical variables follows from the standard
thermodynamical assumption in (1.4). Moreover, we deduce from (4.3) that

∂2

∂Il∂Ik
η(U) = δkl

b′∗(Il)

cb∗(Il)2
.

Thus, the convexity of the second summand is obvious due to (1.6). The verification of (4.4)
is straightforward.

To show (4.5), we use (4.3) and the expression of Q in (4.1) to compute

ηU(Ū) · Q(U) = −ρ

θ̄

L
∑

l=1

(Il − b(θ)) − ρ
L
∑

l=1

(b(θ) − Il)
1

b∗(Īl)

= ρ

L
∑

l=1

(

(Il − b(θ))
θ̄ − b∗(Īl)

θ̄b∗(Īl)

)

= 0.

Here we have used the components Īl of Ū satisfy Īl = b(θ̄). Moreover, we compute

ηU(U) · Q(U) = −ρ

θ

L
∑

l=1

(Il − b(θ)) − ρ

L
∑

l=1

(b(θ) − Il)
1

b∗(Il)

= ρ
L
∑

l=1

(

(Il − b(θ))
θ − b∗(Il)

θb∗(Il)

)

= −ρ

L
∑

l=1

(

(b(θ) − Il)
b∗(b(θ)) − b∗(Il)

θb∗(Il)

)

.
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Since b∗ is a smooth and strictly increasing function, it follows from the mean-value theorem

that Dl(b(θ), Il) := b∗(b(θ))−b∗(Il)
b(θ)−Il

> 0. Thus, we obtain

ηU(U) · Q(U) = −ρ

θ

L
∑

l=1

Dl(b(θ), Il)

b∗(Il)
(Il − b(θ))2.

Now the inequality in (4.5) follows from the compactness of G and the fact that Q is a linear
combination of the ρ(Il − b(θ))’s. This completes the proof. �

We conclude this subsection with the following interesting observation.

Remark 4.1. From the expression of Q in (4.1) and that of η in (4.2), it is not difficult to
see that

Q(U) = −L(U)ηU (U)

holds with

L(U) = ρ



























04×4 04×1 04×1 04×1 04×1 · · · 04×1

01×4

∑

l σl −cσ1 −cσ2 −cσ3 · · · −cσL

01×4 −cσ1 c2σ1 0 0 · · · 0
01×4 −cσ2 0 c2σ2 0 · · · 0
01×4 −cσ3 0 0 c2σ3 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

01×4 −cσL 0 0 0 · · · c2σL



























.

Here

σl :=
Il − b(θ)

θ−1 − b−1
∗ (Il)

.

Since σl > 0 for all l due to (1.6), the matrix L(U) is symmetric and non-negative for all
U ∈ U . Moreover, its null space is

span

{

e1, e2, . . . e4, e5 + c−1
∑

l≥6

el

}

,

which is independent of U . Here ek is the kth column of the unit matrix I(L+5).
The above characterization of Q = Q(U) means that the discrete-ordinate system (3.4)

obeys a nonlinear variant of the Onsager reciprocal relation in non-equilibrium thermody-
namics [4]. Here Q = Q(U) is regarded as the thermodynamical flux, while the entropy
variable ηU(U) is the thermodynamical force. Through such a relation, the discrete-ordinate
system (3.4) relates the irreversible processes directly to the entropy change ηU (U).

4.2. The RMHD-System. The discussion in the previous subsection does not apply to the
discrete-ordinate system (3.1) in multiple space dimensions, due essentially to the divergence-
free constraint (1.7). However, it applies to the one-dimensional system (3.2). Indeed, (3.2)
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is of the form (2.1) with

U =

























ρ
ρv
ρw
c

ρE
I1
...

IL

























, F1(U) =

























ρv
ρv2 + p + |c|2/2

ρvw − c

vc − w

ρEv + pv + v|c|2/2 −w · c
cω1I1

...
cωLIL

























, Q(U) =

























0
0
0
0

ρ
∑L

l=1(Il − b(θ))
−cρ(I1 − b(θ))

...
−cρ(IL − b(θ))

























.

Here the state space is

U := {U ∈ (0,∞) × R5 × (0,∞)L+1 | θ > θ0},
with some constant θ0 > 0.

Define η = η(U) as in (4.2). Note that here the energy law is (3.3). The one-dimensional
RMHD system (3.2) has the same structure as the (one-dimensional version of the) RHD-
system (3.4) and the coupling between the magnetohydrodynamical and the radiation part
is weak. As was mentioned in the introduction, it is well-known that the function −ρs(ρ, ε)
constitutes a strictly convex entropy function for the MHD system (1.8). Thus, the following
result can be verified in the exactly same fashion as that for Proposition 4.1. Namely,
conditions (i)–(iii) in Theorem 2.1 holds true for the one-dimensional system (3.2).

Proposition 4.2. The function η : U → R defined in (4.2) is strictly convex. The function
Ψ1 : U → R defined with

Ψ1(U) = −ρs(ρ, ε)v −
L
∑

l=1

∫ Il

b(θ0)

dy

cb∗(y)
ωl.

satisfies

ηU(U)T F1U (U) = Ψ1U(U)T ,

for all U ∈ U . Moreover, for any constant equilibrium state Ū and its any neighborhood
G ⊂⊂ U , there is a constant cG such that

(

ηU (U) − ηU(Ū)
)

· Q(U) ≤ −cG|Q(U)|2

holds for all U ∈ G.

Finally, the interested reader is advised to verify Remark 4.1 for the one-dimensional
discrete-ordinate system (3.2).

5. Global Classical Solutions for One-Dimensional RHD Systems

In this section, we present a result on the existence of global classical solutions to the
Cauchy problem for the one-dimensional version of (3.4).

To this end, we check the conditions of Theorem 2.1. Let Ū be a given constant state
satisfying Q(Ū) = 0. Then it is obvious (cf. (4.1)) that

(5.1) Īl = b(θ̄), ∀l,
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with θ̄ the temperature corresponding to Ū . Condition (i) is easily seen to be satisfied with
r = L and

(5.2) E1 =

(

Id+1 0(d+1)×(L+1)

01×(d+1) (c, e)

)

, E2 =
(

0L×(d+2), IL

)

, e = (1, . . . , 1) ∈ R
L.

Here d ∈ {1, 2, 3} is the spatial dimension of the problem. In (3.4) we have just given the full
three-dimensional case but it is clear what the lower dimensional versions are. Conditions
(ii) and (iii) have been verified in Proposition 4.1.

To check condition (iv) for (3.4), we compute the Jacobian of Q = Q(U) at Ū :

QU(Ū) = ρ̄





0(d+1)×(d+2) 0(d+1)×L

−Lb′(θ)θũ e

cb′(θ)eT θũ −cIL





with ũ = (ρ, ρvT , ρe). From this expression of QU(Ū), it is easy to see that

(5.3) Ker(QU(Ū)) = {(f , g) : f ∈ R
d+2, g ∈ R

L and g = b′(θ̄)θũ(Ū)feT}.
At this point, we state the following simple fact.

Proposition 5.1. If there is a vector (f , g) ∈ Ker(QU (Ū)) which is an eigenvector of A(ξ) :=
∑

j ξjFjU(Ū) with some ξ ∈ Sd−1, then f is an eigenvector for the classical Euler equations
associated with the same eigenvalue.

Proof. Obviously, such an f must be non-zero. By inspection, A(ξ) is block-diagonal with
respect to the hydromechanical and radiative unknowns. Hence, f is an eigenvector for the
classical Euler equations associated with the same eigenvalue. �

Proposition 5.2. Consider the discrete-ordinate RHD-system (3.4) and assume the rank
condition

Rank[ω2 − ω1, ω3 − ω1, · · · , ωL − ω1] = d

holds true. For Ū ∈ U with Q(Ū) = 0, condition (iv) of Theorem 2.1 is satisfied if and only
if d = 1.

Proof. Assume that there is a ξ ∈ Sd−1 such that (f , g) = (z1, . . . , zd+2, y1, . . . , yL) ∈
Ker(QU(Ū)) is an eigenvector of the characteristic matrix A(ξ) :=

∑

j ξjFjU(Ū). Let

λ = λ(ξ) be the associated eigenvalue. By Proposition 5.1, vector f ∈ R
d+2 is an eigen-

vector for the Euler equations associated with the same eigenvalue and g ∈ R
L satisfies

cωl · ξyl = λyl

for l = 1, . . . , L. By the rank condition, the set {ωl · ξ | l = 1, 2, · · · , L} contains at least two
distinct numbers and therefore there is an l such that yl = 0. Due to (5.3), this happens if
and only if θũ(Ū) · f = 0, because b = b(θ) is strictly increasing (cf. (1.6)).

Now we turn to analyse θũ(Ū) · f . This quantity is invariant under transformations of
dependent variables ũ, since f is an eigenvector for the Euler equation. Thus, we choose the
primitive variables (ρ,vT , θ). With the primitive variables, we use the classical relation (1.5)
to rewrite the Euler equations as

ρt + v · ∇ρ + ρdiv v = 0,

vt + v · ∇v + ∇p/ρ = 0,

θt + v · ∇θ + adiv v = 0
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with a = θpθ

ρεθ
. The characteristic matrix is

Ã(ξ) = v · ξI(d+2)×(d+2) +





0 ρξT 0
(pρ/ρ)ξ 0d×d (pθ/ρ)ξ

0 aξT 0



 .

For d > 1, the matrix Ã has three eigenspaces




ρ

−
√

pρ + apθ/ρξ

a



 , span











pθ

0d×1

−pρ



 ,





0
ξ⊥

0











,





ρ
√

pρ + apθ/ρξ

a



 .

Thus, θũ(Ū) · f vanishes if

f =





0
ξ⊥

0



 .

Consequently, condition (iv) is not satisfied in this case.
However, for d = 1, (0, ξ⊥, 0)T is not an eigenvector anymore and θũ(Ū) · f can only be

a or − pρ,

which do not vanish due to the thermodynamical assumption (1.4). Thus, condition (iv) is
verified for the one-dimensional case. �

The above discussions show that conditions of Theorem 2.1 hold true for the one-dimensional
discrete-ordinate systems (3.4). Thus, we have

Theorem 5.3. Consider the one-dimensional discrete-ordinate systems (3.4). Assume the
rank condition of Proposition 5.2, let Ū be a constant equilibrium state and U0 : R → U such
that U0 − Ū ∈ Hs(R) for some integer s ≥ 2. If U0 − Ū is sufficiently small in Hs(R), then
the Cauchy problem of the one-dimensional system (3.4) with initial data U0 has a unique
global-in-time classical solution U with U − Ū ∈ C([0,∞); Hs(R)).

6. Radiative Profiles for RHD-Shock Waves

This section is devoted to proving the existence of smooth traveling waves for the discrete-
ordinate RHD-system (3.4), by using Theorem 2.2. Such traveling waves are naturally
associated with shock waves for the corresponding equlibrium systems [16, 2]. Their existence
is due to the radiation, just as viscous shock profiles are due to viscosity. Therefore, we call
them radiative (shock) profiles. The existence also indicates that the shock waves have
(radiative) structure.

For the sake of simplicity, we assume that, for the RHD-system (3.4), the fixed equilibrium
state Ū in Theorem 2.2 is static, that is, v̄ = 0. Moreover, we assume that

(6.1)
L
∑

l=1

ωl = 0.

Choose the matrices E1 and E2 in Theorem 2.1 as in (5.2). Then, under the assumption
(6.1), the corresponding equilibrium system (2.4) for the unknown vector u = (ρ, ρv, ρe +
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c−1Lb(θ)) is

(6.2)

ρt + div(ρv) = 0,

(ρv)t + div (ρv ⊗ v) + ∇p = 0,

(ρe + c−1Lb(θ))t + div (ρev + pv) = 0.

To exploit Theorem 2.2, we analyse the characteristic fields of (6.2) to obtain

Proposition 6.1. (1). For any ξ ∈ Sd−1, the characteristic matrix
∑d

j=1 ξjfju(ū) of the

equilibrium system (6.2) has (d + 2) real eigenvalues

λ1 < λ2 = . . . = λd+1 = v̄ · ξ = 0 < λd+2

with

(6.3) λ1,d+2 = ∓
√

pρ +
pθβ

ρ
, β = β(ρ, θ) =

cθpθ

cρεθ + Lb′(θ)
.

(2). The first and (d + 2)-th characteristic fields are both genuinely nonlinear near ū.

Proof. It is known from [14] that these properties of the characteristic fields are invariant
under transformations of dependent variables. Thus, we use the classical relation (1.5) to
rewrite (6.2) in terms of the primitive variables (ρ,v, θ):

(6.4)

ρt + v · ∇ρ + ρdiv v = 0,

vt + v · ∇v + ∇p/ρ = 0,

θt + (1 + α)v · ∇θ + βdivv = 0.

Here

(6.5) α = α(ρ, θ) = − Lb′(θ)

cρεθ + Lb′(θ)
.

Then the characteristic matrix is similar to

A(ξ) := (v · ξ)Id+2 +
1

ρ





0 ρ2ξT 0
pρξ 0 pθξ

0 βρξT αρv · ξ



 (ξ ∈ Sd−1).

It is obvious that v·ξ is an eigenvalue of (at least) multiplicity (d−1) with (d−1)-dimensional
eigenspace span({(0, ξ⊥, 0) | ξ ∈ Sd−1}. The remaining three eigenvalues are λ +v · ξ with λ
solving the equation

(6.6) ρ(pρ − λ2)(λ − αv · ξ) + pθβλ = 0.

The associated eigenvectors are
(

ρ, λξT ,
ρ(λ2 − pρ)

pθ

)T

.

Consequently, at the static state ū where v̄ = 0, we have λ2 = . . . = λd+1 = 0. Note that
λ = 0 is a solution to equation (6.6) if αv · ξ = 0. Now the equation (6.6) reduces to

ρλ2 = ρpρ + pθβ > 0
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for the other two eigenvalues. The positivity is a consequence of (1.4). Thus, the two
eigenvalues λ1 and λd+2 are those given in (6.3).

In addition, by using (6.6) it is easy to verify that the two characteristic fields are genuinely
nonlinear near ū. This completes the proof. �

Next we consider the Rankine-Hugoniot relations for (6.2) with the fixed lefthand state ū:

(6.7)
σ[ρ] = ξ · [ρv],

σ[ρv] = ξ · [ρv ⊗ v + p],
σ[ρe + c−1Lb(θ)] = ξ · [ρev + vp].

Here ξ is fixed, the brackets denote the jump [X] = X̄ − X, σ ∈ R is the unknown wave
speed, and u ∈ (0,∞) × R

d × (0,∞) is the unknown righthand state.
Proposition 6.1 and the standard results for hyperbolic conservation laws [14] ensure that

for k = {1, d + 2}, there is a number ε0 > 0, and smooth functions σk : (−ε0, ε0) → R and
uk : (−ε0, ε0) → (0,∞) × R

d × (0,∞) such that (σ, u) = (σk(ε), uk(ε)) solves (6.7) for all
ε ∈ (−ε0, ε0). Moreover, (σk(0), ūk(0)) = (λk(ū), ū) and the shock inequality

λk(ū) = σk(0) > σk(ε), ε ∈ (−ε0, 0).

holds. In other words, the system of conservation laws (6.2) has two families of shock waves:

(6.8) u := u(x, t) =

{

ū, ξ · x < σk(ε)t,

uk(ε), ξ · x > σk(ε)t.
(ε ∈ (−ε0, 0), k = 1, d + 2).

Having these preparations, we fix

(6.9) Ū := (ρ̄, 0, . . . , 0, ρ̄ē, b(θ̄), . . . , b(θ̄))T

and show that for any ε < 0 but sufficiently close to 0, the discrete-ordinate RHD system
(3.4) has a traveling wave solution

U(x, t) = φ(ξ · x − σk(ε)t)

satisfying φ ∈ C1(R), φ(−∞) = Ū , and

φ(+∞) = (ρk(ε), (ρkvk)(ε), (ρkek)(ε), b(θk(ε)), . . . , b(θk(ε)))
T := Uk(ε).

We name such a solution as a radiative structure of shock waves (6.8) for (6.2), which connects
Ū on the left to Uk(ε) on the right.

The main result of this section can be precisely stated as

Theorem 6.2. Fix ξ ∈ Sd−1 and Ū with v̄ = 0 as defined in (6.9). Then for each k ∈
{1, d+2} there is a number ε0 > 0 such that for any ε ∈ (−ε0, 0], the RHD-system (3.4) has
a radiative structure connecting Ū on the left to Uk(ε) on the right.

Proof. We apply Theorem 2.2 together with Remark 2.2. From Proposition 4.1, Proposition
6.1, and the discussion preceeding Theorem 6.2, it remains to verify the conditions in (b) of
Theorem 2.2.

Let λk(ū) be an eigenvalue of the characteristic matrix
∑

j ξjFjU(Ū) for the full system

(3.4). From Proposition 6.1 we know that λk(ū) /∈ {0,±
√

pρ + ρ−1apθ} due to a := θpθ

ρεθ
6= β.

Here we have suppressed the bar over components of Ū for simplicity. On the other hand,
because v̄ = 0 the eigenvalues of

∑

j ξjFjU(Ū) are

Λ1,d+2(ξ) = ∓
√

pρ + ρ−1apθ, Λ2(ξ) = . . . = Λd+1(ξ) = 0, Λl(ξ) = cξ · ωl−d−2
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for l = d+3, . . . , d+2+L (See the proof of Proposition 6.1). Thus, λk(ū) can only coincide
with one of the eigenvalues Λl(ξ) with l > d + 2, which are all constant. Consequently, the

eigenvalues of
∑d

j=1 ξjFjU(U) tending to λk(ū) as U goes to Ū are identical for all U close

to Ū (see Remark 2.2). Moreover, we see from Proposition 5.1 that

Ker(QU(Ū)) ∩ Ker

(

d
∑

j=1

ξjFjU(Ū) − λk(ū)Id+2+L

)

= {0}.

Hence the conditions of Theorem 2.2 are verified and the proof is complete. �

7. Radiative Profiles for Slow and Fast RMHD-Shock Waves

Now we carry out the analysis of the previous section to the more complex RMHD-system
(3.2). Namely, we use Theorem 2.2 to show the existence of smooth traveling waves for the
discrete-ordinate RMHD-system (3.2).

Let us check the conditions of Theorems 2.2. Condition (i) of Theorem 2.1 is obviously
true with r = L and

E1 =

(

I6 06×(L+1)

01×6 (c, e)

)

, E2 =
(

0L×7, IL

)

, e = (1, . . . , 1) ∈ R
L.

Then, under the assumption (6.1), the corresponding equilibrium system for the unknown
vector u = (ρ, ρv, ρw, c, ρE + c−1Lb(θ)) is

(7.1)

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p + |c|2/2)x = 0,

(ρw)t + (ρvw − c)x = 0,

ct + (vc− w)x = 0,

(ρE + c−1Lb(θ))t + (ρEv + vp + v|c|2/2 −w · c)x = 0.

Analogously to Proposition 6.1, we have

Proposition 7.1. Let ū = (ρ̄, 0, ρ̄w̄, c̄, ρ̄Ē + c−1Lb(θ̄)) ∈ (0,∞) × {0} × R
4 × (0,∞) with

c̄ 6= 0. Then the following two statements hold.

(i) The characteristic matrix fju(ū) of the equilibrium system (7.1) has seven distinct
eigenvalues

λ1 < λ2 < . . . < λ7,

where

(7.2)
λ2

1,7 =
|c̄|2 + 1 + χ +

√

(|c̄|2 + 1 + χ)2 − 4χ

2ρ
,

λ2
3,5 =

|c̄|2 + 1 + χ −
√

(|c̄|2 + 1 + χ)2 − 4χ

2ρ

with χ = ρ̄pρ(ρ̄, θ̄) + βpθ(ρ̄, θ̄) and β = β(ρ̄, θ̄) as defined in (6.3).
(ii) The characteristic fields of (7.1) associated to the eigenvalues λk, k ∈ {1, 3, 5, 7}, are

genuinely nonlinear near ū.
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Proof. In order to analyse the characteristic fields, we rewrite (7.1) in terms of the primitive
variables (ρ, v,w, c, θ), as in (6.4), and obtain

(7.3)

ρt + vρx + ρvx = 0,

vt + vvx + px/ρ + c · cx/ρ = 0,

wt + vwx − cx/ρ = 0,

ct + vcx + cvx − wx = 0,

θt + v(1 + α)θx + βvx = 0.

Here α = α(ρ, θ) and β = β(ρ, θ) are defined as in (6.5) and (6.3). The characteristic matrix
of system (7.3) is

A(u) = vI7 +
1

ρ



















0 ρ2 0 0 0 0 0
pρ 0 0 0 c1 c2 pθ

0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 ρc1 −ρ 0 0 0 0
0 ρc2 0 −ρ 0 0 0
0 βρ 0 0 0 0 αρv



















.

Here we have written c = (c1, c2)
T .

The eigenvalues of A(ū) can be determined as follows. For simplicity, we suppress the
bar over components of ū. By v = 0, A(ū) has two eigenvalues λ2/6 := ∓1/

√
ρ with

(0, 0, c⊥,−λ2/6ρc
⊥, 0)T as associated eigenvectors (Note that we have assumed c 6= 0). The

two characteristic fields are linearly degenerate. The remaining eigenvalues are solutions of
the equation

(7.4) χλ(1 − ρλ2) − ρλ3|c|2 = ρ(1 − ρλ2)λ3

with
(

ρ, λ,
λ

1 − λ2ρ
c,− λ2ρ

1 − λ2ρ
c,

βλ

λ − αv

)T

as associated eigenvectors. Observe that λ4 := 0 is a solution to (7.4). Thus, the rest four
eigenvalues solve the quadratic equation for ρλ2:

χ(1 − ρλ2) − ρλ2|c|2 = ρ(1 − ρλ2)λ2,

which can be explicitly solved to obtain

ρλ2 =
|c|2 + 1 + χ ±

√

(|c|2 + 1 + χ)2 − 4χ

2
.

Since c 6= 0 and χ > 0, it is not difficult to see that

0 <
|c|2 + 1 + χ −

√

(|c|2 + 1 + χ)2 − 4χ

2
< 1 <

|c|2 + 1 + χ +
√

(|c|2 + 1 + χ)2 − 4χ

2
.

Note that 1 = ρλ2
2/6. Therefore, A(ū) has seven distinct eigenvalues. We order the last four

eigenvalues by size and denote them by λk(ū) with k ∈ {1, 3, 5, 7}.
In addition, by using (7.4) it is a tedious but straightforward computation to verify that

the last four characteristic fields are genuinely nonlinear near v = 0 and c 6= 0. �
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Now fix some static state ū ∈ (0,∞) × {0} × R
4 × (0,∞) with c̄ 6= 0 as in Proposition

7.1. With the same notation and arguments as in the previous section, we get four families
(according to the four genuinely nonlinear fields) of shock waves for the equilibrium system
(7.1):

u := u(x, t) =

{

ū, x < σk(ε)t,

uk(ε), x > σk(ε)t.
(ε ∈ (−ε0, 0), k = 1, 3, 5, 7).

Having these preparations, we fix

(7.5) Ū := (ρ̄, 0, ρ̄w̄, c̄, ρ̄Ē , b(θ̄), . . . , b(θ̄))T ,

with c̄ 6= 0, and show that for any ε < 0 but sufficiently close to 0, the discrete-ordinate
RMHD system (3.2) has a traveling wave solution

U(x, t) = φ(x − σk(ε)t)

satisfying φ ∈ C1(R), φ(−∞) = Ū , and

φ(+∞) = (ρk(ε), (ρkvk)(ε), (ρkwk)(ε), ck(ε), b(θk(ε)), . . . , b(θk(ε)))
T =: Uk(ε).

The last main result of this paper is

Theorem 7.2. Fix Ū as defined in (7.5). Then for each k ∈ {1, 3, 5, 7} there is a number
ε0 > 0 such that for all ε ∈ (−ε0, 0], the RMHD-system (3.2) has a radiative structure
connecting Ū on the left and Uk(ε) on the right.

Proof. We again apply Theorem 2.2 together with Remark 2.2. The conditions (i)–(iii) have
been verified in the beginning of this section and in Proposition 4.2. For the other conditions,
we refer to Proposition 7.1 and the discussions preceeding Theorem 7.2. Thus, it remains to
verify the conditions in (b) of Theorem 2.2. To this end, we refer to the proof of Proposition
7.1 and see that eigenvalues of the characteristic matrix F1U(Ū) are

Λ2
1,7 =

|c|2 + 1 + χ0 +
√

(|c|2 + 1 + χ0)2 − 4χ0

2ρ
,

Λ2
3,5 =

|c|2 + 1 + χ0 −
√

(|c|2 + 1 + χ0)2 − 4χ0

2ρ
,

Λ2
2/6 =

1

ρ
,

Λ4 = 0,

Λl = cωl−7

for l = 8, . . . , L+7, where χ0 = ρpρ +
θp2

θ

ρεθ
. Here we have suppressed the bar over components

of Ū for simplicity.
Next let λk(ū) be an eigenvalue of the F1U (Ū). Since χ 6= χ0, we know from Proposition

7.1 that λk(ū) /∈ {Λk : k = 1, 2, · · · , 7}. Thus, λk(ū) can only coincide with one of the
eigenvalues Λl with l > 7, which are all constant. Consequently, the eigenvalues of F1U(U)
tending to λk(ū) as U goes to Ū are identical for all U close to Ū (see Remark 2.2). Moreover,
it is easy to see, as in Proposition 5.1, that if Ker(QU(Ū)) ∩ Ker

(

F1U(Ū) − λk(ū)IL+7

)

contains a non-zero vector, then λk(ū) ∈ {Λk : k = 1, 2, · · · , 7}. Hence the conditions of
Theorem 2.2 are verified and the proof is complete. �
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