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Abstract

We study the Dirichlet problem for a first order quasilinear equa-
tion on a smooth manifold with boundary. Existence and uniqueness
of a generalized entropy solution are established. The uniqueness is
proved under some additional requirement on the field of coefficients.
It is shown that generally the uniqueness fails. The non-uniqueness
occurs because of presence of the characteristics not outgoing from
the boundary (including closed ones). The existence is proved in
general case. Moreover, we establish that among generalized entropy
solutions laying in the ball ‖u‖∞ ≤ R there exist the unique maxi-
mal and minimal solutions. To prove our results, we use the kinetic
formulation similar to one by C. Imbert and J. Vovelle.

Introduction.

Let M be a n-dimensional C2-smooth compact manifold with boundary

S = ∂M . Thus, in a neighborhood of each point x0 ∈ M we can define

the local coordinates (x1, . . . , xn) = j(x), x ∈ U corresponding to the chart

(U, j, V ), where U is a neighborhood of the point x0 (coordinate neighbor-

hood), V is an open subset of the half-space

Π = { x = (x1, . . . , xn) ∈ Rn | x1 ≥ 0, x′ = (x2, . . . , xn) ∈ Rn−1 },

and j : U → V is a C2-diffeomorphism. Clearly, boundary points of U and V

must correspond each other under the diffeomorphism j: j(U∩S) = V ∩∂Π.

Denote by TM , T∗M the tangent and cotangent bundles on M , and by

TxM , T∗
xM the corresponding fibres of these bundles at a point x ∈ M .

Any vector field a = a(x) ∈ TxM , being a section of the tangent bundle

TM , acts on smooth functions f(x) ∈ C1(M) as a first order differential

operator represented in local coordinates x1, . . . , xn as a = ai(x)∂/∂xi, i.e.

〈a, f〉 = ai(x)
∂f(x)

∂xi

.
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Here and below repeated indexes indicate summation from 1 to n. We

denote by
∧1 M the space of C1 vector fields on M .

Now suppose that a(x, u) is a family of C1 vector fields on M depending

continuously on the real parameter u. We also assume that this field is

uniformly bounded. This means that for some continuous Riemann metric

g on M the norm |a(x, u)| = ((a(x, u), a(x, u))g)
1/2 ≤ const for all x ∈ M ,

u ∈ R. Here (·, ·)g denotes a scalar product of vectors in TxM generated

by the metric tensor g. Since M is compact the latter property does not

depend on the choice of the metric g. As easy to verify a(x, u) is uniformly

bounded if and only if for any f(x) ∈ C1(M)

sup
x∈M,u∈R

|〈a(x, u), f(x)〉| < ∞.

The family a(x, u) generates the first order quasilinear equation

〈a(x, u), u〉 = 0, (1)

where u = u(x) is an unknown function on M . Observe that in local

coordinates x1, . . . , xn equation (1) acquires the standard form

ai(x, u)
∂u

∂xi

= 0.

We will study the Dirichlet problem for equation (1) with boundary condi-

tion at the boundary S

u(x) = ub(x), ub(x) ∈ L∞(S). (2)

The Cauchy problem for the evolutionary equation

ut + 〈a(x, u), u〉 = 0, (3)

u = u(t, x), 0 < t < T ≤ +∞, x ∈ M , with initial data

u(0, x) = u0(x) ∈ L∞(M) (4)

was firstly studied in [17]. In [17] the manifold M was assumed to be

closed (i.e. S = ∅). In this paper the Kruzhkov-like notion of generalized

entropy solution (g.e.s.) of problem (3), (4) was introduced, existence and

uniqueness of g.e.s. were proved. The proofs are based on reduction of
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the problem to some ”classical” Cauchy problem in an Euclidean space

x ∈ RN . Recently, in [4, 2] the Cauchy problem was studied in the case of

conservative equation

ut + div ϕ(x, u) = 0 (5)

on a Riemann manifold M . In this equation the divergence operator is

determined by the metric on M . The vector field x → f(x, u) is supposed

to be geometrically compatible that is div xf(x, u) = 0 ∀u ∈ R. In [4, 2]

also the special Cauchy problem for equation div ϕ(x, u) = 0 was studied

with time-like flux vector on Lorentzian manifold.

We underline that in the present paper as well as in [17] the mani-

fold M is not endowed with any additional structure such as a metric or

pseudo-metric. In particular we can not a priori consider equations in the

divergence form but only in quasilinear forms like (1), (3). Moreover, as we

demonstrate later in Example 5 for equations in the divergence form the

Dirichlet problem can be ill-posed.

The Cauchy problem (3), (4) turns out to be the particular case of

the general Dirichlet problem. To our knowledge the Dirichlet problem

for first order quasilinear equations have not been studied yet in its pure

form while the initial-boundary value problem for evolutionary equations

in an Euclidean domain is widely investigated since celebrated paper of

Bardos, LeRoux and Nédélec [3]. In this paper existence of the strong

trace of the solution at the boundary was assumed. Then the boundary

condition can be written in the simple geometric form ( see relation (40)

below for the Dirichlet problem ). The weak formulation of initial-boundary

value problem, which does not require existence of strong traces, was later

developed by F. Otto in [13]. In this presentation we will follow the Otto’s

formulation. To prove our main results we extend the kinetic approach

developed for initial-boundary value problems by Imbert and Vovelle in

[10].

In this paper we prove existence and uniqueness of a generalized entropy

solution of (1), (2). For uniqueness some additional assumption is necessary,

see condition (U) below. Generally, the uniqueness may fail. Moreover,

under condition (U) we prove the comparison principle, see Theorem 6. The

existence is proved without any additional assumptions. Actually we prove

existence of maximal and minimal solutions of (1), (2), see Theorem 11.
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§ 1. Preliminaires.

In order to define solutions of equation (1) in the distributional sense

we have to rewrite this equation in the conservative form. It can be done in

the terms of smooth measures on M , as in [17]. In this section we give some

necessary notions. The smooth measure µ on M is a non-negative finite

measure such that for any chart (U, j, V ) the restriction µ|U is absolutely

continuous with respect to the image of the Lebesgue measure dx on V

under the map j−1: µ|U = ω(x)(j−1)∗dx ( later on, we will use the shorter

form µ = ω(x)dx ), and the density ω(x) ∈ C1(U), ω(x) > 0. Smooth

measures are defined on the σ-algebra of Lebesgue sets on M consisting of

subsets A ⊂ M such that j(A∩U) is Lebesgue measurable on V for all charts

(U, j, V ). Analogously, we can define smooth measures on the boundary S.

As is easy to see, any smooth measures µ1, µ2 are absolutely continuous

with respect to each other: µ2 = α(x)µ1 where α(x) ∈ C1(M), α(x) > 0.

In particular, on the manifold M one can always specify a metric g, and

this metric in standard way induces a smooth measure µg. If the metric

tensor has the form g = gijdxidxj in a local coordinates x1, . . . , xn then

the corresponding smooth measure µg is represented in these coordinates as

µg =
√

det gijdx. Clearly, the metric g induces also the smooth measure µg
b

on the boundary S.

The presence of the smooth measure µ on M allows one to define the

divergence div µ of a C1 smooth vector field a(x) by the identity ( e.g. [17] )∫
M

f(x)div µa(x)dµ = −
∫

M

〈a(x), f(x)〉dµ ∀f(x) ∈ C1
0(M0), (6)

where C1
0(M0) is the space of functions from C1(M) with compact sup-

ports contained in M0 = Int M = M \ S. Taking in (6) tests functions

supported in a coordinate neighborhood, we readily find that in local coor-

dinates x1, . . . , xn

div µa(x) =
1

ω(x)

∂ω(x)ai(x)

∂xi

, (7)

where µ = ω(x)dx, a(x) = ai(x)∂/∂xi. Conversely, the right-hand side of

(7) is independent of the choice of local coordinates ( this follows from (6) ),

hence the function div µa(x) is well-defined on the entire manifold M . From

local representation (7) it directly follows the identity

div µ(αa) = αdiv µa + 〈a, α〉 ∀a = a(x) ∈
∧1

M, α = α(x) ∈ C1(M). (8)
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Observe also that if µ1, µ2 are two smooth measure and µ2 = α(x)µ1 then

the corresponding divergence operators are connected by the relation

div µ2a =
1

α
div µ1αa = div µ1a +

1

α
〈a, α〉. (9)

Now, let µ̄ = (µ, µb) be a pair of smooth measures on M and S respectively.

Then the following analog of the integration by parts formula holds.

Theorem 1. There exist a C1 co-vector n = nµ̄ defined on S ( i.e. a

C1 section x → n(x) ∈ T∗
xM , x ∈ S ) such that for each a = a(x) ∈

∧1 M ,

f = f(x) ∈ C1(M)∫
M

div µ(af)dµ=

∫
M

〈a, f〉dµ+

∫
M

fdiv µadµ=

∫
S

f(x)〈nµ̄(x), a(x)〉dµb.

(10)

Proof. Let (U, j, V ) be a chart and f(x) ∈ C1
0(V ). The letter

means that supp f is compact and contained in V ( observe that supp f

may intersect ∂Π ). Suppose that in the corresponding local coordi-

nates a = ai(x)∂/∂xi, µ = ω(x)dx, µb = ωb(x
′)dx′, here x′ ∈ V ′ =

{ (x2, . . . , xn) | (0, x2, . . . , xn) ∈ V }. Then, integration by parts yields∫
M

〈a, f〉dµ =

∫
V

ai(x)
∂f(x)

∂xi

ω(x)dx = −
∫

V

f(x)

ω(x)

∂

∂xi

(ω(x)ai(x))ω(x)dx−∫
V ′

f(0, x′)a1(0, x′)
ω(0, x′)

ωb(x′)
ωb(x

′)dx′ =

−
∫

M

f(x)div µa(x)dµ +

∫
S

f(x)〈n(x), a(x)〉dµb,

where

〈n(x), a〉 = −a1(0, x′)ω(0, x′)/ωb(x
′), (0, x′) = j(x), x ∈ S ∩ V. (11)

By the construction equality (10) holds for every test function f(j(x)) ∈
C1

0(U) and since the right-hand side of (10) does not depend on the choice

of the local coordinate (U, j, V ) we see that the value of 〈n(x), a〉 in (11)

does not depend on it either. Therefore, equality (11) correctly defines the

unique co-vector n = nµ̄(x) on U ∩ S. Finally, since U is an arbitrary

coordinate neighborhood, n(x) is well-defined on the entire boundary S.

From local representation (11) it follows that n(x) is C1-smooth. Recall
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that (10) holds for each test function f(x) with support in a coordinate

neighborhood. The case of general f(x) ∈ C1(M) is treated in standard

way by using of a partition of unity. The proof is complete.

Remark 1. If µ̄′ = (µ′, µ′b) is another pair of smooth measures then,

as directly follows from local representation (11), nµ̄′ = α(x)
αb(x)

nµ̄, x ∈ S,

where the positive C1 functions α(x), αb(x) are taken from the relations

µ′ = α(x)µ, µ′b = αb(x)µb. In particular, the ”direction” of the co-vector

n(x) does not depend on the choice of the pair µ̄.

Remark 2. As is directly verified, in the case when measures µ, µb are

generated by a metric g 〈nµ̄(x), a〉 = (n(x), a)g, where n(x) is the outward

normal vector to S at a point x ∈ S, and (·, ·)g is the scalar product in TxM

corresponding to the metric g.

Since all smooth measures are absolutely continuous with respect to

each other, the σ-algebra of sets of null measure and the space L∞(M, µ)

do not actually depend on the choice of the smooth measure µ. It allows

us do denote this space simply by L∞(M). In the same way we define the

space L∞(S). Recall that the latter space appeared in boundary condition

(2). The spaces Lp(M), Lp(S) are also do not depend on the choice of

smooth measures while their norms are mutually equivalent for different

smooth measures. We will also denote by L∞(M, TM) the space of bounded

measurable vector fields on M . This space consist of vector fields a(x) such

that for any f(x) ∈ C1(M) the function 〈a(x), f(x)〉 ∈ L∞(M). As is easily

verified, the vector field a(x) ∈ L∞(M, TM) if and only if for each chart

(U, j, V ) a = ai(x)∂/∂xi with ai(x) ∈ L∞loc(V ). Since M is compact it

follows from this property that |a(x)|g = ((a(x), a(x))g)
1/2 ∈ L∞(M) for

each continuous metric tensor g. As is usual, vector fields, which differ on

a set of null measure, are identified in L∞(M, TM).

We will need in the sequel the notion of a divergence measure field ( see

[5] ).

Definition 1. A vector field a(x) ∈ L∞(M, TM) is called the divergence

measure field if there exists a finite Borel measure γ on M0 = M \ S ( not

necessarily nonnegative ) such that ∀f(x) ∈ C1
0(M0)∫

M

〈a(x), f(x)〉dµ = −
∫

M

f(x)dγ, (12)
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here µ is some smooth measure on M .

The class of divergence measure fields does not depend on the choice of

measure µ ( while the measure γ depends on this choice ). Indeed, if µ′ is

another smooth measure then µ′ = α(x)µ, α(x) ∈ C1(M), α(x) > 0 and∫
M

〈a(x), f(x)〉dµ′ =

∫
M

〈a(x), f(x)〉α(x)dµ =∫
M

〈a(x), α(x)f(x)〉dµ−
∫

M

〈a(x), α(x)〉f(x)dµ =

−
∫

M

α(x)f(x)dγ −
∫

M

〈a(x), α(x)〉f(x)dµ = −
∫

M

f(x)dγ′,

where γ′ = α(x)γ+〈a(x), α(x)〉µ. Remark that the total variation |γ′|(M) ≤
‖α(x)‖∞ · |γ|(M) + ‖〈a(x), α(x)〉‖∞µ(M) < ∞.

Relation (12) may be formulated as div µa = γ in the sense of distri-

butions on M0 ( in D′(M0) ). In a local coordinates (U, j, V ) this relation

yields ∫
V

ai(x)
∂f(x)

∂xi

ω(x)dx = −
∫

V

f(x)dγ,

where ai are coordinates of a, µ = ω(x)dx, and γ is identified with j∗(γ|U).

The obtained relation means that

div (ωa) = ωdiv a + 〈a, ω〉 = γ (13)

in the sense of distributions on V ( in D′(V ) ), where div a =
∂

∂xi

ai(x) is

the ”classical” divergence. This implies that

div a = γ̃
.
=

1

ω(x)
(γ − 〈a(x), ω(x)〉dx) in D′(V )

and both the fields ω(x)a(x), a(x) are divergence measure fields on V in

the sense of [5] ( passing to a smaller set V if necessary we may assume

that ai ∈ L∞(V ), i = 1, . . . , n, and |γ̃|(V ) < ∞ ). By the results of [5] and

the arbitrariness of the coordinate neighborhood we see that there exists a

weak trace of the ”normal component” of a divergence measure field a(x)

at the boundary S. More precisely we have the following result.

Theorem 2. Let a(x) ∈ L∞(M, TM) be a divergence measure field, and

µ̄ = (µ, µb) be a pair of smooth measures on M and S respectively. Then
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there exists a function v = aµ̄(x) ∈ L∞(S) such that for any f(x) ∈ C1(M)∫
M

〈a(x), f(x)〉dµ +

∫
M

f(x)dγ =

∫
S

v(x)f(x)dµb, (14)

where the measure γ is taken from (12).

Proof. Let (U, j, V ) be a chart such that V = [0, h)×W , where h > 0,

W ⊂ Rn−1 is an open subset, and a = ai(x) ∂
∂xi

be the coordinate represen-

tation of a ( as usual, we identify the field a and its image j∗a under the

map j ). Here x = (x1, x
′), x1 ∈ [0, h), x′ = (x2, . . . , xn) ∈ W . Suppose also

that µ = ω(x)dx, µb = ωb(x
′)dx′, where ω(x) ∈ C1(V ), ωb(x

′) ∈ C1(W ),

and ω, ωb > 0. Since a(x) ∈ L∞(M, TM) is a divergence measure field, we

have ai(x) ∈ L∞loc(V ), i = 1, . . . , n, and in view of (13)

div ωa =
∂

∂xi

ω(x)ai(x) = γ in D′(V ), (15)

Passing to the smaller set V if necessary we can suppose that ai(x) ∈ L∞(V ),

i = 1, . . . , n and the functions ω, ωb are bounded together with the functions

1/ω, 1/ωb.

Now, we choose a function ρ(s) ∈ C1
0(R) such that ρ(s) ≥ 0, supp ρ ⊂

(0, 1),
∫

ρ(s)ds = 1 and set for ν ∈ N ρν(s) = νρ(νs), θν(t) =
∫ t

−∞ ρν(s)ds.

Clearly, the sequence ρν(s) converges as ν → ∞ to the Dirac δ-function

δ(s) in D′(R) while the sequence θν(t) converges point-wise to the Heaviside

function sign+(t) =

{
0, t ≤ 0,

1, t > 0
. Let f(x) ∈ C1

0(V ), τ ∈ E, where

E = { t ∈ (0, h) | (t, y) is a Lebesgue point of a1(t, y) for a.e. y ∈ W }.
(16)

From the known properties of Lebesgue points it follows that E ⊂ (0, h) is

a set of full measure. Let g(x) = θν(x1 − τ)f(x). Obviously, the function

g(x) ∈ C1
0((0, h)×W ) for sufficiently large ν and applying (15) to this test

function, we obtain that

−
∫ h

0

(∫
W

ω(x1, x
′)a1(x1, x

′)f(x1, x
′)dx′

)
ρν(x1 − τ)dx1 =∫

V

ω(x)ai(x)fxi
(x)θν(x1 − τ)dx +

∫
V

θν(x1 − τ)f(x)dγ.

Passing in this equality to the limit as ν →∞ and taking into account that

τ is a Lebesgue point of the function I(t) =

∫
W

ω(t, x′)a1(t, x′)f(t, x′)dx′
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( this easily follows from the definition of the set E ) and that θν(x1 − τ)

point-wise converges to the function sign+(x1− τ) while 0 ≤ θν(x1− τ) ≤ 1,

we arrive at

−
∫

W

ω(τ, x′)a1(τ, x′)f(τ, x′)dx′ =∫
(τ,h)×W

ω(x)ai(x)fxi
(x)dx +

∫
(τ,h)×W

f(x)dγ. (17)

Since the family a1(τ, x), τ ∈ E is bounded in L∞(W ) we can choose a

sequence τm ∈ E, τm → 0 such that a1(τm, x) converges as m →∞ to some

function w(x) weakly-∗ in L∞(W ). Taking in (17) τ = τm and passing to

the limit as m →∞, we derive that

−
∫

W

ω(0, x′)w(x′)f(0, x′)dx′ =

∫
V

ω(x)ai(x)fxi
(x)dx +

∫
V

f(x)dγ.

Changing the variables in the obtained relation we can rewrite it in the form

( here we keep the notation f(x) for the function f(j(x)) )∫
S

v(x)f(x)dµb =

∫
M

〈a(x), f(x)〉dµ +

∫
M

f(x)dγ, (18)

where v(x) = −ω(0, x′)w(x′)/ωb(x
′), (0, x′) = j(x), x ∈ S. It is clear that

v(x) ∈ L∞(S∩U) and (18) holds for all f(x) ∈ C1(M) with compact support

in U . This implies that essential values v(x) do not depend on the choice

of a coordinate neighborhood of the boundary point x as well as on the

choice of the sequence τm. Since coordinate neighborhoods with prescribed

above properties cover the boundary, the function v(x) is well-defined on the

entire boundary and ( due to compactness of S ) v(x) ∈ L∞(S). Identity

(18) shows that (14) is satisfied for test functions with supports in the

coordinate neighborhoods of boundary points. As directly follows from

(12), equality (14) is also true for test functions f(x) with compact support

in M0. With the help of the partition of unity we derive that (14) holds for

all f(x) ∈ C1(M), which completes the proof.

Remark 3. As one can see from the proof of Theorem 2, v(x) is the

weak normal trace of a(x) if and only if for any chart (U, j, V ) such that U

is a neighborhood of a boundary point and V = [0, h)×W with h > 0, W

being an open subset of Rn−1

ess lim
x1→0

〈nµ̄(x′), a(x1, x
′)〉=v(x′)

.
=v(j−1(0, x′)) weakly-∗ in L∞loc(W ). (19)
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Here one should take into account that ( see the proof of Theorem 2 ) v(x′)

is a weak limit of the sequence

〈nµ̄(x′), a(τm, x′)〉 = −ω(τm, x′)a1(τm, x′)/ωb(x
′)

and this limit does not depend on the choice of the vanishing sequence τm

from the set E of full measure defined by (16).

Definition 2. The function v = aµ̄(x) for which relation (19) is satisfied

is called the weak normal trace of the field a(x). If the limit relation (19) is

valid in the space L1
loc(W ) we will call v(x) the strong normal trace.

Observe that by Theorem 1 in the case when a(x) ∈ C1(M, TM) the

weak normal trace of a coincides with 〈nµ̄(x), a(x)〉. Since a(x) is smooth,

this normal trace is in fact strong.

We put below the following simple condition, which is sufficient for vector

field to be divergence measure field.

Proposition 1. Let a(x) ∈ L∞(M, TM), c = c(x) ∈ L1(M), µ be a

smooth measure on M , and ∀f = f(x) ∈ C1
0(M0), f ≥ 0∫

M

[〈a, f〉+ cf ]dµ ≥ 0.

Then a(x) is a divergence measure field.

Proof. By the assumption the functional I(f) =
∫

M
[〈a, f〉 + cf ]dµ is

a nonnegative linear functional on C1
0(M0). Therefore, by the known rep-

resentation property, this functional is given by integration with respect to

some nonnegative locally finite Borel measure α on M0: I(f) =
∫

M
f(x)dα

( we extend α as a measure on the entire manifold M , setting its value

being equalled α(A∩M0) for every Borel set A ⊂ M ). Hence ∀f = f(x) ∈
C1

0(M0), f ≥ 0 ∫
M

[〈a, f〉+ cf ]dµ =

∫
M

f(x)dα. (20)

We have to show that the measure α is finite. Since M is compact and

α is locally finite on M0 it is sufficient to prove that α is finite in some

neighborhood of arbitrary boundary point x0 ∈ S. We choose a coordinate

neighborhood U of x0. Let (U, j, V ) be the corresponding chart. We may

suppose that V = [0, h)×W , where h > 0 and W is an open subset of Rn−1.

Let ai(x), i = 1, . . . , n be coordinates of the vector a(x), x = (x1, x
′) ∈ V ,
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µ = ω(x)dx. We define the set E of full measure on (0, h) as in (16) and

suppose that t ∈ E, h(x) ∈ C1
0(V ), h(x) > 0. We set f(x) = θν(x1− t)h(x),

where the sequence θν , ν ∈ N was defined in the proof of Theorem 2.

Applying (20) to the nonnegative test function f(j(x)) ∈ C1
0(M0) ( f is

assumed to be equalled 0 out of U ) and passing to the variables x ∈ V , we

derive that ∫ h

0

∫
W

a1(x1, x
′)h(x1, x

′)ω(x1, x
′)dx′ρν(x1 − t)dx1 +∫

V

[〈a(x), h(x)〉+ c(x)h(x)]ω(x)θν(x1 − t)dx =

∫
V

h(x)θν(x1 − t)dα.

Passing in this equality to the limit as ν →∞, and taking into account that

t ∈ E is a Lebesgue point of the function t →
∫

W

a1(t, x′)h(t, x′)ω(t, x′)dx′

and that the sequence θν(x1− t) is uniformly bounded and converges point-

wise to sign+(x1 − t), we obtain that∫
W

a1(t, x′)h(t, x′)ω(t, x′)dx′ +∫
(t,h)×W

[〈a(x), h(x)〉+ c(x)h(x)]ω(x)dx =

∫
(t,h)×W

h(x)dα.

This implies the estimate∫
(t,h)×W

h(x)dα ≤
∫

(t,h)×W

[〈a(x), h(x)〉+ c(x)h(x)]ω(x)dx + C,

where C = sup
t∈(0,h)

∫
W

a1(t, x′)h(t, x′)ω(t, x′)dx′ < ∞. From this estimate it

follows in the limit as t → 0, t ∈ E that∫
V

h(x)dα ≤
∫

V

[〈a(x), h(x)〉+ c(x)h(x)]ω(x)dx + C < ∞

and since the measure α is nonnegative and h(x) is an arbitrary nonnegative

function from C1
0(V ) we conclude that α is locally finite on U as required.

Hence, α is finite measure. Further, by (20)∫
M

〈a, f〉dµ = −
∫

M

f(x)dγ,

11



where γ = c(x)µ − α is a finite measure, Var γ ≤ α + |c(x)|µ < ∞. Thus,

a(x) is a divergence measure field. Proposition is proved.

Corollary 1.Under the assumptions of Proposition 1 there exists the

weak normal trace aµ̄(x) depending also on the choice of the measure µb on

S such that ∀f = f(x) ∈ C1(M), f ≥ 0∫
M

[〈a, f〉+ cf ]dµ−
∫

S

aµ̄(x)f(x)dµb ≥ 0. (21)

Proof. By Proposition 1 a(x) is a divergence measure field and the exis-

tence of a weak normal trace aµ̄(x) follows from the assertion of Theorem 2.

As we show in the proof of Proposition 1, div µa(x) = γ = c(x)µ−α, where

α is a nonnegative Borel measure. Then from (14) it follows that∫
M

[〈a, f〉+ cf ]dµ−
∫

S

aµ̄(x)f(x)dµb =

∫
M

f(x)dα ≥ 0 (22)

for all nonnegative test functions f ∈ C1(M), as was to be proved.

§ 2. The notion of generalized entropy solution.

Introduce the vector field ϕ(x, u) =

∫ u

0

a(x, λ)dλ in TxM so that

∂ϕ(x, u)

∂u
= a(x, u). If µ is a smooth measure on M then equation (1)

can be written ( at least formally ) in the divergence form

div µϕ(x, u)− div µ
xϕ(x, u) = 0, (23)

where div µ
xϕ(x, u) = div µϕ(·, u).

Indeed, if u = u(x) ∈ C1(M) then in the local coordinates x1, . . . , xn we

have µ = ω(x)dx and in view of (7)

〈a(x, u), u〉 =
1

ω(x)
(ω(x)ai(x, u(x)))

∂u

∂xi

=
1

ω(x)

∂

∂u
(ω(x)ϕi(x, u))

∣∣∣
u=u(x)

∂u

∂xi

=
1

ω(x)

∂

∂xi

(ω(x)ϕi(x, u(x)))− 1

ω(x)

∂

∂xi

(ω(x)ϕi(x, u))
∣∣∣
u=u(x)

=

div µϕ(x, u(x))− div µ
xϕ(x, u(x)).

Equation (23), which is the divergence form of equation (1), allows to con-

sider the equation from view point of the theory of distributions, and develop

12



the Kruzhkov-like ( see [11] ) theory of generalized entropy solutions (g.e.s.

for short). Using approaches of papers [10, 13, 17], we introduce below the

notions of generalized entropy sub-solutions (g.e.sub-s.) and generalized

entropy super-solutions (g.e.super-s) of the Dirichlet problem (1), (2). Let

µ̄ = (µ, µb) be a pair of smooth measures on M and S respectively. Denote

u+ = max(u, 0), u− = max(−u, 0), sign+(u) = (sign u)+ (the Heaviside

function), sign−(u) = −(sign u)−.

Definition 3. A function u = u(x) ∈ L∞(M) is called a g.e.sub-s. of

(1), (2) if there exists a positive constant L such that for every k ∈ R,

∀f = f(x) ∈ C1(M), f ≥ 0∫
M

sign+(u−k)[〈ϕ(x, u)−ϕ(x, k), f〉+fdiv µ
x(ϕ(x, u)−ϕ(x, k))]dµ

+L

∫
S

(ub − k)+fdµb ≥ 0; (24)

a function u = u(x) ∈ L∞(M) is called a g.e.super-s. of (1), (2) if there

exists a positive constant L such that for every k ∈ R, ∀f = f(x) ∈ C1(M),

f ≥ 0∫
M

sign−(u−k)[〈ϕ(x, u)−ϕ(x, k), f〉+fdiv µ
x(ϕ(x, u)−ϕ(x, k))]dµ

+L

∫
S

(ub − k)−fdµb ≥ 0. (25)

A function u = u(x) ∈ L∞(M) is called a g.e.s. of (1), (2) if it is a g.e.sub-s.

and g.e.super-s. of this problem simultaneously.

Let us firstly show that our definition actually does not depend on the

choice of the pair of smooth measures µ̄ = (µ, µb). For this, suppose that

µ̄′ = (µ′, µ′b) is another pair of smooth measures on M and S respectively,

and u(x) is a g.e.sub-s. corresponding to the pair µ̄. Then µ′ = α(x)µ,

µ′b = αb(x)µb, where α(x) ∈ C1(M), αb(x) ∈ C1(S), α(x), αb(x) > 0. Using

relations (8), (9) we arrive at∫
M

sign+(u− k)[〈ϕ(x, u)− ϕ(x, k), f〉+ fdiv µ′

x (ϕ(x, u)− ϕ(x, k))]dµ′ =∫
M

sign+(u− k)[α(x)〈ϕ(x, u)− ϕ(x, k), f〉+

13



fdiv µ
x(α(x)(ϕ(x, u)− ϕ(x, k)))]dµ =∫

M

sign+(u− k)[α〈ϕ(x, u)− ϕ(x, k), f〉+ f〈ϕ(x, u)− ϕ(x, k), α〉+

αfdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ =∫

M

sign+(u− k)[〈ϕ(x, u)− ϕ(x, k), αf〉+ αfdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ.

Taking L′ = L max
x∈S

[α(x)/αb(x)] we obtain also the inequality

L′
∫

S

(ub − k)+fdµ′b = L′
∫

S

(ub − k)+fαbdµb ≥ L

∫
S

(ub − k)+αfdµb.

Together with the preceding equality this inequality implies that ∀f ∈
C1(M), f ≥ 0 ∫

M

sign+(u− k)[〈ϕ(x, u)− ϕ(x, k), f〉+

fdiv µ′

x (ϕ(x, u)− ϕ(x, k))]dµ′ + L′
∫

S

(ub − k)+fdµ′b ≥∫
M

sign+(u− k)[〈ϕ(x, u)− ϕ(x, k), αf〉+

αfdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ + L

∫
S

(ub − k)+αfdµb ≥ 0

in view of relation (24) with the test function αf . This shows that u(x) is

a g.e.sub-s. corresponding to the pair µ̄′.

Replacing sign+ by sign− in the above reasoning, we claim that if u(x) is

a g.e.super-s. corresponding to some pair µ̄ of smooth measures then u(x)

is also a g.e.super-s. corresponding to any other pair µ̄′.

Thus, the class of g.e.sub-s. ( g.e.super-s., g.e.s. ) of the problem (1),

(2) does not depend on the choice of smooth measures µ, µb.

From (24), (25) it follows that for a g.e.s. u = u(x) the following condi-

tion is satisfied: ∀k ∈ R, ∀f = f(x) ∈ C1
0(M0), f ≥ 0∫

M

sign±(u− k)[〈ϕ(x, u)− ϕ(x, k), f〉+ fdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ ≥ 0.

(26)

Since u = u(x) ∈ L∞(M), the fields sign±(u − k)(ϕ(x, u) − ϕ(x, k)) ∈
L∞(M, TM) for each k ∈ R.

14



By Proposition 1 with c(x) = sign±(u − k)div µ
x(ϕ(x, u) − ϕ(x, k)) ∈

L∞(M) and Corollary 1 inequality (26) yields existence of weak normal

traces [sign±(u − k)(ϕ(x, u) − ϕ(x, k))]µ̄ of these fields. Recall that these

traces depend on the choice of the pair µ̄ of smooth measures.

It is useful to reformulate the notion of g.e.s. in the following way.

Theorem 3. A function u = u(x) ∈ L∞(M) is a g.e.s. of (1), (2) if

and only if

1) for each k ∈ R ∀f = f(x) ∈ C1
0(M0), f ≥ 0∫

M

sign(u−k)[〈ϕ(x, u)−ϕ(x, k), f〉+fdiv µ
x(ϕ(x, u)−ϕ(x, k))]dµ ≥ 0, (27)

i.e.

div µ[sign(u−k)(ϕ(x, u)−ϕ(x, k))]− sign(u−k)div µ
x(ϕ(x, u)−ϕ(x, k)) ≤ 0

in D′(M0), and for some positive constant L for each k ∈ R

[sign±(u− k)(ϕ(x, u)− ϕ(x, k))]µ̄ + L(ub − k)± ≥ 0 a.e. on S. (28)

Proof. Suppose that u = u(x) ∈ L∞(M) is a g.e.s. of (1), (2), and

k ∈ R, f = f(x) ∈ C1
0(M0), f ≥ 0. Then, putting together inequalities (26)∫

M

sign+(u− k)[〈ϕ(x, u)− ϕ(x, k), f〉+ fdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ ≥ 0,∫

M

sign−(u− k)[〈ϕ(x, u)− ϕ(x, k), f〉+ fdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ ≥ 0,

we immediately obtain (27).

Further, we choose a function g(x) ∈ C1(S) and the sequence Vm ⊂

M of open sets such that S ⊂ Vm+1 ⊂ Vm ∀m ∈ N and
∞⋂

m=1

Vm = S.

Obviously, there exist functions fm ∈ C1(M) with support supp fm ⊂ Vm

such that fm|S = g, ‖fm‖∞ ≤ ‖g‖∞. For fixed k ∈ R the fields sign±(u −
k)(ϕ(x, u)−ϕ(x, k)) are divergence measure fields, therefore for some finite

Borel measures γ±k on M0 relations (14) hold. Putting in these relations

f = fm we arrive at∫
sign±(u−k)〈ϕ(x, u)−ϕ(x, k), fm〉dµ+

∫
M

fm(x)dγ±k =

∫
S

v±k gdµb, (29)
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where we denote

v±k = [sign±(u− k)(ϕ(x, u)− ϕ(x, k))]µ̄

the weak normal traces of our vectors corresponding to a pair µ̄ of smooth

measures. By relations (24), (25) we have that for some positive constant L∫
M

sign±(u− k)[〈ϕ(x, u)− ϕ(x, k), fm〉+ fmdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ

+L

∫
S

(ub − k)±gdµb ≥ 0.

Subtracting (29) from this inequality, we see that∫
S

[v±k + L(ub − k)±]gdµb ≥
∫

M

fm(x)dγ±k −∫
M

fm sign±(u− k)div µ
x(ϕ(x, u)− ϕ(x, k))dµ →

m→∞
0

because the absolute value of the right-hand side is bounded

by const · (|γ±k |(Vm) + µ(Vm)) and this sequence tends to

const · (|γ±k |(S) + µ(S)) = 0. Passing to the limit as m → ∞ we ob-

tain that

∫
S

[v±k + L(ub − k)±]gdµb ≥ 0 and since g is an arbitrary

nonnegative smooth function on S this yields v±k + L(ub − k)± ≥ 0 a.e. on

S, which is precisely (28).

Conversely, assume that conditions (27), (28) are satisfied. Putting in

(27) k = ±‖u‖∞ and taking into account that by (6)∫
M

[〈ϕ(x, k), f〉+ fdiv µ
xϕ(x, k)]dµ = 0, (30)

we obtain that ∀f = f(x) ∈ C1
0(M0), f ≥ 0∫

M

[〈ϕ(x, u), f〉+ fdiv µ
xϕ(x, u)]dµ = 0. (31)

Since any function f ∈ C1
0(M0) is a difference of two nonnegative functions

from this space we see that (31) holds for all f ∈ C1
0(M0), i.e. equality (23)

is satisfied in D′(M0). From (30), (31) it follows that for each k ∈ R∫
M

[〈ϕ(x, u)− ϕ(x, k), f〉+ div µ
x(ϕ(x, u)− ϕ(x, k))f ]dµ = 0.
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If we add this equality multiplied by ±1 to (27) and take into account that

sign u±1 = 2 sign± u for u 6= 0 then we derive identities (26), which hold for

all real k and all nonnegative test functions f ∈ C1
0(M0). As above, using

Proposition 1 and Corollary 1 we find that there exist weak normal traces

v±k = [sign±(u− k)(ϕ(x, u)− ϕ(x, k))]µ̄

on the boundary S, where µ̄ = (µ, µb) and µb is some smooth measure on

S ( in addition to already fixed µ ).

We define as above a monotone sequence of open sets Vm ⊂ M such that

S ⊂ Vm+1 ⊂ Vm ∀m ∈ N,
∞⋂

m=1

Vm = S and consider the partition of unity

1 = g1m + g2m corresponding to the covering M = M0 ∪ Vm. This means

that g1m ∈ C1
0(M0), g2m ∈ C1(M), supp g2m ⊂ Vm, g1m, g2m ≥ 0. Then

any nonnegative test function f ∈ C1(M) can be decomposed into the sum

f = f1m + f2m, where f1m = fg1m ∈ C1
0(M0), f2m = fg2m ∈ C1(M).

Obviously, supp f2m ⊂ Vm, f1m, f2m ≥ 0. By inequalities (26)∫
M

sign±(u−k)[〈ϕ(x, u)−ϕ(x, k), f〉+fdiv µ
x(ϕ(x, u)−ϕ(x, k))]dµ=∫

M

sign±(u− k)[〈ϕ(x, u)− ϕ(x, k), f1m〉+

f1mdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ +∫

M

sign±(u− k)[〈ϕ(x, u)− ϕ(x, k), f2m〉+

f2mdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ ≥∫

M

sign±(u− k)[〈ϕ(x, u)− ϕ(x, k), f2m〉+

f2mdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ. (32)

By Corollary 1 we have also∫
M

sign±(u− k)〈ϕ(x, u)−ϕ(x, k), f2m〉dµ+

∫
M

f2mdγ±k =

∫
S

fv±k dµb, (33)

where γ±k = div µ[sign±(u− k)(ϕ(x, u)− ϕ(x, k))] are finite Borel measures

on M0. We also take into account that f2m|S = f . In the limit as m → ∞
equality (33) yields

lim
m→∞

∫
M

sign±(u− k)〈ϕ(x, u)− ϕ(x, k), f2m〉dµ =

∫
S

fv±k dµb (34)
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because
∫

M
f2mdγ±k → 0. Passing in (32) to the limit as m →∞, we derive

with the help of (34) and the obvious relation

lim
m→∞

∫
M

sign±(u− k)div µ
x(ϕ(x, u)− ϕ(x, k))f2mdµ = 0

that ∫
M

sign±(u− k)[〈ϕ(x, u)− ϕ(x, k), f〉+

fdiv µ
x(ϕ(x, u)− ϕ(x, k))]dµ−

∫
S

fv±k dµb ≥ 0. (35)

Further, in view of (28)∫
S

[v±k + L(ub − k)±]fdµb ≥ 0.

Adding this inequality to (35), we immediately obtain (24), (25). This

means that u is a g.e.s. of (1), (2). The proof is complete.

Let us discuss the sense of boundary condition (28). Suppose that a

g.e.s. u(x) has the strong trace u∗(x) on the boundary S. This means that

for any chart (U, j, V ) such that U is a neighborhood of a boundary point

and V = [0, h)×W with h > 0 and W being an open subset of Rn−1

ess lim
x1→0

u(x1, x
′) = u∗(j−1(0, x′)) in L1

loc(W ).

Then as follows from (19) the weak normal traces

[sign±(u− k)(ϕ(x, u)− ϕ(x, k))]µ̄ = sign±(u∗ − k)(ϕµ̄(x, u∗)− ϕµ̄(x, k)),

where ϕµ̄(x, u) = 〈nµ̄(x), ϕ(x, u)〉 is a strong normal trace of the vector field

ϕ(x, u) in the sense of Theorem 1. Therefore, in this case relation (28)

reduces to the form: for a.e. x ∈ S

sign±(u∗ − k)(ϕµ̄(x, u∗)− ϕµ̄(x, k)) + L(ub(x)− k)± ≥ 0 ∀k ∈ R. (36)

Here we also take into account that the set S̃ ⊂ S of full µb-measure con-

sisting of boundary points, for which inequality (36) holds, can be chosen

common for all k ∈ R because the left-hand side of (36) depends continu-

ously on the parameter k.
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Since condition (36) remains valid after enlargement of L then, without

lose of generality, we can assume that L ≥ Lµ̄
.
= sup

x∈S,u∈R
|aµ̄(x, u)| ( recall

that a(x, u) is supposed to be uniformly bounded ).

Now, we fix x ∈ S̃ and consider two possible cases u∗ ≥ ub and u∗ ≤ ub.

Here u∗ = u∗(x), ub = ub(x). In the first case the inequality

sign+(u∗ − k)(ϕµ̄(x, u∗)− ϕµ̄(x, k)) + L(ub − k)+ ≥ 0 (37)

immediately implies that

ϕµ̄(x, k) ≤ ϕµ̄(x, u∗) ∀k ∈ [ub, u
∗]. (38)

Conversely, if condition (38) is satisfied then inequality (37) holds for each

k ∈ [ub, u
∗]. Evidently, it also holds for k > u∗. If k < ub then (37) acquires

the form ϕµ̄(x, u∗)−ϕµ̄(x, k) + L(ub− k) ≥ 0, and directly follows from the

relation

ϕµ̄(x, u∗)− ϕµ̄(x, k) + L(ub − k) = ϕµ̄(x, u∗)− ϕµ̄(x, ub) +∫ ub

k

(aµ̄(x, u) + L)du ≥ ϕµ̄(x, u∗)− ϕµ̄(x, ub) ≥ 0

in view of (38) with k = ub. Let us show that also for every k ∈ R

sign−(u∗ − k)(ϕµ̄(x, u∗)− ϕµ̄(x, k)) + L(ub − k)− ≥ 0.

Indeed, if k ≤ u∗ this inequality is evident while for k > u∗ it reduces to

the inequality

ϕµ̄(x, k)− ϕµ̄(x, u∗) + L(k − ub) =

∫ k

u∗
(aµ̄(x, u) + L)du + L(u∗ − ub) ≥ 0.

We see that condition (28) is satisfied.

By the similar reasons, in the case when u∗ ≤ ub, the condition (28) is

equivalent to the relation

ϕµ̄(x, k) ≥ ϕµ̄(x, u∗) ∀k ∈ [u∗, ub]. (39)

Conditions (38), (39) can be written in the unified form

(sign(k − u∗) + sign(ub − k))(ϕµ̄(x, k)− ϕµ̄(x, u∗)) ≥ 0 ∀k ∈ R, (40)
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known as (BLN)-condition ( see [3] ).

Thus, the boundary condition (28) can be written in the simple form

(40) provided that there exists the strong trace u∗ of the g.e.s. u(x) on S.

As follows from results of [23] ( see also [22, 26] ) the strong trace always

exists under the following non-degeneracy condition:

for a.e. x ∈ S, ∀ξ ∈ T∗
xM , ξ 6= 0 the function u → 〈ξ, a(x, u)〉 is not

identically equalled zero on non-degenerate intervals.

Remark also that it is sufficient to require that conditions (28) or (40)

are satisfied for k ∈ I, where I is a segment, containing all essential values

of both functions u(x), ub(x).

Now, we introduce the set

S− = { x ∈ S | aµ̄(x, λ) < 0 for a.e. λ ∈ I }.

Observe that this set does not depend on the choice of a pair µ̄, and consists

of boundary points x such that all characteristics ( i.e. integral curves of

the field a(x, λ) ) are outgoing from x and transversal to S.

If x ∈ S− then the function

u → ϕµ̄(x, u) =

∫ u

0

aµ̄(x, λ)dλ

strictly decreases. Let us demonstrate that a g.e.s. u(x) accepts the bound-

ary data on S− in the following strong sense.

Proposition 2. For each chart (U, j, V ) with V = [0, h) × W , h > 0,

W is an open set in Rn−1

ess lim
x1→0

u(x1, x
′) = ub(x

′) in L1
loc(S̃

−),

where S̃− = { x′ ∈ W | j−1(0, x′) ∈ S− }.
As usual, we identified u, ub with the corresponding functions of variables

x, x′.

Proof. Putting together both inequalities (28), we arrive at the rela-

tion: for a.e. x ∈ S

[sign(u− k)(ϕ(x, u)− ϕ(x, k))]µ̄ + L|ub − k| ≥ 0 ∀k ∈ R.
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Passing to our local coordinates and taking into account Remark 3 and the

fact that the vector ϕ(x, u) is smooth on M×R, we can transform the above

inequality to the limit relation

− ess lim
x1→0

[sign(u(x1, x
′)− k)(ϕ1(0, x′, u(x1, x

′))−

ϕ1(0, x′, k))]
ω(0, x′)

ωb(x′)
+ L|ub(x

′)− k| ≥ 0 ∀k ∈ R (41)

in the weak-∗ topology of L∞(W ). Here ϕ1(x, u) is the first coordinate of

the vector ϕ(x, u) and ω(x) ∈ C1(V ), ωb(x
′) ∈ C1(W ) are densities of the

measures µ, µb: µ = ω(x)dx, µb = ωb(x
′)dx′.

Obviously, relation (41) is also satisfied for k = k(x′), where k′(x) =∑m
i=1 kiχAi

(x) is a step function ( χAi
are the indicator functions of mea-

surable sets Ai ⊂ W , i = 1, . . . ,m ). Since every function k(x′) ∈ L∞(W )

can be uniformly approximated by a sequence of step functions we derive

that (41) remains valid for k = k(x′) ∈ L∞(W ). In particular, taking in

(41) k = ub(x
′) we obtain that

ess lim
x1→0

[sign(u(x1, x
′)−ub(x

′))(ϕ1(0, x′, u(x1, x
′))−ϕ1(0, x′, ub(x

′)))]≤0 (42)

weakly-∗ in L∞(W ) and, therefore, also weakly-∗ in L∞(S̃−).

By the definition of the set S̃− for a.e. x′ ∈ S̃− the function

ϕ1(0, x′, u) is strictly increasing. Therefore, the function F (x′, u) =

sign(u − ub(x
′))(ϕ1(0, x′, u) − ϕ1(0, x′, ub(x

′))) ≥ 0 and takes the zero

value only if u = ub(x
′). Then from limit relation (42) we readily derive

that ess lim
x1→0

F (x′, u(x1, x
′)) = 0 in L1

loc(S̃
−) and this in turn implies that

ess lim
x1→0

u(x1, x
′) = ub(x

′) in L1
loc(S̃

−). This completes the proof.

Now, we introduce the set

S+ = { x ∈ S | aµ̄(x, λ) ≥ 0 for a.e. λ ∈ R }

consisting of boundary points x such that for a.e. λ ∈ R the characteristics

are incoming at x. It is natural to expect that the boundary values ub(x)

do not matter at points of S+. Namely, we have the following statement.

Proposition 3. Suppose u(x) is a g.e.s. of (1), (2). Then boundary

condition (28) is satisfied for a.e. x ∈ S+ independently of values of ub(x).
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Proof. In the local coordinates x1, x
′ indicated in Proposition 2 condi-

tion (28) on the set S+ reduces to the form similar to (41):

− ess lim
x1→0

[sign(u(x1, x
′)− k)±(ϕ1(0, x′, u(x1, x

′))−

ϕ1(0, x′, k))]
ω(0, x′)

ωb(x′)
+ L(ub(x

′)− k)± ≥ 0 ∀k ∈ R (43)

in the weak-∗ topology of L∞(S̃+), where S̃+ = { x′ ∈ W | j−1(0, x′) ∈ S+ }.
Since for a.e. x′ ∈ S̃+ the function ϕ1(0, x′, u) =

∫ u

0
a1(0, x′, λ)dλ decreases

the functions sign(u(x1, x
′) − k)±(ϕ1(0, x′, u(x1, x

′)) − ϕ1(0, x′, k)) ≤ 0 a.e.

on S̃+ for each x1 and (43) is always satisfied. The proof is complete.

It is clear that generally the sets S−, S+ may be empty. Consider one

particular case of the evolutionary equation

ut + 〈a(t, x, u), u〉 = 0, (44)

where (t, x) ∈ M = [0, T ]×Ω, Ω is a C2 compact manifold without bound-

ary, T > 0, a(t, x, u) is a family of C1 vector fields on Ω continuously

depending on t and u as parameters. This equation has the form (1) with

the vector a = ∂/∂t + a(t, x, u) being a vector field on M . As is easy to see

here S− = {0} ×Ω, S+ = {T} ×Ω, and S = ∂M = S− ∪ S+. Consider the

Dirichlet data (2) for equation (44). By Proposition 3 the values ub(T, x)

play no role and the problem (44), (2) reduces to the classic Cauchy problem

with initial data

u(0, x) = u0(x), (45)

where u0(x) = ub(0, x) ∈ L∞(Ω).

Denotes M0 = Int M = (0, T )× Ω, ϕ(t, x, u) =
∫ u

0
a(t, x, s)ds. Let µ be

a smooth measure on Ω. By Theorem 3 and Proposition 2 we claim that

u = u(t, x) ∈ L∞(M) is a g.e.s. of (44), (45) if and only if

1) ∀k ∈ R, ∀f = f(t, x) ∈ C1
0(M0), f ≥ 0∫

M

{|u− k|ft + sign(u− k)[〈ϕ(t, x, u)− ϕ(t, x, k), f〉+

fdiv µ
x(ϕ(t, x, u)− ϕ(t, x, k))]}dtdµ(x) ≥ 0.

2) ess lim
t→0

u(t, ·) = u0 in L1
loc(Ω, µ).
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These are the classic Kruzhkov conditions adapted to the case when Ω

is a manifold.

Remark that in the case then ∂Ω 6= ∅ the initial boundary value problems

arises when together with (44), (45) the boundary condition

u(t, x) = ub(t, x) on (0, T )× ∂Ω (46)

is required. If to be precise, in this situation the manifold M has ”angle

points” in {0, T}×∂Ω. But this is not a problem. In fact, we could initially

treat the case of manifolds with angle points, changing the half-space Π by

(R+)n, R+ = [0, +∞) in the definition of a manifold.

The problem (44), (45) arises as a particular case of the following general

situation. Suppose that S = S− ∪ S+ ( or, more generally, the complement

S\(S−∪S+) has null measure on S ). Then, as follows from Propositions 2,3,

boundary condition (2) reduces to the condition

u|S− = ub (47)

understood in the strong sense ( as in Proposition 2 ). We will refer to

problem (1), (47) as to the generalized Cauchy problem.

Remark 4. In the case of linear equation (1) when a(x, u) = a(x)

evidently S = S− ∪ S+ and problem (1), (2) reduces to the generalized

Cauchy problem (1), (47). If we suppose in addition that any point of M

can be reached by a characteristic outgoing from a point of S− then any

g.e.s. is uniquely defined by the requirement that it must be constant along

characteristics. Namely, u(x) = ub(y), where x = x(s; y) is the characteristic

outgoing from the point y ∈ S−, i.e. x(s) = x(s; y) is a solution of ODE

ẋ
.
= dx/ds = a(x) on M with initial condition x(0) = y.

The Dirichlet problem (1), (2) may be generally ill-posed. We confirm

this by some examples.

Example 1. Let M be a segment [0, 1]. Consider the problem

(u2)′ = 0, u(0) = 1, u(1) = −1.

Then for any ξ ∈ (0, 1) the function u(x) = 1− 2 sign+(x− ξ) is a g.e.s. of

this problem. Indeed, u(x) admits the boundary data in strong sense, and

[sign(u−k)(u2−k2)]′ = (1−k2)(sign(u−k))′ ≤ 0 in D′((0, 1)) for all k ∈ R
because the function sign(u(x)− k) is constant for |k| > 1 and decreases if
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|k| ≤ 1. In correspondence with Theorem 3 u(x) is a g.e.s. of our problem

for each ξ. Thus, we have constructed infinitely many g.e.s. of the problem

under consideration.

In the above example a(x, u) = 2u ≡ 0 if u = 0. The next example

shows that non-uniqueness may appear even if the vector field a(x, u) does

not degenerate at all points.

Example 2. Consider the 2-dimensional Dirichlet problem for the equa-

tion

(u2)x + g(u)y = 0 (48)

in the plain domain M determined by the inequality |y|+ ((|x| − 1)+)4 ≤ 1

with boundary data

ub(x, y) =

{
1, y ≤ −x,

−1, y > −x.
(49)

on S = ∂M . The rather complicated expression determining M is used to

guarantee C2-smoothness. If manifold with angle points are allowed we can

take in this example M being the square t, x ∈ [−1, 1].

We will assume that the function g(u) ∈ C2(R) is convex and such that

g(−1) = g(1) = 0, g′(0) 6= 0. Then the field a = 2u∂/∂x + ϕ′(u)∂/∂y does

not depend on (x, y) and is not degenerate for all u ∈ R. In particular,

characteristics of equation (48) are straight lines, and for each u the entire

domain M is covered by characteristics going from the boundary. Neverthe-

less, problem (48), (49) has infinitely many g.e.s. u(x, y) = 1−2 sign+(x−ξ)

( similar to ones in Example 1 ) depending on the parameter ξ ∈ (−1, 1).

Indeed, in the same way as in Example 1 it is proved that u satisfies con-

dition (27). Concerning the boundary condition, remark that u has strong

trace u∗ = ±1 at the boundary and one has to verify (BLN)-condition

(40). In the case y ≤ −x either u∗ = ub = 1 or u∗ = −1 < ub = 1 and

ϕµ̄(u) = −g(u) ≥ g(−1) = 0 ∀u ∈ [−1, 1]. In the case y > −x either

u∗ = ub = −1 or u∗ = 1 > ub = −1 and ϕµ̄(u) = g(u) ≤ g(1) = 0

∀u ∈ [−1, 1]. Here µ̄ is a pair of smooth measures generated the Euclidean

metric in R2. We see that (BLN)-condition is satisfied. Hence, u(x, y) is a

g.e.s. of (48), (49) for every ξ ∈ (−1, 1).

The next example shows that the generalized Cauchy problem may have

infinitely many g.e.s. even for a linear equation degenerated at a single

point.
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Example 3. Let M be a disc r2 .
= x2+y2 ≤ 1 and 0 < r0 < 1. Consider

the linear equation

〈a(x, y), u〉 .
= (−x((r− r0)

+)2 − y)
∂u

∂x
+ (−y((r− r0)

+)2 + x)
∂u

∂y
= 0. (50)

Remark that the field a(x, u) = 0 only at the zero point. As is easy to see all

points of the boundary circle S are outgoing for characteristics and S− = S.

In the small disk r ≤ r0 the characteristics are circles r = const ≤ r0. This

implies that a g.e.s. u(x, y) may coincide with arbitrary function h(r) ∈
L∞([0, r0]) for r ≤ r0. Setting u(x, y) = 0 for r ∈ (r0, 1], u(x, y) = h(r), r ∈
[0, r0], we obtain infinitely many g.e.s. of the generalized Cauchy problem

for equation (50) with zero initial data. In particular, for the problem under

consideration even the maximum principle is violated.

The following example explains why we are bounded by the case of

homogeneous equations.

Example 4. In the same disc M as in the above example we consider the

following generalized Cauchy problem for nonhomogeneous linear equation

〈a(x, y), u〉 .
= −xrα ∂u

∂x
− yrα ∂u

∂y
= 1, (51)

with zero initial data at the boundary circle. Here the parameter α ≥ 0.

All points of M except zero can be reached by the characteristics

x(s) = x0(1 + αs)−1/α, y(s) = y0(1 + αs)−1/α, if α > 0,

x(s) = x0e
−s, y(s) = y0e

−s, if α = 0

outgoing from points (x0, y0) of the boundary ( i.e. x2
0+y2

0 = 1 ) and defined

for all s ≥ 0. If u(x, y) is a g.e.s. of the problem under consideration then it

is uniquely defined by the condition that u̇ = 1 along characteristics. Easy

computations yields

u(x, y) = s =

{
(r−α − 1)/α , α > 0,

− ln r , α = 0.

In any case u /∈ L∞(M), moreover u /∈ L1
loc(M) if α ≥ 2. Thus, our

problem does not generally admits weak solutions understood in the sense

of distribution.
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The following example illustrates that for conservative equations weak

solutions may not exist.

Example 5. Consider the following conservative form of equation (51)

∂

∂x
(−xrαu) +

∂

∂y
(−yrαu) = 0, r2 = x2 + y2 ≤ 1. (52)

This equation can be rewritten as

−xrα ∂u

∂x
− yrα ∂u

∂y
= (2 + α)rαu.

Therefore, along characteristics, which are the same as in Example 4,

u̇ = (2 + α)rαu = (2 + α)u/(1 + αs).

If we set the initial data u(x, y) ≡ 1 for r = 1 then necessarily

u(x, y) = r−2−α /∈ L1
loc(M).

The above examples induce us to formulate additional conditions, which

guarantee well-posedness of the Dirichlet problem. It turns out that one of

such condition may be the following one: ∀R > 0 there exist a function

ρ(x) ∈ C1(M), ρ(x) ≥ 0 and a smooth measure µ on M such that

div µ(a(x, λ)ρ(x)) < 0 for a.e. x ∈ M, λ ∈ [−R, R]. (U)

Observe that condition (U) is always satisfied for the evolutionary equation

(44). Indeed, let µ = dt×µ0, where µ0 is a smooth measure on Ω, R > 0 and

C > max
(t,x)∈M,|λ|≤R

div µ0
x a(t, x, λ). Then the function ρ(t, x) = e−Ct satisfies

(U) because

div µρ

(
∂

∂t
+ a(t, x, u)

)
= ρ′t + ρdiv µ0

x a(t, x, λ) = (div µ0
x a(t, x, λ)−C)ρ < 0

for all (t, x) ∈ M , λ ∈ [−R,R].

Concerning the above Examples 4,5, observe that for the linear equation

〈a(x), u〉 = −xrα ∂u

∂x
−yrα ∂u

∂y
= 0 condition (U) is satisfied with ρ(x, y) = r2.

Indeed, div (a(x)ρ(x)) = −(4 + α)r2+α < 0 for r > 0.

We give below one necessary condition for fulfillment of (U).
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Proposition 4. If condition (U) is satisfied then for each fixed λ for

a.e. x ∈ M there exists a characteristic outgoing from the boundary and

passing through the point x.

Proof. Let λ ∈ R be fixed and x(s) = x(s; y) be a characteris-

tic passing through y ∈ M0 for s = 0. Thus, x(s) is the unique solu-

tion of ODE ẋ = a(x, λ) on M satisfying the initial condition x(0) = y.

This solution is defined on some maximal interval s ∈ (α(y), β(y)), where

−∞ ≤ α(y) < 0 < β(y) ≤ +∞. As is known in the theory of ODEs the

functions α(y), β(y) are upper and low semi-continuous, respectively. There-

fore, the set A = { y ∈ M0 | α(y) = −∞ } is Borel as an intersection of

the sequence Vr = { y ∈ M0 | α(y) < −r }, r ∈ N of open sets. If

α(y) > −∞ then taking into account compactness of M we conclude that

x(s; y) is defined for s ∈ [α(y), β(y)) and x(α(y); y) ∈ S. Thus, points of

the complement M0 \ A can be reached by characteristics outgoing from S

and to prove the proposition it suffices to show that µ(A) = 0, where µ is a

smooth measure on M . On the set A we can define the semigroup of shifting

operators Tsy = x(−s; y), s ≥ 0. Clearly, Ts is a C1 diffeomorphism of the

neighborhood α(y) < c − s of A onto the open set α(y) < c, β(y) > −s.

In particular, Ts(A) is a Borel set and µ(Ts(A)) =
∫

A
γ(s, x)dµ with some

density γ(s, x) ∈ C1. Besides, as one can derive from the Liouville theorem,
dγ(s, x)

ds

∣∣∣∣
s=0

= −(div µa(x, λ)). Indeed, let U be a coordinate neighborhood

corresponding to some chart (U, j, V ), and µ = ω(x)dx, ω(x) ∈ C1(V ),

ω(x) > 0. Then for each compact K ⊂ U and for sufficiently small s ( such

that Ts(K) ⊂ U )

µ(Ts(A ∩K)) =

∫
j(A∩K)

ω(x(−s; y)) det{∂xi(−s; y)/∂yj}dy =∫
j(A∩K)

ω(x(−s; y)) det{∂xi(−s; y)/∂yj}/ω(y)dµ(y),

where x(s; y) is a solution of the problem ẋ = a(x, λ), x(0) = y considered

on V . Thus, γ(s, y) = ω(x(−s; y)) det{∂xi(−s; y)/∂yj}/ω(y) and with using

the Liouville theorem we obtain that

dγ(s, y)

ds

∣∣∣∣
s=0

= −
(
〈a(y), ω(y)〉+ ω(y)

∂ai(y, λ)

∂yi

)
/ω(y) =

− 1

ω(y)

∂(ai(y, λ)ω(y))

∂yi

= −div µa(y).
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Taking into account arbitrariness of the coordinate neighborhood U we con-

clude that
dγ(s, y)

ds

∣∣∣∣
s=0

= −(div µa(y, λ)), as was announced.

By condition (U) there exist a smooth measure µ and a nonnegative

function ρ(x) ∈ C1(M) such that div µ(a(x, λ)ρ(x)) < 0 a.e. on M0. Con-

sider, the function

I(s) =

∫
Ts(A)

ρ(x)dµ =

∫
A

ρ(Tsy)γ(s, y)dµ(y).

We observe that the sets Ts(A) are decreasing, i.e. Ts2(A) ⊂ Ts1(A) for

s2 > s1 ≥ 0. Hence, I ′(0) ≤ 0. On the other hand,

I ′(0) = −
∫

A

[〈a(y, λ), ρ(y)〉+ ρ(y)div µa(y, λ)ρ(y)]dµ(y) =

−
∫

A

div µ(a(y, λ)ρ(y))dµ.

Hence,
∫

A
div µ(a(y, λ)ρ(y))dµ ≥ 0 and since the integrand is negative for

a.e. y ∈ A we conclude that µ(A) = 0 as required. The proof is complete.

§ 3. The kinetic formulation.

For a positive R we denote by FR the class of functions p(λ) =

ν((λ, +∞)), where ν is a probability measure with support in [−R,R]. Let

F =
⋃

R>0 FR. In other words, F consists of non-increasing distribution

functions of probability measures with compact support on R. We will refer

to F as to the kinetic class. Obviously, a function p(λ) ∈ FR if and only if

it is non-increasing, continuous from the right, and p(λ) = 1 for λ < −R,

p(λ) = 0 for λ ≥ R. The classes FR, F are convex and closed subsets

of Lr(I) for any segment I ⊂ R and any r ∈ [1, +∞]. We will consider

functions p(λ) ∈ F as elements of L∞(R), so functions differing on a set

of null measure, are identified. In particular, the values of p(λ) ∈ F at

discontinuity points may be chosen arbitrarily and the above requirement

of right-continuity of p(λ) may be removed. Observe that the functions

p(λ) = sign+(u− λ) ∈ FR for each u ∈ [−R,R]. The classes FR and F are

invariant with respect to the involution p → p̄ defined as p̄(λ) = 1− p(−λ).

Clearly, this involution is a decreasing operator that is p̄1 ≤ p̄2 whenever

p1 ≥ p2. Remark that for p(λ) = sign+(u − λ) p̄(λ) = sign+(−u − λ).

Thus, for this class of kinetic functions the involutions reduces to simple
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one: u → −u. For the sequel we will use the following binary operation

well-defined on the classes FR and F : p◦ q = 1− (1−p)(1− q) = p+ q−pq.

This operation is uniquely defined by the property: p ◦ q = p̄q̄.

Now, we will denote by FR(M) the space of strongly measurable func-

tions with values in FR. This space can be described as the subspace of

functions p ∈ L∞(M × R) such that p(x, ·) ∈ FR for a.e. x ∈ M . We also

use the notation F(M) for
⋃

R>0FR(M). Similarly we define spaces FR(S),

F(S).

We consider the following kinetic equation

〈a(x, λ), p〉 = 0, p = p(x, λ) (53)

associated with (1). We will study the Dirichlet problem for this equation

with the boundary data

p(x, λ) = pb(x, λ) = sign+(ub(x)− λ) on S × R, (54)

where ub(x) ∈ L∞(S). Similarly to [10] we define notions of a kinetic sub-

and super-solution ( k.sub-s. and k.super-s. for short ).

Definition 4. A function p(x, λ) ∈ F(M) is called a k.sub-s. of (53),

(54) if there exists a constant L > 0 such that for each q = q(λ) ∈ F

∀f = f(x) ∈ C1(M), f ≥ 0∫
M×R

p(x, λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0; (55)

a function p(x, λ) ∈ F(M) is called a k.super-s. of (53), (54) if there exists

a constant L > 0 such that for each q = q(λ) ∈ F ∀f = f(x) ∈ C1(M),

f ≥ 0 ∫
M×R

(1− p(x, λ))q(λ)div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

(1− pb(x, λ))q(λ)f(x)dµbdλ ≥ 0. (56)

We call p(x, λ) a kinetic solution ( a k.s. ) of (53), (54) if it is a k.sub-s.

and a k.super-s. of this problem simultaneously.
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In relations (55), (56) µ, µb are smooth measures on M and S respec-

tively. In the same way as for g.e.sub-s. and g.e.super-s. of the original

problem, one can prove that our definition actually does not depend on the

choice of these measures.

The following useful lemma allows to reduce statements concerning

k.super-s. to ones for k.sub-s.

Lemma 1. A function p(x, λ) is a k.super-s. of (53), (54) if and only

if p̄(x, λ) = 1− p(x,−λ) is a k.sub-s. of the problem

〈a(x,−λ), p〉 = 0, p(x, λ)|S×R = pb(x, λ) = 1− pb(x,−λ). (57)

Proof. We write conditions (55) for problem (57) applied to the function

p̄(x, λ): for each q(λ) ∈ F , f(x) ∈ C1(M), f(x) ≥ 0∫
M×R

p̄(x, λ)(1− q(λ))div µ(a(x,−λ)f(x))dµdλ +

L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0. (58)

Changing the variables λ → −λ in both integrals, we can rewrite it as

follows ∫
M×R

(1− p(x, λ))q̄(λ)div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

(1− pb(x, λ))q̄(λ)f(x)dµbdλ ≥ 0.

Since q̄(λ) runs the entire class F the latter relation coincide with (56). By

the construction it is equivalent to (58), which completes the proof.

Our kinetic formulation is based on the following result.

Theorem 4. Suppose that pb(x, λ) = sign+(ub(x) − λ). Then u(x) ∈
L∞(M) is a g.e.sub-s. (g.e.super-s.) of (1), (2) if and only if the function

p(x, λ) = sign+(u(x) − λ) is a k.sub-s. (respectively k.super-s.) of kinetic

problem (53), (54).

Proof. We prove the statement concerning sub-solutions. For super-

solutions the proof is similar. Let k ∈ R and q(λ) = sign+(k − λ). Then∫
p(x, λ)(1− q(λ))div µ(a(x, λ)f(x))dλ =
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sign+(u(x)− k)

∫ u(x)

k

div µ(a(x, λ)f(x))dλ =

sign+(u(x)− k)

{
f(x)

∫ u(x)

k

div µa(x, λ)dλ +

∫ u(x)

k

〈a(x, λ), f(x)〉dλ

}
=

sign+(u(x)− k)[f(x)div µ
x(ϕ(x, u)− ϕ(x, k)) + 〈ϕ(x, u)− ϕ(x, k), f〉],∫

pb(x, λ)(1− q(λ))dλ = (ub(x)− k)+.

Hence relation (55) is equivalent to (24). We also take int account that the

convex hull of functions q(λ) = sign+(k−λ), |k| ≤ R is dense in FR ( in the

L1([−R,R])-topology ) for all R > 0. Therefore, it is sufficient to require

in (55), (56) that q(λ) is a function of the kind q(λ) = sign+(k − λ). The

proof is complete.

Using Theorem 4 and Lemma 1 we readily deduce the following state-

ment.

Corollary 2. A function u = u(x) ∈ L∞(M) is a g.e.super-s. (g.e.sub-

s., g.e.s.) of (1), (2) if and only if the function −u is a g.e.s. (respectively

g.e.super-s., g.e.s.) of the problem

〈a(x,−u), u〉 = 0, u|S = −ub(x).

If p(x, λ) is a k.sub-s. of (53), (54) and q ∈ F then as follows from (55)

for each f = f(x) ∈ C1
0(M0), f ≥ 0∫

M

{〈∫
a(x, λ)p(x, λ)(1− q(λ))dλ, f

〉
+

f ·
∫

div µa(x, λ)p(x, λ)(1− q(λ))dλ

}
dµ(x) ≥ 0. (59)

By Proposition 1 we see that

∫
a(x, λ)p(x, λ)(1 − q(λ))dλ is a divergence

measure field for every q(λ) ∈ F . Therefore, there exists a weak normal

trace v = vq(x) ∈ L∞(S) of this field at the boundary (for a fixed pair

µ̄ = (µ, µb) of smooth measures). Passing to local coordinates (x1, x
′) ∈

(0, h)×W , indicated in Remark 3, we obtain with account of this Remark

that

vq(x
′) =

∫
aµ̄(x′, λ)pτ (x

′, λ)(1− q(λ))dλ,
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where pτ (x
′, λ) is an arbitrary weak-∗ limit point of p(x1, x

′, λ) in L∞(W×R)

as x1 → 0 running over the set of full measure

E = { t ∈ (0, h) | (t, y, λ) is a Lebesgue point of

p(t, y, λ) for a.e. y ∈ W, λ ∈ R }

defined similarly to (16). Since vq(x) does not depend on the choice of

this limit point we conclude that aµ̄(x′, λ)(p(x1, x
′, λ)−pτ (x

′, λ)) →
x1→0,x1∈E

0

weakly-∗ in L∞(W×R). This implies in particular that pτ (x
′, λ) is uniquely

defined on the set where aµ(x′, λ) 6= 0 and does not depend on the choice of

µ̄. Taking R > 0 from the condition p(x, λ) ∈ FR(M) we find also by the

known property of weak limits that pτ (x
′, ·) ∈ FR because FR is convex and

closed subset of L∞(R).

By the construction we have

∀q ∈ F vq(x) =

∫
aµ̄(x, λ)pτ (x, λ)(1− q(λ))dλ (60)

a.e. on S∩U . Here pτ (x, λ)
.
= pτ (j(x), λ) on S∩U , (U, j, V ) being the chart

corresponding to our local coordinates. By (60) we see that the product

aµ̄(x, λ)pτ (x, λ) is uniquely determined in a coordinate neighborhood U ∩S

of an arbitrary boundary point. This allows us to define pτ (x, λ) ∈ FR(S)

in such a way that (60) is satisfied for a.e. x ∈ S. As follows from (59) and

Corollary 1 for each q(λ) ∈ F and all f = f(x) ∈ C1(M), f ≥ 0∫
M×R

p(x, λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ−∫
S×R

aµ̄(x, λ)pτ (x, λ)(1− q(λ))f(x)dµbdλ ≥ 0. (61)

Remark that the set FR ⊂ L1([−R,R]) is separable while the both sides

of the equality vq(x) =

∫
aµ̄(x, λ)pτ (x, λ)(1− q(λ))dλ are continuous with

respect to q ∈ L1([−R,R]) with values in L∞(S). Therefore, we can choose

a set S̃R ⊂ S of full measure in such a way that for x ∈ S̃R equality (60)

holds for all q ∈ FR. Taking S̃ =
⋂

R∈N S̃R we obtain that S̃ has full measure

on S and (60) is satisfied for all x ∈ S̃ and all q ∈ F . In other words, for

a.e. x ∈ S condition (60) holds.
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In the same way, based on the relation

∀f ∈ C1
0(M0), f ≥ 0

∫
M

{〈∫
a(x, λ)(1− p(x, λ))q(λ)dλ, f

〉
+

f ·
∫

div µa(x, λ)(1− p(x, λ))q(λ)dλ

}
dµ(x) ≥ 0, (62)

we prove existence of weak trace pτ (x, λ) ∈ F(S) for a k.super-s. p(x, λ) of

(53), (54). This trace satisfies the condition: for a.e. x ∈ S

∀q ∈ F wq(x) =

∫
aµ̄(x, λ)(1− pτ (x, λ))q(λ)dλ, (63)

where wq(x) ∈ L∞(S) is the weak trace of the divergence measure field∫
a(x, λ)(1− p(x, λ))q(λ)dλ.

Using Corollary 1 again we derive from (62) that for each q(λ) ∈ F and

all f = f(x) ∈ C1(M), f ≥ 0∫
M×R

(1− p(x, λ))q(λ)div µ(a(x, λ)f(x))dµdλ−∫
S×R

aµ̄(x, λ)(1− pτ (x, λ))q(λ)f(x)dµbdλ ≥ 0. (64)

As in Theorem 3 we derive that p(x, λ) is a k.sub-s. of (53), (54) if and only

if for each q(λ) ∈ F and all f = f(x) ∈ C1
0(M0), f ≥ 0∫

M×R
p(x, λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ ≥ 0

and the following relation similar to (28) is satisfied a.e. on S:

∀q(λ) ∈ F

∫
aµ̄(x, λ)pτ (x, λ)(1− q(λ))dλ + L

∫
pb(x, λ)(1− q(λ))dλ ≥ 0.

(65)

Respectively, p(x, λ) is a k.super-s. of (53), (54) if and only if for each

q(λ) ∈ F and all f = f(x) ∈ C1
0(M0), f ≥ 0∫

M×R
(1− p(x, λ))q(λ)div µ(a(x, λ)f(x))dµdλ ≥ 0

and for a.e. x ∈ S

∀q(λ) ∈ F

∫
aµ̄(x, λ)(1− pτ (x, λ))q(λ)dλ + L

∫
(1− pb(x, λ))q(λ)dλ ≥ 0.

(66)
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Here L is a sufficiently large constant.

If pb(x, λ) = sign+(ub(x) − λ) then boundary relations (65), (66) are

equivalent the following conditions: for a.e. x ∈ S

∀k ≥ ub(x)

∫ +∞

k

aµ̄(x, λ)pτ (x, λ)dλ ≥ 0; (67)

∀k ≤ ub(x)

∫ k

−∞
aµ̄(x, λ)(1− pτ (x, λ))dλ ≥ 0, (68)

respectively. Indeed, these relations follows from (65), (66) with q(λ) =

sign+(k − λ). Conversely, suppose that L ≥ Lµ̄ = sup
x∈S,u∈R

|aµ̄(x, u)| and

p(x, λ) satisfies (67). Then for q(λ) = sign+(k − λ) we have∫
aµ̄(x, λ)pτ (x, λ)(1− q(λ))dλ + L

∫
pb(x, λ)(1− q(λ))dλ =∫ +∞

max(k,ub(x))

aµ̄(x, λ)pτ (x, λ)dλ +

sign+(ub(x)− k)

∫ ub(x)

k

(aµ̄(x, λ)pτ (x, λ) + L)dλ ≥ 0.

Since the convex hull of functions sign+(k − λ) is dense in F with respect

to topology of L1
loc(R) we conclude that (65) fulfils for all q(λ) ∈ F . By

similar reasons we prove that (68) implies (66).

Remark 5. As one can see from the above statements, we always may

take in (55), (56) the constant L = Lµ̄.

§ 4. The comparison principle and uniqueness of g.e.s.

Using the Kruzhkov method of doubling variable we can establish ( as

in [10] ) the following result.

Theorem 5. Suppose that p1(x, λ) is a k.sub-s. and p2(x, λ) is a

k.super-s. of (53), (54) with boundary data p1b(x, λ) = sign+(u1b(x) − λ)

and p2b(x, λ) = sign+(u2b(x) − λ), respectively, and µ̄ = (µ, µb) is a pair

of smooth measures. Then for some L > 0 and each f = f(x) ∈ C1(M),

f ≥ 0 ∫
M×R

p1(x, λ)(1− p2(x, λ))div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

p1b(x, λ)(1− p2b(x, λ))f(x)dµbdλ ≥ 0. (69)

34



Proof. Since inequality (69) has local character we can assume that

supp f contains in a coordinate neighborhood U corresponding to a chart

(U, j, V ). Suppose that in local coordinates x1, . . . , xn a = ai(x, λ)∂/∂xi,

µ = ω(x)dx, µb = ωb(x
′)dx′, where x′ = (0, x2, . . . , xn) ∈ ∂V . By relations

(61), (64), with regards of formulas (7), (11), (60), (63), we have∫
V×R

p1(x, λ)(1− q(λ))div (a(x, λ)ω(x)f(x))dxdλ +∫
∂V×R

a1(x′, λ)(p1)τ (x
′, λ)(1− q(λ))ω(x′)f(x′)dx′dλ ≥ 0; (70)∫

V×R
q(λ)(1− p2(x, λ))div (a(x, λ)ω(x)f(x))dxdλ +∫

∂V×R
a1(x′, λ)q(λ)(1− (p2)τ (x

′, λ))ω(x′)f(x′)dx′dλ ≥ 0 (71)

for all nonnegative f = f(x) ∈ C1
0(V ), where (p1)τ (x

′, λ), (p2)τ (x
′, λ) are

weak traces of p1, p2 written in the local coordinates x′ and div v means the

”usual” divergence ∂vi/∂xi of a vector field v.

Putting in (70) q(λ) = p2(y, λ), f = f(x; y) ∈ C1
0(V ×V ) and integrating

over y ∈ V , we derive that∫
V×V×R

p1(x, λ)(1− p2(y, λ))div x(a(x, λ)ω(x)f(x; y))dxdydλ +∫
∂V×V×R

a1(x′, λ)(p1)τ (x
′, λ)(1−p2(y, λ))ω(x′)f(x′; y)dx′dydλ≥0. (72)

Similarly, changing the places of variables x and y, we derive from (71) with

q = p1(x, λ), that∫
V×V×R

p1(x, λ)(1− p2(y, λ))div y(a(y, λ)ω(y)f(x; y))dxdydλ +∫
V×∂V×R

a1(y′, λ)p1(x, λ)(1−(p2)τ (y
′, λ))ω(y′)f(x; y′)dxdy′dλ≥0. (73)

Putting (72), (73) together, we arrive at∫
V×V×R

p1(x, λ)(1− p2(y, λ))×

{div x(a(x, λ)ω(x)f(x; y)) + div y(a(y, λ)ω(y)f(x; y))}dxdydλ +
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∫
∂V×V×R

a1(x′, λ)(p1)τ (x
′, λ)(1−p2(y, λ))ω(x′)f(x′; y)dx′dydλ +∫

V×∂V×R
a1(y′, λ)p1(x, λ)(1−(p2)τ (y

′, λ))ω(y′)f(x; y′)dxdy′dλ≥0. (74)

Now we apply (74) to the test function f(x; y) = f(x)δν(y − x), where

f(x) ∈ C1
0(V ), f(x) ≥ 0, and δν(z) =

∏n
i=1 ρν(zi) for z = (z1, . . . , zn) ∈ Rn,

ν ∈ N. Here the function ρν(s) = νρ(νs) was defined above in the proof of

Proposition 1. Since supp ρ ⊂ (0, 1) and x1 ≥ 0 we see that f(x; y′) ≡ 0

and the last integral in (74) disappears. We denote r(x) = p1(x, λ) for fixed

λ ∈ R and observe that∫
V

r(x)[div x(a(x, λ)ω(x)f(x; y)) + div y(a(y, λ)ω(y)f(x; y))]dx =∫
V

r(x)div x(f(x)ω(x)a(x, λ))δν(y − x)dx−∫
V

r(x)f(x)ω(x)ai(x, λ)
∂δν(y − x)

∂yi

dx +

div y

(
a(y, λ)ω(y)

∫
V

f(x)r(x)δν(y − x)dx

)
=

(rdiv (fωa(·, λ))) ∗ δν(y) + div (ω(y)a(y, λ)(fr ∗ δν)(y))−
(div (ωa(·, λ)fr)) ∗ δν(y),

where ∗ is the convolution operation. Since the vector field ω(y)a(y, λ) is

smooth then by the DiPerna-Lions commutation lemma ( see [7] )

div (ω(y)a(y, λ)(fr ∗ δν)(y))− (div (ωa(·, λ)fr)) ∗ δν(y) → 0

as ν → ∞ in L1
loc(V ) for each λ ∈ R while by the known property of

convolutions

(rdiv (fωa(·, λ))) ∗ δν(y) → r(y)div (f(y)ω(y)a(y, λ)) in L1
loc(V ).

Hence in the limit as ν →∞ the first integral in (74) converges to

I1 =

∫
V×R

p1(x, λ)(1− p2(x, λ))div (a(x, λ)ω(x)f(x))dxdλ

(for convenience we place variable x instead of y).
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If ∂V 6= ∅ we have to find the limit as ν →∞ of the second integral in

(74). In this case we may assume that V = (0, h)×W . Then this integral

can be rewritten as follows

Iν
2 =

∫
W×V×R

a1(x′, λ)(p1)τ (x
′, λ)(1−p2(y, λ))ω(x′)f(x′)δν(y − x′)dx′dydλ.

From the condition that a1(0, z, λ)(p2(t, z, λ)− (p2)τ (z, λ)) → 0 weakly-∗ in

L∞(W ×R) as t → 0 running over a set of full measure it easily follows that

a1(x′, λ)

∫
V

(1− p2(y, λ))δν(y − x′)dy →
ν→∞

a1(x′, λ)(1− (p2)τ (x
′, λ))

weakly-∗ in L∞(W × R) and therefore

Iν
2 →

ν→∞
I2 =

∫
W×R

a1(x′, λ)(p1)τ (x
′, λ)(1−(p2)τ (x

′, λ))ω(x′)f(x′)dx′dλ.

Hence from (74) in the limit as ν → ∞ it follows the relation I1 + I2 ≥ 0

that is ∫
V×R

p1(x, λ)(1− p2(x, λ))div (a(x, λ)ω(x)f(x))dxdλ +∫
W×R

a1(x′, λ)(p1)τ (x
′, λ)(1−(p2)τ (x

′, λ))ω(x′)f(x′)dx′dλ ≥ 0.

This relation could be rewritten as∫
M×R

p1(x, λ)(1− p2(x, λ))div µ(a(x, λ)f(x))dµdλ−∫
S×R

aµ̄(x, λ)(p1)τ (x, λ)(1−(p2)τ (x, λ))f(x)dµbdλ ≥ 0 (75)

for all nonnegative test functions f(x) with supports in U . Since U is an

arbitrary coordinate neighborhood then, with the help of a partition of

unity, we conclude that (75) is satisfied for every f(x) ∈ C1(M), f(x) ≥ 0.

From relation (65) with p = p1, q = max((p2)τ (x, λ), p2b(x, λ)) it follows

that for a.e. x ∈ S∫ +∞

u2b(x)

aµ̄(x, λ)(p1)τ (x, λ)(1− (p2)τ (x, λ))dλ +

L

∫
p1b(x, λ)(1− p2b(x, λ))dλ ≥ 0.
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We take also into account that q(λ) ≥ p2b(x, λ) so that p1b(x, λ)(1 −
p2b(x, λ)) ≥ p1b(x, λ)(1 − q(λ)). Similarly, putting in (66) p = p2, q =

min((p1)τ (x, λ), p2b(x, λ)) and taking into account that q(λ)(1−p2b(x, λ)) ≡
0 we derive that for a.e. x ∈ S∫ u2b(x)

−∞
aµ̄(x, λ)(p1)τ (x, λ)(1− (p2)τ (x, λ))dλ ≥ 0.

Putting the above inequality together we obtain that for a.e. x ∈ S∫
aµ̄(x, λ)(p1)τ (x, λ)(1− (p2)τ (x, λ))dλ + L

∫
p1b(x, λ)(1− p2b(x, λ))dλ ≥ 0.

Integration over f(x)µb yields∫
S×R

aµ̄(x, λ)(p1)τ (x, λ)(1−(p2)τ (x, λ))f(x)dµbdλ +

L

∫
S×R

p1b(x, λ)(1− p2b(x, λ))f(x)dµbdλ ≥ 0.

Adding this inequality to (75), we readily obtain (69). The proof is com-

plete.

Corollary 3. Suppose that condition (U) is satisfied. Then any k.s. of

(53), (54) has the form p(x, λ) = sign+(u(x)− λ), where u(x) is a g.e.s. of

the problem (1), (2).

Proof. Since p(x, λ) is a k.sub-s. and k.super-s. of (53), (54) simultane-

ously we can apply Theorem 5 to p1 = p2 = p. Since pb(x, λ)(1−pb(x, λ)) ≡
0 we derive from (69) that∫

M×R
p(x, λ)(1− p(x, λ))div µ(a(x, λ)f(x))dµdλ ≥ 0. (76)

If p(x, λ) ∈ FR(M) then p(x, λ)(1−p(x, λ)) = 0 out of the segment [−R,R].

By condition (U) we can find a test function ρ(x) ∈ C1(M), ρ(x) ≥ 0

and smooth measure µ such that div µ(a(x, λ)f(x)) < 0 for a.e. x ∈ M ,

λ ∈ [−R,R]. Putting f = ρ(x) in (76) we find that p(x, λ)(1− p(x, λ)) = 0

a.e. on M×R. Since p(x, λ) is non-increasing with respect to λ this implies

that this function has the required form p(x, λ) = sign+(u(x) − λ), where

u(x) ∈ L∞(M), ‖u‖∞ ≤ R ( the fact that u(x) is measurable directly follows
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from measurability of p(x, λ) ). By Theorem 4 we conclude that u(x) is a

g.e.s. of original problem (1), (2). This completes the proof.

Another consequence of Theorem 5 is the following comparison principle

Theorem 6. Let u1(x) be a g.e.sub-s. and u2(x) be a g.e.super-s. of

(1), (2) with boundary data u1b, u2b respectively, and u1b ≤ u2b a.e. on S.

Suppose also that condition (U) is satisfied. Then u1(x) ≤ u2(x) a.e. on

M .

Proof. By Theorem 4 the function p1(x, λ) = sign+(u1(x) − λ),

p2(x, λ) = sign+(u2(x) − λ) are a k.sub-s. and a k.super-s. of (53),

(54) with the boundary data p1b(x, λ) = sign+(u1b(x) − λ), p2b(x, λ) =

sign+(u2b(x) − λ) respectively. By the assumption u1b ≤ u2b we have

p1b(x, λ)(1 − p2b(x, λ)) = 0 a.e. on S × R. Then, by Theorem 5 for each

smooth measure µ and every nonnegative test function f = f(x) ∈ C1(M)∫
M×R

p1(x, λ)(1− p2(x, λ))div µ(a(x, λ)f(x))dµdλ ≥ 0. (77)

Using condition (U) with R = max(‖u1‖∞, ‖u2‖∞) we find the non-

negative function ρ(x) ∈ C1(M) and the smooth measure µ such that

div µ(a(x, λ)ρ(x)) < 0 for a.e. (x, λ) ∈ M × [−R,R]. Putting f = ρ(x)

in (77) we conclude that p1(x, λ)(1 − p2(x, λ)) = 0 a.e. on M × R ( we

remark also that this function vanishes for |λ| > R ). Since the latter is

equivalent to the inequality u1(x) ≤ u2(x) a.e. on M , this completes the

proof.

Corollary 4. Under condition (U) a g.e.s. of (1), (2) is unique.

For the proof we apply the comparison principle for two g.e.s. u1(x),

u2(x) and derive that u1(x) ≤ u2(x), u2(x) ≤ u1(x) a.e. on M . Thus,

u1(x) = u2(x) a.e. on M , as required.

Corollary 5 (maximum principle). Assume that c1 ≤ ub(x) ≤ c2 a.e.

on S with some constants c1, c2 ∈ R, and u(x) is a g.e.s. of (1), (2). Then,

under condition (U), c1 ≤ u(x) ≤ c2 a.e. on M .

Proof. Let us first show that a constant function u(x) ≡ c is a g.e.s. of

problem (1), (2) with the same constant boundary data ub(x) ≡ c. Indeed,

let µ̄ = (µ, µb) be a pair of smooth measures and L ≥ sup
x∈S,u∈R

|aµ̄(x, u)|.
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Then by relation (10) for each f = f(x) ∈ C1(M), f ≥ 0∫
M

div µ(a(x, λ)f(x))dµ + L

∫
S

f(x)dµb =∫
S

(aµ̄(x, λ) + L)f(x)dµb ≥ 0.

Multiplying this inequality by the functions p(λ)(1− q(λ)), (1− p(λ))q(λ)

with p(λ) = sign+(c − λ), q(λ) ∈ F and integrating over λ, we derive that

both conditions (55), (56) are satisfied, i.e. p(λ) is a k.s. of the problem

(53), (54) with boundary function pb = p(λ). By Theorem 4 this means

that u(x) ≡ c is a g.e.s. of (1), (2) with ub ≡ c.

Further, applying the comparison principle for the three g.e.s. u1 ≡ c1,

u2 ≡ u, and u3 ≡ c2 we derive from the assumption c1 ≤ ub ≤ c2 that

c1 ≤ u(x) ≤ c2 a.e. on M , as was to be proved.

§ 5. Some properties of kinetic sub- and super-solutions.

In this section we are going to prove the existence of the maximal k.sub-s.

and the minimal k.super-s. of the problem (53), (54).

Firstly, observe that if functions p1(λ), p2(λ) ∈ F then

p1(λ)p2(λ)≤min(p1(λ), p2(λ))≤max(p1(λ), p2(λ))≤p1(λ) ◦ p2(λ).

Moreover if p1(λ) = sign+(u1−λ), p2(λ) = sign+(u2−λ) then p1(λ)p2(λ) =

sign+(min(u1, u2)− λ), p1(λ) ◦ p2(λ) = sign+(max(u1, u2)− λ).

The following statement takes place.

Proposition 5. Suppose that p1(x, λ), p2(x, λ) be a pair of k.sub-s.

( k.super-s. ) of (53), (54) with boundary data p1b(x, λ), p2b(x, λ) ∈ F(S).

Then the function p1(x, λ) ◦ p2(x, λ) ( respectively p1(x, λ)p2(x, λ) ) is a

k.sub-s. (k.super-s.) of this problem with the same boundary function

(p1b(x, λ) + p2b(x, λ))/2.

Proof. Suppose that p1(x, λ), p2(x, λ) are k.sub-s. of (53), (54) with

boundary data p1b(x, λ), p2b(x, λ). Then, as is easily verified, for each x, y ∈
M , q(λ) ∈ F

(p1(x, λ)◦p2(y, λ))(1−q(λ)) = p2(y, λ)(1−q(λ))+p1(x, λ)(1−p2(y, λ)◦q(λ)).

By (10) and relation (61) for the k.sub-s. p1 with q(λ) replaced by p2(y, λ)◦
q(λ), we arrive at∫

M×R
p1(x, λ) ◦ p2(y, λ)(1− q(λ))div µ

x(a(x, λ)f(x; y))dµ(x)dλ−
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∫
S×R

aµ̄(x, λ)((p1)τ (x, λ) ◦ p2(y, λ))(1− q(λ))f(x; y)dµb(x)dλ ≥ 0,

where f(x; y) is nonnegative test function, which belongs C1(M) with re-

spect to each of variables x, y. Changing places of the variables x, y and the

k.sub-s. p1, p2, we obtain the similar relation∫
M×R

p1(x, λ) ◦ p2(y, λ)(1− q(λ))div µ
y (a(y, λ)f(x; y))dµ(y)dλ−∫

S×R
aµ̄(y, λ)(p1(x, λ) ◦ (p2)τ (y, λ))(1− q(λ))f(x; y)dµb(y)dλ ≥ 0.

The obtained relations allows us to apply the method of doubling variables,

in the same way as in the proof of Theorem 5, and produce the inequality∫
M×R

p1(x, λ) ◦ p2(x, λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ−∫
S×R

aµ̄(x, λ)((p1)τ (x, λ) ◦ (p2)τ (x, λ))(1− q(λ))f(x)dµbdλ ≥ 0 (78)

for all f(x) ∈ C1(M), f(x) ≥ 0.

Now, we observe that

((p1)τ (x, λ) ◦ (p2)τ (x, λ))(1− q(λ)) = (p1)τ (x, λ)(1− q(λ)) +

(p2)τ (x, λ)(1− (p1)τ (x, λ) ◦ q(λ)).

and, as follows from (65), for a.e. x ∈ S∫
aµ̄(x, λ)((p1)τ (x, λ) ◦ (p2)τ (x, λ))(1− q(λ))dλ +

L

∫ (
p1b(x, λ)(1− q(λ)) + p2b(x, λ)(1− (p1)τ (x, λ) ◦ q(λ))

)
dλ ≥ 0. (79)

Now, remark that (p1)τ (x, λ) ◦ q(λ) ≥ q(λ). Therefore

p1b(x, λ)(1− q(λ)) + p2b(x, λ)(1− (p1)τ (x, λ) ◦ q(λ)) ≤
(p1b(x, λ) + p2b(x, λ))(1− q(λ))

and (79) implies that∫
aµ̄(x, λ)((p1)τ (x, λ) ◦ (p2)τ (x, λ))(1− q(λ))dλ +

2L

∫
1

2
(p1b(x, λ) + p2b(x, λ))(1− q(λ))dλ ≥ 0.
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Integrating this inequality over the measure f(x)µb and then adding the

obtained inequality to (78), we arrive at∫
M×R

p1(x, λ) ◦ p2(x, λ)(1− q(λ))div µ
x(a(x, λ)f(x))dµdλ +

2L

∫
S×R

1

2
(p1b(x, λ) + p2b(x, λ))(1− q(λ))f(x)dµbdλ ≥ 0 (80)

Since (80) holds for each q(λ) ∈ F and all f(x) ∈ C1(M), f(x) ≥ 0 we

see that p1(x, λ) ◦ p2(x, λ) is a k.sub-s. of (53), (54) with boundary data

(p1b(x, λ) + p2b(x, λ))/2.

If p1(x, λ), p2(x, λ) are k.super-s. then by Lemma 1 the functions

p1(x, λ), p2(x, λ) are k.sub-s. of the problem (57) with boundary data

p1b(x, λ), p2b(x, λ) respectively. As it has already proved, p1(x, λ)◦p2(x, λ) =

p1 · p2(x, λ) is a k.sub-s. of (57) with boundary data (p1b + p2b)/2 =

(p1b + p2b)/2. By Lemma 1 again we conclude that p1(x, λ)p2(x, λ) is

a k.super-s. of the original problem (53), (54) with boundary data

(p1b(x, λ) + p2b(x, λ))/2. The proof is complete.

We underline that in the above Proposition boundary data p1b, p2b are

arbitrary functions from F(S). Suppose that in (54) pb(x, λ) ∈ FR(S).

Then the functions p1(x, λ) = p1(λ) = sign+(−R−λ) and p2(x, λ) = p2(λ) =

sign+(R − λ) are respectively a k.sub-s. and a k.super-s. of (53), (54).

Indeed, since pi, i = 1, 2 do not depend on x this functions are k.s. of (53),

(54) with boundary data pi(λ) ( see the proof of Corollary 5 ). Therefore

for a pair µ̄ = (µ, µb) of smooth measures and some constant L we have the

relations ∫
M×R

p1(λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

p1(λ)(1− q(λ))f(x)dµbdλ ≥ 0;∫
M×R

(1− p2(λ))q(λ)div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

(1− p2(λ))q(λ)f(x)dµbdλ ≥ 0

for each q(λ) ∈ F , f(x) ∈ C1(M), f(x) ≥ 0. From these relations and the
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obvious inequality p1(λ) ≤ pb(x, λ) ≤ p2(λ) it follows that∫
M×R

p1(λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0;∫
M×R

(1− p2(λ))q(λ)div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

(1− pb(x, λ))q(λ)f(x)dµbdλ ≥ 0,

i.e. p1(λ) is a k.sub-s. and p2(λ) is a k.super-s. of (53), (54), as required.

Remark also that, as follows from Proposition 5 for p = p(λ) ∈ F , the

functions p ◦ p = 2p− p2 and p2 are kinetic sub- and super-solution of (53),

(54) respectively with the same boundary data p(λ) while 2p− p2 ≥ p2 and

2p − p2 = p2 only in the case when p(λ) = sign+(k − λ) with some k ∈ R.

This demonstrates that the comparison principle is not satisfied for general

kinetic boundary data.

Let pb(x, λ) = sign+(ub(x) − λ), ub(x) ∈ L∞(M). Obviously pb(x, λ) ∈
FR(S) for all R ≥ ‖ub‖∞. We will call the k.sub-s. p+(x, λ) ∈ FR(M)

maximal (in the class FR(M)) if p+(x, λ) ≥ p(x, λ) for each k.sub-s.

p(x, λ) ∈ FR(M). Analogously we define the notion of the minimal k.super-

s.

We are ready to prove the following result.

Theorem 7. There exist the maximal k.sub-s. p+(x, λ) ∈ FR(M) and

the minimal k.super-s. p−(x, λ) ∈ FR(M) of (53), (54). This functions

have the form p+(x, λ) = sign+(u+(x) − λ), p−(x, λ) = sign+(u−(x) − λ),

u±(x) ∈ L∞(M).

Proof. Denote by K−
R the set of k.sub-s. p ∈ FR(M) of (53), (54) and

by K+
R the set of k.super-s. p ∈ FR(M) of this problem. These sets are not

empty because, as was shown above, sign+(−R− λ) ∈ K−
R , sign+(R− λ) ∈

K+
R . We set for p = p(x, λ) ∈ FR(M) I(p) =

∫
M×[−R,R]

p(x, λ)dµdλ,

where µ is some smooth measure on M . Clearly, I0 = sup
p∈K−

R

I(p) ≤ I(1) =

2Rµ(M) < +∞. Hence, one can find a sequence pr = pr(x, λ) ∈ K−
R , r ∈ N

such that I(pr) → I0 as r →∞. We construct the new sequence p̃r setting

p̃1 = p1, p̃r = p̃r−1 ◦ pr for r > 1. Using Proposition 5 and induction in r
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we find that p̃r ∈ K−
R . Since p̃r = p̃r−1 ◦ pr ≥ max(p̃r−1, pr) we see that

p̃r+1 ≥ p̃r ≥ pr for all r ∈ N. In particular, I(pr) ≤ I(p̃r) ≤ I0 ∀r ∈ N. This

implies that I(p̃r) → I0 as r →∞. Further, by monotonicity of the sequence

p̃r and its boundedness from above ( p̃r ≤ 1 ), there exists the point-wise

limit p+(x, λ) = lim
r→∞

p̃r(x, λ) = sup
r∈N

p̃r(x, λ). Obviously, p+(x, λ) ∈ FR(M).

Passing to the limit as r →∞ in relations (55) corresponding to k.sub-s. p̃r

and taking into account that, by Remark 5, we can take constant L = Lµ̄

in these relations, which is common for all r ∈ N, we obtain that for each

q(λ) ∈ F , f(x) ∈ C1(M), f(x) ≥ 0∫
M×R

p+(x, λ)(1− q(λ))div µ(a(x, λ)f(x))dµdλ +

L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0.

This means that p+(x, λ) ∈ K−
R . We have to show that p+(x, λ) is the

maximal k.sub-s. For that, take an arbitrary k.sub-s. p(x, λ) ∈ K−
R . Then

by Proposition 5 the function p̃(x, λ) = p+(x, λ)◦p(x, λ) ∈ K−
R and p̃(x, λ) ≥

max(p+(x, λ), p(x, λ)). Since I0 = I(p+) ≤ I(p̃) ≤ I0 we conclude that

I(p̃) = I(p+). This implies that∫
M×[−R,R]

(p̃(x, λ)− p+(x, λ))dµdλ = I(p̃)− I(p+) = 0.

Therefore, p+(x, λ) = p̃(x, λ) ≥ p(x, λ) a.e. on M × R and p+(x, λ) is

the maximal k.sub-s. By Proposition 5 we see that p+ ◦ p+ ∈ K−
R . Since

p+ ◦ p+ ≥ p+ then in view of maximality of p+ we conclude that p+ ◦
p+ = p+, i.e. p+ = (p+)2. This implies that p+ necessarily has the form

p+(x, λ) = sign+(u+(x)− λ).

Existence of the minimal k.super-s. p− easily follows from Lemma 1.

Actually p− = p′+(x, λ) = sign+(u−(x)−λ), where p′+ is the maximal k.sub-

s. of the problem (57). Clearly, functions u±(x) ∈ L∞(M), ‖u±‖∞ ≤ R.

The proof is complete.

From Theorems 7 and 4 we derive the following

Corollary 6. The function u+(x) is the maximal g.e.sub-s. of (1), (2)

and the function u−(x) is the minimal g.e.super-s. of this problem among

functions from the ball ‖u‖∞ ≤ R.
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As will be established in the next section, functions u± are in fact g.e.s.

of (1), (2). Remark that the similar result was established in [18, 19] for

locally integrable g.e.s. of the Cauchy problem in the half-space t > 0 ( in

the situation when the uniqueness of g.e.s. may be violated ).

Generally, the functions u± depend on R. For instance, consider the

Dirichlet problem for equation (50) from Example 3 with zero boundary

data. Then, as one can easily verify, u±(x) = 0 for r > r0 while u±(x) = ±R

for r < r0.

§ 6. The existence of k.s.

We will study even more general nonhomogeneous transport equation

〈a(x, λ), p〉 = −H(x, λ, p), p = p(x, λ), (81)

where H(x, λ, p) is a measurable function on M × R × [0, 1] satisfying the

following properties:

H(x, λ, sign+(−λ)) = 0 for |λ| > R; (82)

∀p1, p2 ∈ [0, 1], p1 ≥ p2 0 ≤ H(x, λ, p1)−H(x, λ, p2) ≤ C(p1 − p2); (83)

∀p ∈ [0, 1] 0 ≤ p− εH(x, λ, p) ≤ 1. (84)

Here R,C, ε are some positive constants, and R ≥ ‖ub‖∞. From (84) it

follows that for p ∈ [0, 1]

0 ≤ p− δH(x, λ, p) ≤ 1 ∀δ ∈ [0, ε]. (85)

Indeed, that is readily derived from the relation

p− δH(x, λ, p) =
ε− δ

ε
p +

δ

ε
(p− εH(x, λ, p)).

We need the notion of a measure valued function.

Let (Ω,M, µ) be a measure space, so that µ is a measure on a σ-algebra

M in X. We recall ( see [6, 25] ) that a measure valued function on Ω is a

weakly measurable map x 7→ νx of Ω into the space Prob0(R) of probability

Borel measures with compact support in R.

The weak measurability of νx means that for each continuous function

g(u) the function x → 〈g(u), νx(u)〉 =

∫
g(u)dνx(u) is measurable on Ω.

We say that a measure valued function νx is bounded if there exists

R > 0 such that supp νx ⊂ [−R,R] for almost all x ∈ Ω. We shall denote

by ‖νx‖∞ the smallest of such R.
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Finally, we say that measure valued functions of the kind

νx(u) = δ(u− u(x)), where u(x) ∈ L∞(Ω) and δ(u − u∗) is the Dirac mea-

sure at u∗ ∈ R, are regular. We identify these measure valued functions

and the corresponding functions u(x), so that there is a natural embedding

L∞(Ω) ⊂ MV (Ω), where MV (Ω) is the set of bounded measure valued func-

tions on Ω.

Measure valued functions naturally arise as weak limits of bounded se-

quences in L∞(Ω) in the sense of the following theorem of Tartar ( see

[25] ).

Theorem T. Let um(x) ∈ L∞(Ω), m ∈ N be a bounded sequence. Then

there exist a subsequence ur(x) and a measure valued function νx ∈ MV(Ω)

such that

∀g(u) ∈ C(R) g(ur) →
r→∞

〈g(u), νx(u)〉 weakly-∗ in L∞(Ω). (86)

Besides, νx is regular, i.e. νx = δ(u− u(x)) if and only if ur(x) →
r→∞

u(x) in

L1
loc(Ω).

More generally, if g(x, u) is a Caratheodory function bounded on the sets

Ω× [−R,R], R > 0 then for each r ∈ N the functions g(x, ur(x)) ∈ L∞(Ω),∫
g(x, u)dνx(u) ∈ L∞(Ω), and

g(x, ur(x)) →
r→∞

〈g(x, u), νx(u)〉 =

∫
g(x, u)dνx(u) weakly-∗ in L∞(Ω).

(87)

This follows from the fact that any Caratheodory function is strongly mea-

surable as a map x → g(x, ·) ∈ C(R) (see [9], Chapter 2) and, therefore,

is a pointwise limit of step functions gm(x, u) =
∑
i

lmi(x)hmi(u) so that for

x ∈ Ω gm(x, ·) →
m→∞

g(x, ·) in C(R).

As was shown in [14] ( see also [15] ), for a measure valued function νx

we can introduced the function

p(x, s) = inf{ v | νx((v, +∞)) ≤ s }

such that the measures νx is an image of the Lebesgue measure ds on (0, 1)

with respect to the map s → p(x, s): νx = p(x, ·)∗ds. Moreover, the function

s → p(x, s) is a unique non-increasing and right-continuous function with

the property νx = p(x, ·)∗ds. As is easy to verify ( see [14, 15] ) p(x, s)
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is measurable on Ω × (0, 1), p(x, s) ∈ L∞(Ω × (0, 1)), and ‖p‖∞ = ‖νx‖∞.

Observe also that p(x, s) = u(x) for a regular function νx ∼ u(x). By the

identity νx = p(x, ·)∗ds we have

∫
g(x, u)dνx(u) =

∫ 1

0

g(x, p(x, s))ds for

each Caratheodory function g(x, u). Therefore, the limit relation (87) can

be rewritten as follows

g(x, ur(x)) →
r→∞

∫
g(x, p(x, s))ds weakly-∗ in L∞(Ω). (88)

Remark that the function p(x, s) was used in [14, 15] in the definition of a

strong measure valued solution for a scalar conservation law. In [16] the in-

teresting connection between strong and statistical measure valued solutions

was found.

The function p(x, s) was called later in [8] a bounded measurable process

on Ω ( if to be exact, the non-decreasing version of p was used in [8] instead ).

We will use a shorter name a process in the sequel. Hence, a process on Ω is

a function p(x, s) ∈ L∞(Ω× (0, 1)), which is non-increasing and continuous

from the right with respect to s. Clearly, correspondence νx = p(x, ·)∗ds

between processes and measure valued functions is one to one.

Now we introduce the notions of a kinetic process solution to problem

(81), (54). We will consider the space Ω = M × R as a measure space

endowed with Lebesgue σ-algebra and measure µ × dλ on it, where µ is a

smooth measure on M .

Definition 5. A process p(x, λ, s) on M ×R is called a kinetic process

sub-solution ( super-solution ) of (81), (54) if p(·, s) ∈ FR(M) for some

R > 0 and each s ∈ (0, 1), and the following relations similar to (55) and

(56) are satisfied: ∀q(λ) ∈ F , ∀f(x) ∈ C1(M), f(x) ≥ 0∫
M×R×(0,1)

[p(x, λ, s)div µ(a(x, λ)f(x))−H(x, λ, p(x, λ, s))f(x)]×

(1− q(λ))dµdλds + L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0 (89)

and, respectively,∫
M×R×(0,1)

[(1−p(x, λ, s))div µ(a(x, λ)f(x))+H(x, λ, p(x, λ, s))f(x)]×

q(λ)dµdλds + L

∫
S×R

(1− pb(x, λ))q(λ)f(x)dµbdλ ≥ 0. (90)
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Here L is a sufficiently large constant, µ̄ = (µ, µb) is a pair of smooth

measures on M and S.

We call p(x, λ, s) a kinetic process solution of (81), (54) if it is a kinetic

process sub- and super-solution of this problem simultaneously.

In the case when p(x, λ, s) = p(x, λ) ∈ F(M) (that corresponds to

the regular measure valued function νx,λ ∼ p(x, λ) relations (89), (90) are

reduced to the following ones:∫
M×R

[p(x, λ)div µ(a(x, λ)f(x))−H(x, λ, p(x, λ))f(x)]×

(1− q(λ))dµdλ + L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0 (91)

and, respectively,∫
M×R

[(1− p(x, λ))div µ(a(x, λ)f(x)) + H(x, λ, p(x, λ))f(x)]×

q(λ)dµdλ + L

∫
S×R

(1− pb(x, λ))q(λ)f(x)dµbdλ ≥ 0. (92)

In this case we call p(x, λ) a kinetic sub-solution and, respectively, a kinetic

super-solution of (81), (54). If p(x, λ) is a kinetic sub- and super-solution

simultaneously it is called a kinetic solution.

Observe that in the case when the function p → H(x, λ, p) is linear

and p(x, λ, s) is a kinetic process sub-solution (super-solution, solution) of

(81), (54) the function p(x, λ) =
∫ 1

0
p(x, λ, s)ds is a kinetic sub-solution

(respectively - super-solution, solution) of this problem.

We are going to prove the existence of a kinetic process solution of (81),

(54). For that, we consider the following equation

〈a(x, λ), p〉 = −r(p− P (κrp))(x, λ)−H(x, λ, P (κrp)(x, λ)) (93)

containing the relaxation term −r(p−P (κrp)) with parameter r ∈ N. Here

the sequence κr ∈ (0, 1) is such that r(1− κr) → 0 as r → ∞; Pw(x, λ) =

(Pw(x, ·))(λ), where P : L2([−R,R]) → FR is a projection operator onto FR

so that for w = w(λ) ∈ L2([−R,R]) Pw = Pw(λ) ∈ FR and ‖w − Pw‖2 =

min
q∈FR

‖w− q‖2. Here the constant R > 0 such that pb ∈ FR(S) is taken from

condition (82).
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Since FR is a convex closed subset of the Hilbert space L2([−R,R]) the

projection P is well-defined, and

q = Pw ⇔ q ∈ FR and (w − q, p− q)2 ≤ 0 ∀p ∈ FR. (94)

Any non-increasing function q(λ) on [−R,R] such that 0 ≤ q(λ) ≤ 1 are

assumed to be extended on R by equalities g(λ) = 1, λ ≤ −R; g(λ) = 0,

λ > R and will be considered as an element of FR ( obviously, after an

improvement on a set of null measure it becomes also right-continuous ).

We will need some properties of the projection. It is useful to intro-

duce the projection P̃ : L2([−R,R]) → F̃R, where F̃R is a cone of all non-

increasing functions from L2([−R,R]).

Lemma 2 (properties of P̃ ).

a) ‖P̃ v − P̃w‖2 ≤ ‖v − w‖2 for all v, w ∈ L2([−R,R]);

b) if v ≤ w then P̃ v ≤ P̃w (monotonicity);

c) ‖P̃ v − P̃w‖∞ ≤ ‖v − w‖∞ for all v, w ∈ L∞([−R,R]);

d) (v − P̃ v, q)2 ≤ 0 ∀q ∈ F̃R, (v − P̃ v, P̃ v)2 = 0;

e) if 0 ≤ v ≤ 1 then P̃ v = Pv.

Proof. By condition (94) (with P , FR replaced by P̃ , F̃R) we have

(v−P̃ v, P̃w−P̃ v)2 ≤ 0, (w−P̃w, P̃ v−P̃w)2 ≤ 0. Putting these inequalities

together, we arrive at (v −w, P̃w− P̃ v)2 + ‖P̃ v − P̃w‖2
2 ≤ 0. Thus, ‖P̃ v −

P̃w‖2
2 ≤ (v − w, P̃ v − P̃w)2 ≤ ‖v − w‖2‖P̃ v − P̃w‖2, which readily implies

a).

To prove b), suppose firstly that v < w a.e. on [−R,R]. Taking in

the inequalities (w − P̃w, q − P̃w)2 ≤ 0, (v − P̃ v, q − P̃ v)2 ≤ 0 a function

q = max(P̃ v, P̃w) and q = min(P̃ v, P̃w), respectively, we obtain that

(w − P̃w, (P̃ v − P̃w)+)2 ≤ 0, −(v − P̃ v, (P̃ v − P̃w)+)2 ≤ 0.

Putting together these inequality, we find that∫ R

−R

(w − v)(P̃ v − P̃w)+dλ = (w − v, (P̃ v − P̃w)+)2 ≤

(P̃w − P̃ v, (P̃ v − P̃w)+)2 =

∫ R

−R

(P̃w − P̃ v)(P̃ v − P̃w)+dλ ≤ 0

and since w − v > 0 a.e. on [−R,R] we conclude that (P̃ v − P̃w)+ = 0

a.e. on [−R,R], i.e. P̃ v ≤ P̃w as required. In general case when v ≤ w we
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replace w by wr = w + 1/r, r ∈ N. Then v < wr and, as we have already

proved, P̃ v ≤ P̃wr. It is clear that wr → w as r → ∞ in L2([−R, R])

and in view of a) this implies that P̃wr → P̃w in L2([−R,R]) as r → ∞.

Therefore, we can pass to the limit in the inequality P̃ v ≤ P̃wr and derive

the desired result P̃ v ≤ P̃w.

Now, suppose that v = v(λ), w = w(λ) are bounded and C = ‖v−w‖∞.

Then w − C ≤ v ≤ w + C a.e. on [−R,R] and by b) P̃ (w − C) ≤ P̃ v ≤
P̃ (w+C) a.e. on [−R,R]. Now observe that the cone F̃R is invariant under

the transformations v → v ± C, therefore P̃ (w ± C) = P̃w ± C. Thus,

P̃w−C ≤ P̃ v ≤ P̃w+C a.e. on [−R,R]. This means that ‖P̃ v−P̃w‖∞ ≤ C,

as was to be proved.

To prove d), observe that by (94) we have (v − P̃ v, q)2 = (v − P̃ v, q +

P̃ v − P̃ v)2 ≤ 0. Putting in (94) p = cP̃ v with c > 0, we obtain that

(c−1)(v−P̃ v, P̃ v)2 ≤ 0 ∀c > 0. This obviously implies that (v−P̃ v, P̃ v)2 =

0.

Finally, if v = v(λ) is such that 0 ≤ v ≤ 1 a.e. on [−R,R] then by c)

0 = P̃0 ≤ P̃ v ≤ P̃1 = 1. Hence P̃ v ∈ KR ⊂ K̃R. Obviously, this implies

that P̃ v = Pv. The proof is now complete.

Remark 6.

1) Since constant functions belongs to F̃R we derive from assertion d)

with q = ±1 that (v − P̃ v, 1)2 = 0 that is
∫ R

−R
v(λ)dλ =

∫ R

−R
P̃ v(λ)dλ;

2) Properties a)-c) are satisfied also for the projection P . Proofs of a),

b) are exactly the same as in Lemma 2. To prove c), it is sufficient to show

that P (w + C) ≤ Pw + C for C > 0. Indeed, then from the inequality

w − C ≤ u ≤ w + C it follows that Pw − C ≤ P (w − C + C) − C ≤
P (w − C) ≤ Pu ≤ P (w + C) ≤ Pw + C and we conclude as in Lemma 2.

To establish the inequality P (w + C) ≤ Pw + C we consider relations

(94)

(w + C − P (w + C), p− P (w + C))2 ≤ 0, (w − Pw, p− Pw)2 ≤ 0 ∀p ∈ FR

and put in the first inequality p = min(Pw+C, P (w+C)) and in the second

one p = max(Pw, P (w + C) − C) ( as is easy to see the both functions

p ∈ FR ). This yields the inequalities

−(w + C − P (w + C), (P (w + C)− Pw − C)+)2 ≤ 0,
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(w − Pw, (P (w + C)− Pw − C)+)2 ≤ 0

Putting them together, we arrive at

(P (w + C)− Pw − C, (P (w + C)− Pw − C)+)2 ≤ 0.

This implies that (P (w + C)−Pw−C)+ = 0, i.e. P (w + C) ≤ Pw + C, as

required.

It is important that our projection operator is a contraction not only in

L2 but also in L∞. In BGK-like approximations, usually applied in kinetic

models ( see [10, 12, 24] ), the corresponding operators do not satisfy this

property.

In approximate equation (93) we need to be sure that P (κrp)(x, λ) ∈
L∞(M × R). This is proved in the following lemma.

Lemma 3. Suppose that w(x, λ) ∈ L∞(M × [−R,R]). Then the

function q(x, λ) = (Pw(x, ·))(λ) ∈ L∞(M × [−R,R]) as well.

Proof. Since w(x, λ) ∈ L2(M × [−R,R], µ × dλ) for a smooth mea-

sure µ on M the map x → W (x)(λ)
.
= w(x, λ) belongs to the space

L2(M, X), where X = L2([−R,R]). In view of Lemma 2,a) and Re-

mark 6 the projection P is a continuous operator on X. Therefore,

Q(x) = PW (x) ∈ L2(M, X), which implies that q(x, λ) = Q(x)(λ) ∈
L2(M × [−R, R]). Since Q(x) ∈ FR we see that 0 ≤ q(x, λ) ≤ 1. Therefore,

q(x, λ) ∈ L∞(M × [−R,R]). The proof is complete.

We will understand solutions p = p(x, λ) ∈ L∞(M ×R) of (93) as weak

solutions of the nonhomogeneous transport equation on M × R

〈a(x, λ), p〉+ rp = h(x, λ)

with the source term h(x, λ) = rP (κrp)(x, λ)−H(x, λ, P (κrp)(x, λ)). Here

a(x, λ) may be considered as a vector field on the manifold M ×R (tangent

to layers M ×{λ}). Let µ̄ = (µ, µb) be a pair of smooth measure on M and

S, aµ̄(x, λ) = 〈nµ̄(x), a(x, λ)〉 be a normal trace of the field a(·, λ) on the

boundary S. We introduce the set

D− = { (x, λ) ∈ S × R | aµ̄(x, λ) < 0}.

As is easy to see this set is open in S×R and does not depend on the choice

of µ̄. We will say that p(x, λ) ∈ L∞(M ×R) is a weak solution of (93) if for
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all f(x) ∈ C1
0(M0) and g(λ) ∈ L1(R)∫

M×R
[p(x, λ)div µ(a(x, λ)f(x)) + h(x, λ)f(x)]g(λ)dµdλ = 0. (95)

As is easy to verify, passing to local coordinates, p(x, λ) is a weak solution of

(93) if and only if it (after an improvement on a set of null measure in M×R,

if necessary) satisfies the equation ṗ + rp = h along the characteristics.

We will suppose also that a weak solution p(x, λ) satisfies the boundary

condition

p(x, λ) = pb(x, λ) on D− (96)

in the strong sense.

Denote x(s) = x(s; y, λ) a characteristic passing through y ∈ M0 for

s = 0. Thus, x(s) is the unique solution of ODE ẋ = a(x, λ) on M with

Cauchy data x(0) = y. This solution is defined on some maximal interval

s ∈ (α(y, λ), β(y, λ)) 3 0. Since along the characteristic x(s) = x(s; y, λ)

ṗ + rp =
d

ds
p(x(s), λ) + rp(x(s), λ) = h(x(s), λ) (97)

then, solving this ODE and taking into account condition (96) if α(y, λ) >

−∞, we obtain the formula

p(y, λ) = pb(x0(y, λ))erα(y,λ) +

∫ 0

α(y,λ)

e−rsh(x(s), λ)ds, (98)

where x0(y, λ) = x(α(y, λ)). Remark ( see the proof of Proposition 4 ) that

in the case of finite α = α(y, λ) the characteristic x(s) is defined at s = α,

and x0 = x(α) ∈ S. If α(y, λ) = −∞ then we define

p(y, λ) =

∫ 0

−∞
e−rsh(x(s), λ)ds, (99)

so that p(y, λ) = p(0), where p(s) is a unique bounded solution of (97).

Since h(x(s), λ) is a bounded function the integral in (99) exists. Both

formulas (98), (99) hold for a.e. (y, λ) ∈ M × R such that the function

h(x(s; y, λ), λ) is well-defined for a.e. s ∈ (α(y, λ), 0).

Remark that the function h depends on p and (98), (99) are integral

equations with the unknown p = p(x, λ). Let us show that these equations

admit a unique solution.
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Theorem 8. For sufficiently large r ∈ N there exists a unique solution

p(x, λ) ∈ L∞(M × R) of integral equations (98), (99). Moreover, 0 ≤
p(x, λ) ≤ 1 and p(x, λ) = sign+(−λ) for |λ| > R.

Proof. We take r > max(C, 1/ε), where C, ε are the constants from

conditions (83), (84). Let q(x, λ) ∈ B, where B is a closed subset of L∞(M×
R) consisting of functions q = q(x, λ) such that 0 ≤ q ≤ 1, q = sign+(−λ)

for |λ| > R. Define the function p(x, λ) by identities (98), (99) but with the

function h̃(x, λ) = rP (κrq)(x, λ)−H(x, λ, P (κrq)(x, λ)) instead of h:

p(y, λ) = pb(x0(y, λ))erα(y,λ) +

∫ 0

α(y,λ)

e−rsh̃(x(s), λ)ds (100)

if α(y, λ) > −∞;

p(y, λ) =

∫ 0

−∞
e−rsh̃(x(s), λ)ds, (101)

if α(y, λ) = −∞. The function p = p(y, λ) is defined a.e. on M × R.

Since h̃(x, λ) = r[P (κrq) − 1
r
H(x, λ, P (κrq))] and 1/r < ε it follows

from (85) that 0 ≤ h̃ ≤ r. This and the condition 0 ≤ pb ≤ 1 imply that

0 ≤ p ≤ 1. Indeed, in the case of (100)

0 ≤ p(y, λ) ≤ erα(y,λ) + r

∫ 0

α(y,λ)

e−rsds = 1,

while in the case of (101)

0 ≤ p(y, λ) ≤ r

∫ 0

−∞
e−rsds = 1.

If |λ| > R then pb(x, λ) = sign+(−λ), h̃(x, λ) = r sign+(−λ) with account

of (82) and the both equalities (100), (101) yield that p(x, λ) = sign+(−λ).

Thus, p(x, λ) ∈ B.

The correspondence q → p = Tq define an operator T on B. Let us

show that this operator is a contraction. Indeed, since 0 ≤ κrq ≤ 1 we

derive from Lemma 2,e) that P (κrq) = P̃ (κrq). Then from Lemma 2,c) ( or

Remark 6 ) it follows that

‖P (κrq1)− P (κrq2)‖∞ ≤ κr‖q1 − q2‖∞

for each q1 = q1(x, λ), q2 = q2(x, λ) from B. Now we fix (x, λ) and denote

vi = P (κrqi)(xλ), h̃i = rvi − H(x, λ, vi), i = 1, 2. Suppose for definite-

ness that v1 ≥ v2. Then by (83) and the assumption r > C we have
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0 ≤ 1
r
[H(x, λ, v1) − H(x, λ, v2)] ≤ (v1 − v2). Since h̃1 − h̃2 = r

(
v1 − v2 −

1
r
(H(x, λ, v1)−H(x, λ, v2))

)
we derive that 0 ≤ h̃1− h̃2 ≤ r(v1− v2). Thus,

|h̃1(x, λ)− h̃2(x, λ)| ≤ r|P (κrq1)(x, λ)− P (κrq2)(x, λ)| ≤ rκr‖q1 − q2‖∞.

Let pi = Tqi, i = 1, 2. Then, by equalities (100), (101) for a.e. (y, λ)

|p1(y, λ)− p2(y, λ)| ≤
∫ 0

α(y,λ)

e−rs|h̃1(x(s), λ)− h̃2(x(s), λ)|ds ≤

rκr‖q1 − q2‖∞
∫ 0

α(y,λ)

e−rsds ≤ κr‖q1 − q2‖∞.

Hence ‖p1 − p2‖∞ ≤ κr‖q1 − q2‖∞ and since κr < 1 the operator T is

a contraction on B. By the Banach theorem there exists a unique fixed

point p = p(x, λ) ∈ B of T . Then p(x, λ) satisfies (98), (99). The proof is

complete.

It is natural to consider the function p(x, λ), constructed in the above

theorem, as a weak solution to the approximate problem (93), (96). Now

we fix a pair of smooth measures µ̄ = (µ, µb) and take L = Lµ̄ =

supx∈S,u∈R |aµ̄(x, u)|. Let p(x, λ) be a weak solution of (93), (96).

Proposition 6. For a.e. λ ∈ R for each f(x) ∈ C1(M), f(x) ≥ 0∫
M

{p(x, λ)div µ(a(x, λ)f(x))− f(x)[r(p(x, λ)− P (κrp)(x, λ)) +

H(x, λ, P (κrp)(x, λ))]}dµ + L

∫
S

pb(x, λ)f(x)dµb ≥ 0; (102)∫
M

{(1−p(x, λ))div µ(a(x, λ)f(x))+f(x)[r(p(x, λ)−P (κrp)(x, λ)) +

H(x, λ, P (κrp)(x, λ))]}dµ + L

∫
S

(1− pb(x, λ))f(x)dµb ≥ 0. (103)

Proof. We denote

Q(x, λ) = r(p(x, λ)− P (κrp)(x, λ)) + H(x, λ, P (κrp)(x, λ)).

Since for a.e. λ ∈ R the function p(x, λ) satisfies (97) along characteristics

x(s; y, λ) ( for almost all y ∈ M ) it is a weak solution of the transport

equation 〈a(x, λ), p〉 = −Q(x, λ). Therefore, for each f(x) ∈ C1
0(M0)∫

M

{p(x, λ)div µ(a(x, λ)f(x))− f(x)Q(x, λ)}dµ = 0.
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By Proposition 1 we see that v(x) = p(x, λ)a(x, λ) is a divergence measure

field. Therefore, there exists its weak normal trace vµ̄(x) on S, and by

Corollary 1 for each f(x) ∈ C1(M), f(x) ≥ 0∫
M

{p(x, λ)div µ(a(x, λ)f(x))− f(x)Q(x, λ)}dµ−
∫

S

vµ̄(x)f(x)dµb ≥ 0

(104)

( in fact, as follows from (22), the left-hand side of this relation even equals

0 ). Passing to local coordinates and using (98) and (19) and the fact that

p ≥ 0 we find that vµ̄(x) = aµ̄(x)pb(x, λ) ≥ −Lpb(x, λ) for a.e. x ∈ S, such

that aµ̄(x, λ) < 0 while vµ̄(x) ≥ 0 for a.e. x ∈ S such that aµ̄(x, λ) ≥ 0. In

any case we have vµ̄(x) ≥ −Lpb(x, λ) a.e. on S and (104) implies (102).

In order to prove (103), we observe that q = (1 − p(x, λ)) is a weak

solution of the equation 〈a(x, λ), q〉 = Q(x, λ). Repeating the arguments,

used for the proof of (102), we readily derive (103). The proof is complete.

Corollary 7. For any q(λ) ∈ F and each f(x) ∈ C1(M), f(x) ≥ 0∫
M×R

(1−q(λ)){p(x, λ)div µ(a(x, λ)f(x))− f(x)×

H(x, λ, P (κrp)(x, λ))}dµdλ+L

∫
S×R

pb(x, λ)(1−q(λ))f(x)dµbdλ≥∫
M×[−R,R]

f(x)r(1−κr)p(x, λ)(1− q(λ))dµdλ; (105)∫
M×R

q(λ){(1−p(x, λ))div µ(a(x, λ)f(x)) + f(x)×

H(x, λ, P (κrp)(x, λ))}dµdλ+L

∫
S×R

q(λ)(1−pb(x, λ))f(x)dµbdλ≥

−
∫

M×[−R,R]

f(x)r(1−κr)p(x, λ)q(λ)dµdλ. (106)

Proof. By Theorem 8 the function p(x, λ) ∈ B and Lemma 2,e) yields

P (κrp)(x, λ) = P̃ (κrp)(x, λ). It is clear also that p(x, λ)−P (κrp)(x, λ) = 0

for |λ| > R. Using Lemma 2,d) and Remark 6,1) we find that∫
(1−q(λ))(p(x, λ)−P (κrp)(x, λ))dλ =

∫ R

−R

(1−κr)(1−q(λ))p(x, λ)dλ +∫ R

−R

(1−q(λ))(κrp(x, λ)−P̃ (κrp)(x, λ))dλ≥
∫ R

−R

(1−κr)(1−q(λ))p(x, λ)dλ,
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∫
q(λ)(p(x, λ)− P (κrp)(x, λ))dλ =

∫ R

−R

(1− κr)q(λ)p(x, λ)dλ +∫ R

−R

q(λ)(κrp(x, λ)− P̃ (κrp)(x, λ))dλ ≤
∫ R

−R

(1− κr)q(λ)p(x, λ)dλ.

Integrating (102), (103) over the measures (1−q(λ))dλ, q(λ)dλ, respectively

and taking into account the above inequalities, we obtain (105), (106).

Now, we are going to pass to the limit as r → ∞. Denote by pr(x, λ)

the weak solution of (93), (96). Let qr(x, λ) = P (κrpr)(x, λ).

Lemma 4. As r →∞ pr − qr → 0 in L2(M × R).

Proof. For a.e. λ ∈ R p = pr(x, λ) is a weak solution of the transport

equation 〈a(x, λ), p〉 = −r(p− q)−H(x, λ, q) with q = qr(x, λ). Recall that

the field a(x, λ) is smooth. Then by the known renormalization property

( see for example [7] ) p2 is a weak solution of this transport equation but

with the source term 2p(−r(p − q) − H(x, λ, q)). Hence, 〈a(x, λ), p2〉 =

−2rp(p− q)− 2pH(x, λ, q) in the sense of distributions on M , i.e. for each

test function f(x) ∈ C1
0(M0)∫

M

[p2
r(x, λ)div µ(a(x, λ)f(x))− 2pr(x, λ)H(x, λ, qr(x, λ))f(x)]dµ =

2r

∫
M

pr(x, λ)(pr(x, λ)− qr(x, λ))f(x)dµ.

Integrating this equality over λ ∈ [−R,R] and taking into account the

uniform estimates 0 ≤ pr ≤ 1, |H(x, λ, qr)| ≤ 1/ε (the latter follows from

(84)), we find that ∀f(x) ∈ C1
0(M0), f(x) ≥ 0

2r

∫
M×[−R,R]

pr(x, λ)(pr(x, λ)− qr(x, λ))f(x)dµdλ =∫
M×[−R,R]

[p2
rdiv µ(a(x, λ)f(x))− 2prH(x, λ, qr)f(x)]dµdλ ≤ Cf , (107)

where Cf is a constant independent of r. Now, observe that∫ R

−R

pr(x, λ)(pr(x, λ)− qr(x, λ))dλ =

∫ R

−R

(pr(x, λ)− qr(x, λ))2dλ +

(1− κr)

∫ R

−R

pr(x, λ)qr(x, λ)dλ +

∫ R

−R

qr(x, λ)(κrpr(x, λ)− qr(x, λ))dλ.
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Since qr = P (κrpr) = P̃ (κrpr) we derive from Lemma 2,d) that the last

integral vanishes. Therefore,∫ R

−R

(pr(x, λ)− qr(x, λ))2dλ ≤
∫ R

−R

pr(x, λ)(pr(x, λ)− qr(x, λ))dλ.

Integrating this inequality over M and taking into account (107) we arrive

at ∫
M×R

(pr(x, λ)− qr(x, λ))2f(x)dµdλ ≤ Cf/(2r) →
r→∞

0.

We also use that pr(x, λ)− qr(x, λ) = 0 for |λ| > R. The obtained estimate

and the fact that ‖pr − qr‖ ≤ 1 imply that pr − qr → 0 in L2(M × R), as

was to be proved.

Since the sequence pr, r ∈ N is bounded in L∞(M × R), 0 ≤ pr ≤ 1

there exists a subsequence ( still denoted by pr ) and a process p(x, λ, s) on

M × R such that pr → p in the sense of relation (88):

g(x, λ, pr(x, λ)) →
r→∞

∫ 1

0

g(x, λ, p(x, λ, s))ds weakly-∗ in L∞(M × R)

(108)

for every Caratheodory function g(x, λ, p) on M × R × R. As is easy to

verify, 0 ≤ p(x, λ, s) ≤ 1. Further, from Lemma 4 it follows the relation

g(x, λ, qr(x, λ)) →
r→∞

∫ 1

0

g(x, λ, p(x, λ, s))ds weakly-∗ in L∞(M × R),

(109)

i.e. qr converges weakly as r → ∞ to the same process p. From relations

(108), (109) in particular follows that pr, qr → p̄(x, λ) =
∫ 1

0
p(x, λ, s)ds

weakly-∗ in L∞(M × R). Since qr(x, λ) ∈ FR(M) and FR(M) is a closed

convex subset of L∞(M ×R) the weak limit p̄(x, λ) ∈ FR(M). Let us show

that, more generally, p(·, s) ∈ FR(M) for all s ∈ (0, 1).

Lemma 5. For each s ∈ (0, 1) p(·, s) ∈ FR(M).

Proof. Let νx,λ ∈ MV(M × R) be the limit measure valued function

of the sequence qr(x, λ) in the sense of Theorem T. Then

p(x, λ, s) = inf{ v | νx,λ((v, +∞)) ≤ s } = inf{ v | 〈g(u), νx,λ(u)〉 ≤ s

for each nondecreasing continuous function g(u) ≤ sign+(u− v) }. (110)
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Since 〈g(u), νx,λ(u)〉 is a weak-∗ limit of the sequence g(qr(x, λ)) and all

these functions are non-increasing with respect to λ, the same is true for

the limit function 〈g(u), νx,λ(u)〉. From (110) it then follows that p(x, λ, s)

is non-increasing with respect to λ. Observe also that 0 ≤ p(x, λ, s) ≤ 1

and p(x, λ, s) = sign+(−λ) for |λ| > R because this property holds for

all functions qr(x, λ). We conclude that p(x, λ, s) ∈ FR(M) for all fixed

s ∈ (0, 1).

We are ready to prove the existence of a kinetic process solution.

Theorem 9. The process p(x, λ, s) is a kinetic process solution of (81),

(54).

Proof. It remains only to establish relations (89), (90). By Corollary 7

for any q(λ) ∈ F and each f(x) ∈ C1(M), f(x) ≥ 0∫
M×R

(1−q(λ)){pr(x, λ)div µ(a(x, λ)f(x))− f(x)×

H(x, λ, qr(x, λ))}dµdλ+L

∫
S×R

pb(x, λ)(1−q(λ))f(x)dµbdλ≥∫
M×[−R,R]

f(x)r(1−κr)pr(x, λ)(1− q(λ))dµdλ;∫
M×R

q(λ){(1−pr(x, λ))div µ(a(x, λ)f(x)) + f(x)×

H(x, λ, qr(x, λ))}dµdλ+L

∫
S×R

q(λ)(1−pb(x, λ))f(x)dµbdλ≥

−
∫

M×[−R,R]

f(x)r(1−κr)pr(x, λ)q(λ)dµdλ.

Passing in this inequalities to the limit as r → ∞ with account of (108),

(109) and the relation r(1− κr) → 0, we arrive at (89), (90).

Corollary 8. There exists a k.s. p(x, λ) ∈ FR(M) of the problem (53),

(54).

Proof. We choose the function H(x, λ, p) ≡ 0. Obviously, this function

satisfies all assumption (82)-(84). In this case (89), (90) reduce to (55), (56)

with p = p̄(x, λ) =
∫ 1

0
p(x, λ, s)ds. Thus, p̄(x, λ) ∈ FR(M) is a k.s. of (53),

(54).

From Corollaries 8,3,4 we readily deduce the following
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Corollary 9. If condition (U) is satisfied then there exists a unique

g.e.s. of (1), (2).

But our aim is to prove the existence of g.e.s. without assumption (U).

By Theorem 7 there exist the maximal k.sub-s. p+(x, λ) = sign+(u+(x)−λ)

and the minimal k.super-s. p−(x, λ) = sign+(u−(x) − λ) of (53), (54),

u±(x) ∈ L∞(M), ‖u±‖∞ ≤ R. We will establish that the functions u±(x)

are actually g.e.s. of (1), (2). In view of Theorem 4 it suffices to establish

the following result.

Theorem 10. The functions p±(x, λ) are k.s. of (53), (54).

Proof. We introduce the function H = Hl(x, λ, p) = l(p− p−(x, λ))+,

where l > 0. This function satisfies assumptions (82)-(84) with constants

C = l, ε = 1/l. For instance (84) follows from the evident equality p −
(p− p−)+ = min(p, p−). By Theorem 9 for each l > 0 there exists a kinetic

process solution pl(x, λ, s) of the problem (81), (89) with the indicated H =

Hl such that pl(·, s) ∈ FR(M) for all s ∈ (0, 1). Denote

p̄l(x, λ) =

∫ 1

0

pl(x, λ, s)ds ∈ FR(M), H̄l(x, λ) =

∫ 1

0

Hl(x, λ, pl(x, λ, s))ds.

Then in view of (89) for all q(λ) ∈ F and each f(x) ∈ C1(M), f(x) ≥ 0∫
M×R

[p̄l(x, λ)div µ(a(x, λ)f(x))− H̄l(x, λ)f(x)](1− q(λ))dµdλ +

L

∫
S×R

pb(x, λ)(1− q(λ))f(x)dµbdλ ≥ 0. (111)

From (111) it follows, in the same way as for kinetic solutions, the existence

of a weak trace (p̄l)τ (x, λ) at the boundary, and the relations like (61), (65):

for each q(λ) ∈ F and all f = f(x) ∈ C1(M), f ≥ 0∫
M×R

[p̄l(x, λ)div µ(a(x, λ)f(x))− H̄l(x, λ)f(x)](1− q(λ))dµdλ−∫
S×R

aµ̄(x, λ)(p̄l)τ (x, λ)(1− q(λ))f(x)dµbdλ ≥ 0; (112)

for a.e. x ∈ S ∀q(λ) ∈ F∫
aµ̄(x, λ)(p̄l)τ (x, λ)(1− q(λ))dλ + L

∫
pb(x, λ)(1− q(λ))dλ ≥ 0. (113)
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Since p−(x, λ) is a k.super-s. of (53), (54) relations (64), (66) hold: for each

q(λ) ∈ F and all f = f(x) ∈ C1(M), f ≥ 0∫
M×R

(1− p−(x, λ))q(λ)div µ(a(x, λ)f(x))dµdλ−∫
S×R

aµ̄(x, λ)(1− (p−)τ (x, λ))q(λ)f(x)dµbdλ ≥ 0; (114)

for a.e. x ∈ S ∀q(λ) ∈ F∫
aµ̄(x, λ)(1− (p−)τ (x, λ))q(λ)dλ + L

∫
(1− pb(x, λ))q(λ)dλ ≥ 0. (115)

Now, we apply the doubling variable method in the same way as in the proof

of Theorem 5, namely we use (112) for q(λ) = p−(y, λ) and (114), written

in variables (y, λ), for q(λ) = p̄l(x, λ). Putting the obtained inequality

together and applying the result to the test function f(x; y) = f(x)δν(y−x),

we obtain in the limit as ν → ∞ ( with account of (113), (115) as well )

that∫
M×R

[p̄l(x, λ)div µ(a(x, λ)f(x))−H̄l(x, λ)f(x)](1−p−(x, λ))dµdλ≥

−L

∫
S×R

pb(x, λ)(1− pb(x, λ))f(x)dµbdλ = 0. (116)

Since p−(x, λ) takes only values 0, 1 and pl(x, λ, s) ∈ (0, 1) we have

H̄l(x, λ) = l

∫ 1

0

(pl(x, λ, s)− p−(x, λ))+ds =

l

∫ 1

0

pl(x, λ, s)(1− p−(x, λ))ds = lp̄l(x, λ)(1− p−(x, λ)).

Therefore, (116) acquires the form ( we use also that (1 − p−(x, λ))2 =

1− p−(x, λ) )∫
M×R

p̄l(x, λ)(1− p−(x, λ))(div µ(a(x, λ)f(x))− lf(x))dµdλ ≥ 0.

Taking f(x) ≡ 1 we derive that H̄l(x, λ)p̄l(x, λ)(1 − p−(x, λ)) = 0 a.e. on

M × R for each l > maxM×[−R,R] div µa(x, λ). This means that p̄l(x, λ) ≤
p−(x, λ). Since H̄l ≡ 0 for such l we derive from (89), (90) that p̄l is a
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k.s. of the homogeneous problem (53), (54). Recall that p− is the minimal

k.super-s. of this problem. Therefore, p− ≤ p̄l. This, together with the

inverse inequality p̄l ≤ p− yields p− = pl. Hence, p− = p−(x, λ) is a k.s. of

(53), (54), as was to be proved.

The fact that the maximal k.sub-s. p+(x, λ) is also a k.s. follows from

Lemma 1. This statement can be also proved by the same arguments as

above with using Hl = −l(p+(x, λ)− p)+.

Thus we proved the following general result.

Theorem 11. There exists a g.e.s. u(x) of (1), (2). Moreover, for each

R ≥ ‖ub‖∞ there exist the unique maximal g.e.s. u+(x) and minimal g.e.s.

u−(x) among g.e.s. with norm ‖u‖∞ ≤ R.

We conclude the paper by some remarks.

1) All the result of this paper can be generalized for the case of non-

smooth fields a(x, λ). For that, we have to utilize the well-posedness theory

for transport equations with coefficients from Sobolev or BV classes devel-

oped in [7, 1]. We also can treat the case of non-compact manifolds. Of

course, in this case some additional assumptions on the vector field a(x, λ)

are required;

2) In the case of the Cauchy problem (44), (45) one could use the more

elegant L2 kinetic formulation of strong measure valued solutions developed

in [20, 21].
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