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Abstract

Consider a junction with n incoming and m outgoing roads. Along
each road, the flow of traffic is described through the continuum model
displaying phase transitions introduced in [5]. This note provides a
Riemann solver for the resulting Riemann problem at the junction.
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1 Introduction

This paper extends the continuum model for traffic introduced in [5] to
comprehend junctions. The model is based on conservation laws and allows
for the description of phase transitions. The macroscopic variables are the
density of vehicles and the mean traffic speed or, equivalently, the density
and the weighted momentum. Essentially, below a threshold speed, the flow
of traffic is in the congested phase and the model consists of the 2×2 system
of conservation laws introduced in [4]. At higher speeds, the traffic is in the
free phase and is satisfactorily described by the classical Lighthill-Whitham
and Richards (LWR) model [9, 10]. The global well posedness of this model
is proved in [6], while possible source terms are introduced and evaluated
in [2]. We refer to these papers for further details.

In the recent literature, several results were obtained on road or telecom-
munication networks. We refer in particular to [3], where the LWR model
is considered, and to [8] which is related to the Aw-Rascle model [1]. In
these papers, junctions are modeled so that the presence of a single fully
congested outgoing road immediately saturates the junction and no vehi-
cle may pass through it. On the contrary, here we postulate that the flow
through a junction vanishes only in two situations: either all the outgoing
roads are fully congested, or the incoming roads are empty. The approach
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used in [7] with reference to telecommunication networks is similar to the
one followed here along outgoing roads. However, a typical feature of traffic
flows at junction is the presence of precedences. Here, they enter in the
definition of the solution to Riemann problem along the roads entering the
junction.

Assume n roads enter a junction and m roads exit from it, see Figure 1.
Along each road the traffic density and speed are initially uniformly constant
and their evolution is described by the model [5]. We provide below a
solution to the resulting Riemann problem. As in [3, 7, 8], this solution is
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Figure 1: A junction.

a necessary preliminary step to the solution of the general Cauchy problem
on a net.

2 The Basic Model

We briefly recall here the model [5], which we use later to describe the
evolution of the traffic flow along each road. For notational simplicity, in
this paragraph we omit the indexes referring to each single road entering
the junction.

Free flow: (ρ, q) ∈ Ωf Congested flow: (ρ, q) ∈ Ωc

∂tρ + ∂x [ρ · v] = 0

{

∂tρ + ∂x [ρ · v] = 0
∂tq + ∂x

[

(q − Q) · v
]

= 0

v =
(

1 − ρ
R

)

· V v =
(

1 − ρ
R

)

· q
ρ .

(2.1)

Here, ρ is the traffic density, v the average vehicle speed, q the weighted lin-
ear momentum, R and V the maximal vehicle density and speed respectively.
Finally, from the traffic point of view, the parameter Q is characterized by
the phenomenon of wide jams, see [5] for further details. The free and the
congested phase, see Figure 2, are respectively defined as

Ωf =
{

(ρ, q) ∈ [0, R] × [0,+∞[ : vf (ρ) ≥ Vf , q = ρ · V
}

Ωc =

{

(ρ, q) ∈ [0, R] × [0,+∞[ : vc(ρ, q) ≤ Vc,
q−Q

ρ ∈
[

Q−−Q
R , Q+−Q

R

]

}

.
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Figure 2: The fundamental diagram for (2.1).

Here, Vf and Vc are the threshold speeds, i.e. above Vf the flow is free, while
below Vc the flow is congested. Following [5, 6], throughout the present note
we assume that the various parameters are strictly positive and satisfy

V > Vf > Vc ,
Q+ ≥ Q ≥ Q− ,

Q+ − Q

RV
< 1 and Vf =

V − Q+/R

1 − (Q+ − Q)/(RV )
. (2.2)

Finally, we recall the condition

(

1 −
Q+

RV

)

·

(

Q+

Q
− 1

)

< 1 , (2.3)

that ensures that all 1–Lax waves have negative speed, see [6, Proposi-
tion 2.3].

3 The Riemann Problem at a Junction

Consider a crossing with n incoming roads where, say, x ∈ ]−∞, 0], and
m outgoing roads, where x ∈ [0,+∞[. We assume that the system (2.1)
describes the evolution of traffic flow on each incoming road and on each
outgoing road. Note that we allow the road parameters to be different among
the different roads. Therefore, we refer below to Ωi or Ωj for the state space
of the i–th incoming or j–th outgoing road, to Ri or Rj for the maximal
density along the i–th incoming or j–th outgoing road, and so on.

The interplay of roads at the crossing is modeled through the preferences
among the outgoing roads of driver and the order of precedence among the
incoming roads.

The strictly positive parameters θ1, . . . , θm, normalized so that
∑m

j=1 θj =
1, describe the drivers’ preferences. More precisely, let F be the total
through-flow at the crossing. If the capacity of the j–th road allows for
it, θjF is the flow entering the j–th road.

On the other hand, the indexing of the incoming road gives the order of
precedence, in the sense that the first vehicles that cross the junction are
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those coming from the first road. If the capacity of the outgoing roads is
sufficiently large, then also the vehicles coming from the road 2 may cross
the junction, then those coming from road 3, and so on.

By Riemann problem at this junction we mean the Cauchy problem
consisting of n + m models (2.1) defined for (t, x) ∈ [0,+∞[ × ]−∞, 0] and
for (t, x) ∈ [0,+∞[×[0,+∞[, (each with its own parameters), equipped with
initial data in the corresponding state space Ωi or Ωj. More precisely:































































∂t ρi + ∂x

[

ρivi(ρi, qi)
]

= 0 (ρi, qi) ∈ Ωi,f

∂t

[

ρi

qi

]

+ ∂x

[

ρivi(ρi, qi)
(qi − Qi)vi(ρi, qi)

]

= 0 (ρi, qi) ∈ Ωi,c
x < 0

∂t ρj + ∂x

[

ρjvj(ρj , qj)
]

= 0 (ρj , qj) ∈ Ωj
f

∂t

[

ρj

qj

]

+ ∂x

[

ρjvj(ρj , qj)
(qj − Qj)vj(ρj , qj)

]

= 0 (ρj , qj) ∈ Ωj
c

x > 0

(ρi, qi)(0, x) = (ρ̄i, q̄i) x < 0
(ρj , qj)(0, x) = (ρ̄j , q̄j) x > 0

(3.1)
where (ρ̄i, q̄i) ∈ Ωi, (ρ̄j , q̄j) ∈ Ωj and we set

vi(ρi, qi) =

{

(

1 − ρi

R

)

· Vi if (ρi, qi) ∈ Ωi,f ,
(

1 − ρi

R

)

· (qi/ρi) if (ρi, qi) ∈ Ωi,c .
(3.2)

vj is defined similarly. A natural space for the solution to Riemann problems
consists of BV perturbation of a given Riemann data, equipped with the
L1 distance. In other words, for any state ū = (ρ̄, q̄) we define

Xi(ū) = BV
(

]−∞, 0] ; Ωi

)

∩

(

ū + L1

(

]−∞, 0] ; R2
)

)

Xj(ū) = BV
(

[0,+∞[ ; Ωi

)

∩

(

ū + L1

(

[0,+∞[ ; R2
)

)

Definition 3.1 Fix the end states ūi ∈ Ωi and ūj ∈ Ωj for i = 1, . . . , n
and j = 1, . . . ,m. By weak solution to (3.1), we mean a set of self-similar

functions

(ρi, qi) ∈ C0
(

[0,+∞[ ;Xi(ūi)
)

(ρj , qj) ∈ C0

(

[0,+∞[ ;Xj(ūj)
)

such that

1. (ρi, qi) is a weak entropic solution to (2.1)i for x ∈ ]−∞, 0[;

2. (ρj , qj) is a weak entropic solution to (2.1)j for x ∈ ]0,+∞[;
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3. for all t ∈ ]0,+∞[,

lim
x→0−

n
∑

i=1

ρi(t, x) v
(

ρi(t, x), qi(t, x)
)

= lim
x→0+

m
∑

j=1

ρj(t, x) v
(

ρj(t, x), qj(t, x)
)

.

By self-similar we mean that for i ∈ {1, . . . , n},

(ρi, qi)(t, x) = (ρi, qi)(λt, λx)

for every λ > 0, t > 0 and x < 0 and for j ∈ {1, . . . ,m},

(ρj , qj)(t, x) = (ρj , qj)(λt, λx)

for every λ > 0, t > 0 and x > 0.
Note that condition 3 in Definition 3.1 ensures the conservation of vehi-

cles at the junction.
We adapt the standard definition of Riemann solver to the present situ-

ation.

Definition 3.2 A Riemann solver for (3.1) is a map R defined on all states
∏n

i=1 Ωi×
∏m

j=1 Ωj 7→
∏n

i=1 Ωi×
∏m

j=1 Ωj that to any n-tuple of pairs (ρ̄i, q̄i) ∈

Ωi and to any m-tuple of pairs (ρj , qj) ∈ Ωj associates a weak solution

to (3.1) computed at time t = 1.

By Definition 3.1, any weak solution to (3.1) is uniquely determined by
its trace at the junction computed at any positive time.

The notion of weak solution at a junction is not sufficient to single out a
unique solution to (3.1). Indeed, neither Definition 3.1 nor Definition 3.2 are
related to any sort of stability requirement or entropy condition. Consider
the case n = m = 1. Then, (3.1) reduces to a standard Riemann problem
and any of its infinitely many weak solutions is a weak solution to (3.1) in
the sense of Definition 3.1.

We first state some lemmas about weak solutions to (3.1).

Lemma 3.3 Consider the Riemann problem (3.1) and fix an i in {1, . . . , n}.
Let vi = vi(ρi, qi) as in (3.2). Then, there exist two continuous functions

αi = αi(ρi, qi) and βi = βi(ρi, qi) such that every weak solution to (3.1)
satisfies

lim
x→0−

ρi(1, x) · vi

(

ρi(1, x), qi(1, x)
)

∈
[

0, αi(ρi, qi)
]

∪
{

βi(ρi, qi)
}

. (3.3)

Moreover, for every η ∈
[

0, αi(ρi, qi)
]

∪
{

βi(ρi, qi)
}

, there exists a weak

solution to the Riemann problem (3.1) such that

lim
x→0−

ρi(1, x) · v
(

ρi(1, x), qi(1, x)
)

= η .
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The proof is postponed to Section 4, where the explicit expressions of
αi and βi are provided. The analogous statement for outgoing roads is the
following.

Lemma 3.4 Consider the Riemann problem (3.1) and fix a j ∈ {1, . . . ,m}.
Then, there exists a continuous function γj = γj(ρj , qj) such that every weak

solution to (3.1) satisfies

lim
x→0+

ρj(1, x) · vj
(

ρj(1, x), qj(1, x)
)

∈
[

0, γj(ρj , qj)
]

. (3.4)

Moreover, for every η ∈
[

0, γj(ρj , qj)
]

, there exists a weak solution to the

Riemann problem (3.1) such that

lim
x→0−

ρi(1, x) · v
(

ρi(1, x), qi(1, x)
)

= η .

For i = 1, . . . , n and j = 1, . . . ,m define the sets

Fi(ρi, qi) =
[

0, αi(ρi, qi)
]

∪
{

βi(ρi, qi)
}

F j(ρi, qi) =
[

0, γj(ρj , qj)
]

.

Let

∆out(ϕ
1, . . . , ϕm) = inf

λ∈[0,+∞[

∥

∥

∥
(ϕ1, . . . , ϕm) − λ(θ1, . . . , θm)

∥

∥

∥
,

where ‖ · ‖ stands for the usual Euclidean norm. To select among the in-
finitely many weak solutions, we adopt the following constructive procedure.

1. The through-flow at the crossing is

F = max











n
∑

i=1

Fi(ρ̄i, q̄i)



 ∩





m
∑

j=1

F j(ρ̄j , q̄j)











here the sum between sets is intended in the sense A+B = {a+ b: a ∈
A and b ∈ B}. Note that this set is not empty, since it contains at
least {0}.

2. Define recursively the incoming flows respecting the precedences as
follows:

f̃1 = max
(

F1(ρ̄1, q̄1) ∩ [0, F ]
)

f̃i = max






Fi(ρ̄i, q̄i) ∩



0, F −

i−1
∑

l=1

f̃l










i = 2, . . . , n .
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3. Lemma 3.4 ensures the convexity of the set

J =







(ϕ1, . . . , ϕm) ∈

m
∏

j=1

[

0, γj(ρ̄j , q̄j)
]

:

m
∑

j=1

ϕj = F







.

so that the outflows

(f̃1, . . . , f̃m) = argmin
(ϕ1,...,ϕm)∈J

∆out(ϕ
1, . . . , ϕm)

are uniquely defined.

4. The traces of the solution at the junction are uniquely defined by

{

ρ̃i · vi(ρ̃i, q̃i) = f̃i

L2(ρ̄i; ρ̃i, q̃i) = q̄i

{

ρ̃j · vj(ρ̃j , q̃j) = f̃ j

L2(ρ̄
j ; ρ̃j , q̃j) = q̄j

5. The solutions along each road are defined solving the standard Rie-
mann problems consisting of (2.1)i along incoming roads, respectively (2.1)j

along outgoing roads, and initial data

(ρi, qi)(t, 0) =

{

(ρ̄i, q̄i) x < 0
(ρ̃i, q̃i) x > 0

, respectively

(ρj , qj)(t, 0) =

{

(ρ̃j , q̃j) x < 0
(ρ̄j , q̄j) x > 0 .

The next proposition describes the properties of this Riemann solver.

Proposition 3.5 The Riemann Solver R has the following two properties:

1. if (ρ̄i∗ , q̄i∗) = (0, 0), i∗ ∈ {1, . . . , n}, then R provides the same solution

in the case the i∗ road does not exist.

2. if ρ̄j∗ = R, j∗ ∈ {1, . . . ,m}, then R provides the same solution in the

case the j∗ road does not exist.

In particular, the flow across the junction may well be non zero even if some

of the outgoing roads are fully congested.

Proof. Note that if (ρ̄i∗ , q̄i∗) = (0, 0), then αi∗(ρ̄i∗ , q̄i∗) = β(ρ̄i∗ , q̄i∗) = 0,
hence Fi∗(ρ̄i∗ , q̄i∗) = {0}, so that

n
∑

i=1

Fi(ρ̄i, q̄i) =
∑

i=1,...,n; i6=i∗

Fi(ρ̄i, q̄i) .
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This shows that the through-flow F does not change if the i∗ road is sup-
pressed.

Similarly, if ρ̄j∗ = R, then γj∗(ρ̄j , q̄j) = 0, hence F j(ρ̄j , q̄j) = {0} and

m
∑

j=1

F j(ρ̄j , q̄j) =
∑

j=1,...,m; j 6=j∗

F j(ρ̄j , q̄j) ,

showing that f̃ j∗ = 0, completing the proof. �

Remark 3.6 In the case n = m = 1, the Riemann solver R
(θ1,...,θm)
(θ1,...,θn) is not

the standard Lax solver. In fact, given a junction J with one incoming road

I1 and one outgoing road I1, consider the Riemann problem with the initial

data (ρ̄1, q̄1) ∈ Ωf and (ρ̄1, q̄1) ∈ Ωc. Assume that

1. ρ̄1v(ρ̄1, q̄1) < ρ̄1v(ρ̄1, q̄1);

2. V q∗R
RV −Q1+q∗

RV −Q1

RV −Q1+q∗
< ρ̄1v(ρ̄1, q̄1).

In this case the previous procedure gives that (ρ̂1, q̂1) = (ρ̄1, q̄1), while

the standard Lax solution is given by a wave of the first family with negative

speed and by a wave of the second family with positive speed.

4 Technical Proofs

Proof of Lemma 3.3. The index i is fixed throughout this proof, hence it is
omitted. Refer to Figure 2 and follow the 1-Lax curve exiting (ρ, q). Along
this curve, the flow ρv(ρ, q) attains all values in

[

0, α(ρ, q)
]

∪
{

β(ρ, q)
}

where

α(ρ, q) =







ρ · v(ρ, q) if (ρ, q) ∈ Ωf and ρv ≤ ϕ ,
(

1 − RVc

Q+(q−Q)(R/ρ)

)

RVc otherwise;

β(ρ, q) =







ρ · v(ρ, q) if (ρ, q) ∈ Ωf and ρv ≤ ϕ ,
Q

V +(Q−q)/ρ

(

1 − Q/R
V +(Q−q)/ρ

)

otherwise.

On the other hand, fix an η ∈
[

0, α(ρ, q)
]

∪
{

β(ρ, q)
}

. Choose null initial
data in all the incoming roads but in the i–th one, where ρi, qi are assigned.
In one of the outgoing roads, select an initial datum with flow η and let all
the other outgoing roads, if present, be empty. The obvious weak solution
to the resulting Riemann problem has trace η at the junction. �
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Figure 3: Notation used in Lemma 3.3

Proof of Lemma 3.4. Proceed as in the proof of Lemma 3.3. If (ρ, q) ∈ Ωf ,
then the standard Riemann problem with any other point of Ωf as left state
and (ρ, q) as left state is solved by a wave of positive speed. Similarly,
assume that ρ, q) ∈ Ωc. Then, any point lying on its 2–Lax curve as well as
any point in Ωf wit sufficiently small flow have the same property. Along

all these points, the flow attains the values
[

0, γ(ρj , qj)
]

, where

γ(ρ, q) =







(V − Vf ) · R if (ρ, q) ∈ Ωf

1
2

R
Q+−Q

(

Q+ − 2Q + K +
√

(K + Q+)2 + 4KQ
)

if (ρ, q) ∈ Ωc

where we set K =
(

R
ρ − 1

)

q. �
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