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Abstract. We study the following class of scalar hyperbolic conservation laws with discontin-
uous fluxes:

∂tρ + ∂xF (x, ρ) = 0. (0.1)

The main feature of such a conservation law is the discontinuity of the flux function in the
space variable x. Kruzkov’s approach for the L1-contraction does not apply since it requires the
Lipschitz continuity of the flux function; and entropy solutions even for the Riemann problem
are not unique under the classical entropy conditions. On the other hand, it is known that,
in statistical mechanics, some microscopic interacting particle systems with discontinuous speed
parameter λ(x), in the hydrodynamic limit, formally lead to scalar hyperbolic conservation laws
with discontinuous fluxes of the form:

∂tρ + ∂x (λ(x)h(ρ)) = 0. (0.2)

The natural question arises which entropy solutions the hydrodynamic limit selects, thereby lead-
ing to a suitable, physical relevant notion of entropy solutions of this class of conservation laws.
This paper is a first step and provides an answer to this question for a family of discontinuous
flux functions. In particular, we identify the entropy condition for (0.1) and proceed to show the
well-posedness by combining our existence result with a uniqueness result of Audusse-Perthame
(2005) for the family of flux functions; we establish a compactness framework for the hydrody-
namic limit of large particle systems and the convergence of other approximate solutions to (0.1),
which is based on the notion and reduction of measure-valued entropy solutions; and we finally
establish the hydrodynamic limit for a ZRP with discontinuous speed-parameter governed by an
entropy solution to (0.2).

1. Introduction

We are concerned with the following class of scalar hyperbolic conservation laws with discon-
tinuous fluxes:

∂tρ + ∂xF (x, ρ(t, x)) = 0 (1.1)
and with initial data:

ρ|t=0 = ρ0(x), (1.2)
where F (·, ρ) is continuous except on a set of measure zero.

The main feature of (1.1) is the discontinuity of the flux function in the space variable x.
This feature causes new important difficulties in conservation laws. Kruzkov’s approach in [18]
for the L1-contraction does not apply; entropy solutions even for the Riemann problem of (1.1)
are not unique under the classical entropy conditions; several admissibility criteria have been
proposed in [1, 3, 8, 15, 17] and the references cited therein. In particular, a uniqueness theorem
was established in Baiti-Jenssen [3] when F (x, ·) is monotone and Audusse-Perthame [1] for more
general flux functions that especially include non-monotone functions F (x, ·) in (1.1) under their
notion. However, the existence of entropy solutions for the non-monotone case under the notion
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of Audusse-Perthame [1] has not been established, and the entropy conditions proposed in the
literature in general are not equivalent.

On the other hand, in statistical mechanics, some microscopic interacting particle systems with
discontinuous speed parameter λ(x), in the hydrodynamic limit, formally lead to scalar hyperbolic
conservation laws with discontinuous flux of the form

∂tρ + ∂x (λ(x)h(ρ)) = 0 (1.3)

and with initial data (1.2), where λ(x) is continuous except on a set of measure zero and h(ρ)
is Lipschitz continuous. Equation (1.3) is equivalent to the following 2 × 2 hyperbolic system of
conservation laws: {

∂tρ + ∂x(λh(ρ)) = 0,
∂tλ = 0.

(1.4)

In particular, when h(ρ) is not strictly monotone, system (1.4) is nonstrictly hyperbolic, one of the
main difficulties in conservation laws (cf. [5, 7]). The natural question is which entropy solution
the hydrodynamic limit selects, thereby leading to a suitable, physical relevant notion of entropy
solutions of this class of conservation laws. This paper is a first step and provides an answer to this
question for a family of discontinuous flux functions via an interacting particle system, namely,
the attractive zero range process (ZRP). This ZRP leads to a conservation law of the form (1.3)
with λ(x) > 0 and h(ρ) being monotone in ρ, and its hydrodynamic limit naturally gives rise to
an entropy condition of the type described in [1, 3] in the formal level.

Motivated by the hydrodynamic limit of the ZRP, in this paper, we adopt the notion of entropy
solutions for a class of conservation laws with discontinuous flux functions, including the non-
monotone case in the sense of Audusse-Perthame [1], and establish the existence of such an entropy
solution via the method of compensated compactness in Section 3. This completes the well-
posedness by combining a uniqueness result established in [1] for this class of conservation laws
under the notion of entropy solutions.

In order to establish the hydrodynamic limit of large particle systems and the convergence of
other approximate solutions to (1.1) rigorously, we establish another compactness framework for
(1.1)–(1.2) in Section 2. This mathematical framework is based on the notion and reduction of
measure-valued entropy solutions developed in Section 2, which is also applied for another proof
of the existence of entropy solutions for the monotone case in Section 3.

In Section 4, we establish the hydrodynamic limit for a ZRP with discontinuous speed-parameter
λ(x) governed by the unique entropy solution of the Cauchy problem (1.2)–(1.3).

2. Notion and Reduction of measure-valued entropy solutions

In this section, we first develop the notion of measure-valued entropy solutions and establish
their reduction to entropy solutions in L∞ (provided that they exist) of the Cauchy problem
(1.1)–(1.2) satisfying

(H1) F (x, ρ) is continuous at all points of (R\N )×R with N a closed set of measure zero;
(H2) ∃ continuous functions f, g such that, for any x ∈ R and large ρ, f(ρ) ≤ |F (x, ρ)| ≤ g(ρ)

with f(ρ) ≥ 0 and f(±∞) = ∞;
(H3) There exists a function ρm(x) from R to R and a constant M0 such that, for x ∈ R\N ,

F (x, ρ) is a locally Lipschitz, one to one function from (−∞, ρm] and [ρm,∞) to [M0,∞)
(or (−∞,M0]) with F (x, ρm(x)) = M0;

or
(H3’) For x ∈ R\N , F (x, ·) is a locally Lipschitz, one to one function from R to R.

One example of the flux function satisfying (H1)–(H2) and (H3) or (H3’) is

F (x, ρ) = λ(x)h(ρ), (2.1)
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where λ(x) is continuous in x ∈ R with 0 < λ1 ≤ λ(x) ≤ λ2 < ∞ for some constants λ1 and
λ2, except on a closed set N of measure zero, h(ρ) is locally Lipschitz and is either monotone or
convex (or concave) with h(ρm) = 0 for some ρm in which case M0 = 0.

It is easy to check that, if the flux function F (x, ρ) satisfies (H1)–(H3), then, for any constant
α ∈ [M0,∞) (or α ∈ (−∞,M0]), there are two steady-state solutions m+

α from R to [ρm(x),∞)
and m−

α from R to (−∞, ρm(x)] of (1.1) such that

F (x,m±
α (x)) = α. (2.2)

In the case (H1)–(H2) and (H3’), m+
α (x) = m−

α (x) which is even simpler.

2.1. Notion of measure-valued entropy solutions. First, the notion of entropy solutions in
L∞ introduced in Audusse-Perthame [1] and Baiti-Jenssen [3] can be further formulated into the
following.

Definition 2.1 (Notion of entropy solutions in L∞). We say that an L∞ function ρ : R2
+ :=

R+ × R 7→ R is an entropy solution of (1.1)–(1.2) provided that, for each α ∈ [M0,∞) (or
α ∈ (−∞,M0]) and the corresponding two steady-state solutions m±

α (x) of (1.1),∫ (
|ρ(t, x)−m±

α (x)| ∂tJ + sgn(ρ(t, x)−m±
α (x))

(
F (x, ρ(t, x))− α

)
∂xJ

)
dtdx

+
∫
|ρ0(x)−m±

α (x)|J(0, x) dx ≥ 0 (2.3)

for any test function J : R2
+ 7→ R+.

It is easy to see that any entropy solution is a weak solution of (1.1)–(1.2) by choosing α such
that m+

α (x) ≥ ‖ρ‖L∞ and m−
α (x) ≤ −‖ρ‖L∞ , respectively, for a.e. x ∈ R.

From the uniqueness argument in Audusse-Perthame [1] (also see [6]), one can deduce that, for
any L > 0,

lim
t→0

∫

|x|≤L

|ρ(t, x)− ρ0(x)| dx = 0. (2.4)

Following the notion of entropy solutions, we introduce the corresponding notion of measure-
valued entropy solutions. We denote by P(R) the set of probability measures on R.

Definition 2.2 (Notion of measure-valued entropy solutions). We say that a measurable map

π : R2
+ → P(R)

is a measure-valued entropy solution of (1.1)–(1.2) provided that 〈π0,x; k〉 = ρ0(x) for a.e. x ∈ R
and, for each α ∈ [M0,∞) (or α ∈ (−∞,M0]) and the corresponding two steady-state solutions
m±

α (x) of (1.1),∫ (〈πt,x; |k −m±
α (x)|〉∂tJ + 〈πt,x; sgn(k −m±

α (x)) (F (x, k)− α)〉∂xJ
)
dxdt

+
∫
|ρ0(x)−m±

α (x)|J(0, x) dx ≥ 0 (2.5)

for any test function J : R2
+ 7→ R+.

If a measure-valued entropy solution πt,x(k) is a Dirac mass with the associated profile ρ(t, x),
i.e. πt,x(k) = δρ(t,x)(k), then ρ(t, x) is an entropy solution of (1.1)–(1.2), which is unique as shown
in [1].

Note that, when the flux function F (x, ρ) is locally Lipschitz in both variables (x, ρ), one can
use the Kruzkov entropy inequality, instead of (2.5), to formulate the following notion of measure-
valued solutions:

∂t 〈πt,x; |k − c|〉+ ∂x 〈πt,x; sgn(k − c) (F (x, k)− F (x, c))〉+ 〈πt,x; sgn(k − c)∂xF (x, c)〉 ≤ 0 (2.6)
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in the sense of distributions and to establish their reduction as in DiPerna [12]. One of the new
features in our formulation (2.5) in Definition 2.2 is that the constant c in (2.6) is replaced by
the steady-state solutions m±

α (x) so that the additional third term in (2.6) vanishes, as in [1, 3],
and thereby allows the discontinuity of the flux functions on a closed set of measure zero for
measure-valued entropy solutions.

2.2. Reduction of measure-valued entropy solutions. In this section we first establish the
reduction of measure-valued entropy solutions of (1.1)–(1.2) and prove that any measure-valued
entropy solution πt,x(k) in the sense of Definition 2.2 is the Dirac solution such that the associated
profile ρ(t, x) is an entropy solution in the sense of Definition 2.1. That is, our goal is to establish
that, when π0,x(k) = δρ0(x)(k),

πt,x(k) = δρ(t,x)(k), (2.7)

where ρ : R2
+ → R is the unique entropy solution determined by (2.3). The reduction proof is

achieved by two theorems. We start with the first theorem.

Theorem 2.1. Assume ρ : R2
+ → R is the unique entropy solution of (1.1)–(1.2) with initial

data ρ0 ∈ L∞(R). Assume that there exists a measure-valued entropy solution π : R2
+ → P(R)

of (1.1) in the sense of Definition 2.2 with πt,x having a fixed compact support for a.e. (t, x) and
π0,x(k) = δρ0(x)(k) for a.e. x ∈ R. Then

∫ ( 〈πt,x; |k − ρ(t, x)|〉 ∂tJ + 〈πt,x; sgn(k − ρ(t, x))(F (x, k)− F (x, ρ(t, x)))〉 ∂xJ
)
dxdt ≥ 0 (2.8)

for any test function J : R2
+ 7→ R+.

Proof. The proof is divided into six steps.
Step 1. We first rewrite

E := ∂t

〈
πt,x; |k − ρ(t, x)|〉 + ∂x

〈
πt,x; sgn (k − ρ(t, x))

(
F (x, k)− F (x, ρ(t, x))

)〉

in the entropy inequality (2.8). We notice the following:
• Under the assumption (H3’), F (x, ρ(t, x)) is continuous in x a.e. Then we can define a

function ρ̃(s, y, x) for a.e. (s, y, x) ∈ R+ ×R2 such that, for fixed (s, y),

F (x, ρ̃(s, y, x)) := F (x,mF (y,ρ(s,y))(x)) = F (y, ρ(s, y)), (2.9)

where the last equality follows from (2.2). Thus, we define

β(s, y) := F (y, ρ(s, y)) so that ρ̃(s, y, x) = mβ(s,y)(x).

• For the case (H3), we define the sign of the difference between the tilda function and ρm(y)
to be the same as the sign of the corresponding solution. Since ρm(y) is the minimum (or
maximum) point of the flux function with F (y, ρm(y)) = M0, then, for

ρ̃(s, y, x) := m+
β(s,y)(x)sgn+(ρ(s, y)− ρm(y)) + m−

β(s,y)(x)sgn−(ρ(s, y)− ρm(y)), (2.10)

we have as in (2.9)

F (x, ρ̃(s, y, x)) := F (x,m+
β(s,y)(x)sgn+(ρ(s, y)− ρm(y)) + m−

β(s,y)(x)sgn−(ρ(s, y)− ρm(y))
= F (y, ρ(s, y)) = β(s, y).

With these notations, we set

Ẽ := ∂t

〈
πt,x; |k − ρ̃(s, y, x)| 〉 + ∂x

〈
πt,x; sgn(k − ρ̃(s, y, x))

(
F (x, k)− β(s, y)

)〉
. (2.11)

Then, to obtain the inequality E ≤ 0, it suffices to show that limx→y Ẽ = E.

Step 2. We now show that

ρ̃(s, y, x)
x−→y−→ ρ̃(s, y, y) = ρ(s, y) for a.e. (s, y) ∈ R2

+. (2.12)
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For the case (H3’), since the flux function is continuous outside a negligible set N , then, for
x ∈ R\N ,

F (x, ρ̃(s, y, y))
x→y−→ F (y, ρ̃(s, y, y)).

On the other hand, we have F (y, ρ̃(s, y, y)) = F (x, ρ̃(s, y, x)). Therefore, we have

F (x, ρ̃(s, y, x))− F (x, ρ̃(s, y, y))
x→y−→ 0,

and (2.12) is a consequence of the fact that F (x, ·) is a one to one function. The case (H3) is clear
from the definition of ρ̃(s, y, x) in (2.10).

Step 3. With Steps 1–2, to achieve inequality (2.8), it suffices by choosing α = β(s, y) in (2.5)
to show the following inequality:

lim
τ,ω→0

∫
∂tJ(t, x)H̄τ (t− s)Hω(x− y)〈πt,x; |k − ρ̃(s, y, x)|〉 dtdxdsdy

+ lim
τ,ω→0

∫
∂xJ(t, x)H̄τ (t− s)Hω(x− y)〈πt,x; sgn (k − ρ̃(s, y, x))

(
F (x, k)− β(s, y)

)〉 dtdxdsdy

+ lim
τ,ω→0

∫
J(0, x)H̄τ (−s)Hω(x− y)|ρ0(x)− ρ̃(s, y, x)| dxdsdy ≥ 0 (2.13)

for any test function J ∈ C∞0 (R2
+) and verify that ρ̃(s, y, x) can be replaced by ρ(t, x) in the limit

as τ, ω → 0. Here the two families of functions H̄τ , Hω ∈ C∞0 (R) are defined as

H̄τ (z) =
1
τ

H̄(
z

τ
) and Hω(z) =

1
ω

H(
z

ω
) for τ, ω > 0,

for a positive, compactly supported function H ∈ C∞0 (R) and a positive function H̄ ∈ C∞0 (R)
with compact support in (−2,−1) such that

∫
RH(z)dz = 1 and

∫
(−2,−1)

H̄(z)dz = 1.
This can be easily seen by first choosing the test function in (2.5) as J(t, x)H̄τ (t−s)Hω(x−y) ≥ 0

for fixed (s, y) and then integrating with respect to (s, y). We now estimate the three terms of
(2.13) in Steps 4–6, respectively.

Step 4. We show that, as τ, ω → 0, the first term converges to∫
∂tJ(t, x) 〈πt,x; |k − ρ(t, x)|〉 dtdx.

Observe that∣∣∣
∫

∂tJ(t, x)H̄τ (t− s)Hω(x− y) 〈πt,x;
∣∣k − ρ̃(s, y, x)

∣∣〉 dtdxdsdy

−
∫

∂tJ(t, x)H̄τ (t− s)Hω(x− y)〈πt,x;
∣∣k − ρ̃(s, y, y)

∣∣〉 dtdxdsdy
∣∣∣

≤
∫
|∂tJ(t, x)|H̄τ (t− s)

( ∫
Hω(x− y)

∣∣ρ̃(s, y, x)− ρ̃(s, y, y)
∣∣ dx

)
dtdsdy → 0 as ω → 0, (2.14)

by the dominated convergence theorem and the fact that
∫

Hω(x− y)
∣∣ρ̃(s, y, x)− ρ̃(s, y, y)

∣∣ dx → 0
as ω → 0 for a.e. (s, y) ∈ R2

+ since ρ̃(s, y, x)
x→y−→ ρ̃(s, y, y) = ρ(s, y) by (2.12). Then, to find the

limit of the first term of (2.13), it suffices to compute the limit of∫
∂tJ(t, x)H̄τ (t− s)Hω(x− y)〈πt,x;

∣∣k − ρ(s, y)
∣∣〉 dtdxdsdy. (2.15)

Thus, it suffices to show that ρ(s, y) can be replaced by ρ(t, x) in (2.15), i.e., as τ, ω → 0,∫
∂tJ(t, x)H̄τ (t− s)Hω(x− y)

∣∣ρ(t, x)− ρ(s, y)
∣∣ dtdxdsdy

=
∫

∂tJ(t, x)H̄(−r)H(−z)
∣∣ρ(t, x)− ρ(t + τr, x + ωz)

∣∣ dtdxdrdz → 0. (2.16)
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This is guaranteed by the fact that

lim
τ,ω→0

∫ ∣∣ρ(t, x)− ρ(t + τr, x + ωz)
∣∣ dtdx = 0,

and the dominated convergence theorem since all the functions involved are bounded. This implies
that, in (2.15), we can indeed replace ρ(s, y) by ρ(t, x) to arrive at the result.

Step 5. We show that the second term of (2.13) converges to
∫

∂xJ(t, x)〈πt,x; sgn (k − ρ(t, x))
(
F (x, k)− β(t, x)

)〉 dtdx as τ, ω → 0.

The hypothesis (H2) on F (x, ρ) implies
∣∣∣ sgn (k − ρ̃(s, y, x))

(
F (x, k)− β(s, y)

)− sgn (k − ρ̃(s, y, y))
(
F (x, k)− F (x, ρ̃(s, y, y))

)∣∣∣

=
∣∣∣ sgn (k − ρ̃(s, y, x))

(
F (x, k)− F (x, ρ̃(s, y, x))

)− sgn (k − ρ(s, y))
(
F (x, k)− F (x, ρ(s, y))

)∣∣∣
≤ C|ρ̃(s, y, x)− ρ(s, y)|.

Integrating the last expression with respect to x against the function Hω(x− y) yields its conver-
gence to zero by Step 2 as ω → 0. Therefore, the limit of the second term of (2.13) is the same as
the limit of∫

∂xJ(t, x)H̄τ (t− s)Hω(x− y)〈πt,x; sgn (k−ρ(s, y))
(
F (x, k)− F (x, ρ(s, y))

)〉 dtdxdsdy,

and it suffices to prove that, as τ, ω → 0,
∫

∂xJ(t, x)H̄τ (t− s)Hω(x− y)〈πt,x;
∣∣ sgn (k − ρ(s, y))

(
F (x, k)− F (x, ρ(s, y))

)
−sgn (k − ρ(t, x))

(
F (x, k)− F (x, ρ(t, x))

)∣∣〉 dtdxdsdy → 0.

Using the Lipschitz property and fact (2.16), we achieve the result for the second term of (2.13).

Step 6. We now show that the third term of (2.13) converges to zero if τ, ω → 0. Note that
∫

J(0, x)H̄τ (−s)Hω(x− y)
∣∣∣|ρ0(x)− ρ̃(s, y, x)| − |ρ0(x)− ρ̃(s, y, y)|

∣∣∣ dxdsdy

≤
∫

J(0, x)H̄τ (−s)Hω(x− y)|ρ̃(s, y, x)− ρ̃(s, y, y)| dxdsdy.

For the same reason as in the first and the second term of (2.13), the right hand side converges to
zero if τ, ω → 0. We therefore next compute the limit as τ, ω → 0 of

∫
J(0, x)H̄τ (−s)Hω(x− y)|ρ0(x)− ρ(s, y)| dxdsdy.

As before, limτ,ω→0

∫
J(0, x)Hτ (−s)Hω(x − y)|ρ(s, x) − ρ(s, y)| dxdsdy = 0. Therefore, the next

goal is to compute the limit of
∫

J(0, x)H̄τ (−s)Hω(x−y)|ρ0(x)−ρ(s, x)| dxdsdy =
∫

J(0, x)H̄(−r)|ρ0(x)−ρ(τr, x)| dxdr. (2.17)

Since all the functions are bounded and suppH ⊂ (−2,−1), by the dominated convergence theorem
and property (2.4) of the unique entropy solution ρ(t, x), this converges to 0 as τ → 0 and thereby
(2.17) converges to 0.

With Steps 3–6 and by (2.13), we complete the proof. ¤

Then Theorem 2.1 yields the L1-contraction between the measure-valued entropy solution πt,x

and the unique entropy solution ρ(t, x) of (1.1)–(1.2).
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Theorem 2.2 (L1-contraction). The function
∫ 〈πt,x; |k − ρ(t, x)|〉 dx is non-increasing in t > 0,

which implies πt,x(k) = δρ(t,x)(k) when π0,x(k) = δρ0(x)(k) for a.e. x ∈ R.

Proof. In expression (2.8), we choose the test function as the product test function Jj(t)H(x), with
Jj(t) converging to the indicator function 1[t1,t2](t) as j →∞ for t2 > t1 ≥ 0. Then (2.8) is equal
to ∫

H(x)〈πt1,x(k); |k − ρ(t1, x)|〉 dx−
∫

H(x)〈πt2,x(k); |k − ρ(t2, x)|〉 dx

+
∫ t2

t1

∫
H ′(x)〈πt,x(k); sgn (k − ρ(t, x))

(
F (x, k)− β(t, x)

)〉 dxdt ≥ 0. (2.18)

In (2.18), we choose

H(x) = e−γ
√

1+|x|2χ(
x

N
), γ,N > 0,

for χ ∈ C∞0 (−2, 2) with χ(x) = 1 when x ∈ [−1, 1] and χ(x) ≥ 0. Letting N →∞ first and γ → 0
then yields that, for any t2 > t1 ≥ 0,

∫
〈πt2,x; |k − ρ(t2, x)|〉 dx−

∫
〈πt1,x; |k − ρ(t1, x)|〉 dx ≤ 0.

In particular, when t2 = t > 0, t1 → 0, then π0,x(k) = δρ0(x)(k) implies
∫
〈πt,x; |k − ρ(t, x)|〉dx ≤ 0

so that πt,x(k) = δρ(t,x)(k) for any t > 0. ¤

3. Existence of entropy solutions

In this section, we establish the existence of entropy solutions (1.1)–(1.2) in the sense of Defi-
nition 2.1, as required for the reduction of measure-valued entropy solutions. More precisely, for
each fixed ε > 0, ρε denotes the unique Kruzkov solution of (1.1)–(1.2) in the sense (3.3), where
the flux function depends smoothly on the space variable x; then it is shown that the sequence ρε

converges to an entropy solution of (1.1)–(1.2).

3.1. Existence of entropy solutions when F is smooth. Define Fε(x, ρ) the standard molli-
fication of F (x, ρ) in x ∈ R:

Fε(x, ρ) := (F (·, ρ) ∗ θε)(x) → F (x, ρ) a.e. as ε → 0, (3.1)

with θε(x) := θ(x
ε ), θ(x) ≥ 0, supp θ(x) ⊂ [−1, 1], and

∫ 1

−1
θ(x)dx = 1. For fixed ε > 0, consider

the following Cauchy problem: {
∂tρ + ∂xFε(x, ρ) = 0,
ρ|t=0 = ρ0(x) ≥ 0.

(3.2)

Kruzkov’s result in [18] indicates that there exists a unique solution ρε of (3.2) satisfying the
Kruzkov entropy inequality:

∂t|ρε(t, x)− c|+ ∂x

(
sgn(ρε(t, x)− c)(Fε(x, ρε(t, x))− Fε(x, c))

)
+ (sgn(ρε(t, x)− c)∂xFε(x, c) ≤ 0

(3.3)
in the sense of distributions. We now show that the entropy solution ρε also satisfies (2.3).

Proposition 3.1. Let ρε(t, x) be a solution of the Cauchy problem (3.2) satisfying the Kruzkov
entropy inequality (3.3). Then ρε(t, x) also satisfies the entropy inequality (2.3) with steady-state
solutions m±

α = mε,±
α .
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Proof. In (3.3), we choose the constant c = mε,±
α (y) for any α ∈ [M0,∞) (or α ∈ (−∞, M0]),

integrate against a test function Jω(t, x, y) := J(t, x+y
2 )Hω(x − y) with Hω as in the proof of

Theorem 2.1, integrate by parts in the term involving H ′
ω(x− y) with respect to dy, and observe

that (∂x + ∂y)Jω(t, x, y) = ∂xJ(t, x+y
2 )Hω(x− y) to obtain from (3.3) that

∫ ∣∣ρε(t, x)−mε,±
α (y)

∣∣ Hω(x− y)∂tJ dtdxdy

+
∫

sgn
(
ρε(t, x)−mε,±

α (y)
) (

Fε(x, ρε(t, x))− Fε(x,mε,±
α (y))

)
Hω(x− y)∂yJ dtdxdy

−
∫

sgn
(
ρε(t, x)−mε,±

α (y)
)
∂yFε(x,mε,±

α (y))Hω(x− y)J dtdxdy

−
∫

sgn
(
ρε(t, x)−mε,±

α (y)
)
∂xFε(x,mε

α(y))Hω(x− y)J dtdxdy

+
∫ ∣∣ρε(0, x)−mε,±

α (y)
∣∣ Hω(x− y)J(0,

x + y

2
) dxdy ≥ 0, (3.4)

where we have used that∫ (
Fε(x, ρε(t, x))− Fε(x,mε,±

α (y))
)
Hω(x− y)J dy

(
sgn(ρε(t, x)−mε,±

α (y))
)
dxdt = 0.

As in the proof of Theorem 2.1, we can replace ρε(t, x) by ρε(t, y) in the first term as ω → 0
and replace ρε(0, x) by ρε(0, y) in the last term as ω → 0.

The second term is equal to
∫

sgn
(
ρε(t, x)−mε,±

α (y)
) (

Fε(x, ρε(t, x))− Fε(x,mε,±
α (y))

)
Hω(x− y)∂yJ dtdxdy.

By the hypothesis (H3) on the flux function, Fε(·, ρ) is a Lipschitz function from (−∞, ρm] and
[ρm,∞) to [M0,∞) (or (−∞,M0]), which implies

∣∣sgn (ρε(t, x)− ρε(t, y))
(
F (x, ρε(t, x))− F (x, ρε(t, y))

)∣∣ ≤ C|ρε(t, x)− ρε(t, y)|.
One can show in a similar way as in the first term that

lim
ω→0

∫
|ρε(t, x)− ρε(t, y)|Hω(x− y)∂yJ dtdxdy = 0.

This means that, in the second term of (3.4), one can replace F (x, ρε(t, x)) by F (x, ρε(t, y)). Since
Fε is also a smooth function with respect to the first variable, the second term converges to

∫
sgn

(
ρε(t, y)−mε,±

α (y)
) (

Fε(y, ρε(t, y))− α
)
∂yJ(t, y) dtdy.

In the third and fourth term in (3.4), for z ∈ R, we have

lim
ω→0

∫
(∂x + ∂y)Fε(x,mε,±

α (y)) ω Hω(ωz)J(t, y +
1
2
ωz) dz

= lim
ω→0

∫
(∂x + ∂y)Fε(x,mε,±

α (y))H(z)J(t, y +
1
2
ωz) dz

= J(t, y)∂yFε(y, mε,±
α (y)

)
= J(t, y)∂yα = 0.

With these results, as ω→ 0, inequality (3.4) becomes (2.3) for Fε(x, ρ) = (F (·, ρ) ∗ θε)(x) with
steady-state solutions m±

α = mε,±
α . ¤

Thus we conclude the existence of an entropy solution ρε(t, x) in the sense of Definition 2.1 for
each Fε with fixed ε > 0.
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Remark 3.1. Notice that the sequence of approximate entropy solutions converges to a measure-
valued entropy solution as ε → 0: First, since ρ0 ∈ L∞, we find that, for α big enough,

mε,−
α (x) ≤ ρ0(x) ≤ mε,+

α (x) for all x ∈ R.

From [1], it then follows that
mε,−

α (x) ≤ ρε(t, x) ≤ mε,+
α (x),

which implies the uniform boundedness of ρε(t, x) in ε since mε,±
α (x) are uniformly bounded in

ε. Then there exists a compactly supported family of probability measures πt,x on R (i.e. Young
measures; see Tartar [22]) and a subsequence (still denoted by) ρε(t, x) such that, for any continuous
function f(ρ),

f(ρε(t, x)) ∗
⇀ 〈πt,x, f(k)〉 as ε → 0. (3.5)

On the other hand, by Section 3.1, the sequence ρε(t, x) satisfies the entropy inequality (2.3) for
Fε(x, ρ) and the steady-state solutions m±

α = mε,±
α . In particular, we use (3.5) and the definition

of the sequence Fε(x, ρ) in (3.1) to conclude that, as ε → 0, the compactly supported family of
probability measures πt,x satisfies that, for any test function J : R2

+ 7→ R+,
∫ (〈πt,x;

∣∣k −m±
α (x)

∣∣〉∂tJ +
〈
πt,x; sgn

(
k −m±

α

) (
F (x, k)− α

)〉
∂xJ

)
dxdt

+
∫ ∣∣ρ0(x)−m±

α (x)
∣∣J(0, x) dx ≥ 0. (3.6)

Thus, πt,x is a measure-valued entropy solution of (1.1)–(1.2) with compact support for a.e. (t, x) ∈
R2

+ in the sense of Definition 2.2.

3.2. Existence of entropy solutions when F is discontinuous in x. We are now ready to
state the main theorem of this section.

Theorem 3.1. Let F (x, ρ) be strictly convex or concave in ρ for a.e. x ∈ R and satisfy (H1)–
(H3), or let F (x, ρ) satisfy (H1)–(H2) and (H3’). Let ρ0(x) ∈ L∞. Then the sequence of entropy
solutions ρε of the Cauchy problem (3.2) (in the sense of Definition 2.1) converges to the unique
entropy solution of the Cauchy problem (1.1)–(1.2) in the sense of Definition 2.1.

Proof. We consider the two cases separately.
For the case (H1)–(H2) and (H3’), that is, the flux function F is monotone in ρ, we apply the

compactness framework established in Section 2 to establish the convergence. For this case, the
existence of entropy solutions has been established in [3]. In Remark 3.1, we have shown that the
limit of the entropy solutions ρε is determined by a measure-valued entropy solution πt,x. Then,
by Theorems 2.1–2.2, πt,x is the Dirac measure concentrated on the unique entropy solution ρ(t, x)
of (1.1)–(1.2) in the sense of Definition 2.1, which implies the whole sequence converges.

For the case (H1)–(H3), since we have not established the existence of an entropy solution, we
employ the compensated compactness method to establish the convergence of the entropy solutions
of the Cauchy problem (3.2), which also yields the existence of a unique entropy solution of the
Cauchy problem (1.1)–(1.2).

From Remark 3.1, we have known that ρε is uniformly bounded in L∞ which implies that there
exists a subsequence ρε converging weakly to a compactly supported family of probability measures
νt,x on R+ such that, for any function f(ρ, t, x) that is continuous in ρ for a.e. (t, x),

f(ρε(t, x), t, x) ∗
⇀ 〈νt,x, f(k, t, x)〉 as ε → 0. (3.7)

In particular,
ρε(t, x) ∗

⇀ 〈νt,x, k〉 =: ρ(t, x) ∈ L∞. (3.8)
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Our goal is to prove the strong convergence of ρε(t, x) to ρ(t, x) a.e., equivalently, νt,x = δρ(t,x),
which implies that ρ(t, x) is an entropy solution of (1.1)–(1.2), that is, ρ(t, x) satisfies the entropy
inequality in Definition 2.1.

By Section 3.1, we have known that the sequence ρε exists and satisfies

Eε := ∂t |ρε(t, x)− ρ̂ε(s, y, x)|+ ∂x

(
sgn (ρε(t, x)− ρ̂ε(s, y, x)) (Fε(x, ρε(t, x))− γ(s, y))

) ≤ 0

in the sense of distributions, where

ρ̂ε(s, y, x) := m+,ε
γ(s,y)(x)sgn+(ρ(s, y)− ρm(y)) + m−,ε

γ(s,y)(x)sgn−(ρ(s, y)− ρm(y)).

Notice that γ(s, y) := F (y, ρ(s, y)) is independent of ε. Thus, for fixed (s, y), we have the strong
convergence of m±,ε

γ(s,y)(x) to a steady-state solution m±
γ(s,y)(x) of (1.1)–(1.2) as ε → 0. In particular,

‖ρ̂ε‖L∞ ≤ M, M independent of ε;

and, for a.e. (s, y, x) ∈ R2
+ ×R,

ρ̂ε(s, y, x) → ρ̂(s, y, x) := m+
γ(s,y)(x)sgn+(ρ(s, y)− ρm(y)) + m−

γ(s,y)(x)sgn−(ρ(s, y)− ρm(y)),

as ε → 0. By Schwartz’s lemma, Eε is a sequence of measures; by Murat’s lemma [20], Eε is
uniformly bounded measure sequence in the measure space. This implies that

Eε is compact in W−1,p
loc (R2

+) for any p ∈ (1, 2). (3.9)

On the other hand, since the vector field sequence

(
∣∣ρε(t, x)−m±,ε

γ(s,y)(x)
∣∣, sgn

(
ρε(t, x)−m±,ε

γ(s,y)(x)
)
(Fε(x, ρε(t, x))− γ(s, y)))

is uniformly bounded in ε for any fixed (s, y), it follows that

Eε is bounded in W−1,∞
loc (R2

+). (3.10)

With (3.9)–(3.10), we obtain by a compact interpolation theorem in [4, 11] that

Eε is compact in H−1
loc (R2

+). (3.11)

On the other hand,

∂tρ
ε + ∂xFε(x, ρε) = 0 which is automatically compact in H−1

loc (R2
+). (3.12)

Moreover, since ρ̂ε(s, y, x) strongly converges a.e., then we find that, as ε → 0,

ηε
1(ρ

ε, t, x, s, y) := |ρε(t, x)− ρ̂ε(s, y, x)|
∗
⇀ 〈νt,x(k); |k − ρ̂(s, y, x)|〉
=: 〈νt,x; η1(k, t, x, s, y)〉,

qε
1(ρ

ε, t, x, s, y) := sgn (ρε(t, x)− ρ̂ε(s, y, x)) (Fε(x, ρε)− γ(s, y))
∗
⇀ 〈νt,x(k); sgn (k − ρ̂(s, y, x)) (F (x, k)− γ(s, y))〉
=: 〈νt,x; q1(k, t, x, s, y)〉,

ηε
2(ρ

ε(t, x)) := ρε(t, x)
∗
⇀ 〈νt,x(k); k〉 = ρ(t, x)
=: 〈νt,x; η2(k)〉,

qε
2(ρ

ε(t, x), x) := Fε(x, ρε)
∗
⇀ 〈νt,x(k); F (x, k)〉
:= 〈νt,x; q2(k, x)〉,

(3.13)

and ∣∣∣∣
η1(ρε(t, x), s, y, x) q1(ρε(t, x), s, y, x)

η2(ρε(t, x)) q2(ρε(t, x), x)

∣∣∣∣
∗
⇀

〈
νt,x;

∣∣∣∣
η1(k, s, y, x) q1(k, s, y, x)

η2(k) q2(k, x)

∣∣∣∣
〉

, (3.14)
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where

(η1(k, t, x, s, y), q1(k, t, x, s, y)) = (|k − ρ̂(s, y, x)|, sgn (k − ρ̂(s, y, x))) (F (x, k)− γ(s, y))),
(η2(k), q2(k, x)) = (k, F (x, k)).

Together (3.11)–(3.12) with (3.13)–(3.14), we apply the Div-Curl lemma (see Tartar [22] and Murat
[19]) to obtain

〈
νt,x;

∣∣∣∣
η1(k, s, y, x) q1(k, s, y, x)

η2(k) q2(k, x)

∣∣∣∣
〉

=
∣∣∣∣
〈νt,x; η1(k, s, y, x)〉 〈νt,x; q1(k, s, y, x)〉

〈νt,x; η2(k)〉 〈νt,x; q2(k, x)〉
∣∣∣∣

for all (s, y), (t, x) ∈ R\M with M a set of measure zero in R2
+. Thus, we have

〈νt,x; |k − ρ̂(s, y, x)|F (x, k)− k sgn (k − ρ̂(s, y, x)) (F (x, k)− γ(s, y))〉
= 〈νt,x; |k − ρ̂(s, y, x)|〉 〈νt,x; F (x, k)〉 − 〈νt,x, k〉 〈νt,x; sgn (k − ρ̂(s, y, x))) (F (x, k)− γ(s, y))〉 .

Equivalently, we have

〈νt,x; |k − ρ̂(s, y, x)| (F (x, k)− 〈νt,x; F (x, k))〉〉
− 〈νt,x; (k − ρ(t, x))sgn (k − ρ̂(s, y, x)) (F (x, k)− F (y, ρ(s, y)))〉 = 0.

Since this is true for all (s, y) and (t, x) except on a set M of measure zero, we then choose
(s, y) = (t, x) for (t, x) ∈ R\M to obtain

〈νt,x; |k − ρ(t, x)| (F (x, k)− 〈νt,x;F (x, k))〉〉
− 〈νt,x; (k − ρ(t, x))sgn (k − ρ(t, x)) (F (x, k)− F (x, ρ(t, x)))〉 = 0,

that is,
〈νt,x; |k − ρ(t, x)|〉 (F (x, ρ(t, x))− 〈νt,x; F (x, k)〉) = 0. (3.15)

There are two possibilities:
When 〈νt,x; |k − ρ(t, x)|〉 = 0, then we have νt,x(k) = δρ(t,x)(k).
When 〈νt,x; F (x, k)〉 − F (x, ρ(t, x)) = 0, we note that

〈νt,x; F (x, k)〉 − F (x, ρ(t, x)) = 〈νt,x; F (x, k)− F (x, ρ(t, x))〉
= 〈νt,x; Fρ(x, ρ)(k − ρ) +

1
2
Fρρ(x, ξ)(k − ρ)2〉

= Fρ(x, ρ) 〈νt,x; k − ρ〉+
1
2
〈νt,x;Fρρ(x, ξ)(k − ρ)2〉

=
1
2
〈νt,x;

∫ 1

0

θFρρ(x, θρ + (1− θ)k) dθ (k − ρ)2〉.

Since F (x, ρ) is strictly convex or concave in ρ, we conclude

νt,x(k) = δρ(t,x)(k) for (t, x) a.e. (3.16)

Therefore, we have
ρε(t, x) → ρ(t, x) a.e. as ε → 0.

Since the limit is unique via the uniqueness result in [1], the whole sequence ρε(t, x) strongly
converges to ρ(t, x) a.e. It is easy to check that ρ(t, x) is the unique entropy solution of the Cauchy
problem (1.1)–(1.2) in the sense of Definition 2.1. ¤

Remark 3.2. The conditions on the flux function F (x, ρ) in Theorem 3.1 for the non-monotone
case can be relaxed as follows: F (x, ρ) satisfies (H1)–(H3) and is convex or concave with

L1{ρ : Fρρ(x, ρ) = 0} = 0 for a.e. x ∈ R,

where L1 is the one-dimensional Lebesgue measure.
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4. Hydrodynamic Limit of a Zero Range Process with Discontinuous
Speed-Parameter

In Section 2, we have established a compactness framework for approximate solutions via the
reduction of measure-valued entropy solutions of (1.1)–(1.2) in the sense of Definition 2.1. In this
section we focus on a microscopic particle system for a Zero Range Process (ZRP) with discontinu-
ous speed-parameter λ(x). We apply the compactness framework to show the hydrodynamic limit
for the particle system, when the distance between particles tend to zero, to the unique entropy
solution of the Cauchy problem

∂tρ + ∂x (λ(x)h(ρ)) = 0 (4.1)

and with initial data:
ρ|t=0 = ρ0(x) ≥ 0, (4.2)

where h(ρ) is a monotone function of ρ, and λ(x) is continuous in x ∈ R with 0 < λ1 ≤ λ(x) ≤ λ2 <
∞ for some constants λ1 and λ2, except on a closed set N of measure zero. Then m+

α = m−
α := mα

for α ∈ [0,∞).
Rezakhanlou in [21] first established the hydrodynamic limit of the processus des misanthropes

(PdM) with constant speed-parameter. Covert-Rezakhanlou [10] provided a proof of the hydro-
dynamic limit of a PdM with nonconstant continuous speed-parameter λ. In both proofs, the
most important step is to show an entropy inequality at microscopic level, which then implies the
(macroscopic) Kruzkov entropy inequality, when the distance between particles tends to zero, and
thereby implies the uniqueness of limit points. In this section, we generalize this to the case when
the speed-parameter λ has jumps for the attractive Zero Range Process (ZRP). In §4.1, we analyze
some properties of the ZRP. In §4.2, we prove the one-dimensional microscopic entropy inequality
letting ε = ε(N) = N−σ, σ ∈ (0, 1), for a ZRP with discontinuous speed-parameter as N → ∞.
In §4.3, we show the existence of measure-valued solutions via the microscopic entropy inequality
and how inequality (2.3) follows.

4.1. Some properties of the microscopic interacting particle system. We consider a system
of particles with conserved total mass and evolving on a one-dimensional lattice Z according to a
Markovian law. With the Euler scaling factor N , the microscopic particle density is expected to
converge to a deterministic limit as N →∞, which is characterized by a solution of a conservation
law. Under the Euler scaling, 1

N represents the distance between sites. Obviously we have two
space scales: The discrete lattice Z as embedded in R with “vertices” u

N and u ∈ Z. In this way,
the distances between particles tend to zero if N increases to infinity. Sites of the microscopic scale
Z are denoted by the letters u, v and correspond to the points u

N , v
N in the macroscopic scale R.

Points of the macroscopic space scale R are denoted by the letters x, y and correspond to the sites
[xN ], [yN ] in the microscopic space scale, where [z] is the integer part of z. We denote by ηt(u)
the number of particles at time t > 0 at site u. Then the vector ηt = (ηt(u) : u ∈ Z) is called a
configuration at time t with configuration space NZ.

In general, the ZRP can be described as follows: Infinitely many indistinguishable particles are
distributed on a 1-dimensional lattice. Any site of the lattice may be occupied by a finite number
of particles. Associated to a given site u there is an exponential clock with rate λε( u

N )g(η(u))
depending on the macroscopic spatial coordinates. Each time the clock rings on the site u, one
of the particles jumps to the site v chosen with probability p(u, v). The elementary transition
probabilities p: Z 7→ [0, 1] are supposed to be

(i) translation invariant: p(x, y) = p(0, y − x) =: p(y − x);
(ii) normalized:

∑
y p(x, y) = 1, p(x, x) = 0;

(iii) assumed to be of finite range: p(x, y) = 0 for |y − x| sufficiently large;
(iv) irreducible: p(0, 1) > 0.
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Without loss of generality, we assume that
∑

z p(z)z = γ = 1; otherwise, for γ 6= 1, we replace
the function h(ρ) by h(ρ)/γ in the following argument. The rate g : N → R+ is a positive,
nondecreasing function with g(0) = 0, g(+∞) = +∞, and

g(k)
k2

→ 0 as k →∞. (4.3)

With this description, the Markov process ηt is generated by

NLN
ε f(η) = N

∑
u,v

λε(
u

N
)g(η(u))p(v − u)(f(ηu,v)− f(η)). (4.4)

Here N comes from the Euler scaling factor speeding the generator, thus ηt denotes a configuration
on which this speeded generator NLN

ε has acted for time t, and ηu,v represents the configuration
η where one particle jumped from u to v:

ηu,v(w) =

{ η(w) if w 6= u, v,
η(u)− 1 if w = u,
η(v) + 1 if w = v.

For any ε = ε(N) > 0 and for any constant α ≥ 0, we define a product measure given by

ν̃N
α (η) :=

∏
u

1
Z

(
α/λε( u

N )
) αη(u)

(λε( u
N ))η(u)g(η(u))!

:=
∏
u

ν̃N
α (η(u)), (4.5)

where Z is a partition function equal to

Z
( α

λε( u
N )

)
=

∞∑
n=0

αn

(
λε( u

N )
)n

g(n)!
. (4.6)

Then the expected value of the occupation variable η(u) is equal to

Eν̃N
α

[η(u)] =
α

λε( u
N )

Z ′
(

α
λε( u

N )

)

Z
(

α
λε( u

N )

) := R
( α

λε( u
N )

)
.

Now let h be the inverse function of R to obtain

h
(
R

( α

λε( u
N )

))
=

α

λε( u
N )

⇒ λε(
u

N
)h

(
Eν̃N

α
[η(u)]

)
= α ⇔ Eν̃N

α
[η(u)] = mα(

u

N
),

where mα is a steady-state solution to

∂tρ + ∂x (λε(x)h(ρ)) = 0. (4.7)

Furthermore, it follows that

Eν̃N
α

[g(η(u))] = h
(
mα(

u

N
)
)

.

From now on, we set

µN
mα

(η) =
∏
u

νmα( u
N )(η(u)) :=

∏
u

ν̃N
λε( u

N )h(mα( u
n ))(η(u)). (4.8)

The important attribute of the ZRP with nonconstant speed-parameter is that the product
measure µN

mα
(η) is invariant under the generator NLN

ε , i.e.,
∫

LN
ε (f(η))dµN

mα
(η) = 0. (4.9)
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As a reasonable initial distribution, we choose the product measure µN
0 (η) associated to a bounded

density profile defined as follows: For a bounded density profile ρ0 ≥ 0, the probability that
particles at time t = 0 are distributed with configuration η is equal to

µN
0 (η) :=

∏
u

1
Z(h(ρu,N )/λε( u

N ))
(h(ρu,N ))η(u)

(λε( u
N ))η(u)g(η(u))!

, (4.10)

where ρu,N ≥ 0 is a sequence satisfying limN→∞
∫ |ρ[Nx],N − ρ0(x)|dx = 0 for [Nx] as the integer

part of Nx. With this definition, we say that a sequence of probability measures µN is associated
to a density profile ρ ≥ 0 if

lim
N→∞

〈µN (η) ;
∣∣ 1
N

∑
u

J(
u

N
)η(u)−

∫
J(x)ρ(x)dx

∣∣〉 = 0 for every test function J.

Furthermore, let
µN

t = SN
t ∗ µN

0 , (4.11)

where SN
t = etNLN

ε is the semigroup corresponding to the generator NLN
ε . Then the attractiveness

for two initial measures µN
ρ0

and µN
ω0

with profiles ρt and ωt, respectively, implies that

µN
ρ0
≤ µN

ω0
⇒ µN

ρt
≤ µN

ωt

is satisfied by the assumption that g is a nondecreasing function. Moreover, it is easy to prove
that µρ0 ≤ µω0 if ρ0 ≤ ω0. It then follows by attractiveness that, for any constant α such that
mα(x) ≥ ρ0(x), we obtain that the inequality µN

0 ≤ µN
mα

implies

SN
t µN

0 ≤ SN
t µN

mα
= µN

mα
. (4.12)

Since our initial distribution has a bounded density profile, then the density profile remains bounded
at later time t.

The goal in proving the hydrodynamic limit of a ZRP is that, if we start from a configuration
η0 distributed with an initial measure µN

0 associated to the bounded density profile ρ0, then the
configuration ηt at later time t is distributed with the measure µN

t defined by (4.11) and having
density profile ρ(t, ·), where ρ is the solution of the Cauchy problem (4.1)–(4.2) in the sense of
Definition 2.1. In other words, our main theorem in this section is the following.

Theorem 4.1 (Hydrodynamic limit of an attractive ZRP with discontinuous speed-parameter).
Let ηt be an attractive ZRP with (4.3) initially distributed by the measure µN

0 associated to a
bounded density profile ρ0 : R2

+ 7→ R+ as defined in (4.10). Let ε = ε(N) = N−σ, σ ∈ (0, 1). Then,
at later time t,

lim
N→∞

〈µN
t (η);

∣∣∣ 1
N

∑
u

J(
u

N
)ηt(u)−

∫
J(x)ρ(t, x)dx

∣∣∣〉 = 0 (4.13)

for any test function J : R2
+ → R, where ρ is the unique solution of the Cauchy problem (4.1)–(4.2)

in the sense of Definition 2.1.
To achieve this, we have to establish an entropy inequality in the sense of Definition 2.1 at

microscopic level. This will be done in §4.2 by using the scaling relation ε = ε(N) = N−σ, σ ∈ (0, 1).
Associated to each configuration ηt, we may define the empirical measure viewed as a random
measure on R by

χN
t (x) :=

1
N

∑
u

ηt(u)δ u
N

(x). (4.14)

Then 〈χN
t (·), J(·)〉 = 1

N

∑
u J( u

N )ηt(u), and we can rewrite (4.13) by

lim
N→∞

〈µN
t (η);

∣∣〈χN
t (·), J(·)〉 −

∫
J(x)ρ(t, x)dx

∣∣〉 = 0. (4.15)



HYPERBOLIC CONSERVATION LAWS AND HYDRODYNAMIC LIMIT FOR PARTICLE SYSTEMS 15

4.2. The entropy inequality at microscopic level. The following proposition is essential to-
wards the hydrodynamic limit.

Proposition 4.1 (Entropy inequality at microscopic level for ε = N−σ with σ ∈ (0, 1) as N →∞).
Let mε

α be the steady-state solutions of (3.2) as defined in (1.3) with Fε(x, ρ) = λε(x)h(ρ). Let ηt

be the ZRP generated by NLN
ε defined by (4.4) and initially distributed by the measure µN

0 defined
by (4.10). Let ηl(u) be the average density of particles in large microscopic boxes of size 2l +1 and
centered at u:

ηl(u) :=
1

2l + 1

∑

|u−v|≤l

η(v).

Then, for every test function J : R2
+ → R+,

lim
l→∞

lim
N→∞

µN
t

{ ∫ t

0

1
N

∑
u

(
∂sJ(s,

u

N
)
∣∣ηl

s(u)−mε
α(

u

N
)
∣∣ + ∂xJ(s,

u

N
)
∣∣λε(

u

N
)h(ηl

s(u))− α
∣∣
)
ds

+
1
N

∑
u

J(0,
u

N
)
∣∣ηl

0(u)−mε
α(

u

N
)
∣∣ ≥ −δ

}
= 1. (4.16)

Inequality (4.16) is the entropy inequality (2.3) with ρ replaced by the average density of particles
in the microscopic boxes of length 2l +1. To prove the microscopic entropy inequality, we consider

the coupled process (ηt, ξt) generated by NL̄N
ε , where L̄N

ε is defined by

L̄N
ε f(η, ξ) =

∑
u,v

p(v − u)λε(
u

N
)min{g(η(u)), g(ξ(u))} (f(ηu,v, ξu,v)− f(η, ξ))

+
∑
u,v

p(v − u)λε(
u

N
){g(η(u))− g(ξ(u))}+ (f(ηu,v, ξ)− f(η, ξ))

+
∑
u,v

p(v − u)λε(
u

N
){g(ξ(u))− g(η(u))}+ (f(η, ξu,v)− f(η, ξ)) . (4.17)

Furthermore, denote the initial distribution of (ηt, ξt) by µ̄N
0 = µN

0 × µN
mε

α
, where µN

0 is the initial
measure with density profile ρ0 defined by (4.10) and µN

mε
α

denotes the invariant measure as defined
in (4.8).

Then, to prove Proposition 4.1, it suffices to prove the following proposition.

Proposition 4.2. Let (ηt, ξt) be the coupled process, starting from µ̄N
0 , generated by NL̄N

ε as
defined by (4.17). Let µ̄N

t = S̄N
t ∗ µ̄N

0 , where S̄N
t is the semigroup corresponding to the generator

NL̄N
ε . Then, for every test function J : R2

+ → R+ and every ε = N−σ with σ ∈ (0, 1),

lim
l→∞

lim
N→∞

µ̄N
t

{∫ T

0

1
N

∑
u

{
∂sJ(s,

u

N
)
∣∣ηl

s(u)− ξl
s(u)

∣∣ + ∂xJ(s,
u

N
)λε(

u

N
)
∣∣h(ηl

s(u))− h(ξl
s(u))

∣∣
}

ds

+
1
N

∑
u

J(0,
u

N
)
∣∣ηl

0(u)− ξl
0(u)

∣∣ ≥−δ

}
=1.

Recall that a microscopic entropy inequality leading to the Kruzkov entropy inequality has
been proved in [10] for the process of PdM with nonconstant but continuous speed-parameter
λε. Since there does not exist an invariant product measure for a PdM in general such that
EµN

mε
α

[ξ(u)] = mε
α( u

N ), to replace the process ξ by the process mε
α( u

N ), one has to apply the

relative entropy method of Yau [23].
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In our case of a space-dependent ZRP, the invariant product measure is available so that we
can approximate the steady-state solution mε

α by a process ξ distributed by the invariant measure
µN

mε
α

for any α ∈ (0,∞). Then, Proposition 4.1 indeed directly follows from Proposition 4.2.

4.3. Proof of Proposition 4.2. We split the proof in three steps.
Step 1: Lower bound for the martingale. For a test function J with compact support in R2

+,
define by MJ

t the martingale vanishing at time t = 0:

MJ
t =

1
N

∑
u

J(t,
u

N
) |ηt(u)− ξt(u)| − 1

N

∑
u

J(0,
u

N
) |η0(u)− ξ0(u)|

−
∫ t

0

(∂s + NL̄N
ε )

( 1
N

∑
u

J(s,
u

N
) |ηs(u)− ξs(u)| )ds.

Since J has compact support, then, for t large enough,

MJ
t = − 1

N

∑
u

J(0,
u

N
) |η0(u)− ξ0(u)| −

∫ t

0

(∂s + NL̄N
ε )

( 1
N

∑
u

J(s,
u

N
) |ηs(u)− ξs(u)|

)
ds.

We now calculate

L̄N
ε |η(u)− ξ(u)|

=
∑
v,w

p(w − v)λε(
v

N
)
{

min{g(η(v)), g(ξ(v))}( |ηv,w(u)− ξv,w(u)| − |η(u)− ξ(u)| )

+{g(η(v))− g(ξ(v))}+
( |ηv,w(u)− ξ(u)| − |η(u)− ξ(u)| )

+{g(ξ(v))− g(η(v))}+
( |η(u)− ξv,w(u)| − |η(u)− ξ(u)| )

}

=
∑

v

(
1−Gu,v(η, ξ)

)(− p(v − u)λε(
u

N
) |g(η(u))− g(ξ(u))|+ p(u− v)λε(

v

N
) |g(η(v))− g(ξ(v))|

)

−
∑

v

Gu,v(η, ξ)
(
p(v − u)λε(

u

N
) |g(η(u))− g(ξ(u))|+ p(u− v)λε(

v

N
) |g(η(v))− g(ξ(v))|

)
, (4.18)

where Gu,v is the indicator function that equals to 1 if η and ξ are not ordered, i.e.,

Gu,v(η, ξ) = 1 {η(u) < ξ(u); η(v) > ξ(v)}+ 1 {η(u) > ξ(u); η(v) < ξ(v)} .

Notice that the second sum is nonpositive. Therefore, plugging in the last expression in the
martingale MJ

t and then interchange u and v in the last term, we can bound the martingale below
by

− 1
N

∑
u

J(0,
u

N
) |η0(u)− ξ0(u)| −

∫ t

0

1
N

∑
u

∂sJ(s,
u

N
) |ηs(u)− ξs(u)| ds

+
∫ t

0

∑
u,v

(
J(s,

u

N
)− J(s,

v

N
)
)
p(v − u)

(
1−Gu,v(ηs, ξs)

)
λε(

u

N
) |g(ηs(u))− g(ξs(u))| ds.

Since the transition probability p is of finite range, i.e. p(z) = 0 if |z| > r for some r, then

(
J(s,

u

N
)− J(s,

v

N
)
)

p(v − u) = − 1
N

(v − u)p(v − u)∂xJ(s,
u

N
) + O(

1
N2

).
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With v = u + y, it then follows that the martingale is bounded below by

−
∫ t

0

1
N

∑
u

{
∂sJ(s,

u

N
)
∣∣ηs(u)− ξs(u)

∣∣

+ ∂xJ(s,
u

N
)λε(

u

N
)τu

(∑
y

yp(y)(1−G0,y)
)∣∣g(ηs(0))− g(ξs(0))

∣∣
}

ds

− 1
N

∑
u

J(0,
u

N
) |η0(u)− ξ0(u)|+ O(

1
N

).

Step 2: We show
lim

N→∞
Eµ̄N

t

[ (
MJ

t

)2 ]
= 0. (4.19)

Recall that

NJ
t := (MJ

t )2 −
∫ t

0

(
NL̄N

ε (AJ(s, η, ξ))2 − 2AJ (s, η, ξ)NL̄N
ε (AJ(s, η, ξ))

)
ds

is a martingale vanishing at time t = 0, where AJ is defined by

AJ(t, η, ξ) =
1
N

∑
u

J(t,
u

N
)|ηt(u)− ξt(u)|.

Then, by definition, Eµ̄N
s

[
NJ

s

]
= 0 for all 0 ≤ s ≤ t. Thus, it suffices to show that the expectation

of the integral term of NJ
t converges to zero as N →∞. In order to prove this, we first find that,

by careful calculation,

NL̄N
ε (AJ(s, η, ξ))2 − 2NAJ(s, η, ξ)L̄N

ε (AJ(s, η, ξ))

=
∑
v,w

p(w − v)Nλε(
v

N
)
{
|g(ηs(v))− g(ξs(v))| 1

N2

(
1−Gv,w(ηs, ξs)

)(
J(s,

w

N
)− J(s,

v

N
)
)2

+ |g(ξs(v))− g(ηs(v))| 1
N2

Gv,w(ηs, ξs)
(
J(s,

v

N
) + J(s,

w

N
)
)2

}
.

Since J is a smooth function, the first term of this expression is less O( g(CN)
N2 ) for some constant

C depending on the total initial mass and therefore converges to zero as N →∞ by (4.3). For the
second term, we know that (J(s, v

N ) + J(s, w
N ))2 ≤ 4 ‖J‖2∞, which implies

NL̄N
ε (AJ (s, η, ξ))2 − 2NAJ (s, η, ξ)L̄N

ε (AJ(s, η, ξ))

= O(
g(CN)

N2
) +

4 ‖J‖2∞
N

∑
v,w

Gv,w(ηs, ξs)p(w − v)λε(
v

N
) |g(ξs(v))− g(ηs(v))| .

Then, to conclude the proof of (4.19), it suffices to show

Eµ̄N
t

[ ∫ t

0

(∑
v,w

Gv,w(ηs, ξs)p(w − v)λε(
v

N
) |g(ξs(v))− g(ηs(v))| ) ds

]
= O(1). (4.20)

For this, we use the martingale MJ
t vanishing at 0 with J ≡ 1, that is,

Mt :=
1
N

∑
u

|ηt(u)− ξt(u)| − 1
N

∑
u

|η0(u)− ξ0(u)| −
∫ t

0

1
N

∑
u

NL̄N
ε |ηs(u)− ξs(u)|ds.

By (4.18), the integral term of the martingale is equal to
∫ t

0

2
N

∑
u,v

NGu,v(ηs, ξs)p(v − u)λε(
u

N
) |g (ηs(u))− g (ξs(u))| ds,
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by interchanging u and v in some terms. Then we find

Eµ̄N
t

[ ∫ t

0

2
∑
u,v

Gu,v(ηs, ξs)p(v − u)λε(
u

N
) |g (ηs(u))− g (ξs(u))| ds

]

= Eµ̄N
t

[ ∫ t

0

1
N

∑
u

|η0(u)− ξ0(u)|ds
]
− Eµ̄N

t

[ ∫ t

0

1
N

∑
u

|ηt(u)− ξt(u)|ds
]

≤ Eµ̄N
t

[ ∫ t

0

1
N

∑
u

|η0(u)− ξ0(u)|ds
]
.

Since we assumed that both marginals of µ̄N
t are bounded, (4.20) follows, which leads to (4.19).

With the result of Step 1 and (4.19) and using the Chebichev inequality, we obtain

µ̄N
t

{ 1
N

∑
u

J(0,
u

N
) |η0(u)− ξ0(u)|+

∫ t

0

1
N

∑
u

{
∂sJ(s,

u

N
)
∣∣ηs(u)− ξs(u)

∣∣

+∂xJ(s,
u

N
)λε(

u

N
)τu

(∑
y

yp(y)(1−G0,y)(η, ξ)
)∣∣g(ηs(0))− g(ξs(0))

∣∣}ds + O(
1
N

) <−δ
}

≤ µ̄N
t

{
MJ

t > δ
} ≤ µ̄N

t

{∣∣MJ
t

∣∣ > δ
} ≤ 1

δ2
Eµ̄N

t

[ (
MJ

t

)2 ]
, (4.21)

which converges to 0 as N →∞, for all δ > 0.

Step 3. We next use the following summation by parts formula: For any bounded function a of
η(·) with a(0) = 0 and for any smooth test function J : R→ R, we obtain that, for any L > 0,

1
N

∑

|u|≤LN

J(
u

N
)a(η(u)) =

1
N

1
(2l + 1)

∑

|u|≤LN

J(
u

N
)

∑

|u−v|≤l

a(η(v)) +O(
l ‖J‖Lip

N
). (4.22)

Since we restrict ε = N−σ, σ ∈ (0, 1), then ‖λε‖Lip ≤ C/ε = CNσ and O( l‖λε‖Lip

N ) = O( l
N1−σ ) →

0 as N →∞ so that we can use this summation by parts formula (4.22) to replace inequality (4.21)
by

lim
l→∞

lim
N→∞

µ̄N
t

{ 1
N

∑
u

J(0,
u

N
)

1
2l + 1

∑

|z−u|≤l

|η0(z)− ξ0(z)|

+
∫ t

0

1
N

∑
u

∂sJ(s,
u

N
)

1
2l + 1

∑

|z−u|≤l

|ηs(z)− ξs(z)| ds

+
∫ t

0

1
N

∑
u

∂xJ(s,
u

N
)λε(

u

N
)

1
2l + 1

×
∑

|z−u|≤l

τz

(∑
y

yp(y)(1−G0,y)(ηs, ξs)
)∣∣g(ηs(0))− g(ξs(0))

∣∣ ds < −δ
}

= 0. (4.23)

Notice that, in (4.23), since J is a positive function, by the triangle inequality, we can remove the
sum inside the absolute value in the first line. Following the same argument as in [10, 21] (also [9]),
since we first set ε = 1

Nσ , independent of λε(x), we can obtain the following one block estimates:

lim
l→∞

lim
N→∞

Eµ̄N
t

{ ∫ t

0

1
N

∑
u

∣∣∣ 1
2l + 1

∑

|u−z|≤l

|ηs(z)− ξs(z)| − |ηl
s(u)− ξl

s(u)|
∣∣∣ds

}
= 0, (4.24)
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and

lim
l→∞

lim
N→∞

Eµ̄N
t

{ ∫ t

0

1
N

∑
u

τu

∣∣∣ 1
2l + 1

∑

|z|≤l

τz

(∑
y

yp(y)(1−G0,y)(ηs, ξs)
)∣∣g(ηs(0))− g(ξs(0))

∣∣

−
∣∣h(ηl

s(0))− h(ξl
s(0))

∣∣
∣∣∣ds

}
= 0. (4.25)

Combining (4.23) with (4.24)–(4.25), we complete the proof of Proposition 4.2.

4.4. Existence of measure-valued entropy solutions. In this section, we prove that Theorem
4.1 implies the existence of a measure-valued entropy solution associated to the configuration ηt.
We recall the empirical measure χN

t (x) associated to a configuration ηt in (4.14). We define the
Young measures associated to ηt as follows:

πN,l
t (x, k) :=

1
N

∑
u

δ u
N

(x)δηl
t(u)(k), (4.26)

which implies 〈πN,l
t ;J〉 = 1

N

∑
u J( u

N , ηl
t(u)) for any J ∈ C0(R × R+). If E is the configuration

space, then these two measures are finite positive measures on E and, for any J ∈ C0(R), they are
related by the formula

〈πN,l
t ; kJ(x)〉 ≈ 〈χN

t (·); J(·)〉. (4.27)

Notice that, since there are jumps, the probability measure µN
t defined by (4.11) must be defined

on the Skorohod space D[(0,∞), E], which is the space of right continuous functions with left limits
taking values in E. Then, using the one to one correspondence between the configuration ηt and
the empirical measure χN

t (·), the law of χN with respect to µN
t will give us a probability measure

QN on the Skorohod space D[(0,∞),M+(R)], for the space M+(R) of finite positive measures on
R endowed with the weak topology.

In the same way, we can associate a probability measure Q̃N,l on the space D[(0,∞),M+(R2
+)].

With these definitions, we can state the main theorem of this section as follows.

Theorem 4.2 (Law of large numbers for the Young measures). Let (µN )N≥1 be a sequence of
probability measures, as defined by (4.10), associated to a bounded density profile ρ0 : R → R+.
Then the sequence Q̃N,l converges, as N →∞ first and l →∞ second, to the probability measure
Q̃ concentrated on the measure-valued entropy solution πt,x in the sense of Definition 2.2.

Proof. In order to be allowed to take the limit points Q and Q̃ of QN and Q̃N,l respectively, we
must know that the sequences are tight (weakly relatively compact). If QN,l is weakly relatively
compact, we can take Q̃l as a limit point if N → ∞ for each l. Denote by Q̃ a limit point of
Q̃N,l if N → ∞ first and l → ∞ second. Therefore, the proof consists in two main steps: The
first is to show that Q̃N,l is weakly relatively compact and the second is to show the uniqueness
of limit points. The key point in the proof is that these can be achieved independent of the
choice of mollification λε of the discontinuous speed-parameter λ with our choice of the notion of
measure-valued entropy solutions.

These can be achieved by following exactly the standard argument in [10, 21, 16] since it requires
only the uniform boundedness of λε in the proof. That is, we can conclude the following: Let µN

t

be a measure defined by (4.11). Then

(i) The sequence QN defined above is tight in D[(0,∞),M+(R)] and all its limit points Q
are concentrated on weakly continuous paths χ(t, ·);

(ii) Similarly, the sequence Q̃N,l is tight in D[(0,∞),M+(R×R+)] and all its limit points Q̃
are concentrated on weakly continuous paths π(t, ·, ·);
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(iii) For every t ≥ 0, π(t, x, k) := πt(x, k) is absolutely continuous with respect to the Lebesgue
measure on R, Q̃ a.s.. That is, Q̃ a.s.

πt(x, k) = πt,x(k)⊗ dx; (4.28)

(iv) For every t ∈ [0, T ], πt,x(k) is compactly supported, that is, there exists k0 > 0 such that

πt,x([0, k0]c) = 0 ∀ (t, x) ∈ [0, T ]×R.

(v) πt,x is a measure-valued entropy solution in the sense of Definition 2.2 for any α ∈ [M0,∞),
i.e.,

∂t 〈πt,x; |k −mα(x)|〉+ ∂x 〈πt,x; |h(k)λ(x)− α|〉 ≤ 0 (4.29)

on R2
+ in the sense of distributions for any α ∈ [M0,∞) or α ∈ (−∞,M0].

The last result follows from the entropy inequality at microscopic level in Theorem 4.1. Indeed,
in terms of the Young measures, the expression (4.16) of Proposition 4.1:

lim
l→∞

lim
N→∞

µN
t

{ ∫ ∞

0

1
N

∑
u

{
∂tH(t,

u

N
)
∣∣ηl

t(u)−mα(
u

N
)
∣∣

+∂xH(t,
u

N
)
∣∣λ(

u

N
)h(ηl

t(u))− α
∣∣}dt ≥ −δ

}
= 1

can be restated as

lim
l→∞

lim
N→∞

Q̃N,l
{ ∫ T

0

( 〈πt(x, k); |k −mα(x)|∂tH(t, x)〉

+ 〈πt(x, k); |λ(x)h(k)− α| ∂xH(t, x)〉 )dt ≥ −δ
}

= 1,

for every smooth function H : (0, T ) × R → R+ with compact support, any α ∈ [M0,∞) or
α ∈ (−∞,M0], and any δ > 0. Since Q̃ is a weak limit point concentrated on absolutely continuous
measures and since we already proved that πt,x is concentrated on a compact set (and therefore
the integrand is a bounded function), we obtain from the last expression that

Q̃
{ ∫ T

0

∫ (
〈πt,x; |k −mα(x)|〉 ∂tH(t, x) + 〈πt,x; |λ(x)h(k)− α|〉 ∂xH(t, x)

)
dxdt ≥ −δ

}
= 1.

Letting δ → 0, we have that Q̃ a.s. (4.29) holds on (0, T ) × R in the sense of distributions for
every α ∈ [0,∞). This proves the uniqueness of Q̃ and thereby concludes the proof of Proposition
4.2. ¤

Then Theorem 4.1 follows immediately from this result since the measure-valued entropy solu-
tion reduces to the Dirac mass concentrated on the unique entropy solution ρ(t, x) of (4.1)–(4.2)
as we noticed in §3.2.
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