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Abstract. The purpose of this paper is to explore a viscous two-phase liquid-gas model relevant
for well and pipe flow. Our approach relies on applying suitable modifications of techniques
previously used for studying the single-phase isothermal Navier-Stokes equations. A main issue
is the introduction of a novel two-phase variant of the potential energy function needed for
obtaining fundamental a priori estimates. We derive an existence result for weak solutions in a
setting where transition to single-phase flow is guaranteed not to occur when the initial state is a
true mixture of both phases. Some numerical examples are also included in order to demonstrate
characteristic behavior of solutions. In particular, we illustrate how two-phase flow is genuinely
different compared to single-phase flow concerning the behavior of an initial mass discontinuity.

1. Introduction

We are interested in a one-dimensional two-phase liquid (`) and gas (g) model composed of two
separate mass equations and a common momentum equation in the following form:

mt + (v`m)x = 0,

nt + (vgn)x = 0,

(mv` + nvg)t + (mv2
` + nv2

g)x + p(m,n)x = qF + qG + µ(vmix)xx, µ > 0,

(1.1)

where
m =α`ρ`, n = αgρg,

qF =− fvmix, qG = gρmix,

vmix = α`v`+αgvg, ρmix = α`ρ` + αgρg,

(1.2)

where f and g are nonnegative constants. Here ρ denotes density, α is volume fraction, v is fluid
velocity, and p is pressure. This model is supplemented with equations of state (EOS) for the two
phases, here assumed to be of the form

ρ` = ρl,0 +
p− pl,0

a2
l

, ρg =
p

a2
g

, (1.3)

where al and ag are sonic speed, respectively, in liquid and gas, and pl,0 and ρl,0 are reference
pressure and density given as constants. Moreover, we have given the following basic constraint

α` + αg = 1, (1.4)

and an algebraic expression describing the relation between gas and liquid velocity of the form

vg = Kvmix + S, K, S are constants. (1.5)

This model is often referred to as the drift-flux mixture model [2, 3, 4, 7, 8, 9, 10, 27]. Note that
by combining (1.3) and (1.4), we get a nonlinear pressure law p(m,n) of the form

p(m,n) = C(−b(m,n) +
√

b(m,n)2 + c(m, n)), (1.6)
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with C = 1
2a2

l and k0 = ρ0 − p0/a2
l > 0 and a0 = (ag/al)2 and

b(m,n) = k0 −m−
(ag

al

)2

n = k0 −m− a0n

c(m,n) = 4k0

(ag

al

)2

n = 4k0a0n.

(1.7)

Development of good discrete methods for solving the inviscid variant of (1.1) has been a topic
for many papers during the last decade, see for instance [2]–[16] and [29]–[34]. However, few results
providing insight into qualitative (mathematical) properties of this model (and various simplified
variants) seem to exist. Besides results relevant for existence, uniqueness, stability, and regularity
of weak solutions, it is also of great interest to understand more precisely under what conditions
formation of vacuum (transition to single-phase flow, i.e. m = 0 or n = 0) may occur.

Relation to other mixture models. It is interesting to compare the model (1.1) with other
mixture models for which existence results of weak solutions have been provided. Here we would
like to mention one direction represented by the work [17, 19]. This model is designed such that

(i) at each point of the space occupied by the mixture there are particles belonging to each
component (i.e. transition to single-phase flow does no occur in this model);

(ii) basic energy-estimates are in place.

More precisely, the one-dimensional model takes the form

mt + (v`m)x = 0,

nt + (vgn)x = 0,

(mv`)t + (mv2
` )x + p(m,n)x = µ(v`)xx + J, µ > 0,

(nvg)t + (nv2
g)x + q(m,n)x = µ(vg)xx − J,

(1.8)

where J involves interaction terms of the form

J = a
(
m,n, |v` − vg|

)
· (v` − vg) + Ψ′(c1m + c2n)

(
c2n(c1m)x − c1m(c2n)x

)
,

p(m, n) = c1mρΨ′(ρ), ρ = c1m + c2n, c1, c2 > 0,

q(m,n) = c2nρΨ′(ρ).

(1.9)

where a(·, ·, ·) is non-negative function and Ψ(ρ) is a function whose choice characterizes the
pressure law under consideration. One natural choice is for instance

Ψ(ρ) = ργ−1, γ > 1.

This model is thermo-mechanically consistent in the sense that the following basic energy estimate
is obtained:

d

dt

∫

R
ρΨ(ρ) dx +

d

dt

(1
2

∫

R
m|v`|2 dx

)
+

d

dt

(1
2

∫

R
n|vg|2 dx

)

+µ

∫

R
(v`)2x + (vg)2x dx +

∫

R
a
(
m,n, |v` − vg|

)
|v` − vg|2 dx = 0.

(1.10)

Here the pressure laws p and q together with the interaction term J are carefully designed such
that terms nicely can be grouped together resulting in the equation (1.10). Note, however that
J involves non-conservative terms mnx and nmx which we do not have much information about.
Thus, the authors in [17] neglect the second term of J . The price to pay for this simplification is
that the general energy estimate (1.10) is lost.

On the other hand, alternative mixture models that use only one fluid velocity and one density
for the whole mixture, have been studied. These models cannot take into account mutual inter-
actions of the individual components. From a mathematical point of view, more is known about
these models, see for instance [6, 36, 37].

The model (1.1) is somewhat different from the above two mentioned mixture models.
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• First, it involves an additional variable, the volume fraction variable represented by αg

(or α`) which allows modeling of co-existent two-phase and single-phase regions. In other
words, the model allows transition from single-phase to two-phase flow.

• The model involves two different fluid velocities whose difference v`−vg = Φ(·) is governed
by an algebraic expression and/or experimental data. A special case is the no slip flow
condition v` = vg corresponding to Φ = 0.

• The model (1.1) is supplemented with a pressure law p = p(m,n) depending on the
masses m and n. Having specified an EOS for each of the two phases ρ`(p) and ρg(p),
the fundamental relation α` + αg = 1 then directly defines the pressure law p(m, n). In
particular, the resulting pressure law is normally not of the form given in (1.9). A main
challenge here seems to be able to obtain a priori energy-type of estimates for such pressure
laws, in particular, when fluid velocities are different. For the mixture model (1.10), the
inclusion of a pressure related term Ψ in the interaction term J in (1.9) plays a crucial
role in order to obtain the energy estimate (1.10).

Note also that although we apply linear EOSs for the gas and liquid phase in (1.3), the resulting
pressure law p(m,n) given in (1.6) for the two-phase mixture, becomes a nonlinear function. This
reflects some of the additional complexity represented by two-phase modeling.

In order to compare the mixture model (1.8) with the mixture model (1.1) we add the two
momentum equations in (1.8), where we for simplicity have used c1 = c2 = 1 in (1.9). This gives
us

mt + (v`m)x = 0,

nt + (vgn)x = 0,

(mv` + nvg)t + (mv2
` + nv2

g)x + P (m + n)x = µ(vmix)xx, µ > 0,

where P (m + n) = (m + n)2Ψ′(m + n). Thus, a main difference compared to the model (1.1) is
that the pressure P = P (ρ) depends on one variable, the mixture mass ρ = m + n instead of the
two-variable pressure law p(m,n) given by (1.6) and (1.7).

A simplified model. The model (1.1)–(1.5) is highly relevant, for example, in modeling of well
and pipe flow processes [9]. Particularly, if we replace the density relations (1.3) with those used
to represent more realistic fluids as well as apply more advanced slip relations than (1.5). The
purpose of this paper is to focus on some basic aspects of this model and for that purpose we will
deal with a simplified version of (1.1). The simplification we make is as follows:

(i) Due to the fact that the liquid phase is much heavier than the gas phase, typically to the
order ρ`/ρg ∼ 103, we neglect the gas phase in the mixture momentum equation.

(ii) We restrict ourselves to a flow regime where we can assume that fluid velocities are equal,
i.e., v` = vg = u.

Consequently, from now on we focus on the simplified model

mt + (um)x = 0

nt + (un)x = 0

(mu)t + (mu2)x + p(m,n)x = µuxx, µ > 0,

(1.11)

with initial data
(m(0, ·), n(0, ·), u(0, ·)) = (m0, n0, u0). (1.12)

We may set µ = 1 in the following. In this paper we also focus on a viscous dominated setting
where we neglect the friction term qF and where the flow is horizontal, i.e. qG = 0.

It is also interesting to have in mind the model (1.11) described in Lagrangian coordinates
c = n/m and v = 1/m. The model then takes the form

ct = 0
vt − ux = 0

ut + p(c, v)x = µuxx, µ > 0.

(1.13)
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Models of the form (1.13) with µ = 0 have been studied more recently by several researchers. Lu
has considered global weak solutions relying on a suitable variant of the compensated compactness
method [28]. Fan has studied travelling waves and Riemann problems for a similar model relevant
for liquid/vapor phase transition [12, 13], see also [1]. In addition, an inviscid variant of (1.13) with
a friction term in the momentum equation has been studied in several works [25, 26, 30, 35]. They
explore the damping mechanism from the friction term to the smoothness and large time behavior
of the solutions. In [18] the authors consider the drift-flux model in Lagrangian coordinates with
a slip-law similar to (1.5).

The idea of this paper. The main purpose of this paper is to explore some aspects of the two-
phase model (1.11) concerning existence of weak solutions. One important flow scenario relevant
for the two-phase model is a situation where we avoid transition to single-phase flow, that is, we
can find upper and lower limits for the masses m and n of the form

C(T )−1 ≤ m,n ≤ C(T ), (t, x) ∈ [0, T ]× R. (1.14)

A clearer understanding of the conditions that ensure such a behavior is clearly desirable, also
from an application point of view. Such pointwise control has been a topic for much research
within development of mathematical theory for single-phase Navier-Stokes flow, see for example
[24].

In this paper we will explore the viscous two-phase model by applying techniques similar to
those used by Hoff for the single-phase isothermal Navier-Stokes as described in [22, 23]. A main
point here is that we need to define an appropriate two-phase variant of the potential function, in
the following denoted as Q(m,n), that will give us a basic energy estimate of the form

d

dt

∫

R

[1
2
mu2 + Q(m, n)

]
dx + µ

∫ T

0

∫

R
(ux)2 dx dt = 0. (1.15)

More precisely, we introduce a two-phase potential energy density function Q(m,n, m, n) of the
form

Q(m,n|m, n) := m

∫ m

m

[p
(
s, n

ms
)− p (m,n)
s2

]
ds + mg

( n

m
,m

)
,

where an appropriate choice of g must be made in order to ensure that Q becomes non-negative
for positive m,n, m and n. Here we also, in view of the two mass equations of (1.11), shall make
use of the fact that m and n are related by

n(t, x)
m(t, x)

=
( n0

m0

)
(X−1

t (x)),

where Xt(x) is the characteristic emanating from x at time t = 0. Equipped with this two-phase
energy potential function and the corresponding energy estimate (Lemma 1 and Corollary 1),
we observe that gentle modifications of the single-phase arguments allow us to obtain the bound
(1.14) (Lemma 2). Thus, we demonstrate that such single-phase techniques can provide useful
insight into characteristic features relevant for the two-phase model (1.11).

Equipped with pointwise control of m and n, we then can derive several a priori higher order
regularity estimates in Lp and Sobolev spaces of a sequence of approximate solutions {mδ, nδ, uδ}
obtained by applying a regularization of initial data m0, n0, u0, see Lemma 3. These estimates
yield some basic convergence results, however, not strong convergence of mδ, nδ as needed in
order to recover the nonlinear pressure law p(m,n). A strong convergence result is presented in
Lemma 4 and is mainly based on continuity estimates for particle trajectories together with the
higher order estimates of Lemma 3 which imply Holder type estimates for the effective viscous
flux uδ

x − p(mδ, nδ). This in turn gives rise to strong compactness of mδ and nδ. The conclusion
of the various Lemmas is summed up in Theorem 1 given below.

The result of this paper. Along the line of [23] we work with initial data having possibly
different limits at x = ±∞ in order to include general Riemann data in the analysis. More
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precisely, we assume (u−, u+) and (m−,m+), (n−, n+) (positive) and let u, m, and n be smooth
monotone functions such that

m(x) = m±, when ±x ≥ 1, m(x) > 0 ∀x ∈ R
n(x) = n±, when ±x ≥ 1, n(x) > 0 ∀x ∈ R
u(x) = u±, when ±x ≥ 1.

(1.16)

Our main theorem is the following:

Theorem 1. Assume that the initial data m0, n0, and u0 satisfy

0 < κ0 ≤ m0 ≤ κ0 < ∞, 0 < ι0 ≤ n0 ≤ ι0 < ∞,

m0 −m ∈ L2(R), n0 − n ∈ L2(R), u0 − u ∈ L2(R).
(1.17)

A). First, there exists a global weak solution (m,n, u) of (1.11) and (1.12) on R+ × R such that

m−m, n− n, mu−mu ∈ C([0,∞); H−1(R)), (1.18)

u− u ∈ C((0,∞); L2(R)), (1.19)

u(t, ·), µux(t, ·)− p(m(t, ·), n(t, ·)) + p(m,n) ∈ H1(R), t > 0, (1.20)

ut(t, ·), u̇(t, ·) ∈ L2(R), t > 0. (1.21)

Here u̇ = du
dt = ut + uux. In addition, for a finite time T > 0, there exist constants κ(T ), κ(T )

and ι(T ), ι(T ) such that for t ∈ [0, T ]

0 < κ(T ) ≤ m(t, x) ≤ κ(T ) < ∞, a.e. in R,

0 < ι(T ) ≤ n(t, x) ≤ ι(T ) < ∞, a.e. in R.
(1.22)

B). Second, for a finite interval [0, T ] more precise information about the results (1.18)–(1.21)
can be given. That is, there is a constant C(T ) depending on upper bounds in the time interval
[0, T ] for ‖m0 −m‖2, ‖n0 − n‖2, ‖u0 − u‖2, ‖m0‖∞, ‖m−1

0 ‖∞, ‖n0‖∞, ‖n−1
0 ‖∞ such that,

sup
0<t≤T

[
‖m(t, ·)−m‖L2(R) + ‖u(t, ·)− u‖L2(R) + σ(t)1/2‖ux(t, ·)‖L2(R)

+ σ(t)
(
‖u̇(t, ·)‖L2(R) + ‖µux(t, ·)− p(m(t, ·), n(t, ·)) + p(m,n)‖L2(R)

)]
≤ C(T );

(1.23)

∫ T

0

[
‖u(s, ·)‖2L2(R) + σ(s)‖u̇(s, ·)‖2L2(R) + σ(s)‖µux(s, ·)− p(m(s, ·), n(s, ·)) + p(m,n)‖2L2(R)

+ σ(s)2‖u̇x(s, ·)‖2L2(R)

]
ds ≤ C(T );

(1.24)

where σ(t) = min{t, 1}. Moreover, for 0 < τ < T

σ(τ)1/4‖u‖L∞([τ,T ]×R) + σ(τ)1/2〈u〉1/2,1/4
[τ,T ]×R ≤ C(T ), (1.25)

where 〈u〉1/2,1/4
[τ,T ]×R is the usual Hölder norm with exponent 1/2 in x and 1/4 in t.

The rest of this paper is organized as follows: In Section 2 we obtain a fundamental energy esti-
mate, pointwise estimates for m and n, as well as higher order regularity estimates. Compactness
and convergence to weak solutions is then discussed in Section 3, whereas some numerical results
are included in Section 4 in order to demonstrate characteristic behavior of the viscous two-phase
model.
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2. Various estimates

2.1. Preliminary. First, for the derivation of a priori estimates we need an existence result of
smooth solutions for small time. We here shall assume (without proof) that we have an existence
result of the following form which is a direct generalization of a classical result for single-phase
Navier-Stokes [38, 33].

Proposition 1 (classical solution in a small time interval). Let (m0, n0, u0) satisfy (1.17), then
there exists an T0 > 0 depending on κ0, κ0 and ι0, ι0, and ‖m0−m‖H1 , ‖n0−n‖H1 , and ‖u0−u‖H1

such that the model has a unique solution on (0, T0) satisfying

m−m ∈ L∞(0, T1; H1(R)), ∂tm ∈ L2((0, T1)× R),

n− n ∈ L∞(0, T1; H1(R)), ∂tn ∈ L2((0, T1)× R),

u− u ∈ L2(0, T1;H2(R)), ∂tu ∈ L2((0, T1)× R),

(2.1)

for T1 < T0. Moreover, there exist some κ(t), ι(t) < ∞ and κ(t), ι(t) > 0 such that

κ(t) ≤ m(t, x) ≤ κ(t), ι(t) ≤ n(t, x) ≤ ι(t) (2.2)

for all t ∈ (0, T0).

By applying the method of characteristics we have
d

dt
Xt(x) = u(t,Xt(x)), X0(x) = x,

and in view of the continuity equations for m and n it follows
dm

dt
(t,Xt(x)) = −(mux)(t,Xt(x)),

dn

dt
(t,Xt(x)) = −(nux)(t,Xt(x)).

In view of Proposition 1 we conclude that
1
m

dm

dt
(t,Xt(x)) =

1
n

dn

dt
(t, Xt(x)),

or
d

dt
log(m(t,Xt(x))) =

d

dt
log(n(t,Xt(x))).

Thus, we conclude that m(t, x) and n(t, x) are related by

m(t,Xt(x))
n(t,Xt(x))

=
(m0

n0

)
(x).

In other words,
n(t, x)
m(t, x)

=
( n0

m0

)
(X−1

t (x))
def
:= s0(t, x), (2.3)

for t ∈ (0, T0) where Xt(x) is the characteristic emanating from x at time t = 0. Particularly, we
have

0 < s0

def
:=

ι0
κ0

≤ min
( n0

m0
(X−1

t (x))
)
≤ n

m
(t, x) ≤ max

( n0

m0
(X−1

t (x))
)
≤ ι0

κ0

def
=: s0 < ∞, (2.4)

where ι0, κ0, ι0, κ0 refer to the constants in (1.17). Before we proceed to a priori estimates we
make some remarks concerning the pressure law p(m,n) given by (1.6).

Remark 1. Note that we have that

pm = 1− b√
b2 + c

> 0, m, n > 0

pn = a0 +
a0√

b2 + c

(
m + a0n + k0

)
> 0, m, n > 0.

(2.5)

That is, p(m, n) is increasing in m and n for m,n > 0.
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2.2. Energy estimates. We now consider the potential function Q(m, n) given by

Q(m,n) = m

∫ m

0

p
(
s, n

ms
)

s2
ds =

∫ 1

0

p(sm, sn)
s2

ds. (2.6)

Note that Q(m,n) ≥ 0 for m,n ≥ 0. By direct calculation we see that

mQm(m, n) + nQn(m,n) = Q(m,n) + p(m,n). (2.7)

Multiplying the first equation of (1.11) by Qm, the second by Qn and summing, we arrive at

Q(m,n)t + uQ(m,n)x = −ux[mQm + nQn].

That is,

Q(m,n)t + (uQ(m,n))x − uxQ(m,n) = −ux[mQm + nQn],

or

Q(m,n)t + (uQ(m,n))x = −ux[mQm + nQn −Q] = −uxp(m,n), (2.8)

in view of (2.7). Multiplying the third equation of (1.11) by u and doing integration by parts we
get

m(
1
2
u2)t + (mu)(

1
2
u2)x + u2[mt + (mu)x] + (pu)x − uxp− µ(uux)x + µ(ux)2 = 0.

That is,

(
1
2
mu2)t + (

1
2
[mu]u2)x + (pu)x − uxp− µ(uux)x + µ(ux)2 = 0

or

(
1
2
mu2)t + (

1
2
[mu]u2 + pu− µuux)x − uxp + µ(ux)2 = 0. (2.9)

Summing (2.8) and (2.9) we get

(
1
2
mu2 + Q(m,n))t + (

1
2
[mu]u2 + u[p + Q]− µuux)x + µ(ux)2 = 0. (2.10)

In other words, defining G(U) and F (U) as

G(U) =
1
2
mu2 + Q(m,n), F (U) =

1
2
[mu]u2 + u[p + Q], U = (m,n, mu),

we have the equation

∂tG(U) + ∂x[F (U)− µuux]x + µ(ux)2 = 0.

Integrating with respect to x and assuming that U vanishes at x = ±∞ we get

d

dt

∫

R

[1
2
mu2 + Q(m,n)

]
dx + µ

∫

R
(ux)2 dx = 0, (t, x) ∈ [0, T ]× R. (2.11)

In other words,
∫

R

[1
2
mu2 + Q(m,n)

]
(x, T ) dx + µ

∫ T

0

∫

R
(ux)2 dx =

∫

R

[1
2
m0(u0)2 + Q(m0, n0)

]
(x) dx. (2.12)

Note that the above approach in general does not work when we let the fluid velocities become
unequal, and new techniques seem to be required for that case. Based on the above energy estimate
we may derive results for the two-phase model by imposing more restrictive initial data. However,
in this work we seek to work within the general setting used by Hoff for single-phase Navier-Stokes
which allows general Riemann data with possible different states at x = ±∞.
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2.3. More energy estimates. Now, we focus on a general potential function in the form

Q(m,n|m, n) := m

∫ m

m

[p
(
s, n

ms
)− p (m,n)
s2

]
ds + mg

( n

m
,m

)
, (2.13)

where m = m(x) and n = n(x) are the functions occuring in (1.16), whereas g ∈ C1 is a function
to be chosen later. Most importantly, we note that we have the relation

mQm + nQn = Q(m, n|m,n) + ∆p(m,n|m,n), (2.14)

where

∆p(m,n|m,n) = p(m,n)− p(m,n). (2.15)

Unfortunately, we do not know yet that Q(m,n|m, n) defined by (2.13) is a non-negative function.
To ensure this we shall consider a slight modification of Q(m, n|m,n). First, in light of (2.4), we
see that for the chosen smooth functions m and n such that κ0 ≤ m ≤ κ0 and ι0 ≤ n ≤ ι0, it follows
that n = mt0(x) for t0(x) ∈ [s0, s0]. Motivated by this we suggest to consider Q(m,n|m, ξm) for
a constant ξ contained in [s0, s0]. Then we can obtain the following energy estimate.

Lemma 1. Let (m,n, u) be a smooth solution of (1.11) as described by Proposition 1. If we
assume that we can find a function g(·, ·) in (2.13) and a constant ξ ∈ [s0, s0] such that

Q(m,n|m,mξ) ≥ 0, (2.16)

and

m + p(m,n) ≤ C[1 + Q(m,n|m,mξ)], (2.17)

it follows that we have the energy estimate

sup
0≤t≤T

∫

R

[
1
2
m(u− u)2 + Q(m,n|m,mξ)

]
dx +

∫ T

0

∫

R
(ux)2 dxdt ≤ C(T ). (2.18)

Proof. Let A(t) denote the integral A(t) =
∫
R

[
1
2m(u− u)2 + Q(m,n|m,n)

]
dx, where n now is

given by n = mξ. Then we get

A′(t) =
∫

R

(
1
2
(u− u)2mt + m(u− u)ut + Qm(m,n|·)mt + Qn(m,n|·)nt

)
dx

=
∫

R

(
1
2
(∆u)2(−mu)x + (∆u)(mut) + Qm(m,n|·)(−mu)x + Qn(m,n|·)(−nu)x

)
dx

=
∫

R

(
−1

2
(∆u)2(mu)x + (∆u)

[
−(mu)ux − (p(m,n)− ux)x

]

+ Qm(m,n|m,n)(−mu)x + Qn(m,n|m,n)(−nu)x

)
dx.

(2.19)

Next, we observe in light of (2.14) that we have

−
(
Qm(mu)x + Qn(nu)x

)
= −

(
mQmux + nQnux + uQmmx + uQnnx

)

= −
(
ux[Q + ∆p] + uQx − uQmmx

)
= −

(
ux∆p + (uQ)x − uQmmx

)
.

(2.20)

Using this in (2.19) we get

A′(t) =
∫

R

(
−1

2
(∆u)2(mu)x + (∆u)

[
−(mu)ux −

(
p(m,n)− ux

)
x

]

− ux∆p− (uQ)x + uQmmx

)
dx.

(2.21)
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Since Q(m,n|m,n)|x=±∞ = mg(n/m,m)|x=±∞ we see that (uQ)x produces a term that can be
absorbed in the constant C appearing on the right side of (2.26). Consequently, we get

A′(t) +
∫

R
[(∆u)x]2 dx

=
∫

R

(
−1

2
(∆u)2(mu)x − (∆u)(mu)ux + ([∆u]x)2 + (∆u)uxx

− (∆u)p(m,n)x − ux∆p + uQmmx

)
dx + C.

(2.22)

Now, for the first two terms of second line we have (using that ∆u = 0 at x = ±∞):

−1
2
(∆u)2(mu)x − (∆u)(mu)ux =

1
2
[(∆u)2]x(mu)− (∆u)ux(mu)

= −mux(∆u)u = −mux(∆u)2 −muux(∆u).

For the third and fourth term of second line we have

(∆u)(ux)x + ([∆u]x)2 = −(∆u)xux + ux(∆u)x − ux(∆u)x = −ux(∆u)x.

We also have

−(∆u)px − ux∆p = p(∆u)x − ux∆p = −pux + pux = −ux∆p− (∆u)px,

where p = p(m,mξ) and ∆u = u− u. Consequently, we get

A′(t) +
∫

R
[(∆u)x]2 dx

=
∫

R

(
−mux(∆u)2 −muux(∆u)− ux(∆u)x − ux∆p− (∆u)px + uQmmx

)
dx + C.

(2.23)

Next, we note that

Qmmx = −m
[p(m, n

mm)− p(m,mξ)]
m2 mx +

dp

dm
mx − m

m

dp

dm
mx + mgm(

n

m
,m)mx.

Thus,

−(∆u)px + uQmmx

= −(∆u)px + upx − upx

m

m
−mu

[p(m, n
mm)− p(m,mξ)]

m2 mx + mugm(
n

m
,m)mx

= −px

m
(m∆u + u∆m)−muC1(m, ξ,

n

m
)mx + muC2(m,

n

m
)mx,

where ∆m = m−m and

C1(m, ξ,
n

m
) =

p(m, n
mm)− p(m,mξ)

m2 , C2(m,
n

m
) = gm(

n

m
, m).

To conclude, we have

A′(t) +
∫

R
[(∆u)x]2 dx =

∫

R

(
−mux(∆u)2 −muux(∆u)− ux(∆u)x − ux∆p

− px

m
(m∆u + u∆m)−mumxC1(m, ξ,

n

m
) + mumxC2(m,

n

m
)
)

dx + C.

(2.24)

Smoothness properties of m and the fact that dp
dm is bounded are then used to bound terms on

the right hand side of (2.24). Particularly, to bound C1 we use that

|p(m,
n

m
m)− p(m,mξ)| ≤ max

v∈[ι0,ι0]
|pv(m, v)|

∣∣∣ n

m
m−mξ

∣∣∣ ≤ C|s0 − s0| ≤ C(s0 − s0),

since n = s0m and n = ξm for s0, ξ ∈ [s0, s0]. Similarly, we can bound C2. In the following
we make use of (2.16) and (2.17), in particular, we rely on the the fact that Q(m,n|m, ξm) is a
non-negative function and consequently also A(t) given by

A(t) =
∫

R

[
1
2
m(u− u)2 + Q(m,n|m,mξ)

]
dx. (2.25)
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We then estimate the various terms on the right hand side of (2.24) by A(t) or C(T ) as follows:

• ∫
Rmux(∆u)2 dx ≤ C

∫ +1

−1
[m1/2∆u][m1/2∆u] dx ≤ C

∫ +1

−1
m(∆u)2 dx ≤ 2CA(t),

where we use that ux = 0 outside [−1,+1].
• Similarly, by applying (2.17) we get

∫

R
muux(∆u) dx ≤ C

∫ +1

−1

m1/2[m1/2∆u] dx

≤ C
(∫ +1

−1

mdx
)1/2(∫ +1

−1

m(∆u)2 dx
)1/2

≤ C
(∫ +1

−1

[1 + Q(m, n|m,mξ)] dx
)1/2(∫ +1

−1

m(∆u)2 dx
)1/2

≤ C[1 + A(t)]1/2A(t)1/2 ≤ C[1 + A(t)].

• ∫
R ux(∆u)x dx ≤ δ

∫
R(∆u)2x dx + 1

4Cδ−1
∫ +1

−1
1 dx, δ > 0. Thus, the first term on the

right hand side can be absorbed on the left hand side of (2.24);

• Again, by referring to (2.17) we get
∫

R
ux∆p dx ≤ C(1 +

∫ +1

−1

p(m,n) dx) ≤ C(1 +
∫ +1

−1

[1 + Q(m,n|m,mξ)] dx) ≤ C[1 + A(t)].

In a complete analogous manner we can estimate the terms
∫ px

m (m∆u+u∆m) dx and
∫

mumx dx.
Consequently, we see that we end up with

A′(t) +
∫

R
[(∆u)x]2 dx ≤ C + CA(t), (2.26)

for a suitable choice of C. Application of Gronwall’s lemma then gives the desired result. ¤

Equipped with the fundamental energy estimate (2.18) we can extract estimates of m(u− u)2,
Q(m,n|m,mξ) and (ux)2. What remains is to show that a proper choice of g and ξ in fact can be
made such that (2.16) and (2.17) hold.

2.4. Properties of the potential Q(m,n|m,mξ). In this section we shall carefully investigate
properties of the potential function Q(m, n|m,mξ) defined in (2.13). The goal is to conclude that
the quantity m+p(m,n) can be controlled by a non-negative potential Q(m,n|m,mξ) as described
by (2.17).

In view of (2.3), we see that m and n are related as

n = ms0(t, x), s0(t, x) ∈ [s0, s0].

Now, we consider the function G(m, s0; m, ξ) defined by

G(m, s0; m, ξ):=Q(m, s0m|m, ξm), (2.27)

for m > 0 and s0, ξ ∈ [s0, s0]. Consequently,

G(m, s0; m, ξ)=m

∫ m

m

p(s, s0s)− p(m, ξm)
s2

ds + mg(s0,m), m > 0, s0, ξ ∈ [s0, s0].

We may write this function in the form

G(m, s0; m, ξ) = mQ(m,m, s0) + p(m, ξm)
[
1− m

m

]
+ mg(s0, m), (2.28)

where

Q(m,m, s0) =
∫ m

m

p(s, s0s)
s2

ds.

First, we note that
G(m, s0; m, ξ) = mg(s0, m), (2.29)
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which we want to be non-negative by an appropriate choice of g to be determined below. Moreover,

Gm(m, s0; m, ξ) =
1
m

(
G(m, s0;m, ξ) + [p(m, s0m)− p(m, ξm)]

)
. (2.30)

Consequently,

Gm(m, s0; m, ξ) = g(s0, m) +
1
m

[p(m, s0m)− p(m, ξm)], s0, ξ ∈ [s0, s0],

which can take both signs, i.e., G(m, s0;m, ξ) can be both increasing and decreasing at m depend-
ing on the choice of g, s0, and ξ. Furthermore,

Gmm(m, s0;m, ξ) =
1
m

pm(m, s0m) > 0, m > 0, s0, ξ ∈ [s0, s0]. (2.31)

Consequently, G(m, s0;m, ξ) is a convex function in m for m > 0 and s0, ξ ∈ [s0, s0].
Let us focus on the situation when ξ = s0. That is, we consider G(m, s0; m, s0). For this case

we have

Gm(m, s0; m, s0) = g(s0, m) +
1
m

[p(m, s0m)− p(m, s0m)] = 0, s0 ∈ [s0, s0],

if we choose that g(s0, m) is given by

g(s0, m) = − 1
m

[p(m, s0m)− p(m, s0m)], s0 ∈ [s0, s0].

Thus, m is an absolute minimum for G(m, s0; m, s0) for all s0 ∈ [s0, s0]. However, for this choice,
unfortunately, we have that

g(s0, m) ≤ 0,

and (2.29) is not ensured to be non-negative, since p(m,n) is increasing as a function of n, see
Remark 1. Obviously, we should instead consider the choice ξ = s0, that is,

G(m, s0;m, s0),

together with the choice

g(s0, m) = − 1
m

[p(m, s0m)− p(m, s0m)], s0 ∈ [s0, s0], (2.32)

ensuring that g(s0, m) ≥ 0 for all s0 ∈ [s0, s0]. Thus, we may conclude that G(m, s0; m, s0) is
convex in m and possesses an absolute minimum at m and G(m, s0; m, s0) ≥ 0 for all s0 ∈ [s0, s0].

We also note that (2.28), by the choice (2.32), takes the form

G(m, s0; m, s0) = mQ(m,m, s0) + p(m, s0m)− m

m
p(m, s0m). (2.33)

From this it follows that

lim inf
m→0

G(m, s0; m, s0) = p(m, s0m) ≥ p(κ0, s0κ0) > 0, (2.34)

since Q(m, m, s0) =
∫ m

m
p(s, s0s)/s2 ds is finite as m approaches zero.

Proposition 2. For each interval [s0, s0] and for each given function m ∈ [κ0, κ0], the following
holds for G(m, s0; m, s0) given by (2.33):

G(m, s0;m, s0) ≥ 0, m > 0, s0 ∈ [s0, s0], (2.35)

m + p(m, s0m) ≤ C[1 + G(m, s0;m, s0)], m > 0, s0 ∈ [s0, s0], (2.36)

lim inf
m→0

G(m, s0;m, s0) ≥ D, s0 ∈ [s0, s0], (2.37)

for appropriate choices of C = C(s0, s0,m) and D = D(s0, κ0) which also depend on the pressure
law p(m,n).

Proof. Claim (2.35) follows directly from the above discussion whereas (2.37) follows from (2.34).
What remains is to verify that (2.36) holds.
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Figure 1. Concrete example of the function G(m, s0; m, s0) for m = 20 and
s0 = 0.01, s0 = 1 considered from two different positions.
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Figure 2. Concrete example of the function p(m, s0m) for m > 0 and s0 ∈ [s0, s0]
with s0 = 0.01 and s0 = 1 considered from two different positions.
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Figure 3. Left: Concrete example of the function G(m, s0; m, s0) for m = 20
and s0 = 0.01, s0 = 1. Right: Corresponding plot of p(m, s0m).

The case 0 < m ≤ m. First, we observe that

m ≤ m = C1(m), for 0 < m ≤ m (2.38)

and
p(m, s0m) ≤ max

s0∈[s0,s0]
p(m, s0m) = C1(m), for 0 < m ≤ m. (2.39)
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Consequently, (2.36) holds for 0 < m ≤ m.

The case m > m. First, we note that (see Figs. 1–3 for a visualization of G(m, s0; m, s0) and
p(m, s0m))

J(m)
def
:= G(m, s0;m, s0) ≤ G(m, s0;m, s0) + G(m, s0; m, s0), (2.40)

for all (s0,m) ∈ [s0, s0]× [m,∞). Now we intend to try to bound m and p(m, s0m) by the function
J(m) = G(m, s0; m, s0) in the region [s0, s0]× [m,∞).

Clearly, in view of (2.29)–(2.31) and (2.32), it follows that J(m) > 0, J ′(m) = 0 and J ′′(m) > 0
for m ≥ m. Consequently,

m ≤ C2J(m), for m ≥ m, (2.41)

for an appropriate choice of C2 = C2(m, s0, s0).
Next, we focus on p(m, s0m). First, we observe that

p(m, s0m) ≤ p(m, s0m):=I(m). (2.42)

We want to demonstrate that

I(m) ≤ C1 + C2J(m), (2.43)

for appropriate choices of C1 and C2. More precisely, we have that I(m) is given by

I(m) = p(m, s0m)

= −k0 + m(1 + a0s0) +
√

k2
0 − 2k0(1 + a0s0)m + (1 + a0s0)2m2 + 4k0a0s0m

:= I1(m) + I2(m),

where I1(m) is a linear function in m and I2(m) is the square root of a second order polynomial
in m. Clearly, both can be bounded by the function C1 + C2J(m) where C1 = C1(s0, s0, m) and
C2 = C2(s0, s0, m), thus, (2.43) follows.

To conclude, in view of (2.40) and (2.41) and (2.42) and (2.43), we see that (2.36) also holds
for m > m. ¤

Now, we are in a position to conclude that the following holds:

Corollary 1. The potential function Q(m,n|m,mξ) defined by (2.13) satisfies the properties
(2.16) and (2.17) by using the choice

ξ = s0, g
( n

m
, m

)
= − 1

m

[
p(m,

n

m
m)− p(m, s0m)

]
.

Proof. We just have to observe, in view of (2.3) and (2.27), that

Q(m,n|m,ms0) = Q(m,ms0(t, x)|m,ms0) = G(m, s0(t, x); m, s0),

and the result follows from (2.35) and (2.36). ¤

To sum up, we see that Lemma 1 and Corollary 1 imply that

sup
t∈[0,T ]

∫

R
G(m, s0(t, x); m, s0) dx ≤ C(T ), (2.44)

∫ T

0

∫

R
(ux)2 dxdt ≤ C(T ), (2.45)

sup
0≤t≤T

∫

R

[
1
2
m(u− u)2

]
dx ≤ C(T ). (2.46)
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2.5. Pointwise estimates. The next task is to explore how we can obtain pointwise bounds on
m(t, x) and n(t, x). Equipped with the results of Lemma 2 we closely follow the proof presented in
[23] and then observe how the more complicated pressure term p(m,n) naturally can be handled
in this approach by making use of the fact that the masses m and n are related to each other by
one and the same momentum equation.

Lemma 2. Let (n,m, u) be as in Lemma 1. Then there is a constant C(T ) such that

C(T )−1 ≤ m(t, x) ≤ C(T ), (t, x) ∈ [0, T ]× R. (2.47)

Moreover,
s0C(T )−1 ≤ n(t, x) ≤ C(T )s0, (t, x) ∈ [0, T ]× R. (2.48)

Proof. We consider an arbitrary point (t0, x0) and our aim is to obtain the bounds of (2.47) at this
point. First, we use Hoff’s observation that there must be a nearby point (t0, x1) and a constant
C(T ) such that

C(T )−1 ≤ m(t0, x1) ≤ C(T ) (2.49)

|x1 − x0| ≤ C(T ). (2.50)

This follows by making use of (2.37) and (2.44), we refer to the proof of Lemma 4.1 in [33] for
more details. The purpose now is to show that this also holds for m(t0, x0). As a step toward that
aim, we shall estimate the differences

∆M(t0) = log m(t0, x1)− log m(t0, x0), ∆N(t0) = log n(t0, x1)− log n(t0, x0)

by considering its evolution along the particle trajectories. Thus, we define Xj(t) by

Ẋj = u(t,Xj)

Xj(t0, xj) = xj , j = 0, 1, t ∈ [0, T ].
(2.51)

Clearly, from the two mass equations it follows that

n(t,Xj(t)) = m(t,Xj(t))
n(t0, xj)
m(t0, xj)

.

Generally, we have from (2.3)

n(t, x)
m(t, x)

=
n0

m0
(X−1

t (x)) = s0(t, x),

for the characteristic Xt(x) starting out from x at time t = 0. Consequently, we have

n(t, Xj(t)) = m(t,Xj(t))
n(t0, xj)
m(t0, xj)

= m(t,Xj(t))s0(t0, xj), s0 ∈ [s0, s0]. (2.52)

Furthermore, let

∆M(t) = log m(t,X1(t))− log m(t,X0(t)), ∆N(t) = log n(t, X1(t))− log n(t,X0(t)). (2.53)

We then obtain from (1.11) that

d

dt
∆M =

mxẊ1 + mt

m
(t,X1(t))− mxẊ0 + mt

m
(t,X0(t))

= −ux|X1
X0

= −
∫ X1

X0

uxx(t, x) dx = −
∫ X1

X0

(mu̇ + p(m,n)x) dx

= −dI

dt
−∆p,

(2.54)

where

I(t) =
∫ X1

X0

mu dx and ∆p = p(m(t, ·), n(t, ·))
∣∣∣
X1

X0

.

In particular, we have used that

d

dt
I(X0(t), X1(t), t) = mu2(X1(t), t)−mu2(X0(t), t) +

∫ X1

X0

∂

∂t
(mu(·, t)) dx
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=
∫ X1

X0

(
∂t[mu] + ∂x[mu2]

)
dx =

∫ X1

X0

(mu̇) dx.

For the pressure term ∆p we decompose into two components corresponding to the two variables
m and n as follows:

∆p(t) = p
(
m(X1), n(X1)

)
− p

(
m(X0), n(X0)

)

= p
(
m(X1), n(X1)

)
− p

(
m(X0), n(X1)

)

+ p
(
m(X0), n(X1)

)
− p

(
m(X0), n(X0)

)

def
:= (∆p)1(t) + (∆p)2(t).

For the (∆p)1(t) and (∆p)2(t) terms we extend the idea of [23] and introduce

α(t) = (∆p)1(t)/∆M(t), β(t) = (∆p)2(t)/∆N(t),

and observe, in view of (2.53), that α(t) and β(t) are both positive since p(m,n) is increasing
both in m and n and log(·) is an increasing function. Using this in (2.54) we obtain the following
linear ode

d

dt
∆M + α(t)∆M + β(t)∆N = − d

dt
I. (2.55)

The calculations (2.54) can be performed for ∆N(t), as well, since fluid velocity is the same for
both phases and they share the same momentum equation. Thus, we obtain a corresponding
equation for the ∆N(t) variable.

d

dt
∆N + α(t)∆M + β(t)∆N = − d

dt
I. (2.56)

Immediately we can conclude that
d

dt
∆M =

d

dt
∆N,

that is,
∆M(t) = ∆N(t) + C0,

where C0 is (invoking (2.52) and (2.53))

log(s0/s0) ≤ C0 = log(s0(t0, x0)/s0(t0, x1)) ≤ log(s0/s0).

Inserting this in (2.55) we get

d

dt
∆M + [α(t) + β(t)]∆M = − d

dt
I + C0β(t). (2.57)

The solution is of the form

∆M(t)µ(t) = ∆M(0)µ(0) +
∫ t

0

µ(s)
[
− d

ds
I(s) + C0β(s)

]
ds, µ(t) = exp

(∫ t

0

γ(s) ds
)
,

where γ(s) = α(s) + β(s). Noting that µ(0) = 1 we have

∆M(t) =
∆M(0)

µ(t)
+

∫ t

0

e(−
R t

s
γ(τ) dτ)

[
− d

ds
I(s) + C0β(s)

]
ds

=
∆M(0)

µ(t)
−

[
e(−

R t
s

γ(τ) dτ)I(s)
∣∣∣
t

0
−

∫ t

0

I(s)e(−
R t

s
γ(τ) dτ)γ(s) ds

]

+
∫ t

0

e(−
R t

s
γ(τ) dτ)C0β(s) ds

=
∆M(0)

µ(t)
−

[
I(t)− I(0)e(−

R t
0 γ(τ) dτ)

]
+

∫ t

0

γ(s)I(s)e(−
R t

s
γ(τ) dτ) ds

+
∫ t

0

e(−
R t

s
γ(τ) dτ)C0β(s) ds.
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Noting that 1/µ(t) = exp
(
− ∫ t

0
γ(τ) dτ

)
≤ 1, we have

|∆M(t)| ≤ |∆M(0)|+ |I(0)|+ |I(t)|

+
∫ t

0

e−
R t

s
γ(τ) dτ

[
γ(s)|I(s)|+ |C0|β(s)

]
ds.

≤ |∆M(0)|+ |I(0)|+ |I(t)|

+
∫ t

0

e−
R t

s
γ(τ) dτγ(s)

[
|I(s)|+ |C0|

]
ds,

(2.58)

since β(s) ≤ γ(s). The term I(t) can be bounded by observing that

|I(t)| =
∣∣∣
∫ X1

X0

mudx
∣∣∣ ≤

(∫ X1

X0

mdx

)1/2 (∫ X1

X0

mu2 dx

)1/2

.

Clearly, (2.36) implies that

m ≤ C [1 + G(m, s0,m, s0)] , ∀s0 ∈ [s0, s0].

So, provided that |X1(t)−X0(t)| ≤ C(T ), it follows from (2.44) that
∫ X1

X0
mdx ≤ C(T ). Similarly,

in view of estimate (2.46), we conclude that
∫ X1

X0
mu2 dx ≤ C(T ). Thus, it follows that |I(t)| ≤

C(T ). The estimate |X1(t) −X0(t)| ≤ C(T ) can be obtained as in [23]. The main observation is
that

d

dt
(X1 −X0) = u

∣∣∣
X1

X0

=
∫ X1

X0

ux dx ≥ −(X1 −X0)−
∫ X1

X0

u2
x dx,

where we have assumed without loss of generality that X1 −X0 > 0 and used that
∫ X1

X0

−ux dx =
∫ X1

X0

χ{−ux≤1}(x)(−ux) dx +
∫ X1

X0

χ{−ux>1}(x)(−ux) dx

≤ (X1 −X0) +
∫ X1

X0

χ{−ux>1}(x)(−ux) dx ≤ (X1 −X0) +
∫ X1

X0

u2
x dx.

Application of estimate (2.50) and the control on ux via (2.45) then gives the desirable estimate.
Moreover, ∫ t

0

e−
R t

s
γ(τ) dτγ(s)|I(s)| ds ≤ C(T )

∫ t

0

e−
R t

s
γ(τ) dτγ(s) ds,

which clearly must be bounded by a constant C(T ) since γ(t) ≥ 0.
From (2.58) we then conclude that |∆M(t)| is bounded for t = t0, thus, we have

|∆M(t0)| = | log m(x1, t0)− log m(x0, t0)| ≤ C(T ).

As a consequence, we have

| log m(x0, t0)| ≤ | log m(x0, t0)− logm(x1, t0)|+ |logm(x1, t0)| ≤ C(T ),

where we have used (2.49). From this estimate we can conclude that (2.47) holds for the fixed
but arbitrary point (x0, t0), and by that also for all points. Finally, we observe that (2.48) is a
consequence of (2.47) and the fact that n = ms0 where s0 ∈ [s0, s0]. ¤

2.6. Additional regularity results. Equipped with the upper and lower limit for m and n
(Lemma 2) and the energy estimate of Lemma 1, we will derive more regularity results for various
quantities. The main issue here is to make use of the parabolicity of the momentum equation to
obtain certain higher order regularity estimates for the fluid velocity. Particularly, the following
lemma is obtained by the same arguments as used in [23, 22]. For completeness and the convenience
of the reader we sketch the main calculations and observe that the more complicated pressure term
p(m,n) gives no new problems, chiefly since we are armed with (2.47) and (2.48).
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Lemma 3. Let (m, n, u) and T be as in in Lemmas 1 and 2, and let σ(t) = min{1, t} = 1 ∨ t.
Then there is a constant C(T ) such that

sup
0≤t≤T

∫

R

[
(∆u)2 + (∆m)2 + (∆n)2

]
dx +

∫ T

0

∫

R
(ux)2 dxdt ≤ C(T ), (2.59)

sup
0≤t≤T

σ(t)
∫

R
(ux)2 dx +

∫ T

0

∫

R
σ(u̇)2 dxdt ≤ C(T ), (2.60)

sup
0≤t≤T

σ(t)2
∫

R
(u̇)2 dx +

∫ T

0

∫

R
σ2(u̇x)2 dxdt ≤ C(T ), (2.61)

‖u(t, ·)‖L∞(R) ≤ C(T )σ(t)−1/4, (2.62)

〈u〉1/2,1/4
[τ,T ]×R ≤ C(T )σ(τ)−1/2, (2.63)

‖u(t2, ·)− u(t1, ·)‖L2(R) ≤ C(T )σ(t1)−1/2(t2 − t1)1/2, (2.64)

‖m(t2, ·)−m(t1, ·)‖H−1(R) + ‖(mu)(t2, ·)− (mu)(t1, ·)‖H−1(R) ≤ C(T )(t2 − t1)1/2, (2.65)

where 0 ≤ t1 ≤ t2 ≤ T . Here u̇ = du
dt = ut + uux and 〈u〉1/2,1/4

[τ,T ]×R is the usual Hölder norm with
coefficient 1/2 in space and 1/4 in time.

Proof. First, by Lemma 1 (in view of Corollary 1) and Lemma 2, (2.59) follows directly. The
estimates (2.62)–(2.65) follow directly from (2.60) and (2.61) and the model itself (1.11) (weak
form), see Section 5 in [22] for details.

We focus on estimates (2.60) and (2.61). We assume that u = 0 and m, n are constants. The
extension to the more general case as specified in (1.16) is rather straightforward.

Step 1. First, we focus on an estimate for the terms σ(t)
∫
R |ux|2 dx and

∫ T

0

∫
R σ|u̇|2 dxdt appear-

ing in (2.60). We have

mu̇ + p(m,n)x = uxx. (2.66)

We multiply (2.66) with σ(t)u̇ and integrate:
∫ t

0

∫

R
σm|u̇|2 dxds =

∫ t

0

∫

R
[−σu̇p(m,n)x + σu̇uxx] dxds. (2.67)

For the first term on the right-hand side we have

−
∫ t

0

∫

R
σ(s)(us + uux)p(m,n)x dxds

=
∫ t

0

∫

R
σ(s)(us)x∆p(m,n) dxds−

∫ t

0

∫

R
σ(s)(uux)p(m,n)x dxds

=
∫ t

0

∫

R
σ(s)(ux)s∆p(m,n) dxds−

∫ t

0

∫

R
σ(s)(uux)p(m,n)x dxds

= σ(t)
∫

R
[ux∆p(m, n)](t, x) dx−

∫ t

0

∫

R
(ux)(σ∆p(m,n))s dxds

−
∫ t

0

∫

R
σ(s)(uux)p(m,n)x dxds
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= σ(t)
∫

R
[ux∆p](t, x) dx−

∫ t

0

∫

R
(ux)σ′(s)∆p(m,n) dxds

−
∫ t

0

∫

R
σ(s) [p(m,n)sux + p(m,n)xuux] dxds,

where ∆p = p(m,n)− p(m,n). The integrand of the last term is

σ(s)pm

(−m(ux)2 −mxuux + mxuux

)
+ σ(s)pn

(−n(ux)2 − nxuux + nxuux

)

= −σ(s)[pm(m,n)m + pn(m,n)n](ux)2.

Therefore, by using that ∆p = [p(m,n)− p(m,n)] + [p(m, n)− p(m, n)], we conclude that
∣∣∣∣
∫ t

0

∫

R
σu̇p(m,n)x dxds

∣∣∣∣ ≤ C(T )
[
σ(t)

∫

R
|ux|(|∆m|+ |∆n|)(t, x) dx

+
∫ 1∨t

0

∫

R
|ux|(|∆m|+ |∆n|)(s, x) dxds +

∫ t

0

∫

R
|ux|2 dxds

]
.

(2.68)

The second term of the right-hand side of (2.67) is given by
∫ t

0

∫

R
σ(us + uux)uxx dxds

=
∫ t

0

∫

R
σusuxx dxds +

1
2

∫ t

0

∫

R
σu[(ux)2]x dxds

= −
∫ t

0

∫

R
σ(ux)sux dxds− 1

2

∫ t

0

∫

R
σ(ux)(ux)2 dxds

= −1
2

∫ t

0

∫

R
σ[(ux)2]s dxds− 1

2

∫ t

0

∫

R
σ(ux)3 dxds

= −σ(t)
2

∫

R
(ux)2 dx +

1
2

∫ t

0

∫

R
σ′(s)(ux)2 dxds− 1

2

∫ t

0

∫

R
σ(ux)3 dxds

= −σ(t)
2

∫

R
(ux)2 dx +

1
2

∫ 1∨t

0

∫
(ux)2 dxds + O1,

(2.69)

where O1 = − 1
2

∫ t

0

∫
R σ(ux)3 dxds. Substituting (2.68) and (2.69) back into (2.67), we obtain

σ(t)
∫

R
(ux)2 dx +

∫ t

0

∫

R
σ|u̇|2 dxds

≤ C(T )
[
σ(t)

∫

R
|ux|(|∆m|+ |∆n|) dx

+
∫ 1∨t

0

∫

R
|ux|(|∆m|+ |∆n|) dxds +

∫ t

0

∫

R
|ux|2 dxds + O1

]
.

(2.70)

This together with (2.59) and the inequality
∫

R
|ux|(|∆m|+ |∆n|) dx ≤ δ

∫

R
|ux|2 dx +

1
4δ

∫

R
(|∆m|+ |∆n|)2 dx, δ > 0,

show that

σ(t)
∫

R
|ux|2 dx +

∫ t

0

∫

R
σ|u̇|2 dxds ≤ C(T )

[
C0 +

∫ t

0

∫

R
σ|ux|3 dxds

]
. (2.71)

We note that the two-phase nature through the appearance of both ∆m and ∆n in (2.70) can
naturally be handled through the estimate (2.59).
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Step 2. Next, we derive an estimate for the terms σ(t)2
∫
R(u̇)2 dx and

∫ T

0

∫
R σ2(u̇x)2 dxdt appear-

ing in (2.61). To that end we apply the operator (·)t + (u·)x to (2.66) and obtain

m
d

dt
u̇ + p(m,n)xt + (up(m,n)x)x = (uxxt + [uuxx]x) , (2.72)

where d
dt (·) = (·)t + u(·)x. We shall make use of the following transport theorem: if ρẇ = g and

if h = h(t), then
∫

1
2
hρw2

∣∣∣
t

0
dx =

∫ t

0

∫ (
1
2
h′ρw2 + hwg

)
dxds

Applying this to (2.72) with h(t) = σ2(t), ρ = m, and w = u̇ (which implies that g = m d
dt (u̇)) we

obtain

1
2
σ(t)2

∫

R
m|u̇|2 dx =

∫ t

0

∫

R
σ(s)σ′(s)m|u̇|2 dxds

+
∫ t

0

∫

R
σ2u̇

[
− (p(m,n)t + up(m,n)x)x

]
dxds +

∫ t

0

∫

R
σ2u̇

[
(uxt + [uxxu])x

]
dxds.

(2.73)

We apply (2.71) to bound the first term on the right-hand side noting that σ′ ≤ 1 and m is
bounded. The second term on the right may be written in the form

∫ t

0

∫

R
σ2u̇

(
−[pt + upx]

)
x

dxds

= −
∫ t

0

∫

R
σ2(u̇)x

(
−pm[mt + umx]− pn[nt + unx]

)
dxds

= −
∫ t

0

∫

R
σ2[pmm + pnn]ux(u̇)x dxds.

The term is therefore bounded in absolute value as follows:
∣∣∣
∫ t

0

∫

R
σ2[pmm + pnn]ux(u̇)x dxds

∣∣∣

≤ 1
4δ

C(T )
∫ t

0

∫

R
|ux|2 dxdt + δ

∫ t

0

∫

R
σ2|(u̇)x|2 dxdt ≤ C(T )C0 + δ

∫ t

0

∫

R
σ2|(u̇)x|2 dxdt,

by (2.59). For the third term on the right-hand side of (2.73) we have

∫ t

0

∫

R
σ2u̇[(ux)t + u(ux)x]x dxds

= −
∫ t

0

∫

R
σ2(u̇)x[(ux)t + u(ux)x] dxds = −

∫ t

0

∫

R
σ2[(ut)x + (uux)x − (ux)2](u̇)x dxds

= −
∫ t

0

∫

R
σ2[|(u̇)x|2 − (u̇)x(ux)2] dxds = −

∫ t

0

∫

R
σ2|(u̇)x|2 dxds + O2,

where O2 =
∫ t

0

∫
R σ2(u̇)x(ux)2 dxds ≤ δ

∫ t

0

∫
R σ2[(u̇)x]2 dxds + 1/4δ−1

∫ t

0

∫
R σ2(ux)4 dxds. Substi-

tuting these estimates back in (2.73) yields

σ(t)2
∫

R
|u̇(t, x)|2 dx +

∫ t

0

∫

R
σ2|(u̇)x|2 dxds

≤ C(T )
[
C0 +

∫ t

0

∫

R
σ|ux|3 dxds +

∫ t

0

∫

R
σ2|ux|4 dxds

]
.

(2.74)
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Step 3. Finally, we must verify that the terms
∫ t

0

∫
R σ|ux|3 dxds and

∫ t

0

∫
R σ2|ux|4 dxds, can be

controlled. Clearly,
∫ t

0

∫
R σ|ux|3 dxds ≤ 1

2

∫ t

0

∫
R |ux|2 dxds + 1

2

∫ t

0

∫
R σ2|ux|4 dxds, by application of

Cauchy’s inequality, so in view of (2.59) we only need to focus on the last term. For that purpose
we consider the effective viscous flux F given by

F = ux − p(m,n) + p(m,n) = ux −∆p.

Thus, it follows that∫

R
|ux|4 dx ≤ C

[∫

R
|F |4 dx +

∫

R
|∆p|4 dx

]
≤ C

[∫

R
|F |4 dx + 1

]
, (2.75)

where we have used (2.59) and the pointwise bound on m and n in Lemma 2. Clearly, by virtue
of Sobolev inequality, we have that ‖F‖2L∞(R) ≤ C(‖F‖2L2(R) + ‖Fx‖2L2(R)). Thus,

∫

R
|F |4 dx ≤ ‖F‖2L∞(R)

∫

R
|F |2 dx

≤ C‖F‖2L2(R)

(
‖F‖2L2(R) + ‖Fx‖2L2(R)

)
= C‖F‖2L2(R)h(s) + C‖Fx‖2L2(R)h(s),

where h(s) = ‖F (s, ·)‖2L2(R). In particular, it follows from (2.59) that h is integrable, i.e.,∫ T

0
h(s) ds ≤ C(T ). We note that Fx = mu̇ + p(m,n)x, therefore, in light of the pointwise bound

on m and n in Lemma 2 and the smoothness of m,n which become constant outside [−1, 1], we
get

‖Fx(t, ·)‖2L2(R) ≤ C(‖u̇(t, ·)‖2L2(R) + ‖p(m,n)x‖2L2(R)) ≤ C(‖u̇(t, ·)‖2L2(R) + 1).

Consequently, we have (using that σ(s) ≤ 1)
∫ t

0

σ2(s)
∫

R
|F |4 dxds

≤ C

∫ t

0

σ2(s)‖Fx‖2L2(R)h(s) ds + C

∫ t

0

σ(s)‖F‖2L2(R)h(s) ds

≤ C

∫ t

0

σ2(s)[‖u̇‖2L2(R) + 1]h(s) ds + C

∫ t

0

σ(s)[‖ux‖2L2(R) + 1]h(s) ds

≤ C0 + C1

∫ t

0

σ2(s)‖u̇‖2L2(R)h(s) ds + C2

∫ t

0

σ(s)‖ux‖2L2(R)h(s) ds.

(2.76)

Here we again have used that ‖(p−p)(t, ·)‖2L2(R) ≤ C
(
‖∆m(t, ·)‖2L2(R) +‖∆n(t, ·)‖L2(R)2

)
≤ C(T ),

in view of (2.59) and the pointwise bound on m and n in Lemma 2. Summing (2.71) and (2.74),
together with (2.75) and (2.76) (and redefining constants), yields the integral inequality

σ(t)‖ux(t, ·)‖2L2(R) + σ2(t)‖u̇(t, ·)‖2L2(R) +
∫ t

0

∫

R
σ|u̇|2 dx ds +

∫ t

0

∫

R
σ2|(u̇)x|2 dx ds

≤ C0 + C1

∫ t

0

σ2(s)‖u̇(s, ·)‖2L2(R)h(s) ds + C2

∫ t

0

σ(s)‖ux(s, ·)‖2L2(R)h(s) ds.

Application of Gronwall’s inequality then gives

sup
0≤t≤T

σ(t)‖ux‖2L2(R) + sup
0≤t≤T

σ2(t)‖u̇‖2L2(R) +
∫ T

0

∫

R
σ|u̇|2 dx ds +

∫ T

0

∫

R
σ2|(u̇)x|2 dx ds ≤ C(T ),

and (2.60) and (2.61) follow. ¤

3. Compactness and convergence to weak solutions

Let (m0, n0, u0) be as described in the theorem (particularly, they can be discontinuous). We
regularize the initial data by defining mδ

0 = jδ?m0, uδ
0 = jδ?u0, and where jδ(x) = δ−1j(x/δ). The

estimates of Lemmas 1-3 then apply to show that the corresponding smooth solutions (mδ, nδ, uδ)
of (1.11) with initial data (mδ

0, n
δ
0, u

δ
0) exist for all time and satisfy all the estimates of Lemmas

1-3 with constants C(T ) which are independent of δ.
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By using standard compactness arguments we know that there is a subsequence δ → 0 for which

uδ → u uniformly on compact sets in R× (0,∞),

uδ(t, ·)− u(t, ·) → 0 strongly in L2(R), t ≥ 0,

uδ
x(t, ·)− ux(t, ·) ⇀ 0 weakly in L2(R), t > 0,

(3.1)

and such that the limiting function u inherits all the bounds in Lemmas 1 and 3 which pertain to
u and ux. We also find a subsequence for which (mδ, nδ) converges weakly, say to functions (m,n).
However, this does not guarantee that p(mδ, nδ) converges to p(m, n). Consequently, we can not
conclude that the limiting pair (m,n, u) is a weak solution of the second equation in (1.11). We
shall have to obtain the masses m and n as a strong limit of mδ, nδ.

3.1. Identification of limit functions. The purpose of this section is to verify that the following
lemma holds:

Lemma 4. Let mδ, nδ, uδ and u be as above. Then there is a further subsequence δ → 0 and
limiting functions m,n such that

mδ(t, ·)−m(t, ·) → 0 strongly in L2
loc(R), t ≥ 0,

nδ(t, ·)− n(t, ·) → 0 strongly in L2
loc(R), t ≥ 0,

(3.2)

uδ
x(t, ·)− p(mδ(t, ·), nδ(t, ·))

→ ux(t, ·)− p(m(t, ·), n(t, ·)) strongly in L2
loc(R), t > 0.

(3.3)

and the limit functions n,m satisfy
n

m
(t, x) =

n0

m0
(X−1

t (x)), (3.4)

where Xt(x) is the characteristic which takes x as its starting point at time t = 0.

From this lemma, it follows then rather directly that the limiting pair (m,n, u) is indeed a weak
solution of (1.11) with initial data (m0, n0, u0), and that the regularity results of Theorem 1 hold.
We refer to Section 5 of [22] for more details.

Proof. The approach is to first deduce Holder continuity type of estimates for the effective viscous
flux uδ

x − p(mδ, nδ) for a sequence of approximate solutions (mδ, nδ, uδ). This estimate relies on
continuity estimates for particle trajectories. Equipped with the regularity of the effective viscous
flux we then derive continuity estimates for the quantity log(mδ). From these estimates we can
conclude that there is a limit function m such that mδ and (mδ)2 converge weakly to m and m2

in L2(R) for each t > 0 from which strong convergence follows. Similarly arguments are used for
nδ.

Step 1. We obtain strong convergence first in Lagrangian coordinates. Thus define the particle
trajectories Xδ(t, y) given by

dXδ

dt
= uδ

(
t,Xδ

)
, Xδ(0, y) = y. (3.5)

Furthermore, we set

∂yXδ(t, y) = J(t, y) = exp
(∫ t

0

uδ
x

(
s,Xδ(s, y)

)
ds

)
.

The last equality follows since we have that

∂yẊδ = uδ
x(t,Xδ(t, y))∂yXδ, i.e.

d

dt
Xδ

y = uδ
x(t,Xδ(t, y))Xδ

y .

In particular, we get

∂tJ = Juδ
x(t,Xδ(t, y)).

Consequently, we see that

∂t(Jm̃δ) = ∂tJm̃δ + J∂tm̃
δ
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= Jũδ
xm̃δ + J [m̃δ

x∂tX
δ + m̃δ

t ] = J
(
∂tm̃

δ + ∂x[ũδm̃δ]
)
,

where ũδ(t, y) = uδ
(
t,Xδ(t, y)

)
and m̃δ(t, y) = mδ

(
t, Xδ(t, y)

)
. Thus, in terms of the Lagrangian

variables (skipping the ”tilde” notation), we see that the continuity equation for m can be written
as

∂t[mδJ ] = 0, i.e. J =
mδ

0(y)
mδ (t,Xδ(t, y))

. (3.6)

Hence, from the estimate (2.47) we have

C(T )−1 ≤ ∂Xδ

∂y
(t, y) ≤ C(T ), (t, y) ∈ [0, T ]× R. (3.7)

Uniform Holder continuity of the Xδ in t follows from (3.5) and (2.62). There is therefore a
subsequence δ → 0 for which Xδ → X uniformly on compact sets in [0,∞) × R. Furthermore,
(3.7) guarantees the existence of the inverse function Y δ(t, ·) of Xδ(t, ·), and we can again assert
that Y δ → Y uniformly on compact sets in [0,∞)× R, where for each t, Y (t, ·) = X−1(t, ·).

Next, define

Mδ(t, y) = log mδ
(
t,Xδ(t, y)

)

Nδ(t, y) = log nδ
(
t, Xδ(t, y)

)

F δ(t, y) =
[
uδ

x − p(mδ, nδ)
] (

t,Xδ(t, y)
)
.

We claim that there is a subsequence δ → 0 for which

F δ(t, ·) → F (t, ·), t > 0 (3.8)

M δ(t, ·) → M(t, ·), t ≥ 0, (3.9)

N δ(t, ·) → N(t, ·), t ≥ 0, (3.10)

strongly in L2
loc(R). To prove (3.8) we simply compute

F δ
y =

∂F δ

∂Xδ

∂Xδ

∂y
=

[
uδ

xx − p(mδ, nδ)x

] (
t, Xδ(t, y)

) ∂Xδ

∂y
= [mδu̇δ]

(
t,Xδ(t, y)

) ∂Xδ

∂y
,

which by (2.47), (2.61), and (3.7) is bounded in L2
loc(R), uniformly in δ, for fixed t > 0. Also,

F δ
t =

∂F δ

∂Xδ

∂Xδ

∂t
+

∂F δ

∂t
= uδ[uδ

xx − p(mδ, nδ)x] + [uδ
xt − p(mδ, nδ)t]

= [uδ
xt + uδ

xxuδ]− pm(mδ, nδ)[mδ
t + mδ

xuδ]− pn(mδ, nδ)[nδ
t + nδ

xuδ]

= [(u̇δ)x − (uδ
x)2] + pm(mδ, nδ)mδuδ

x + pn(mδ, nδ)nδuδ
x.

Here we have used that

(u̇δ)x − (uδ
x)2 = ∂x

(
uδ

t + uδuδ
x

)− (uδ
x)2 = uδ

xt + uδuδ
xx.

By using (2.60) and (2.61), together with (2.47) and (2.48), we can conclude that F δ
t is bounded

in L2(R× [τ, T ]), uniformly in δ, for each τ ∈ (0, T ]. These estimates prove (3.8).
To prove (3.9) we compute from (1.11) that

Mδ
t =

ṁδ

mδ
= −uδ

x = −(F δ + pδ) = N δ
t , (3.11)

where pδ = p(mδ, nδ). We fix δ1 and δ2 and define

αM = (p(mδ2 , nδ2)− p(mδ1 , nδ2))/(M δ2 −Mδ1)

αN = (p(mδ1 , nδ2)− p(mδ1 , nδ1))/(N δ2 −Nδ1),

which both are positive since p(m,n) is increasing in m and n together with the fact that log(m)
and log(n) are increasing, respectively in m and n. Next, we apply (3.11) and obtain that

∂y1

∂t
+ αMy1 + αNy2 = β,
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∂y2

∂t
+ αMy1 + αNy2 = β,

where
y1 = (M δ2 −M δ1), y2 = (N δ2 −N δ1), β = −(F δ2 − F δ1).

This system of ODEs is easy to resolve since we directly see that

y1 = y2 + C0, C0 = y1(0)− y2(0),

and
∂y1

∂t
+ [αM + αN ]y1 = β + αNC0.

Its solution is given by

d

dt

(
e
R t
0 α(s) dsy1

)
= [β(t) + αN (t)C0]e

R t
0 α(s) ds, α(t) = αM (t) + αN (t),

that is,

y1(t) = e−
R t
0 α(s) dsy1(0) +

∫ t

0

[β(s) + αN (s)C0]e−
R t

s
α(τ) dτ ds.

Consequently, using that αN (t) ≤ α(t), we get

|y1(t)| ≤ |y1(0)|+
∫ t

0

|β(s)| ds + (|y1(0)|+ |y2(0)|)
∫ t

0

e−
R t

s
α(τ) dτα(s) ds.

Hence, we can conclude that for a finite interval K ⊂ R we have

‖M δ2(·, t)−M δ1(·, t)‖L2(K) ≤ ‖M δ2(·, 0)−M δ1(·, 0)‖L2(K) +
∫ t

0

‖F δ2(·, s)− F δ1(·, s)‖L2(K) ds

+ (‖M δ2(·, 0)−M δ1(·, 0)‖L2(K) + ‖N δ2(·, 0)−Nδ1(·, 0)‖L2(K))C(T ).

This together with (3.8) proves that {M δ(t, ·)} is a Cauchy sequence in L2
loc(R) for each t ≥ 0,

and (3.9) follows. Finally, the relation between y1 and y2 implies (3.10).

Step 2. According to the definition of M δ we have

mδ(t, x) = exp
(
M δ(t, Y δ(t, x))

)
.

We therefore define a limit mass m by

m(t, x)
def
:= exp (M (t, Y (t, x))) ,

where M is as in (3.9) and Y (t, x) is the limiting inverse particle trajectory obtained earlier.
Concerning properties of m, first, it is clear that |Mδ| ≤ C and |M | ≤ C, and it follows that

C(T )−1 ≤ m ≤ C(T ).

Similarly, it follows that m inherits the L2 estimate (2.59). The same results of course also hold
for the pair (nδ, N δ) and the corresponding limit functions (n,N).

We observe that the uniform convergence Y δ → Y and the strong L2 convergence Mδ → M
are insufficient to guarantee the strong L2 convergence of the composition mδ = exp

(
M δ(Y δ)

)
to

the limit function m. We shall instead show that for k = 1 and 2, [mδ(t, ·)]k ⇀ [m(t, ·)]k weakly
in L2(R). Then, in turn, this can be used to deduce the strong convergence

mδ(t, ·) → m(t, ·) in L2
loc(R). (3.12)

First, we assume that φ(x) is a smooth test function having compact support in R, and then
we compute at a fixed time t. First, we have∫

R
[(mδ)k −mk]φ dx =

∫

R

[
ekMδ(t,Y δ(t,x))φ(x)− ekM(t,Y (t,x))φ(x)

]
dx

=
∫

R
ekMδ(t,y)φ(Xδ(t, y))

∂Xδ

∂y
dy −

∫

R
ekM(t,y)φ(X(t, y))

∂X

∂y
dy.
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For the first term in the integrand we use the substitution

y = Y δ(t, x), i.e. x = Xδ(t, y),
dx

dy
=

∂Xδ

∂y
,

while for the second term we use

y = Y (t, x), i.e. x = X(t, y),
dx

dy
=

∂X

∂y
.

Using this we get
∫

R
[(mδ)k −mk]φdx =

∫

R

[
ekMδ(t,y) − ekM(t,y)

]
φ(Xδ(t, y))

∂Xδ

∂y
(t, y) dy

+
∫

R
ekM(t,y)

[
φ(Xδ(t, y))− φ(X (t, y))

] ∂Xδ

∂y
(t, y) dy

+
∫

R
ekM(t,y)φ(X (t, y))

[
∂Xδ

∂y
(t, y)− ∂X

∂y
(t, y)

]
dy

:=A + B + C.

To estimate these terms we use:

|A| ≤ ‖φ‖L∞(R)

∥∥∥∥
∂Xδ

∂y

∥∥∥∥
L∞(R)

∫

supp(φ)

|ekMδ − ekM | dy

≤ ||φ||L∞(R)

∥∥∥∥
∂Xδ

∂y

∥∥∥∥
L∞(R)

supp(φ)1/2
∥∥∥ekMδ − ekM

∥∥∥
L2

loc(R)
.

The convergence follows in light of (3.7) and the fact that
∥∥∥ekMδ − ekM

∥∥∥
L2

loc(R)
≤ max(kekM(y,t))

∥∥M δ −M
∥∥

L2
loc(R)

.

The convergence of B follows by (3.7) and the uniform convergence Xδ → X uniformly on compact
sets. The convergence of C follows since

∂Xδ

∂y
⇀

∂X

∂y
, weakly in L2

loc(R).

By an approximation argument we can show that the above convergence holds for φ ∈ L2(R)
by making use of the L∞ and L2 uniform bounds which hold for both mδ and m. By standard
functional analysis, see for example Theorem 2.11 in [14] for one variant of this result, (3.12) now
follows. By considering

nδ(t, x) = exp
(
N δ(t, Y δ(t, x))

)
.

and
n(t, x)

def
:= exp (N(t, Y (t, x))) ,

we can show by the same arguments that

nδ(t, ·) → n(t, ·) in L2
loc(R). (3.13)

Consequently, (3.2) has been shown. Next, by (3.1) and (3.2)

uδ
x(t, ·)− p(mδ(t, ·), nδ(t, ·)) + p(m,n)

⇀ ux(t, ·)− p(m(t, ·), n(t, ·)) + p(m,n), t > 0,
(3.14)

weakly in L2(R). On the other hand,

(uδ
x − p(mδ, nδ))x = mδ(u̇δ)

which is bounded in L2(R), uniformly in δ, by (2.61). The convergence in (3.14) is therefore strong
in L2

loc(R).
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Step 3. Finally, we note from (3.6) and the corresponding equation for n that we have the relation

mδ
0(y)

mδ(t,Xδ(t, y))
=

nδ
0(y)

nδ(t, Xδ(t, y))
,

or equivalently,
nδ(t, x)
mδ(t, x)

=
nδ

0

mδ
0

(Y δ
t (x)).

It’s clear that
nδ

0

mδ
0

(Y δ
t (x)) → n0

m0
(Yt(x)) in L2(R)

due to the strong convergence associated with Y δ and mδ
0, n

δ
0. Moreover, by decomposing

nδ

mδ
− n

m
=

( nδ

mδ
− n

mδ

)
+

( n

mδ
− n

m

)

we see that
nδ(x, t)
mδ(x, t)

→ n(x, t)
m(x, t)

in L2(R)

by using the strong convergence nδ → n, 1/mδ → 1/m in L2(R) and the boundedness of mδ and
n. Consequently, (3.4) holds.

¤

4. Some numerical examples demonstrating characteristic behavior

The purpose of this section is to demonstrate characteristic behaviour of the viscous two-phase
model. We write the model in the vector form

wt + f(w)x =




0
0

µuxx


 ,

where w = (w1, w2, w3)T = (n,m,mu)T and f(w) = (nu, mu,mu2 + p(m, n))T . We have used
the no-slip condition. We apply Riemann data where we initially have a jump in one or several
variables. It is interesting then to study the development of these jumps at later times. We recall
from [20, 21, 23] that initial discontinuities in the density for single-phase Navier-Stokes equations
in 1-D persist for all time but decrease exponentially fast in the time variable. In Example 1 we
have chosen initial data such that n0/m0 is constant. Our two-phase model then gives a ”single-
phase” type of behaviour of the initial discontinuity. In Example 2 and 3 we consider other initial
data, respectively, corresponding to an initial increasing (Example 2) and decreasing (Example 3)
jump in n0/m0. The evolution of the initial jump then shows a behaviour fundamentally different
from the single-phase case. For comparison we also have included solutions when the physical
viscosity is neglected.

Example 1 (vanishing discontinuity). We consider the compressible liquid-gas two-phase
model with Riemann data

(w1,L, w1,R) = (1/18, 1/20), (w2,L, w2,R) = (500/9, 500/10),

(w3,L, w3,R) = (5000/9, 5000/10).

In Lagrangian coordinates c = w1/w2 and v = 1/w2 this corresponds to

(cL, cR) = (1/1000, 1/1000), (vL, vR) = (9/500, 10/500), (uL, uR) = (10, 10).

Results are presented in Figures 4 and 5 and show results after time t = 0.5 and t = 1.0, respec-
tively.

We observe from Figure 4 and 5 that initial jumps are dying out as time runs. This can be
understood from the fact that n0/m0 = c is constant, thus, the two-phase model behaves similar to
a single-phase model since n/m = n0/m0 for all later times, and the single-phase analysis directly
carries over to the two-phase model. For example, the pressure p(m,n) = p(m,mc) = P (m) where
c is constant, and the behavior of P (m) is similar to the single-phase case.
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Example 2 (persisting discontinuity). We consider the viscous two-phase model with Rie-
mann data

(w1,L, w1,R) = (0.95/18, 1/20), (w2,L, w2,R) = (500/9, 500/10),

(w3,L, w3,R) = (5000/9, 5000/10).

In Lagrangian coordinates this corresponds to

(cL, cR) = (0.95/1000, 1/1000), (vL, vR) = (9/500, 10/500), (uL, uR) = (10, 10),

Results are presented in Figure 6 and we observe that as the initial jump in w1 decreases through
time as in Example 1, the jump in w2 shows a totally different behavior. However, we see that
both jumps go in the same direction as the corresponding initial data (w1,L, w1,R) and (w2,L, w2,R).
This behaviour should be understood in view of the relation

n

m
(t, x) =

n0

m0
(X−1

t (x)). (4.1)

Example 3 (vanishing discontinuity + new persisting discontinuty). We consider the
viscous two-phase model with Riemann data

(w1,L, w1,R) = (1.075/18, 1/20), (w2,L, w2,R) = (500/9, 500/10),

(w3,L, w3,R) = (5000/9, 5000/10).

In Lagrangian coordinates this corresponds to

(cL, cR) = (1.075/1000, 1/1000), (vL, vR) = (9/500, 10/500), (uL, uR) = (10, 10).

Results are presented in Figures 7 and 8. Figure 7 shows that for both masses w1 and w2 the
initial jumps decrease due to the smoothing of the velocity u. However, the smoothing out effect
from u together with the fundamental relation (4.1) enforce a new persisting discontinuity to be
formed in w2 after some time whose jump is opposite of the initial jump in w2, see Figure 8.
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Figure 4. Snapshot of αg, vg = vl, p (left column) and w1, w2, and w3 at time
t = 0.5 (right column). We have used 800 nodes and the viscous coefficient is
given by µ = 3 · 103.
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Figure 5. Snapshot of αg, vg = vl, p (left column) and w1, w2, and w3 (right
column) at time t = 1.0. We have used 800 nodes and the viscous coefficient is
given by µ = 3 · 103.
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Figure 6. Snapshot of αg, vg = vl, p (left column) and w1, w2, and w3 (right
column) at time t = 1.0. We have used 800 nodes and the viscous coefficient is
given by µ = 3 · 103.
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Figure 7. Snapshot of αg, vg = vl, p (left column) and w1, w2, and w3 (right
column) at time t = 0.3. We have used 800 nodes and the viscous coefficient is
given by µ = 3 · 103.
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Figure 8. Snapshot of αg, vg = vl, p (left column) and w1, w2, and w3 (right
column) at time t = 1.0. We have used 800 nodes and the viscous coefficient is
given by µ = 3 · 103.


