
FUNDAMENTAL SOLUTIONS OF CONSERVATION LAWS

YONG-JUNG KIM AND YOUNGSOO HA

Abstract. In this paper we construct fundamental solutions of a scalar con-
servation law in one space dimension. These source-type solutions are well
known for a convex case and hence our focus is on a general non-convex case
which may have a finite number of inflection points. Signed fundamental
solutions are constructed first and then under an extra hypothesis on non-
negativity of the flux two parameter family of fundamental solutions are con-
structed. This process is a natural generalization of N-waves. New N-waves
constructed here consist of a series of increasing rarefaction waves and in-
creasing shocks and then another series of decreasing rarefaction waves and
decreasing shocks. This fundamental solution indicates why the famous one
sided Oleinik estimate fails for a non-convex case and how it should be cor-
rected. N-waves are also computed using the WENO and central type nu-
merical schemes, which show the structure of the N-wave constructed in this
paper.

1. Introduction

Fundamental or source-type solutions such as the Gaussian for the heat equation
and Barenblatt-type solutions for nonlinear diffusion equations have played a key
role in the theoretical development of such differential equations. In many cases
the fundamental solution reflects the intrinsic property of the equation such as the
similarity structure. Therefore, the structure of the fundamental solution helps us
to understand the evolution of general solutions. The asymptotics usually means a
study of the process how does a general solution turn into a fundamental solution
like shape (see, e.g., [2, 10, 11]). The fundamental solution is also used as a tool to
derive various estimates needed in the analysis. The heat equation is an extreme
case that a general solution itself is given exactly from the fundamental solution
which is a convolution with the initial value. Even for a nonlinear case the source-
type solution may help to construct a general solution (see [9]).

In many cases fundamental solutions are given explicitly. For example, if the
diffusion is given by a power law, the similarity structure of the problem enables us
to find a fundamental solution explicitly, which is called the Barenblatt solution.
A fundamental or a source-type solution to a conservation law is a solution to

(1.1) ut + f(u)x = 0, lim
t→0

u(x, t) = Mδ(x), x ∈ R, t > 0,
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where the initial value is in the distribution sense and M ∈ R is the total mass.
We take a smooth flux f ∈ C1 and may assume

(1.2) f(0) = f ′(0) = 0

without loss of generality. The uniqueness of the problem has been shown by Liu
and Pierre [14] when the flux is odd. For a non-negative flux the uniqueness is
obtained among signed solutions and, if sign-changing solutions are included, the
source-type solution is not unique in general.

The fundamental solution of a diffusion equation is an integrable signed function
which is unique for a given total mass M ∈ R. For a conservation law with a convex
flux, the fundamental solution is not unique and given explicitly as a member of two
parameter family of functions which are called N-waves. However, for a non-convex
flux case, the fundamental solution is barely understood.

The theory of nonlinear convex conservation laws was highlighted because it
explains the shock wave phenomenon excellently which was not possible with linear
models. There has been intensive studies on the convex case and it is now well
understood (see [3, 12, 13, 17]). However, the convex case is still in a stage between
a local and a global behavior of the conservation laws and one should go non-convex
case to see the real global structure (see, e.g., [15, 19, 20] for non-convex flux cases).
Then there are a lot more interesting features such as contact discontinuity and
emerging centered and non-centered rarefaction waves (see, e.g., [4, 18]). Even
though this non-convex case has been studied for a long time (see, e.g., [1]), we are
still far from an understanding as satisfactory as the convex flux case and that is
partly because we do not have fundamental solutions.

This paper is about the construction of fundamental solutions of conservation
laws without the convexity assumption. We first construct a signed source-type
solution under the following hypothesis:

f = f(u) has only a finite number of inflection points,
f(u)/|u| → ∞ as |u| → ∞,

(H1)

where the divergence in the second assumption is monotone for |u| > C for some
C > 0 large. These hypotheses are technical. The first one on the finite number
of inflection points is to construct convex and concave envelops by connect humps
with a finite number of lines. If one consider a bounded solution, the value of the
flux at |u| near infinity does not make any difference and therefore one may always
assume the second one.

For the case M > 0 we construct a positive solution which is denoted by
N0,M (x, t). If M < 0, the corresponding solution N|M |,0(x, t) is negative. (No-
tice that we use non-negative indices.) We call them signed N-waves which are
one parameter family of solutions. The two parameter family of N-waves are then
constructed by

(1.3) Np,q(x, t) = Np,0(x, t) + N0,q(x, t),

where the positive indices satisfy

(1.4) M = −p + q, p, q ≥ 0.

Since the problem is not linear, the N-wave Np,q(x, t) is not a solution of (1.1) in
general. However, under the second hypothesis

f(u) ≥ 0 for u ∈ R, (H2)
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we will see that Np,q(x, t) is a solution. The initial value of the problem is clearly
satisfied since

(1.5) lim
t→0

Np,q(x, t)(= −pδ(x−) + qδ(x+)) = Mδ(x).

in the distribution sense. From the uniqueness theory [14] there is no more source-
type solution other than N-waves in (1.3) under Hypotheses (H1, 2). However, it is
not clear the uniqueness of the signed N-waves under Hypothesis (H1) only is not
clear.

Closing the introduction consider one indication of a fundamental solution. For
the convex case the Oleinik-type one sided entropy estimate f ′(u)x ≤ 1/t actually
reflects the structure of the N-wave of the convex case and give the uniqueness of
solutions. However this kind of estimate does not hold for non-convex case and,
furthermore, this estimate does not give the uniqueness (see [6, 7]). Therefore, one
should find a different estimate and the new one should reflect the structure of
fundamental solutions for the non-convex case.

The rest of the paper consists as followings. In Section 2 we briefly give some
preliminaries about admissible weak solutions and explicit N-waves for the Burgers
and a general convex cases. In Section 3 convex-concave envelopes of a non-convex
flux are considered. Using these envelopes we construct fundamental solutions in
Section 4 and show that they are admissible weak solutions. Some of the basic
structures are also introduced in the section. In Section 5 several numerical exam-
ples for source-type solutions are given and compared with the ones constructed in
this paper.

2. Preliminary: N-waves for convex cases

The solution of the equation (1.1) is defined in a weak sense that satisfies

(2.1)
∫ ∫

(uφt + f(u)φx )dxdt +
∫

u0(x)φ(x, 0)dx = 0

for any test function φ ∈ C∞0 (R × [0,∞) ). If a weak solution has a discontinuity
at x = x(t), then it should satisfy the Rankine-Hugoniot jump condition

(2.2) x′(t) =
f(ur)− f(ul)

ur − ul
, ul = lim

y↑x
u(y, t), ur = lim

y↓x
u(y, t).

On the other hand a weak solution is not unique and hence one should consider
a physically meaningful one. Therefore, we always consider solutions that satisfy
the Oleinik entropy condition, i.e., a weak solution u(x, t) satisfies

(2.3) l(u) ≤ f(u) for all ul < u < ur, and l(u) ≥ f(u) for all ur < u < ul,

where l(u) is the linear function connecting two states ur and ul, i.e.,

(2.4) l(u) =
f(ul)− f(ur)

ul − ur
(u− ul) + f(ul).

A discontinuity that satisfies the admissibility condition is called a shock. Then an
entropy solution exists and is unique for a bounded measurable initial value and
the solution of (1.1) always means this weak solution that satisfies this entropy
condition. For the well-posedness of the entropy solutions we refer to [1, 17]. In
summary the admissible solution satisfies the equation in a classical sense in smooth
regions and discontinuity satisfies the Rankine-Hugoniot and Oleinik conditions.
Furthermore if a function satisfies the equation in classical sense in the smooth
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regions and the Rankine-Hugoniot and Oleinik conditions, then it is the admissible
solution.

The N-waves for the Burgers equation are well known and one may find them
from various text books. The construction of N-waves for a general flux without
the convexity assumption is more complicated than the convex case. However the
basic structure of the convex case also plays the key role. To compare the similarity
and the difference more clearly we start with simpler cases.

2.1. N-waves for the Burgers equation. For the Burgers case, the equation is
written as

(2.5) ut + uux = 0, lim
t→0

u(x, t) = Mδ(x), x ∈ R, t > 0.

Then the N-wave is given explicitly by

(2.6) Np,q(x, t) =
{

x/t, −√2pt < x <
√

2qt,
0 , otherwise.

One can easily check that this N-wave satisfies the Burgers equations in the smooth
regions by simple substitutions. The Oleinik and the Rankine-Hugoniot conditions
are satisfied along the possible two jump discontinuity curves x = −√2pt and
x =

√
2qt. Hence this N-wave is an entropy solution of the problem (2.5). One can

also easily check the initial condition.

2.2. N-waves for a convex case. Now consider a convex flux case

(2.7) ut + h(u)x = 0, h′′(u) > 0, lim
t→0

u(x, t) = Mδ(x), x ∈ R, t > 0.

In this case the derivative of the convex flux function h′ is invertible and the
rarefaction profile ‘g(x)’ is defined as the inverse of h′(x), i.e.,

(2.8) g = (h′)−1 or h′(g(x)) = x, x ∈ R.

Then the N-wave is explicitly given by

(2.9) Np,q(x, t) =
{

g(x/t), −ap(t) < x < bq(t),
0 , otherwise,

where ap(t) and bq(t) ≥ 0 satisfy

(2.10) p = −
∫ 0

−ap(t)

g(y/t)dy , q =
∫ bq(t)

0

g(y/t)dy .

The relations in (2.10) are to satisfy the condition (1.5). One can similarly check
that this N-wave satisfies (2.7) in the smooth regions by simple substitutions and
the Oleinik and Rankine-Hugoniot conditions are satisfied along the possible two
jump discontinuity curves x = −ap(t) and x = bq(t) since the flux is convex and
the limits satisfy ul > ur at the jumps.

For the Burgers case one can easily see that the rarefaction profile is g(x) = x
and hence g(x/t) = x/t. For this case the equation (2.10) is easily solved and given
by ap(t) =

√
2tp and bq(t) =

√
2tq. In Figure 1 examples of N-waves are plotted for

the Burgers case and the case with f(u) = |u|3/3. We displayed the positive part
only for the sake of saving space.

3. Convex and concave envelopes for a non-convex flux

Now we return to the original problem (1.1) under the hypothesis (H1).
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(a) N-waves for the Burgers case (b) N-waves for a convex case

Figure 1. Graphs of N-wave N0,1(x, t) are given at three in-
stances t = 1, 2 and 3. For the other convex case (b) the flux
function is given by f(u) = |u|3/3.

3.1. Convex envelope and the increasing side of an N-wave. The first step
to construct an N-wave is to find the lower convex envelope of the given flux. For
a given interval u ∈ (u, ū), it is defined as

(3.1) h(u;u, ū) := sup
η∈A(u,ū)

η(u),

where

(3.2) A(u, ū) := {η : η′′(u) ≥ 0, η(u) ≤ f(u) for u < u < ū}.
Since there are only finite number of inflection points, the convex envelope h(u; u, ū)
is obtained by simply connecting the humps of the graph of the flux and the end
points u, ū with tangent lines. For the case u = −∞ and ū = ∞, we simply write
it as h(u) (see Figure 2).

The convex envelope h(u) is continuously differentiable and is linear on in-
tervals on which f(u) 6= h(u). There exist strictly increasing sequences bi, ci,
i = 1, 2, · · · , n, such that

(3.3) h′(u) =
{

ci , b2i−1 < u < b2i,
f ′(u), otherwise.

It is clear that h′ is not invertible. However, the function g(x) can be given by the
second relation in (2.8) which is

(3.4) g(0) = 0, h′(g(x)) = x, x ∈ R.

Then g(x) is piecewise continuous with jump discontinuities at ci’s from limx↑ci g(x) =
b2i−1 to limx↓ci g(x) = b2i (see Figure 3(b)). In other words the function g(x) con-
sists of shocks and rarefaction waves. This profile gives the increasing side of the
N-wave.
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Figure 2. An example of a non-convex flux f(u) satisfying hy-
potheses in (H1-2) is given in a solid line. Its convex envelope h(u),
dashed line, is linear on intervals (b2i−1, b2i), i = 1, · · · , 6, and
agrees with the flux f(u) on the intervals (b2i, b2i+1), i = 0, · · · , 6,
where b0 = u and b13 = ū.

−3 −2 −1 0 1 2 3

 c1

 c2
 c3

 c4
 c5

 c6

−3

−2

−1

0

1

2

3

 c1  c2 c3  c4 c5  c6

(a) Comparison: f ′(u) and h′(u) (b) Rarefaction profile g(x)

Figure 3. (a) The graphs of f ′(u) and h′(u) for the flux in Figure
2. (b) The rarefaction profile g(x) satisfies the inverse relation (3.4)
and has an increasing jump at ci that connects b2i−1 and b2i.

Now define N-wave like functions as

(3.5) Ñp,q(x, t) =
{

g(x/t) , −ãp(t) < x < b̃q(t),
0 , otherwise,
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Figure 4. Graphs of N-wave like functions ‘Ñ0,3(x, t)’ in (3.5)
are given at several instances t = 1, 2, 3, 5, 10 and 20. One can find
the rarefaction profile of Figure 3 (b) from them. After t = 20
only the profile in the interval b6 < u < b7 left and increasing
discontinuities are all gone.

where p, q ≥ 0 and ãp(t), b̃q(t) ≥ 0 satisfy

(3.6) p = −
∫ 0

−ãp(t)

g(y/t)dy , q =
∫ b̃q(t)

0

g(y/t)dy .

(see Figure 4) One can easily check that this function satisfies the equation in
(1.1) in the smooth regions and the relation (1.5). At the increasing jumps the
Oleinik entropy condition (2.3) is satisfied since h is the convex envelope of f . The
Rankine-Hugoniot jump condition is also satisfied. Therefore, Ñp,q(x, t) is a source-
type solution of (1.1) as long as the jumps at x = −ãp(t) and x = b̃q(t) satisfy the
Oleinik entropy condition (2.3). However, it is not the case and they are not a
solution in general.

Remark 3.1. It is natural to ask when Ñp,q(x, t) in (3.5) becomes a source-type
solution. One can easily see that if the graph of f(u) is star-shaped with respect
to the origin, the discontinuity at x = b̃q(t) is admissible and hence it is a solution.
Under (H2) the flux is convex for small |u| ¿ 1. Therefore, there exists T > 0
such that Ñp,q(x, t) satisfies the convection equation for t > T . From the Figure 4
the waves seem to satisfy the equation for t > 20. The second hypothesis in (H1)
implies that there exists ū such that the jump that connects the zero to u > ū
satisfies the entropy condition. Therefore, Ñp,q(x, t) is a solution for t ¿ 1 small.

Remark 3.2. If the flux f is strictly convex, the the rarefaction profile g(x) is
continuous. If not, g(x) may have discontinuities. We call a continuous part a
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rarefaction wave and a discontinuous part a shock. However, the jumps in the
profile also move with continuous part without changing its shape as in g(x/t) until
it meets a decreasing side. Notice that this shock is a different from the one of the
convex case in Figure 1.

Remark 3.3. The profile g(x) provides the crucial information about the source-
type solution when Hypothesis (H2) holds and the over all structure of the flux
looks like the one in Figure 2. For the general case with Hypothesis (H1) only,
the convex envelope plays the same role as the concave envelope in the following
section.

3.2. Concave envelope and decreasing side of an N-wave. The second step
to construct an N-wave is to find the upper concave envelope of the flux. For a
given interval u ∈ (u, ū) it is given by

(3.7) k(u; u, ū) := inf
η∈B(u,ū)

η(u),

where

(3.8) B(u, ū) := {η : η′′(u) ≤ 0, η(u) ≥ f(u) for u < u < ū}.
Since there is only finite number of inflection points, the concave envelope k(u; u, ū)
is similarly obtained by connecting the humps of the graph of y = f(u) and the
end points from the above with tangent lines (see Figure 5). The concave envelope
is the dual concept of the convex envelope and decides the shape of the decreasing
side of an N-wave. If one assumes f(u) < 0 for all u 6= 0 instead of (H2), then one
should have constructed Ñp,q in (3.5) employing the concave envelope instead of
the convex one.

Remark 3.4. Consider a Riemann problem with an initial value

u0(x) =
{

ul, x < 0,
ur, x > 0.

Then, the solution u(x, t) is simply given by inverse relations

th′(u(x, t); ul, ur) = x, if ul < ur,
tk′(u(x, t); ur, ul) = x, if ul > ur.

This simplicity is due to that the convex hull does not vary since the maximum
and the minimum values are fixed. However, for the fundamental solution case,
the maximum decreases and hence the convex hull varies in time. To count this
behavior the left hand side should be understood as an integral in time variable
and, for the non-convex case, it is written as in (4.3) and (4.7).

We consider several obvious relations between concave and convex envelopes in
the following lemma.

Lemma 3.5. The convex and concave envelopes are ordered as

(3.9) h(u; u1, u2) ≤ k(u;u3, u4), u ∈ (u1, u2) ∩ (u3, u4).

If (u1, u2) ⊂ (u3, u4), then

k(u; u1, u2) ≤ k(u;u3, u4), u ∈ (u1, u2),(3.10)
h(u; u1, u2) ≥ h(u;u3, u4), u ∈ (u1, u2).(3.11)
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(a) Concave envelopes of f2(u) in (5.1) (b) Concave envelopes of f3(u)

Figure 5. Concave envelopes ki := k(u; 0, ui) (3.7). They give
decreasing profiles of an N-wave. A linear part indicates that there
is a shock connecting two end values. A tangent part means that
there is a rarefaction wave that connects two end values. Figures
show variety of possibilities depending on the height of an N-wave.

Proof. The relation (3.9) is clear since h(u) ≤ f(u) ≤ k(u). Let (u1, u2) ⊂ (u3, u4).
Then, since the sets given in (3.8) are ordered as B(u3, u4) ⊂ B(u1, u2), the corre-
sponding infimums should be ordered as in (3.10). Similarly we have (3.11). ¤

We now consider properties of envelopes which are useful in the construction of
signed N-waves. In the construction of an N-wave only the case with u = 0 is used
and hence we consider the case the following lemma.

Lemma 3.6. (1) If the convex envelope h(u; 0, ū0) is linear on (a, b) ⊂ (0, ū0),
then h(u; 0, ū) is linear on (a, b) for all ū ≥ ū0. This property holds for the
concave envelope, too.

(2) At least one of h(u; 0, ū) and k(u; 0, ū) is linear on (ū − ε, ū) for an ε > 0
small.

Proof. (1) Suppose that h(u; 0, ū) is not linear on (a, b) for some ū ≥ ū0. Then
there exists a subinterval (c, d) ⊂ (a, b) on which h(u; 0, ū) is strictly convex
and hence h(u; 0, ū) = f(u). Since h(u; 0, ū0) is linear on (c, d) and is a lower
convex envelope of f(u), h(u; 0, ū0) < f(u) = h(u; 0, ū) on the interval (c, d)
after taking a smaller interval if needed. It contradicts to Lemma 3.5 (3.11).
Similar arguments hold for concave envelope k(u; 0, ū).

(2) If h(u; 0, ū) is not locally linear near u = ū, then h(u; 0, ū) = f(u) and
strictly convex for u ∈ (ū− ε, ū). Therefore, the concave envelope can not
be identical to f(u) on the interval. Hence it should be linear on it.

¤
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4. N-waves for a general non-convex flux

4.1. Construction of N-waves. In this section we construct a positive N-wave
N0,q(x, t) such that

N0,q(x, t) → qδ(x) as t → 0
in a distribution sense, i.e., N0,q(x, t) is a delta sequence of weight q > 0 as t →
0. A negative N-wave Np,0(x, t) can be similarly constructed. Even though the
construction of an N-wave is a natural generalization of the convex flux case, there
is a considerable complexity. In the followings we present it step by step comparing
with the convex case and the figures in the later sections.

Due to the second hypothesis in (H1) there exists ū > 0 such that the jump
discontinuity connecting ur = 0 and ul = u is admissible for all u ≥ ū. Therefore
we may take N0,q(x, t) := Ñ0,q(x, t) until this moment. We do not need to know
the maximal time period that the equality holds. We just want to find a moment
t0 > 0 and bq(t0) such that

(4.1) g(bq(t0)/t0) = u0 ≥ ū and q =
∫ bq(t0)

0

g(y/t0)dy ,

where g is the rarefaction profile given by (3.4). Let

(4.2) h̄0(u) = inf{x : N0,q(x, t0) > u}, k̄0(u) = sup{x : N0,q(x, t0) > u},
where k̄0 is constant in this setting. The union of graphs of h̄0 and k̄0 is simply
the reflection of the graph of Ñ0,q(x, t0) with respect to the line u = x. In Figure
6 an example is given. In the first figure the graph of a flux f and corresponding
u0 > 0 are given. Clearly, the concave envelope k(u; 0, u0) is a straight line. The
corresponding time t0 and the graphs of h̄0 and k̄0 are given in the second one,
where we took q = 4.

Consider the convex envelope h(u; 0, u0). Then there exists a maximal interval
(v0, u0) such that h(u; 0, u0) = f(u) on it and v0 is a tangent point. Notice that the
concave envelope k(u; 0, ū) changes a lot as ū moves from u0 to v0. However, the
convex envelope stays as it is (see Figure 6 for example). Therefore, for v0 < u < u0

and t0 < t, we can define

(4.3) h̄(u, t) = h̄0(u) +
∫ t

t0

h′(u; 0, u0)dτ, v0 ≤ u ≤ u0,

where the derivative in the integrand is with respect to u of course. One can easily
see that h̄ is an increasing function with respect to u variable. This function h̄(u, t)
will give the increasing side of an N-wave.

The next step is to find the shock place x = bq(t) which corresponds to the one in
(2.9). For the convex flux case the point has three important aspects that it is the
right end point of the support, the place of a decreasing shock and the maximum
point. For a general non-convex flux case it still is the maximum point, but it is
not the end point of the support in general. Furthermore the N-wave may have an
increasing shock at the corresponding point. Let x = bq(t) and ū(t) is obtained by
solving

(4.4) b′q(τ) =
f(ū(τ))− f(u∗(τ))

ū(τ)− u∗(τ)

(
≡ k′(u; 0, ū(τ)) for u∗ ≤ u ≤ ū(τ)

)
,

(4.5) bq(τ) = h̄(ū(τ), τ),
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where u∗(τ) is the end of the linear part of the concave envelope k(u; 0, ū(τ)) that
connects the other end ū(τ). Note that, if ū(τ) is given, u∗ can be computed. For
simple cases one can solve this system explicitly and an example is given in Section
4.2. However, it is not possible for a general case and that makes the N-wave remain
implicit.

Now we show that ū(t) decreases in time. Since the monotonicity is a local
property, it is enough to consider t1 < t2 with |t1 − t2| ¿ 1 small enough. By
taking smaller |t1 − t2| if needed we may assume, for all t1 < τ, τ ′ < t2,

k′(ū(τ); 0, ū(τ)) < h′(ū(t1); 0, u0).

due to the relation between the convex and the concave envelopes. Then we clearly
have

b′q(τ) = k′(ū(τ); 0, ū(τ)) < h′(ū(t1); 0, u0) = ∂th̄(ū(t1), τ),

Therefore, since bq(t1) = h̄(ū(t1), t1), we have

h̄(ū(t2), t2) = bq(t2) < h̄(ū(t1), t2).

Since h̄(·, t) is an increasing function, we finally have

(4.6) ū(t2) < ū(t1) for all t1 < t2.

Now we may define the decreasing side of the N-wave

(4.7) k̄(u, t) = k̄0(u) +
∫ t

t0

k′(u; 0, ū(τ))dτ.

The concave envelope in the integrand depends on the maximum ū(τ) and, in
other words, it counts the changes of the concave envelope which appears when the
end point of the envelope moves from u0 to v0. For u /∈ [0, ū(t)], we simply set
h̄(u, t) = k̄(u, t) := 0.

One can easily check that, since k′(u; 0, ū(τ)) = f(ū(τ))−f(u∗(τ))
ū(τ)−u∗(τ) for any fixed

v0 < u < u0, k̄(u, t) actually moves with the same speed as bq(t) and hence

(4.8) bq(τ) = k̄(ū(τ), τ).

Therefore, h̄(ū(τ), τ) = k̄(ū(τ), τ) = bq(τ) and hence we may define the N-wave
using the inverse relation of these functions

(4.9) h̄(N0,q(x, t), t) = x for x < bq(t), k̄(N0,q(x, t), t) = x for x > bq(t).

In Figure 6 the graphs of h̄ and k̄ are displayed at t = 0.085 where ū(t) = u1 is
slightly bigger than v0. As ū(t) approaches to v0 the thin spike in the figure becomes
thinner and eventually disappears and the maximum jumps from ū(t) = v0 to u∗(t)
and the first stage of the N-wave is completed.

Now let v1 be the tangent point of the concave envelope k(u; 0, u∗). In the second
stage the N-wave is constructed similarly in the interval v1 < u < u∗. The difference
is that the role of the convex and the concave envelopes are swapped. Since we have
assumed that there is only finite number of inflection points, this process will be
done in finite steps and the construction of the N-wave is completed.

Remark 4.1. One can clearly see that ū(t) which was employed in the construction
of the N-wave is the maximum of the N-wave, i.e.,

(4.10) ū(t) ≡ max
x

N0,q(x, t).
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The monotonicity in (4.6) now implies that maximum of the N-wave decreases
monotonically as t →∞.

Remark 4.2. For the convex case the inverse relation of the flux is considered first
to find rarefaction profile g and then the time effect is counted simply by g(x/t) as
in (2.9). However, for the non-convex case, the convex-envelope varies as ū moves.
Therefore, the time effect is considered first as in (4.3) and then the inverse relation
(4.9) is considered, which is a more general way. For example, the convex case can
be written similarly. Since th′(g(x/t)) = x, g(x/t) is the inverse relation of the
mapping u → th′(u) ≡ ∫ t

0
h′(u)dτ .

Now we discuss several basic properties of h̄ and k̄ in the followings. These
immediately provide certain structures of fundamental solutions.

Lemma 4.3. (1) h̄(u, t) and k̄(u, t) are continuous for all t ≥ t0.
(2) If the convex envelope h(u; 0, ū(t)) has a linear part that connects u = a and

u = b, then h̄(u, t) is constant for u ∈ (a, b) and hence the corresponding
N-wave N0,q(x, t) has an increasing shock that connects u = a and u = b.
Linear part of the concave envelope gives decreasing shock similarly.

(3) The maximum point (bq(t), ū(t)) of an N-wave is always connected to a
shock one side and a rarefaction wave the other side.

Proof. (1) Since the envelopes are continuously differentiable, h̄(u, t) and k̄(u, t)
are continuous.

(2) Lemma 3.6 implies that h′(u; 0, ū(τ)) is constant in u ∈ (a, b) for any given
time 0 < τ < t. Therefore, its integral with respect to time variable (4.3)
is also constant on the interval. Clearly from the construction of Ñ0,q(x, t),
h̄0(u) is constant on the interval. Therefore, h̄(u, t) is constant on (a, b)
and hence the inverse image N0,q(x, t) has the discontinuity in the claim.
The similar arguments hold for concave envelopes.

(3) If the maximum point is connected to shocks on both sides, that means
it has a removable jump at the point. Lemma 3.6(2) implies that the
maximum point cannot be connected by two rarefaction waves. Therefore,
the maximum point is connected by an increasing shock and a decreasing
rarefaction, or an increasing rarefaction and a decreasing shock.

¤

Theorem 4.4. Let N0,q(x, t) be the positive N-wave given by the relation (4.9) and
Np,0(x, t) be the corresponding negative N-wave under the hypothesis (H1). Then,

(1) N-waves N0,q(x, t) and Np,0(x, t) are signed source type solutions of (1.1)
with M = q and M = −p, respectively.

(2) Under the extra hypothesis (H2) the N-wave Np,q(x, t) given by (1.3) is a
solution of (1.1) for all p, q ≥ 0 such that q − p = M .

Proof. (1) We can easily check that the N-wave constructed here is really the
admissible solution. Since the construction is done in a way that the Oleinik
and the Rankine-Hugoniot conditions are satisfied, all we need to do is to
show that the N-wave satisfies the equation in a classical sense in smooth
regions. Assume that the N-wave is smooth at x < bq(t). First differentiate
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the first relation in (4.9) with respect to x and t and obtain

∂

∂x

(
h̄(N0,q(x, t), t)

)
= (

∂

∂u
h̄)(

∂

∂x
N0,q) = 1,(4.11)

∂

∂t

(
h̄(N0,q(x, t), t)

)
= (

∂

∂u
h̄)(

∂

∂t
N0,q) +

∂

∂t
h̄ = 0.(4.12)

On the rarefaction wave side the convex envelope and the flux itself are
identical. Therefore, from (4.3),

(4.13)
∂

∂t
h̄(N0,q(x, t), t) = h′(N0,q(x, t); 0, ū(t)) = f ′(N0,q(x, t)).

Substituting (4.11) and (4.13) into (4.12), we finally obtain

∂

∂t
N0,q(x, t) + f ′(N0,q(x, t))

∂

∂x
N0,q(x, t) = 0.

On the region x > bq(t), one can similarly show equation by differentiating
the second relation in (4.9), which completes the proof that N0,q(x, t) is a
non-negative source type solution of the equation (1.1) with M = q > 0.

(2) Since the flux f has the minimum value at origin, the smooth convex en-
velope has h′(0) = 0. Therefore, h′(u) ≥ 0 for all u ≥ 0 because of the
convexity of h and hence h̄(u, t) ≥ 0 for all t > 0 and u > 0. Therefore the
support of N0,q(x, t) for a fixed t > 0 belongs to [0,∞). Similarly one can
show that the support of Np,0(x, t) for a fixed t > 0 belongs to (−∞, 0].
Therefore, for all t > 0,

Np,q(x, t)
∣∣∣
(−∞,0)

= Np,0(x, t), Np,q(x, t)
∣∣∣
(0,∞)

= N0,q(x, t),

and hence all the shocks satisfy the Oleinik and Rankine-Hugoniot condi-
tions and rarefaction waves satisfy the equation in a classical sense. Fur-
thermore, Np,q(x, t) converges to Mδ(x) as t →∞.

¤

4.2. Examples and comparison with a convex case. In this section we con-
sider examples that show the structure of the N-wave N0,q(x, t) constructed in the
previous section. First consider the Burgers equation case in which case we already
have N-waves and compare it with the N-waves in this paper. One may easily see
that the construction of N-wave in this paper is a natural generalization of the
well-known N-wave of the Burgers equation.

The flux of the Burgers equation is f(u) = u2/2 which is convex. Therefore,
the convex envelope is simply h(u; 0, ū) = f(u) and the concave envelope is the
linear line connecting the origin and (ū, f(ū)), i.e., k(u; 0, ū) = ūu/2. For the
initial time we may take t0 = 1. Then one can easily compute that h′(u; 0, ū(t)) =
u, k′(u; 0, ū(t)) = ū(t)/2, bq(t0) = ū(t0) =

√
2q and hence the initial profiles in (4.2)

are given by
h̄0(u) = u, k̄0(u) =

√
2q.

Therefore,

h̄(u, t) = u +
∫ t

1

udt = tu, k̄(u, t) =
√

2q +
∫ t

1

ū(t)/2dt.
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Figure 6. The flux and the envelopes are given for two cases,
ki := k(u; 0, ui), hi := h(u; 0, ui), i = 0, 1. u0 is the value that
shock that connects ul = u0 and ur = 0 is admissible. This gives
the initial profile h̄0(u) and k̄0(u). As ū(t) decreases or as the time
t increases, h̄(u, t) and k̄(u, t) may show interesting behavior.

Now we solve bq(t) and ū(t) in (4.4)-(4.5). Since

bq(t0 = 1) =
√

2q, bq(t) = h̄(ū(t), t) = tū(t),
f(ū(t))

ū(t)
= ū(t)/2,

the equation (4.4) becomes

b′q(t) = bq(t)/2t, bq(1) =
√

2q.

One can easily compute this first order equation and obtain

bq(t) =
√

2qt, ū(t) =
√

2q/t,

which gives the same N-wave in (2.6) after taking inverse relation in (4.9).
For a general non-convex flux case it is not possible to solve the equations by

hands and one needs to compute it numerically using appropriate iterative method.
However, the properties given in Lemmas 3.6 and 4.3 enable us to see the structure
of the N-wave via the structures of h̄(u, t) and k̄(u, t).

In Figure 6 several examples are given. In the first figure the graph of the flux and
convex-concave envelopes are shown. This flux satisfies the hypothesis (H1) only.
Since the convex envelope has a linear part with negative slope, the corresponding
shock has negative speed. The concave envelope k(u; 0, u0) is a straight line. One
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can find in the figure at t = 0.0053 that k̄0(u) is constant. The convex envelope
h(u; 0, u0) consists of two linear parts and two nonlinear parts. In the graph of
h̄0(u) one can find two constant parts and two rarefaction parts.

The concave envelope k(u; 0, u1) consists of three straight lines and two nonlinear
curves. One can find from the figure at t = 0.085 that k̄(u, t) has three constant
parts and two rarefaction waves. Note that in this example we took q = 4. The
convex envelope h(u; 0, u1) consists of two linear parts and one nonlinear part. In
the graph of h̄0(u) one can find two constant states and one rarefaction wave.
However, at the end there is a short increasing rarefaction wave. That means that
u1 is slightly bigger than the tangent point of the convex envelope.

If u1 arrives at the tangent point, then the thin pick will be disappeared and
there will be a jump in the maximum point ū(t). This spike is gone in the figure at
t = 0.125. One interesting point is the angle in the middle of the rarefaction wave of
h̄(u, t) in the last picture. This is due to the sudden change of the convex envelope
that happened when the spike was collapsed. Finally, the corresponding N-wave is
obtained from the relations in (4.9), i.e., the N-wave N0,4(x, t) is obtained by simply
reflecting the figures with respect to the line y = x. As we have observed from these
examples the structure of the envelopes indicates the shape of an N-wave.

5. Numerical examples

In this section we compare N-waves constructed in the previous section and
numerical simulations for the N-wave. In the computation we employed the WENO
and a central type scheme (see [5, 8, 16]). These tests show that the numerical
solutions exactly show the structure of the N-wave discussed previous section. For
the test we consider non-convex fluxes given by

(5.1) fn(u) = un(u2 − 2u + 1.02)(u2 − 4u + 4.02), n ≥ 2,

which satisfies both of the hypotheses (H1) and (H2). For the numerical compu-
tation one should consider appropriate initial value. It is clear that the dirac-delta
measure can not be used directly. We take an initial value given by

ut + fn(u)x = 0,(5.2)

u0(x) =
{

q/ε, 0 < x < ε,
0, otherwise,(5.3)

where q/ε is large enough that the jump from ul = q/ε to ur = 0 is admissible.
Then u(x, t) = N0,q(x, t) for t > 0 such that max u(x, t) < q/ε.

In Figure 7 intermediate states of the N-wave N0,1(x, t) are given at three in-
stances. The first one at t = 0.14 has the maximum value corresponding to u1 in
Figure 5(a). The concave envelope at the moment consists of two linear parts and
one rarefaction part. Since the amount of time to form a rarefaction is very short,
one can barely find a rarefaction wave in the figure. One can find the corresponding
rarefaction wave more clearly in the graph at t = 1. The concave envelope at the
moment with the maximum u2 in the Figure 5(a) has three linear parts and two
rarefaction waves and one can find them in the decreasing profile of the N-wave. At
t = 4 the corresponding maximum is u3 and the concave envelope has two linear
part and one rarefaction wave. In the Figure at t = 4 one can observe two shocks
and one rarefaction. One can also find a cusp in the rarefaction wave. That is
formed due to the sudden change of concave envelope from k2 to k3.
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Figure 7. Numerical computations of N-wave N0,1(x, t) are
given at three instances. The flux f2 in (5.1) is considered. For
this numerical computation we used WENO scheme and the cen-
tral scheme also gives similar results.
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Figure 8. Numerical computations of N-wave N0,1(x, t) are
given at three instances. The flux fn in (5.1) with n = 3 is consid-
ered. For this numerical computation we used WENO scheme and
the central scheme also gives similar results.

In Figure 8 another example for intermediate states of an N-wave are given with
the flux function fn with n = 3. The figures of its graph and concave envelopes
are also given in Figure 5(b). From these figures one can see that this numerical
examples have the structure discussed Section 4.

Now we consider the asymptotic structure of the N-wave. Notice that, even if
the formulas in (4.3) and (4.7) enable us to view the structure of the N-wave in
detail, it is not easy to compute it exactly. That is why we could not display the
examples in Figures 7 and 8 with exact solutions. However, for the asymptotic
structure, one can easily compute the N-wave exactly since the structure of the
N-wave depends on the structure of the flux near u = 0. For example, under the
hypothesis (H2), if the maximum of the N-wave is less than the smallest tangent
value of the convex envelope, then N0,q(x, t) = Ñ0,q(x, t) and hence one can easily
compute the N-wave.
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Figure 9. The exact N-waves N0,0.5(x, t) are given in solid line
together with a numerical solutions. They match well. A central
type scheme is used for the numerical solution.

In Figure 9(a) the exact N-wave N0,0.5(x, t) is given in a solid line together with a
numerical solution, where the flux is fn with n = 4. For an easier comparison with
the exact solution the numerical solution is plotted using less grid points. One can
clearly see that the numerical solution matches to the N-wave. For this numerical
example we used the central scheme. The example with fn with n = 5, Figure 9(b)
also matches to the exact N-wave well.
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