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Abstract. We consider the magnetic induction equation for the evolution of

a magnetic field in a plasma where the velocity is given. The aim is to design
a numerical scheme which also handles the divergence constraint in a suitable

manner. We design and analyze an upwind scheme based on the symmetrized

version of the equations in the non-conservative form. The scheme is shown
to converge to a weak solution of the equations. Furthermore, the discrete

divergence produced by the scheme is shown to be bounded. We report several

numerical experiments that show that the stable upwind scheme of this paper
is robust.

1. Introduction

1.1. The Model. In this paper, we study the magnetic induction equation

(1.1) ∂tB + curl(B× u) = 0,

where the unknown B = B(x, t) ∈ R3 describes the magnetic field of a plasma in
three space dimensions with coordinate x = (x, y, z). The above equation models
the evolution of the magnetic field in the plasma which is moving with a prescribed
velocity field u(x, t). An immediate consequence of (1.1) is that the divergence of
B is preserved in time, i.e.,

(1.2) ∂t (divB) = 0.

Thus if the divergence is initially zero, it remains so.
The equation (1.1) is augmented with suitable initial and boundary conditions.

In this paper, we focus on the Cauchy problem with the initial conditions

B(x, 0) = B0(x), x ∈ R3.

If we write B =
(
B1, B2, B3

)t and u =
(
u1, u2, u3

)t, (1.1) reads

∂tB
1 − ∂y

(
u1B2 − u2B1

)
+ ∂z

(
u3B1 − u1B3

)
= 0,

∂tB
2 + ∂x

(
u1B2 − u2B1

)
− ∂z

(
u2B3 − u3B2

)
= 0,

∂tB
3 − ∂x

(
u3B1 − u1B3

)
+ ∂y

(
u2B3 − u3B2

)
= 0.
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For vectors a and b we use the notation

a⊗ b =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 .

Then we can rewrite (1.1) in conservative form

(1.3) ∂tB + div (u⊗B−B⊗ u) = 0,

where the divergence of the matrix is the vector obtained by taking the divergence
of the rows. The equation (1.1) can be derived from the full Maxwell’s equations
for electromagnetic fields by using the standard Lorentz transformations and the
assumptions that the electric field at rest for a plasma is zero and that the plasma
is a perfect conductor (so that we neglect the viscous terms). The details of the
derivation of (1.1) can be found in any standard book on electrodynamics, for
example [10]. One of the key issues in the design of numerical schemes for (1.1) is
to handle the divergence constraint (1.2), i.e., to ensure that some discrete version
of (1.2) holds at least approximately.

Equation (1.1) arises in a wide variety of contexts in the electrodynamics of
plasmas. One important application is the equations of magnetohydrodynamics
(MHD). MHD models the motion of a plasma in a magnetic field. In this case,
the Euler equations of compressible gas dynamics are coupled with (1.1), see [14]
for details. Numerical methods for MHD must address the divergence constraint,
and several methods have been proposed in order to handle this constraint. These
methods are in turn based on methods which preserve some discrete form of the
divergence of B.

In general, good numerical schemes for (1.1) is a step in the design of efficient
numerical schemes for MHD, and a good motivation for studying (1.1) numerically.
Our aim in this paper is to design, analyze and implement a simple upwind scheme
for (1.1) and show that it is stable for very general initial data and velocity fields.
In addition, the scheme also keeps divergence errors bounded and leads to sharp
resolution of discontinuities. We start with a description of the continuous problem.

1.2. The continuous problem. In general, (1.1) is a system of linear conservation
laws in three dimensions, it is hyperbolic, but not strictly hyperbolic.

In order to show existence of solutions to (1.1), we need to derive á priori esti-
mates. The standard procedure for hyperbolic equations in multi space dimensions
is to symmetrize the system and derive an energy estimate. In order to do this we
introduce the operator

a · ∇ = a1∂x + a2∂y + a3∂z,

and write

curl(B× u) = Bdivu− udivB + (u · ∇) B− (B · ∇) u

=
(
u1B

)
x

+
(
u2B

)
y

+
(
u3B

)
z
− udivB− (B · ∇)u.

Thus (1.1) can also be recast as

∂tB +
(
u1B

)
x

+
(
u2B

)
y

+
(
u3B

)
z

= udivB + (B · ∇)u.

Then we see that a simple way to symmetrize (1.1) is to add a “source” term:
(which is supposed to be zero anyway!) −udivB, resulting in

(1.4) ∂tB + curl(B× u) = −udivB.
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Rewriting this, we find

(1.5)
∂tB + (u · ∇) B = −B(divu) + (B · ∇)u

= M(Du)B,

where the matrix M(Du) is given by

M(Du) =

−∂yu2 − ∂zu3 ∂yu
1 ∂zu

1

∂xu
2 −∂xu1 − ∂zu3 +∂zu2

∂xu
3 ∂yu

3 −∂xu1 − ∂yu2

 .

The above source term was first introduced for the non-linear MHD equations by
Godunov in [9], see also [15, 2]. This strategy of using a source term to handle
constraints is very general and can be used for similar hyperbolic models involving
other restrictions.

Let us write (1.4) as

(1.6) ∂tB + ∂x
(
u1B

)
+ ∂y

(
u2B

)
+ ∂z

(
u3B

)
= (B · ∇)u.

Introducing the matrices Ai = uiI for i = 1, 2, 3, and

C = −

 ∂xu
1 ∂yu

1 ∂zu
1

∂xu
2 ∂yu

2 ∂zu
2

∂xu
3 ∂yu

3 ∂zu
1

 ,

we may further rewrite (1.6) as

∂tB + ∂x
(
A1B

)
+ ∂y

(
A2B

)
+ ∂z

(
A3B

)
+ CB = 0.

This system is symmetric in the sense of Friedrichs (the matrices Ai are symmet-
ric). Regarding the functions u1, u2 and u3 we assume that they are “sufficiently
differentiable”, i.e., whenever a derivative of ui is appearing in our calculations, we
assume that this is a continuous and bounded function. Of course, this means that
the matrices Ai are also sufficiently smooth.

Observe that the above system is a special case of the more general problem

(1.7) ∂tv +
d∑
i=1

Θi(x, t)∂xi
v = Γ(x, t)v + f(x, t), v(x, 0) = v0(x),

where the d× d matrices Θ1, . . . ,Θd,and B depend smoothly on x and t. We recall
that the system (1.7) is Friedrichs symmetric if there exists a matrix S0(x, t) ∈
C∞(Rd × R) that is symmetric and uniformly positive definite, and the matrices

S0(x, t)Θ1(x, t), . . . , S0(x, t)Θd(x, t)

are symmetric for all (x, t) (see [3]). To analyze (1.7) one uses pseudo-differential
calculus. We have the following well-posedness result, see [3, Theorem 2.6].

Theorem 1.1. Suppose (1.7) has smooth coefficients and is Friedrichs symmetriz-
able. Fix T > 0 and s > 1. Assume that f ∈ L2(0, T ;Hs(Rd)) and v0 ∈
Hs(Rd). Then there exists a unique (weak) solution v ∈ C([0, T ];Hs(Rd)) ∩
C1([0, T ];Hs−1(Rd)) of the Cauchy problem (1.7). Moreover, there exists a con-
stant, which is independent of the vector v, such that for any t ∈ [0, T ]

‖v(·, t)‖2Hs(Rd) ≤ C
(
‖v0‖2Hs(Rd) +

∫ t

0

‖f(·, τ)‖2Hs(Rd) dτ

)
.
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If f ∈ C∞([0, T ];H∞(Rd)) and v0 ∈ H∞(Rd), then the solution v belongs to
C∞([0, T ];H∞(Rd)).

In the special case of a constant velocity field, the above equations decouple and
reduce to

∂tB + (u · ∇) B = 0,

and in this case we have the exact solution

(1.8) B(x, t) = B0(x− ut),

Clearly in this special case, the exact solution is actually TVD. In general, we
do not expect the initial data to be smooth. This is particularly true in the case
of MHD equations where the magnetic field can have discontinuities. As a conse-
quence, we define weak solutions of (1.1) by

Definition 1.1 (Weak solution). For all function u ∈ H1(R3) we call a locally
integrable function B a weak solution of (1.1) if for all smooth test functions Φ ∈ C1

0 ,
the following integral identity holds,

(1.9)

∞∫
0

∫
Rn

BΦt + B (u · ∇) Φ dx dt =
∫

Rn

B0(x)Φ(x, 0) dx +

∞∫
0

∫
Rn

(B · ∇)uΦ dx dt.

Hence, weak solutions of (1.1) are defined in terms of the Friedrichs form (1.6).
The existence of these is a consequence of Theorem 1.1.

For simplicity we will concentrate on the two-dimensional case, i.e., ∂z = 0 and
u3 = 0. In this case (1.3) reads

∂tB
1 + ∂y

(
u1B2 − u2B1

)
= 0,

∂tB
2 − ∂x

(
u1B2 − u2B1

)
= 0,

(1.10)

∂tB
3 + ∂x

(
u1B3

)
+ ∂y

(
u2B3

)
= 0.(1.11)

The third equation is independent of the first two, and is such that if B3(x, y, 0) = 0,
then also B3(x, y, t) = 0. Hence we ignore (1.11) in the remainder of this paper.

1.3. Numerical Schemes. From the theory for the continuous problem, it is rea-
sonable to require the following properties of a “good” numerical scheme for (1.1),

(i.) The scheme should be upwind i.e., it should be able to resolve discontinuities
in the solution sharply even at first order.

(ii.) The scheme should be stable in the energy norm for a large class of initial
data and velocity fields.

(iii.) In the special case of constant velocity fields, the scheme should be TVD.
(iv.) Discrete versions of the divergence constraint should hold, at least approx-

imately.
We shall consider first order schemes, since higher order extensions can be made
once an efficient first order scheme is available. Note that the second property is
essential for proving convergence, the third is a non-oscillatory property and the
control of divergence is essential for respecting the constraint on (1.1).

Before we continue with a technical description of some schemes, let us introduce
some useful notation. As usual, ∆x and ∆y denotes the spatial discretization
parameters, these are (small) positive numbers. For i and j in Z, let xi = i∆x,
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yj = j∆y, xi+1/2 = xi + ∆x/2 and yj+1/2 = yj + ∆y/2. Similarly we define the
temporal discretization ∆t, and set tn = n∆t for n ≥ 0.

For a continuous function a(x, y), we set

ai,j = a (xi, yj) , i and j ∈ Z/2.
For any quantity {ai,j} let the forward/backward differences be denoted by

D±x ai,j = ±ai±1,j − ai,j
∆x

, D±y ai,j = ±ai,j±1 − ai,j
∆y

,

and the central differences

D0
x,y =

1
2
(
D+
x,y +D−x,y

)
.

We also let the discrete time derivative be denoted by

D+
t b

n =
bn+1 − bn

∆t
,

for any quantity {bn}n≥0. Furthermore, set [a]+ = max {a, 0} and [a]− = min {a, 0}.
We shall need the following identities:

D±x (aibi) = aiD
±
x bi + bi±1D

±
x ai(1.12)

D±x
(
(ai)2

)
= 2aiD±x ai ±∆x

(
D±x ai

)2(1.13)

D0
x (ajbj) = ajD

0
x (bj) + bjD

0
x (aj)(1.14)

+
∆x2

2
[(
D+
x aj

) (
D−x D

+
x bj
)

+
(
D−x bj

) (
D−x D

+
x aj

)]
J∑
i=I

ai
(
D+
x bi
)

= −
J∑

i=I+1

(
D−x ai

)
bi +

1
∆x

(aJbJ+1 − aIbI) .(1.15)

We also let Iij denote the rectangle (xi−1/2, xi+1/2] × (yj−1/2, yj+1/2] and Ini,j the
cube Ii,j × [n∆t, (n+ 1)∆t).

When solving (1.10) numerically, we consider piecewise constant approximations

Bn
i,j ≈

1
|Ii,j |

∫
Ii,j

B(x, y, tn) dxdy,

in the fully discrete case, and

Bi,j(t) ≈
1
|Ii,j |

∫
Ii,j

B(x, y, t) dxdy,

for semi-discrete approximations. To obtain functions defined for all x and t, we
define

(1.16)

B∆t(x, y, t) =
∑
i,j

Bn
i,j1In

i,j
(x, y, t), and

B∆x(x, y, t) =
∑
i,j

Bi,j(t)1Ii,j
(x, y).

where 1Ω is the characteristic function of the set Ω. All the schemes for (1.10)
which we consider can be written as

(1.17) D+
t Bn

i,j = Fi,j
(
u,B∆t(·, ·, tn)

)
or

d

dt
Bi,j(t) = Fi,j

(
u,B∆x(·, ·, t)

)
for various functions Fi,j .
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The system (1.1) contains terms of the type ∂x(u1B2), which we shall discretize
in an upwind manner. To this end we introduce the notation,

Dx {u,B}i,j = D−x

([
ui+1/2,j

]+
Bi,j

)
+D+

x

([
ui−1/2,j

]−
Bi,j

)
(1.18)

=
[
uj+1/2,j

]−
D+
x Bi,j +

[
ui−1/2,j

]+
D−x Bi,j +Bi,jD

−
x ui+1/2,j .

An analogous expression defines Dy {u,B}. If u and B are smooth functions, then

∂x (uB) (xi, yj) = Dx {u,B}i,j +O(∆x).

Equipped with above notation, the standard upwind scheme for (1.10) reads

(1.19)
D+
t B

1,n
i,j = −Dy

{
u2, B1,n

}
i,j

+Dy

{
u1, B2,n

}
i,j
,

D+
t B

2,n
i,j = −Dx

{
u1, B2,n

}
i,j

+Dx

{
u2, B1,n

}
i,j
.

This scheme works well on many examples, but, it is not TVD when u is constant.
As Example 3.1 and Figure 3.1 indicates, the scheme gives sharp oscillations near
discontinuities in B. In addition, the scheme does not have an energy estimate. Re-
garding the divergence constraint, the scheme does not preserve the central discrete
divergence operator given by,

div0(Bi,j) = D0
x(B1

i,j) +D0
y(B2

i,j).

In fact, the divergence errors can be very large in some numerical experiments. Since
preserving the divergence constraint is a key numerical issue, several approaches
have been suggested to couple upwinding of numerical schemes for (1.1) along with
preservation/control of numerical divergence. The motivation behind most of these
schemes is the need for efficient schemes for the MHD equations. A good review of
divergence preserving schemes for MHD can be found in [20]. We now provide a
very brief survey relevant to the situation considered here.

1.3.1. Projection Methods. These methods are based on the Hodge decomposition
of the magnetic field. At each time step, the magnetic field obtained from (1.17),
denoted B̃n+1, can be written as

B̃n+1 = gradΨ + curlΦ ⇒ ∆Ψ = div
(
B̃n+1

)
.

Solving the last equation for Ψ and then setting

Bn+1 = B̃n+1 − gradΨ,

makes Bn+1 divergence free. The computational cost of this is significant, as one
needs to solve an elliptic equation at each time step. This method was proposed in
[5].

1.3.2. Design of discrete divergence free operators/Staggering. Another strategy to
control divergence errors is to use difference methods that preserve some (not nec-
essarily div0) discrete form of the divergence. An important contribution in this
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direction is the paper of Torrilhon and Fey [18], where following scheme was pro-
posed

(1.20)

D+
t B

1,n
i,j =

1
2

(
D−y

(
ϕ1
i,j + ϕ1

i−1,j + ϕ2
i,j + ϕ2

i+1,j

)
+D+

y

(
ϕ3
i,j + ϕ3

i+1,j + ϕ4
i,j + ϕ4

i−1,j

))
,

D+
t B

2,n
i,j = −1

2

(
D−x

(
ϕ1
i,j + ϕ1

i,j−1 + ϕ4
i,j + ϕ4

i,j+1

)
+D+

x

(
ϕ2
i,j + ϕ2

i,j−1 + ϕ3
i,j + ϕ3

i,j+1

))
,

where
ϕki,j = ωki,j

(
u1
i,jB

2,n
i,j − u

2
i,jB

1,n
i,j

)
,

and

ωki,j =

[
nk · ui,j

]+∑4
k=1 [nk · ui,j ]+

,

n1 = (1, 1), n2 = (−1, 1), n3 = (−1,−1) and n4 = (1,−1).
This scheme preserves the following discrete divergence,

div∗(Bi,j) =
1
4

(
D0
x

(
B1
i,j+1 + 2B1

i,j +B1
i,j−1

)
+D0

y

(
B2
i+1,j + 2B2

i,j +B1
i−1,j

))
.

If B is smooth, div∗ differs from div0 by O(∆x2 + ∆y2), with a constant depending
on the second derivatives of B. More details on this scheme can be found in [18, 19].
In [18] this scheme is proved to be von Neumann stable if u is constant. However,
we were unable to prove that it is stable in the energy norm when the velocity field
varies in space and time. Also, the scheme is not TVD when the velocity field is
constant, as is shown in Example 3.1 and Figure 3.1. Some numerical experiments
in Section 3 show that even though the scheme preserves the discrete divergence
div∗, the central discrete divergence div0 is not preserved and can be large.

In [18, 19] it was remarked that the scheme (1.20) is equivalent to staggering the
discretizations of the velocity and magnetic fields. In this approach, the velocity and
magnetic fields in the x-direction are centered on the cell edges in the x-direction
and the velocity and magnetic fields in the y-direction are centered on the cell-edges
in the y-direction. This approach has been proposed in number a papers including
[7, 1, 6, 17, 16] and details can be found in these references.

The main advantage of schemes based on this approach is the fact that some
form of discrete divergence is preserved. Unfortunately, it is not possible to prove
energy bounds (and hence convergence) for general non-constant velocity fields.
Furthermore, these schemes can be oscillatory near discontinuities as shown in
some numerical examples in this paper.

1.3.3. Schemes using the Godunov-Powell source term. Another common approach
to controlling the divergence, at least in the context of non-linear MHD equations,
is to numerically solve (1.4) rather than (1.1). This approach was proposed by
Powell in [15]. Formally, taking the divergence on both sides of (1.4)

(1.21) ∂t(div(B)) + (u · ∇) (divB) = − (divu) (divB) .

Hence, any non-zero divergence is advected along u, and hopefully out of the com-
putational domain.
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Another key point about introducing the Godunov-Powell source term at the
continuous level is to symmetrize (1.1) and write it in the form (1.6) which results
in the derivation of energy estimates.

At the level of numerical schemes, one of the key issues is how to discretize the
Godunov-Powell source term. It is common in the literature to use a discretization
of the source term based on central differences (see, e.g., [11]).

Example 3.1 of this paper shows that such an approach might result in large
oscillations in the solution and should be avoided. In [15], the author incorporates
the source term into flux thus implicitly upwinding it.

Another way to upwind the Godunov-Powell source term is to discretize the
Friedrichs form (1.6). In [4], the authors propose high order discontinuous Galerkin
methods based on the “conservative” Friedrichs form (1.6) and show convergence
results and error estimates for the scheme. They use locally divergence free basis
functions, but they were unable to obtain any global divergence bound. The first
order version the scheme proposed in [4] leads to an upwind discretization of the
Godunov-Powell source term.

If the Friedrichs form is used as a basis for discretization of (1.1), one can
appeal to the considerable literature that is devoted to finite volume schemes for
Friedrichs systems. A notable reference in this regard is the work of Vila and
Villedeau [21], and other related works of these authors. In [21], the authors analyze
finite volume schemes for general Friedrichs systems and show convergence results
and error estimates under very general assumptions. These results were further
extended to even weaker solutions and error estimates by Jovanovič and Rohde in
[12]. Thus, any finite volume scheme based on the Friedrichs form (1.6) falls into
the framework of these papers.

Even though finite volume schemes based on the Friedrichs form (1.6) can be
proved to converge and have error estimates for very general velocity fields, it
has not been possible to derive bounds on the discrete divergence produced by
these schemes. Heuristically, arguments of [15] imply that there is some control
of divergence due to the fact that schemes should satisfy some discrete version of
(1.21), and any divergence created by the scheme should be transported out of the
domain. Yet, we have yet to find any rigorous proof of this fact. Even in [4], the
authors were able to use local divergence free elements but were unable to control
the divergence jump terms.

Another related problem with this approach, particularly in the context of the
non-linear MHD equations, is the fact that (1.4) is not conservative. Hence, the
Rankine-Hugoniot conditions are modified by the presence of the source term and
this can lead to incorrect propagation speeds for strong shocks as pointed out in
[15]. Other references attesting to this fact can be found in [20]. However, the
errors are quite small. In case of the linear induction equation, we were unable to
find any such errors at linear contact discontinuities in our numerical experiments.

Summing up, the two most common approaches to discretization of (1.1) are
based on staggering/preserving some form of the discrete divergence, or on intro-
ducing the Godunov-Powell source term (the Friedrichs form of the equations).
Using schemes based on staggering like in [18], one is able to preserve some form
of discrete divergence exactly, but it is not possible to prove energy estimates (and
hence convergence) for non-constant velocity fields. The resulting schemes can lead
to oscillations near discontinuities even for constant velocity fields. On the other
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hand, use of the Friedrichs form or upwinding the Godunov-Powell source term
leads to schemes for which we can prove energy estimates, convergence and even
convergence rates. These schemes are non-oscillatory near discontinuities, at least
for constant velocity fields. Yet, no rigorous control of the discrete divergence is
available.

Given this, we propose a new class of finite difference schemes for (1.1). These
schemes are based on the non-conservative form of the Friedrichs system (1.5). We
use point values of the velocity field coupled with a upwind discretization of the
transport terms. The sources in (1.5) are discretized by using central differences.
Furthermore, we need to add some extra numerical diffusion at points where the
velocity field vanishes. All these ingredients result in a scheme for which we are able
to prove energy bounds, maximum principles and show that the scheme converges
to a weak solution (1.9). In the case where the velocity field is constant, our scheme
is TV D and preserves any consistent discrete divergence operator. Most crucially,
the upwind scheme of this paper has bounded discrete divergence i.e., we are able
to show that the standard discrete divergence div0 produced by this scheme is
bounded in L2. Nevertheless, the resulting scheme is simple to implement.

Compared with other results, our scheme is in the spirit of schemes based on
the symmetrized form of the equations. The key difference is that we discretize the
non-conservative form of the symmetrized equations and have to add some extra
(very small) numerical diffusion at sonic points (i.e., points where |u| = 0). This
seems to be crucial to obtain bounds on the discrete divergence. We were unable to
rewrite the upwind scheme of this paper in a form that falls directly into the class
of schemes analyzed in [21, 12] and hence, the general results of those papers do
not apply to our scheme and the energy estimates need to proved independently.
Numerical results obtained with the scheme show that the scheme is very robust,
resolves the discontinuities well even at first order, and does not generate spurious
oscillations around discontinuities. We are planning to use this upwind scheme for
(1.1) in conjunction with suitable approximate Riemann solvers for the fluid part in
order to design efficient splitting schemes for the MHD equations in a forthcoming
paper [8].

The rest of this paper is organized as follows: in Section 2, we present the stable
upwind scheme in two space dimensions, and prove stability and convergence. In
Section 3, we present several numerical examples and compare the stable upwind
scheme with other schemes.

2. A Stable upwind scheme.

For simplicity, we restrict our presentation to two spatial dimensions. As stated
in the introduction, we are going to discretize the nonconservative version of the
equation (1.5), which in two dimensions takes the form

(2.1)
(B1)t + u1(B1)x + u2(B1)x = −(u2)yB1 + (u1)yB2

(B2)t + u1(B2)x + u2(B2)x = (u2)xB1 − (u1)xB2.

Our scheme is initiated by setting

B0
i,j =

1
|Ii,j |

∫
Ii,j

B0(x, y) dxdy.
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Regarding u, we either assume that u is a continuous function of x and y, or that
we have given u as a table ui,j . The following definitions are also useful

(2.2) Mi,j =
(
−D0

yu
2
i,j D0

yu
1
i,j

D0
xu

2
i,j −D0

xu
1
i,j

)
,

and

(u ·Dupw)i,j =
[
u1
i,j

]−
D+
x +

[
u1
i,j

]+
D−x +

[
u2
i,j

]−
D+
y +

[
u2
i,j

]+
D−y(2.3) (

u ·D0
)
i,j

= u1
i,jD

0
x + u2

i,jD
0
y(2.4)

σδ(ui,j)( ∆x
∆y ) ·D2 = σδ(u1

i,j)∆xD
+
xD
−
x + σδ(u2

i,j)∆yD
+
y D
−
y ,(2.5)

where the auxiliary function σδ is an even smooth function such that

σδ(a) =

{
δ
2 , if |a| ≤ δ/2,
0, if |a| ≥ δ.

Furthermore, we demand that σ is non-increasing in the interval [0, δ] and that
|σ′δ(a)| < 2 for all a.

Then the numerical scheme in the fully discrete form is given by
(2.6)
D+
t Bn

i,j + (u ·Dupw)i,j Bn
i,j = Mi,jBn

i,j +σδ(ui,j)( ∆x
∆y ) ·D2Bn

i,j , (i, j) ∈ Z2, n ≥ 0.

The semi-discrete version of this reads

(2.7)
d

dt
Bi,j + (u ·Dupw)i,j Bi,j = Mi,jBi,j + σδ(ui,j)( ∆x

∆y ) ·D2Bi,j , t > 0,

Bi,j(0) = B0
i,j , (i, j) ∈ Z2.

The semi-discrete form is an infinite system of ordinary differential equations,

d

dt
B = F(B),

where we can regard B ∈ `2 × `2, and F : `2 × `2 → `2 × `2 is given by

(F(B))i,j = − (u ·Dupw)i,j Bi,j +Mi,jBi,j + σδ(ui,j)( ∆x
∆y ) ·D2Bi,j .

For fixed ∆x and ∆y, it is not difficult to show that

‖F(B)‖`2×`2 ≤
C

min {∆x,∆y}
‖B‖`2×`2 .

Therefore F is Lipschitz continuous, and we have existence of a differentiable solu-
tion B(t) at least for small t. The energy bound, Lemma 2.1, ensures that we do
not have any blow up in finite time. Therefore there exists a differentiable solution
B(t) of (2.7) for all t > 0.
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Componententwise, (2.6) takes the form

(2.8)

D+
t B

1,n
i,j =−

[
u1
i,j

]−
D+
x

(
B1,n
i,j

)
−
[
u1
i,j

]+
D−x

(
B1,n
i,j

)
−
[
u2
i,j

]−
D+
y

(
B1,n
i,j

)
−
[
u2
i,j

]+
D−y

(
B1,n
i,j

)
−D0

y

(
u2
i,j

)
B1,n
i,j +D0

y

(
u1
i,j

)
B2,n
i,j

+ σδ(u1
i,j)∆xD

+
xD
−
x

(
B1,n
i,j

)
+ σδ(u2

i,j)∆yD
+
y D
−
y

(
B1,n
i,j

)
,

D+
t B

2,n
i,j =−

[
u1
i,j

]−
D+
x

(
B2,n
i,j

)
−
[
u1
i,j

]+
D−x

(
B2,n
i,j

)
−
[
u2
i,j

]−
D+
y

(
B2,n
i,j

)
−
[
u2
i,j

]+
D−y

(
B2,n
i,j

)
+D0

x

(
u2
i,j

)
B1,n
i,j −D

0
x

(
u1
i,j

)
B2,n
i,j

+ σδ(u1
i,j)∆xD

+
xD
−
x

(
B2,n
i,j

)
+ σδ(u2

i,j)∆yD
+
y D
−
y

(
B2,n
i,j

)
,

We remark that the scheme is based on a upwind discretization of the nonconser-
vative symmetric form (2.1). In addition, to the upwind discretization we also need
to add a small amount of explicit numerical diffusion at the sonic points. This is
necessary in the subsequent analysis.

Using the notation
|a|δ = |a|+ σδ(a)

and (
|u|δ( ∆x

∆y ) ·D2
)
i,j

=
∣∣u1
i,j

∣∣
δ

∆xD−x D
+
x +

∣∣u2
i,j

∣∣
δ

∆yD−y D
+
y ,

the scheme (2.6) can also be rewritten using central discrete derivatives

(2.9) D+
t Bn

i,j +
(
u ·D0

)
i,j

Bn
i,j = Mi,jBi,j +

1
2
(
|u|δ ( ∆x

∆y ) ·D2
)
i,j

Bn
i,j .

The semi-discrete form of this is obtained replacing D+
t by d/dt.

We are going to prove that both the fully discrete and the semi-discrete schemes
have solutions that are bounded in both the energy and the maximum norms.
In addition, we will also show that the semi-discrete scheme leads to a discrete
divergence that is bounded in the L2 norm. This is the main reason why we work
with a discretization of the non-conservative form of the Friedrichs system (2.1).

In addition to the energy and divergence bounds, we are going to show that the
scheme (2.8) converges to a weak solution (1.9) of the equation (1.6). To do this
we need the “conservative”, form i.e., the discrete form consistent with the two
dimensional version of (1.6). Since we use point values of the coefficient u in our
scheme this is not completely straightforward. Using the discrete Leibnitz rule for
the central differences (1.14), we can rewrite (2.8) as,

D+
t B

1,n
i,j = −D0

x

(
u1
i,jB

1,n
i,j

)
−D0

y

(
u2
i,jB

1,n
i,j

)
+D0

x

(
u1
i,j

)
B1,n
i,j +D0

y

(
u1
i,j

)
B2,n
i,j

+
1
2
(
|u|δ ( ∆x

∆y ) ·D2
)
i,j
B1,n
i,j

+
∆x2

2

[(
D+
x u

1,n
i,j

) (
D−x D

+
x B

1
i,j

)
+
(
D−x B

1,n
i,j

) (
D−x D

+
x u

1
i,j

)]
+

∆y2

2

[(
D+
y u

2
i,j

) (
D−y D

+
y B

1,n
i,j

)
+
(
D−y B

1,n
i,j

) (
D−y D

+
y u

2
i,j

)]

(2.10)
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D+
t B

2,n = −D0
x

(
u1
i,jB

2,n
i,j

)
−D0

y

(
u2
i,jB

2,n
i,j

)
+D0

x

(
u2
i,j

)
B1,n
i,j +D0

y

(
u2
i,j

)
B2,n
i,j

+
1
2
(
|u|δ ( ∆x

∆y ) ·D2
)
i,j
B2,n
i,j

+
∆x2

2

[(
D+
x u

1
i,j

) (
D−x D

+
x B

2,n
i,j

)
+
(
D−x B

2,n
i,j

) (
D−x D

+
x u

1
i,j

)]
+

∆y2

2

[(
D+
y u

2
i,j

) (
D−y D

+
y B

2,n
i,j

)
+
(
D−y B

2,n
i,j

) (
D−y D

+
y u

2
i,j

)]

(2.11)

Rewritten in the above form, (2.8) represents a consistent discretization of (1.6).
Note that (2.10) and (2.11), we use conservative central differences, a stabilizing
diffusion term and second order error terms due to the discrete Liebnitz rule.

We have not managed to write (2.8) as a special case of the class of finite volume
schemes that were presented and analysed in [21, 12]. The reason for this is the
non-conservative form of the scheme. This is reflected in the presence of error
terms in the conservative form (2.10) and (2.11) which have second derivatives in
B multiplied by derivatives of u, which can be of either sign. Hence, the results of
[21, 12] do not apply directly to our scheme.

2.1. Some estimates. Now we prove that B∆t satisfies some estimates which will
allow us to conclude that

{
B∆t

}
is weakly compact, and that any limit is a weak

solution to (1.6). We start by

Lemma 2.1. Let
{
Bn
i,j

}
satisfy the scheme (2.6), and ∆t the following CFL-

condition

(2.12) ∆tmax

{
6
∥∥u1
∥∥
L∞(R2)

∆x
,

6
∥∥u2
∥∥
L∞(R2)

∆y
, 32δ

}
≤ 1

2
,

Then

(2.13) ∆x∆y
∑
i,j

∣∣Bn
i,j

∣∣2 ≤ eMn∆t∆x∆y
∑
i,j

∣∣B0
i,j

∣∣2 ,
where

M = 2M̄ + 4M̄2 + 6
(∥∥∂xu1

∥∥
L∞

+
∥∥∂yu2

∥∥
L∞

)
,

with
M̄ = max

i,j
‖Mi,j‖ .

Furthermore for the solution of (2.7) we have that

(2.14) ∆x∆y
∑
i,j

|Bi,j(t)|2 ≤ eMt∆x∆y
∑
i,j

∣∣B0
i,j

∣∣2 , t ≥ 0.

Proof. We shall prove (2.13), the proof of (2.14) is simpler and uses the same basic
ideas. Using the notation

B2 = B ·B = (B1)2 + (B2)2,

and the discrete chain rule, (1.13), we find

2Bn
i,j ·D+

t Bn
i,j = − (u ·Dupw)i,j

((
Bn
i,j

)2)
−∆x

(
−
[
u1
i,j

]− (
D+
x Bn

i,j

)2 +
[
u1
i,j

]+ (
D−x Bn

i,j

)2)(2.15)
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−∆y
(
−
[
u2
i,j

]− (
D+
y Bn

i,j

)2 +
[
u2
i,j

]+ (
D−y Bn

i,j

)2)
+ 2Bn

i,j ·Mi,jBn
i,j + Bn

i,j ·D2
δ(u)i,jBn

i,j .

For any quantity Zi,j , using summation by parts∑
i,j

Zi,j∆xσδ
(
u1
i,j

)
D+
xD
−
x Zi,j = −∆x

∑
i,j

D−x
(
Zi,jσδ

(
u1
i,j

))
D−x Zi,j

= −∆x
∑
i,j

Zi,jD
−
x

(
σδ
(
u1
i,j

))
D−x Zi,j + σδ

(
u1
i−1,j

) (
D−x Zi,j

)2
≤ −∆x

∑
i,j

σδ
(
u1
i−1,j

) (
D−x Zi,j

)2
+ 2

∑
i,j

∣∣D−x u1
i,j

∣∣ (|Zi,j |+ |Zi−1,j |) |Zi,j |

≤ −∆x
∑
i,j

σδ
(
u1
i,j

) (
D+
x Zi,j

)2 + 4
∥∥∂xu1

∥∥
L∞(R2)

∑
i,j

(Zi,j)
2
.

Since D+
xD
−
x = D−x D

+
x , we the term (D+

x Zi,j)
2 can be replaced by (D−x Zi,j)

2 above.
Therefore we have that∑

i,j

Zi,j∆xσδ
(
u1
i,j

)
D+
xD
−
x Zi,j

≤ −∆x
2

∑
i,j

σδ
(
u1
i,j

) ((
D+
x Zi,j

)2 +
(
D−x Zi,j

)2)+ 4
∥∥∂xu1

∥∥
L∞(R2)

∑
i,j

(Zi,j)
2
,

and similarly∑
i,j

Zi,j∆yσδ
(
u2
i,j

)
D+
y D
−
y Zi,j

≤ −∆y
2

∑
i,j

σδ
(
u2
i,j

) ((
D+
y Zi,j

)2 +
(
D−y Zi,j

)2)+ 4
∥∥∂yu2

∥∥
L∞(R2)

∑
i,j

(Zi,j)
2
.

Hence, we get∑
i,j

(
Bn
i,j ·D2

δ(u)i,jBn
i,j

)
≤ −

∑
i,j

∆x
2
σδ
(
u1
i,j

) ((
D+
x Bn

i,j

)2 +
(
D−x Bn

i,j

)2)
∆y
2
σδ
(
u2
i,j

) ((
D+
y Bn

i,j

)
)2 +

(
D−y Bn

i,j

)
)2
)

+ 4
(∥∥∂xu1

∥∥
L∞(R2)

+
∥∥∂yu2

∥∥
L∞(R2)

)∑
i,j

(Bn
i,j)

2.

Note also that by the discrete Leibnitz rule (1.12), we have that for any quantity
Zi,j ,∑
i,j

(u ·Dupw)i,j Zi,j = −
∑
i,j

Zi,j

[
D+
x

[
u1
i,j

]+
+D−x

[
u1
i,j

]−
+D+

y

[
u2
i,j

]+
+D−y

[
u2
i,j

]−]
.

Using this on the first term on the right in (2.15) we find that∑
i,j

2Bn
i,jD

+
t Bn

i,j ≤
(

6
(∥∥∂xu1

∥∥
L∞(R2)

+
∥∥∂yu2

∥∥
L∞(R2)

)
+ 2M̄

)∑
i,j

(
Bn
i,j

)2
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−
∑
i,j

∆x
(
−
[
u1
i,j

]− (
D+
x Bn

i,j

)2 +
[
u1
i,j

]+ (
D−x Bn

i,j

)2)
∆y
(
−
[
u2
i,j

]− (
D+
y Bn

i,j

)2 +
[
u2
i,j

]+ (
D−y Bn

i,j

)2)
−
∑
i,j

∆x
2
σδ
(
u1
i,j

) ((
D+
x Bn

i,j

)2 +
(
D−x Bn

i,j

)2)
∆y
2
σδ
(
u2
i,j

) ((
D+
y Bn

i,j

)2 +
(
D−y Bn

i,j

)
)2
)
.

We also have that

D+
t

((
Bn
i,j

)2) = 2Bn
i,j ·D+

t Bn
i,j + ∆t

(
D+
t Bn

i,j

)2
.

In order to balance the terms, we use the scheme (2.6), and the inequality(
∆xD+

xD
−
x aj

)2 ≤ 2
((
D+
x aj

)2 +
(
D−x aj

)2)
.

Then(
D+
t Bn

i,j

)2 ≤ 2
(

(u ·Dupw)i,j Bn
i,j

)2

+ 4
(
Mi,jBn

i,j

)2 + 4
(
D2
δ(u)i,jBn

i,j

)2
≤ 8
[([

u1
i,j

]−)2 (
D+
x Bn

i,j

)2 +
([
u1
i,j

]+)2 (
D−x Bn

i,j

)2
+
([
u2
i,j

]−)2 (
D+
y Bn

i,j

)2 +
([
u2
i,j

]+)2 (
D−y Bn

i,j

)2]
+ 8

[(
∆xσδ

(
u1
i,j

)
D+
xD
−
x Bn

i,j

)2
+
(
∆yσδ

(
u2
i,j

)
D+
y D
−
y Bn

i,j

)2]
+ 4M̄2

(
Bn
i,j

)2
≤ 8
[([

u1
i,j

]−)2 (
D+
x Bn

i,j

)2 +
([
u1
i,j

]+)2 (
D−x Bn

i,j

)2
+
([
u2
i,j

]−)2 (
D+
y Bn

i,j

)2 +
([
u2
i,j

]+)2 (
D−y Bn

i,j

)2]
+ 16

[
σ2
δ

(
u1
i,j

) ((
D+
x Bn

i,j

)2 +
(
D−x Bn

i,j

)2)
+ σ2

δ

(
u2
i,j

) ((
D+
y Bn

i,j

)2 +
(
D−y Bn

i,j

)2)]
+ 4M̄2

(
Bn
i,j

)2
.

Using the above and summing over i and j,

D+
t

∑
i,j

(
Bn
i,j

)2 ≤∑
i,j

[∣∣∣∣[u1
i+1/2,j

]−∣∣∣∣ (8∆t
∣∣∣∣[u1

i+1/2,j

]−∣∣∣∣−∆x
)(

D+
x Bn

i,j

)2
+
[
u1
i−1/2,j

]+(
8∆t

[
u1
i−1/2,j

]+
−∆x

)(
D−x Bn

i,j

)2
+
∣∣∣∣[u2

i,j+1/2

]−∣∣∣∣ (8∆t
∣∣∣∣[u2

i,j+1/2

]−∣∣∣∣−∆y
)(

D+
y Bn

i,j

)2
+
[
u1
i,j−1/2

]+(
8∆t

[
u2
i,j−1/2

]+
−∆y

)(
D−y Bn

i,j

)2
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+ σδ
(
u1
i,j

)(
16∆tσδ

(
u1
i,j

)
− ∆x

2

)((
D+
x Bn

i,j

)2 +
(
D−x Bn

i,j

)2)
+ σδ

(
u2
i,j

)(
16∆t(σδ

(
u2
i,j

)
− ∆y

2

)((
D+
y Bn

i,j

)2 +
(
D−y Bn

i,j

)2)]
+
(
2M̄ + 4M̄2 + 6

(∥∥∂xu1
∥∥
L∞

+
∥∥∂yu2

∥∥
L∞

))∑
i,j

(
Bn
i,j

)2
≤M

∑
i,j

(
Bn
i,j

)2
,

if the CFL-condition (2.12) holds. Now (2.13) follows by the discrete Gronwall
inequality. �

The CFL-condition (2.12) implies that the terms in front of (D±x,yB
n
i,j)

2 above
are all less than −∆x/2 or −∆y/2. Therefore, as a consequence of the proof, we
also get a bound on the spatial variation of Bn

i,j . Set

Υn
i,j =

∆x
2

((
−
[
u1
i,j

]−
+ σδ

(
u1
i,j

)) (
D+
x Bn

i,j

)2 +
([
u1
i,j

]+
+ σδ

(
u1
i,j

)) (
D−x Bn

i,j

)2)
+

∆y
2

((
−
[
u2
i,j

]−
+ σδ

(
u2
i,j

)) (
D+
y Bn

i,j

)2 +
([
u2
i,j

]+
+ σ

(
u2
i,j

)) (
D−y Bn

i,j

)2)
.

By (2.15) and (2.13) the following bound holds

(2.16)

∆t
∑
i,j

Υn
i,j ≤ (M + 1)

∑
i,j

((
Bn
i,j

)2 +
(
Bn+1
i,j

)2)
≤ 2 (M + 1) eM(n+1)∆t

∑
i,j

(
B0
i,j

)2
.

Since the scheme uses local upwinding and adds some numerical diffusion, the first
part of the updating is monotone in all its arguments. More concretely, set

f (Zi,j , Zi−1,j , Zi+1,j , Zi,j−1, Zi,j+1)

= Zi,j −∆t (u ·Dupw)i,j Zi,j + ∆tD2
δ(u)i,jZi,j .

Differentiation and positivity of the coefficients σδ and the CFL-condition (2.12)
show that

∂f

∂Zi,j
≥ 0,

∂f

∂Zi±1,j
≥ 0 and

∂f

∂Zi,j±1
≥ 0.

Next, we prove a bound for the supremum norm, defined as∥∥Bn
i,j

∥∥
L∞

= sup
i,j

∣∣∣B1,n
i,j

∣∣∣+ sup
i,j

∣∣∣B2,n
i,j

∣∣∣ .
Lemma 2.2. Let Bn

i,j be defined by the scheme (2.8). Then

(2.17)
∥∥Bn

i,j

∥∥
L∞
≤ eCn∆t

∥∥B0
i,j

∥∥
L∞

,

where C =
∥∥∂xu1

∥∥
L∞

+
∥∥∂yu1

∥∥
L∞

+
∥∥∂xu2

∥∥
L∞

+
∥∥∂yu2

∥∥
L∞

.

Proof. We write (2.6) as

B1,n+1
i,j = f

(
B1,n
i,j , B

1,n
i−1,j , B

1,n
i+1,j , B

1,n
i,j−1, B

1,n
i,j+1

)
−∆t

(
D0
yu

2
i,jB

1,n
i,j −D

0
yu

1
i,j+1/2B

2,n
i,j

)
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B2,n+1
i,j = f

(
B2,n
i,j , B

2,n
i−1,j , B

2,n
i+1,j , B

2,n
i,j−1, B

2,n
i,j+1

)
+ ∆t

(
D0
yu

2
i+1/2,jB

1,n
i,j −D

y
0u

1
i+1/2,jB

2,n
i,j

)
.

Set αn = supi,j |B
1,n
i,j | and β = supi,j |B

2,n
i,j |. Since f(a, a, a, a, a) = a and f is

increasing in all its arguments, it follows that

αn+1 ≤ αn + ∆t
(∥∥∂yu2

∥∥
L∞

αn +
∥∥∂yu1

∥∥
L∞

βn
)

βn+1 ≤ βn + ∆t
(∥∥∂xu2

∥∥
L∞

αn +
∥∥∂xu1

∥∥
L∞

βn
)
.

Adding these two inequalities we obtain∥∥Bn+1
i,j

∥∥
L∞
≤
∥∥Bn

i,j

∥∥
L∞

+ ∆t
(∥∥∂xu2

∥∥
L∞

+
∥∥∂yu2

∥∥
L∞

)
αn

+ ∆t
(∥∥∂xu1

∥∥
L∞

+
∥∥∂yu1

∥∥
L∞

)
βn

≤ (1 + C∆t)
∥∥Bn

i,j

∥∥
L∞

.

Gronwall’s inequality concludes the proof of the lemma. �

Remark 2.1. If u is constant, i.e., u = (u1, u2) for two constants u1 and u2,
we can choose δ = 0 in the diffusion coefficients σδ This follows by taking δ ≤
min{|u1|, |u2|} in the case where both u1, u2 are away from zero. The case where
one or both of the constant velocity fields is zero leads to a single advection equation
and we ignore it here. In this special case, the scheme (2.8) reduces to a particularly
simple form,

(2.18)

D+
t B

1,n
i,j = −

[
u1
]−
D+
x

(
B1,n
i,j

)
−
[
u1
]+
D−x

(
B1,n
i,j

)
−
[
u2
]−
D+
y

(
B1,n
i,j

)
−
[
u2
]+
D−y

(
B1,n
i,j

)
,

D+
t B

2,n
i,j =−

[
u1
]−
D+
x

(
B2,n
i,j

)
−
[
u1
]+
D−x

(
B2,n
i,j

)
−
[
u2
]−
D+
y

(
B2,n
i,j

)
−
[
u2
]+
D−y

(
B2,n
i,j

)
.

In this case, we have some additional properties. Firstly, we observe that now
Lemma 2.1 and Lemma 2.2 give

∆x∆y
∑
i,j

∣∣Bn
i,j

∣∣2 ≤ ∆x∆y
∑
i,j

∣∣B0
i,j

∣∣2 , and
∥∥Bn

i,j

∥∥
L∞
≤
∥∥B0

i,j

∥∥
L∞

respectively. Also the operator (u · D)i,j is independent of i and j. By Harten’s
lemma, see [13], and the monotonicity of f

(2.19)
∣∣∣Bk,ni,j ∣∣∣

B.V.
≤
∣∣∣Bk,0i,j

∣∣∣
B.V.

, for k = 1, 2,

where ∣∣∣Bk,ni,j ∣∣∣
B.V.

= ∆y∆x
∑
i,j

∣∣∣D+
x B

k,n
i,j

∣∣∣+
∣∣∣D+

y B
k,n
i,j

∣∣∣ .
If u is constant, then we also have that if some discrete divergence of B initially
is zero, then this will remain zero. To see this, let LBn

i,j be any finite linear
combination of Bn

i,j for various i’s and j’s, i.e.,

(LBn
i,j) =

2∑
m=1

N∑
k=1

αmk B
m,n
i+σ(k),j+κ(k),
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where σ and κ are functions taking integer values, and αmk is a constant. Applying
L to the definition of the scheme gives

D+
t

(
LBn

i,j

)
= −(u ·D)

(
LBn

i,j

)
.

In particular, if LB0
i,j = 0 then LBn

i,j = 0 for n > 0. Since any discrete divergence
is of the same type as L, any zero initial discrete divergence will remain zero. We
also remark that for constant velocity, the CFL-condition can be relaxed to

(2.20) ∆tmax

{∣∣u1
∣∣

∆x
,

∣∣u2
∣∣

∆y

}
≤ 1

2
.

Hence, in the case of constant velocity fields, the scheme (2.8) is non-oscillatory
and preserves any discrete divergence operator. These are important structural
properties of the scheme and explain some of the results in the section on numerical
experiments.

2.2. Convergence. It follows directly from the L2 bound in Lemma 2.1 that that
the sequence

{
B∆t

}
is weakly compact in L2(R2 × [0, T ]). By the L2 bound we

infer the existence of a function B(x, y, t) such that

B∆t ⇀ B, in L2(R2 × [0, T ]) as ∆t→ 0.

Theorem 2.1. Let Bn be defined by the scheme (2.8), and assume that ‖B0‖L2(R2)

is finite. If u ∈ C2(R2) with bounded derivatives, and ∆t satisfies the CFL-
condition (2.12), then there exists a subsequence {∆tj} such that B∆tj ⇀ B in
L2(R2 × [0, T ]). Furthermore, the limit B = (B1, B2) is a weak solution of (1.6),
with the property that

‖B(·, T )‖L2(R2) ≤ CT ‖B0‖L2(R2) , T ≥ 0,

where CT is a finite constant depending on u and T . The same results hold for the
approximations generated by the semi-discrete scheme (2.7).

Proof. We must show that B is a weak solution, and we shall do this for the first
component B1. Identical arguments apply to B2. To demonstrate that B is a weak
solution of (1.6) we must then show that B1 satisfies

(2.21)

Wϕ(B) :=
∫∫∫

R2×[0,∞)

B1∂tϕ+u1B1∂xϕ+u2B1∂yϕ−B1∂x(u1)ϕ−B2∂y(u1)ϕdxdydt

+
∫∫

R2
B1

0ϕ(x, y, 0) dxdy = 0,

for all test functions ϕ ∈ C∞0 (Π), where Π = R2 × [0,∞).
Choose a test function ϕ and set

ϕni,j =
1

∆t∆x∆y

∫∫∫
In

i,j

ϕ(x, y, t) dxdydt.

In order to prove convergence to a weak solution (2.21), we need to work with the
“conservative form” of the scheme (2.10).

To save space, set ∆ = ∆t∆x∆y, multiply (2.10) by ∆ϕni,j , sum over n =
0, . . . ,∞, and (i, j) in Z2, and sum by parts to arrive at

α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8 + α9 + α10 + α11 + α12 = 0
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where

α1 = ∆
∞∑
n=1

∑
i,j

B1,n
i,j D

−
t ϕ

n
i,j , α2 = ∆x∆y

∑
i,j

B1,0
i,j ϕ

0
i,j ,

α3 = ∆
∞∑
n=1

∑
i,j

u1
i,jB

1
i,j(D

0
xϕ

n
i,j), α4 = ∆

∞∑
n=1

∑
i,j

u2
i,jB

1
i,j(D

0
yϕ

n
i,j),

α5 = −∆
∞∑
n=1

∑
i,j

ϕni,jB
1
i,j(D

0
xu

1
i,j), α6 = ∆

∞∑
n=1

∑
i,j

ϕni,jB
2
i,j(D

0
yu

1
i,j),

and

α7 = −∆x∆
∞∑
n=1

∑
i,j

D+
xD
−
x (|u1

i,j |δϕni,j)B
1,n
i,j ,

α8 = −∆y∆
∞∑
n=1

∑
i,j

D+
y D
−
y (|u2

i,j |δϕni,j)B
1,n
i,j ,

α9 = (∆x)2∆
∞∑
n=1

∑
i,j

D+
x (ϕni,jD

−
x (u1

i,j))D
+
x (B1,n

i,j ),

α10 = (∆y)2∆
∞∑
n=1

∑
i,j

D+
y (ϕni,jD

−
y (u2

i,j))D
+
y (B1,n

i,j ),

α11 = −(∆x)2∆
∞∑
n=1

∑
i,j

ϕni,jD
+
xD
−
x (u1

i,j)D
+
x (B1,n

i,j ),

α12 = (∆y)2∆
∞∑
n=1

∑
i,j

ϕni,jD
+
y D
−
y (u2

i,j)D
+
y (B1,n

i,j ).

We claim that since B∆t ∈ L2(R2×[0, T ]) for all finite T , all the terms α7, α8, . . . , α12

vanish a ∆→ 0. We can estimate α7 and α8 as follows,

α2
7 ≤ ∆x2

∆
∑
n,i,j

(
D+
xD
−
x

(∣∣u1
i,j

∣∣
δ
ϕni,j

))2

∆
∑
n,i,j

(B1,n
i,j )2


≤ C∆x2 → 0, as ∆x→ 0,

for some constant C which is independent of ∆t. When we estimate α9, . . . , α12

we have an extra ∆x or ∆y which can be used to “remove the discrete derivative”
from B. This is done for α9 as

α9 ≤ ∆x
∑
n,i,j

∣∣D+
x

(
ϕni,jD

−
x u

1
i,j

)∣∣ (∣∣∣B1,n
i+1,j

∣∣∣+
∣∣∣B1,n

i,j

∣∣∣)

≤ ∆x

∑
n,i,j

(
D+
x

(
ϕni,jD

−
x u

1
i,j

))21/24
∑
n,i,j

(
B1,n
i,j

)2

1/2

≤ C∆x,

for some constant C which is independent of ∆t.
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Using that B∆t ⇀ B as ∆t → 0 and that u and ϕ are smooth enough, we can
use standard arguments to show that as ∆t,∆x,∆y → 0,

α1 →
∫∫∫

Π

B1∂tϕdxdydt, α2 →
∫∫

R2
B1

0ϕ(x, y, 0) dxdy

α3 →
∫∫∫

Π

u1B1∂xϕdxdydt, α4 →
∫∫∫

Π

u2B1∂yϕdxdydt

α5 →
∫∫∫

Π

∂x(u1)B1ϕdxdydt, α6 →
∫∫

Π

∂y(u1)B1ϕdxdydt

Hence, we have shown that the approximations defined by (2.10) and (2.11) con-
verge to a weak solution of (1.6). �

2.3. Divergence Bounds. In this section, we show that we can bound the diver-
gence of the semi-discrete scheme (2.7) under certain assumptions.

In order to motivate some rather long calculations, we start by considering the
exact equations

B1
t + u1B1

x + u2B1
y = −u2

yB
1 + u1

yB
2(2.22)

B2
t + u1B2

x + u2B2
y = u2

xB
1 − u1

xB
2.(2.23)

Setting d = B1
x + B2

y , differentiating the first equation with respect to x and the
second with respect to y and adding yields

(2.24) dt + u1dx + u2dy = −
(
u1
x + u2

y

)
d.

Multiplying by 2d, and using Leibnitz’ rule (again) yields

(2.25) d2
t +

(
u1d2

)
x

+
(
u2d2

)
y

= −
(
u1
x + u2

y

)
d2.

Integrating over x and y gives

(2.26)
d

dt
‖d(·, t)‖2L2(R2) ≤ ‖divu‖L∞(R2) ‖d(·, t)‖2L2(R2) .

We wish to “replicate” this calculation for the approximations generated by the
semi-discrete scheme. There are three obstacles in the way of doing so, firstly
the approximations do not satisfy (2.22) and (2.23), but (2.7). Secondly we used
Leibnitz’ rule to arrive at (2.24), this rule do not hold exactly for the discrete
differentiation operators D0

x and D0
y. Thirdly we used the chain rule to arrive at

(2.24), this is not exact for discrete derivatives.
We start by considering the scheme in the form (2.9), which reads

d

dt
B1
i,j = −u1

i,jD
0
xB

1
i,j − u2

i,jD
0
yB

1
i,j −

(
D0
yu

2
i,j

)
B1
i,j +

(
D0
yu

1
i,j

)
B2
i,j(2.27)

+
∆x
2

∣∣u1
i,j

∣∣
δ
D+
xD
−
x B

1
i,j +

∆y
2

∣∣u2
i,j

∣∣
δ
D+
y D
−
y B

1
i,j

d

dt
B2
i,j = −u1

i,jD
0
xB

2
i,j − u2

i,jD
0
yB

2
i,j +

(
D0
xu

2
i,j

)
B1
i,j −

(
D0
xu

1
i,j

)
B2
i,j(2.28)

+
∆x
2

∣∣u1
i,j

∣∣
δ
D+
xD
−
x B

2
i,j +

∆y
2

∣∣u2
i,j

∣∣
δ
D+
y D
−
y B

2
i,j .

In order to replace the exact Leibnitz rule, for a smooth function a(x), and a
sequence {bi}, we have

D0 (aibi) = biD
0 (ai) +

1
2
(
ai+1D

+bi + ai−1D
−bi
)
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= biD
0 (ai) +

1
2

[(
ai + a′i∆x+

∆x2

2
a′′
(
ξi+1/2

))
D+bi

+
(
ai − a′i∆x+

∆x2

2
a′′
(
ξi−1/2

))
D−bi

]
= aiD

0bi + biD
0ai ← “Leibnitz part”

+
∆x2

2
a′iD

+D−bi +
∆x2

4
(
a′′
(
ξi+1/2

)
D+bi + a′′

(
ξi−1/2

)
D−bi

)
︸ ︷︷ ︸

“discrete correction”

,

where we use the notation ai = a(xi), a′i = a′(xi) and ξi±1/2 is between xi and
xi±1.

We shall first apply D0
x to (2.27), D0

y to to (2.28) and add the results. The “Leib-
nitz” part of this will give the discrete equivalent of (2.26), with central differences
replacing derivatives, and d replaced by

di,j = D0
xB

1
i,j +D0

yB
2
i,j .

Concretely we get

(2.29)
d

dt
di,j = −u1

i,jD
0
xdi,j − u2

i,jD
0
ydi,j −

(
D0
xu

1
i,j +D0

yu
2
i,j

)
di,j

+ discrete correction terms + terms from D+D−.

Next, we shall multiply this with di,j , and use the chain rule (1.13). In order to get
a useful form of the numerical diffusion, we must convert (2.29) to upwind form.
The formula for doing so reads

aiD
0bi = a+

i D
−bi + a−i D

+bi −∆x |ai|D+D−bi.

Consequently, the upwind form of the equation for the discrete divergence is
(2.30)
d

dt
di,j = −

[
u1
i,j

]−
D+
x di,j −

[
u1
i,j

]+
D−x di,j −

[
u2
i,j

]−
D+
y di,j −

[
u2
i,j

]+
D−y di,j

−
(
D0
xu

1
i,j +D0

yu
2
i,j

)
di,j + ∆x

∣∣u1
i,j

∣∣D+
xD
−
x di,j + ∆y

∣∣u2
i,j

∣∣D+
y D
−
y di,j︸ ︷︷ ︸

“upwind diffusion”

+ discrete correction terms + terms from D+D−.

Now we multiply this with 2di,j , and use the discrete chain rule (1.13) to get
(2.31)
d

dt
d2
i,j = −

[
u1
i,j

]−
D+
x d

2
i,j −

[
u1
i,j

]+
D−x d

2
i,j −

[
u2
i,j

]−
D+
y d

2
i,j −

[
u2
i,j

]+
D−y d

2
i,j

−
(
D0
xu

1
i,j +D0

yu
2
i,j

)
d2
i,j

+∆x
([
u1
i,j

]− (
D+
x di,j

)2 − [u1
i,j

]+ (
D−x di,j

)2)
+∆y

([
u2
i,j

]− (
D+
y di,j

)2 − [u2
i,j

]+ (
D−y di,j

)2)
← signed terms

+ 2di,j
(
upwind diffusion + discrete correction + terms from D+D−

)
.

The next step is summing the above equation over i and j, using partial summation
and other tricks to bound the right hand side. The first four terms on the right
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hand side of (2.31) are bounded as follows∣∣∣∣∑
i,j

[
u1
i,j

]−
D+
x d

2
i,j

∣∣∣∣ =
∣∣∣∣∑
i,j

D−x

([
u1
i,j

]−)
d2
i,j

∣∣∣∣
≤
∥∥∂xu1

∥∥
L∞(R2)

∑
i,j

d2
i,j .

The fifth term on the right side of (2.31) has the same type of bound. Therefore

d

dt
d2
i,j ≤ 3

(∥∥∂xu1
∥∥
L∞(R2)

+
∥∥∂yu2

∥∥
L∞(R2)

)∑
i,j

d2
i,j

+
∑
i,j

signed terms

+ 2di,j
(
upwind diffusion + discrete correction + terms from D+D−

)
.

Next, let us tackle the “discrete correction” terms. These are terms coming from
applying D0 to the first order differences in (2.27) and (2.28). Furthermore, these
are essentially of two types; a correction for D0

x applied to u1
i,jD

0
xB

1
i,j , and a cor-

rection for D0
x applied to

(
D0
xu

2
i,j

)
B1
i,j . Now the correction part of D0

x(u1
i,jD

0
xB

1
i,j)

equals

(2.32)
∆x2

2
u1,′

i,jD
+
xD
−
x D

0
xB

1
i,j +

∆x2

4

(
u1,′′

i+1/2,jD
+
xD

0
xB

1
i,j + u1,′′

i−1/2,jD
−
x D

0
xB

1
i,j

)
.

We must multiply this by 2di,j and sum over i and j and bound the result. For the
second term of this part of the correction we have∣∣∣∣14 ∑

i,j

u1,′′

i+1/2,j2di,j∆x
2D+

xD
0
xB

1
i,j

∣∣∣∣
≤ 1

2

∥∥∂2
xu

1
∥∥
L∞(R2)

∑
i,j

|di,j |
1
2
(∣∣B1

i+2,j

∣∣+
∣∣B1

i+1,j

∣∣+
∣∣B1

i,j

∣∣+
∣∣B1

i−1,j

∣∣)
≤ 1

2

∥∥∂2
xu

1
∥∥
L∞(R2)

(∑
i,j

d2
i,j +

∑
i,j

(
B1
i,j

)2)
The sum coming from the third term in (2.32) has the same bound. To bound the
sum coming from the first term in (2.32) we use summation by parts∣∣∣∣12 ∑

i,j

2di,ju
1,′

i,j∆x
2D+

xD
−
x D

0
xB

1
i,j

∣∣∣∣
=

1
2

∣∣∣∣∑
i,j

D−x

(
u1,′

i,jdi,j

)
∆x2D−x D

0
xB

1
i,j

∣∣∣∣
=

1
2

∣∣∣∣∑
i,j

(
u1,′

i,jD
−
x di,j + di−1,jD

−
x u

1,′

i,j

)
∆x2D−x D

0
xB

1
i,j

∣∣∣∣
≤
∥∥∂2

xu
1
∥∥
L∞(R2)

∑
i,j

d2
i,j +

(
B1
i,j

)2
+

1
2

∥∥∂xu1
∥∥
L∞(R2)

∑
i,j

∆x
4ε
(
D−x B

1
i,j

)2
+ ∆xε

(
D−x di,j

)2
,
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where ε is a positive number yet to be determined. The last term here looks
threatening, but we shall look for countermeasures. Next the correction part of
D0
x((D0

xu
2
i,j)B

1
i,j) is

(2.33)
ci,j :=

∆x2

2
D0
x

(
u2,′

i,j

)
D+
xD
−
x B

1
i,j

+
∆x2

4

(
D0
x

(
u2,′′

i+1/2,j

)
D+
x B

1
i,j +D0

x

(
u2,′′

i−1/2,j

)
D−x B

1
i,j

)
.

Now we can use ∆x2 to remove both discrete derivatives of B1
i,j in the first term,

and one from B1
i,j and one from u2,′′

i,j in the second term, and conclude that∑
i,j

ci,j2di,j ≤ C
∥∥∂2

xu
2
∥∥
L∞(R2)

∑
i,j

d2
i,j +

(
B1
i,j

)2
,

where C equals 8, and is in any case independent of ∆x.
The rest of the discrete correction terms are similar to those we have bounded,

and we end up with the bound
(2.34)∑
i,j

2di,j (discrete correction)

≤ C
(∥∥∂2

xu
1
∥∥
L∞(R2)

+
∥∥∂2

yu
1
∥∥
L∞(R2)

+
∥∥∂2

xu
2
∥∥
L∞(R2)

+
∥∥∂2

yu
2
∥∥
L∞(R2)

)
×
∑
i,j

(
d2
i,j + B2

i,j

)
+ C

(∥∥∂xu1
∥∥
L∞(R2)

+
∥∥∂yu1

∥∥
L∞(R2)

+
∥∥∂xu2

∥∥
L∞(R2)

+
∥∥∂yu2

∥∥
L∞(R2)

)
×
∑
i,j

1
ε

(
∆x
(
D−x B

1
i,j

)2
+ ∆y

(
D−y B

2
i,j

)2)
+ ε

(
∆x
(
D−x di,j

)2 + ∆y
(
D−y di,j

)2)
,

for some finite constant C which does not depend on ∆x or ∆y.
Now we bound the terms coming from the “upwind diffusion”, here we must

bound terms like∑
i,j

2di,j∆x
∣∣u1
i,j

∣∣D+
xD
−
x di,j ≤ −2∆x

∑
i,j

D−x
(∣∣u1

i,j

∣∣ di,j)D−x di,j
= −2∆x

∑
i,j

∣∣u1
i,j

∣∣ (D−x di,j)2 − di−1,jD
−
x

∣∣u1
i,j

∣∣D−x di,j
≤ −2∆x

∑
i,j

∣∣u1
i,j

∣∣ (D−x di,j)2 + 10
∥∥∂xu1

∥∥
L∞(R2)

∑
i,j

d2
i,j .

Then we have that

(2.35)

∑
i,j

2di,j (upwind diffusion)

≤ −
∑
i,j

∆x
∣∣u1
i,j

∣∣ (D−x di,j)2 + ∆y
∣∣u2
i,j

∣∣ (D−y di,j)2
+ 10

(∥∥∂xu1
∥∥
L∞(R2)

+
∥∥∂yu2

∥∥
L∞(R2)

)∑
i,j

d2
i,j .

Then we turn to the “terms from D+D−”. These are the result of applying D0
x

to the second order differences in (2.27), D0
y to the second order differences in (2.28)
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and adding the results. We have that

D0
x

(
∆x
2

∣∣u1
i,j

∣∣
δ
D+
xD
−
x B

1
i,j +

∆y
2

∣∣u2
i,j

∣∣
δ
D+
y D
−
y B

1
i,j

)
=

∆x
2

[∣∣u1
i,j

∣∣
δ
D+
xD
−
x D

0
x

(
B1
i,j

)
+

1
2

(
D−x D

+
x B

1
i+1,jD

+
x

∣∣u1
i,j

∣∣
δ

+D+
xD
−
x B

1
i−1,jD

−
x

∣∣u1
i,j

∣∣
δ

)]
+

∆y
2

[∣∣u2
i,j

∣∣
δ
D+
y D
−
y D

0
x

(
B1
i,j

)
+

1
2

(
D−y D

+
y B

1
i+1,jD

+
x

∣∣u2
i,j

∣∣
δ

+D+
y D
−
y B

1
i−1,jD

−
x

∣∣u2
i,j

∣∣
δ

)]
and

D0
y

(
∆x
2

∣∣u1
i,j

∣∣
δ
D+
xD
−
x B

2
i,j +

∆y
2

∣∣u2
i,j

∣∣
δ
D+
y D
−
y B

2
i,j

)
=

∆x
2

[∣∣u1
i,j

∣∣
δ
D+
xD
−
x D

0
y

(
B2
i,j

)
+

1
2

(
D−x D

+
x B

2
i,j+1D

+
y

∣∣u1
i,j

∣∣
δ

+D+
xD
−
x B

2
i,j−1D

−
y

∣∣u1
i,j

∣∣
δ

)]
+

∆y
2

[∣∣u2
i,j

∣∣
δ
D+
y D
−
y D

0
y

(
B2
i,j

)
+

1
2

(
D−y D

+
y B

2
i,j+1D

+
y

∣∣u2
i,j

∣∣
δ

+D+
y D
−
y B

2
i,j−1D

−
y

∣∣u2
i,j

∣∣
δ

)]
.

Adding these we get

(2.36)
“terms from D+D−” =

∆x
2

∣∣u1
i,j

∣∣
δ
D+
xD
−
x di,j +

∆y
2

∣∣u2
i,j

∣∣
δ
D+
y D
−
y di,j

+ second order corrections.

Multiplied by 2di,j and summed over i and j, a typical term from the “second order
corrections” can be estimated as∑

i,j

(
∆xD+

xD
−
x B

1
i,j+1D

+
y

∣∣u1
i,j

∣∣
δ

)
di,j

= −
∑
i,j

∆x
(
D−x B

1
i,j+1

)
D−x

(
D+
y

∣∣u1
i,j

∣∣
δ
di,j

)
= −

∑
i,j

∆x
(
D+
x B

1
i,j

) ((
D−x D

+
y

∣∣u1
i,j

∣∣
δ

)
di,j +D+

y

∣∣u1
i−1,j

∣∣
δ
D−x di,j

)
≤
∥∥∂2

xyu
1
∥∥
L∞(R2)

∑
i,j

4
(
B1
i,j

)2
+ 2d2

i,j

+
∥∥∂yu1

∥∥
L∞(R2)

∑
i,j

∆x
4ε
(
D+
x B

1
i,j

)2
+ ∆xε

(
D−x di,j

)2
.
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Applying this to all the terms in the second order corrections, we get
(2.37)∑
i,j

(second order corrections) 2di,j

≤ 2
(∥∥∂2

xyu
1
∥∥
L∞(R2)

+
∥∥∂2

xxu
1
∥∥
L∞(R2)

+
∥∥∂2

xyu
2
∥∥
L∞(R2)

+
∥∥∂2

yyu
2
∥∥
L∞(R2)

)
×
∑
i,j

(
4B2

i,j + 2d2
i,j

)
+ 4

(∥∥∂xu1
∥∥
L∞(R2)

+
∥∥∂yu1

∥∥
L∞(R2)

+
∥∥∂xu2

∥∥
L∞(R2)

+
∥∥∂yu2

∥∥
L∞(R2)

)
×
∑
i,j

1
4ε

(
∆x
(
D−x B

1
i,j

)2
+ ∆y

(
D−y B

2
i,j

)2)
+ ε

(
∆x
(
D−x di,j

)2 + ∆y
(
D−y di,j

)2)
Now the first terms on the right of (2.36) will save the day. When multiplied by
2di,j , the first of these yields∑
i,j

∆x di,j
∣∣u1
i,j

∣∣
δ
D+
xD
−
x di,j = −

∑
i,j

∆xD−x
(
di,j

∣∣u1
i,j

∣∣
δ

)
D−x di,j

= −
∑
i,j

∆x
∣∣u1
i,j

∣∣
δ

(
D−x di,j

)2 + ∆xdi−1,jD
−
x

∣∣u1
i,j

∣∣
δ
D−x di,j

≤ −
∑
i,j

∆x
∣∣u1
i,j

∣∣
δ

(
D−x di,j

)2 + 5
∥∥∂xu1

∥∥
L∞(R2)

∑
i,j

d2
i,j .

Similarly we have that∑
i,j

∆y di,j
∣∣u2
i,j

∣∣
δ
D+
y D
−
y di,j ≤ −

∑
i,j

∆x
∣∣u2
i,j

∣∣
δ

(
D−y di,j

)2 + 4
∥∥∂yu2

∥∥∑
i,j

d2
i,j .

Collecting all our bounds, we find that there are finite constants C`, ` = 1, . . . , 4,
depending only on u1, u2 and their first and second derivatives, such that

d

dt

∑
i,j

d2
i,j ≤ C1

∑
i,j

d2
i,j + C2

∑
i,j

B2
i,j + C3

1
ε

∑
i,j

∆x
(
D−x B

1
i,j

)2
+ ∆y

(
D−y B

2
i,j

)2
+
(
C4ε−

δ

2

)∑
i,j

(
∆x
(
D−x di,j

)2 + ∆y
(
D−y di,j

)2)
.

Remembering that δ is a fixed positive number, we now choose ε positive, but so
small that (C4ε− δ/2) ≤ 0. Next use the estimates (2.16) and (2.14), multiply by
∆x∆y and integrate over the interval (0, t) to get the divergence bound:

Lemma 2.3. Assume that u ∈ C2(R2). Let {Bi,j(t)} be defined by (2.7) and define
the discrete divergence

dni,j(t) = D0
x

(
B1
i,j(t)

)
+D0

y

(
B2
i,j(t)

)
.

Then

(2.38) ∆x∆y
∑
i,j

(di,j(t))
2 ≤ eCt

∆x∆y
∑
i,j

|di,j(0)|2 + ∆x∆y
∑
i,j

|Bi,j(0)|2


for some finite constant C depending only on δ and on u and its derivatives up to
second order.
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Remark 2.2. If the limit of the scheme; B, has bounded first and second deriva-
tives, and the approximate solution B∆x has uniformly (in ∆x and ∆y) bounded
first and second differences, then the terms hidden behind “discrete correction
terms” and “terms from D+D−” in (2.29) will be O(∆x) + O(∆y). Hence if
div(B(x, y, 0)) = 0, also div(B(x, y, t)) = 0 for t > 0. Furthermore,

div0(B∆x(x, y, t)) = O(∆x) +O(∆y).

3. Numerical examples

In this section, we test the stable upwind scheme (SUS) (2.8) and compare it
with other schemes. We present test cases where we compare the performance of
SUS with the standard upwind scheme (1.19), and with the scheme of Torrilhon
and Fey (1.20), which we henceforth refer to as the TF scheme.

3.1. Example 1. The first example uses

(3.1) u = (1, 2), and B1
0(x, y) = B2

0(x, y) =

{
2 if x > y,

0 otherwise.

Since u is constant, the exact solution is

B(x, y, t) = B0(x− t, y − 2t).

As a computational domain we use (x, y) ∈ [−0.5, 0.5]2 and Neumann boundary
conditions. All schemes we tested used a CFL-number of 1/2. In Figure 3.1 we show
how some schemes compute the approximation at t = 0.3, with ∆x = ∆y = 0.01.
We see that the TF scheme seems to be more accurate than the SUS scheme, at
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Figure 3.1. Approximations of B1(x, 0, 0.3), initial data given by
(3.1).From left to right: SUS, TF, standard upwind, central Powell.

the expense of some oscillations as the solutions generated with the TF scheme are
not TV D even in this simple case of constant velocity fields. The standard upwind
scheme, (1.19), gives a solution similar to SUS, but with one pronounced spike.
The scheme called “central Powell” is the result of central evaluation of the Powell
source term, and is seen to be unstable. This example shows that the Godunov-
Powell source term has to be introduced as well as upwinded in some manner in
order to get stable results. The SUS scheme relies on an implicit upwinding due to
the use of the Friedrichs form.
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3.2. Example 2. The goal of this example is to investigate how the discrete di-
vergence introduced by the SUS scheme varies with ∆t, as well as to compare the
SUS scheme with the TF scheme.

In order to do this we choose divergence free initial data given by

B1
0(x, y) = ∂yA(x, y), B2

0(x, y) = −∂xA(x, y), whereA =
1

2π
sin(2πx) sin(2πy)+y−x,

and
u = (1, 1) + 0.25(cos(2πx) + 2 sin(2πy), sin(2πx) + 2 cos(2πy)).

To compute approximations we use periodic boundary conditions in the domain
(x, y) ∈ [−0.5, 0.5]2 and t ∈ [0, 0.5]. Although in violation of the CFL-condition
(2.12), both the SUS and the TF scheme use the CFL-number 1/2. Figure 3.2
shows how the discrete divergence(s) for both schemes vary with ∆x. We have
not shown div∗ for the TF scheme, since this remains very small throughout the
computation. We have used ∆x = ∆y = 2−6, 2−7, . . . , 2−11. From Figure 3.2 we
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Figure 3.2. Discrete divergences for the
SUS and the TF schemes for the approx-
imate solutions as t = 0.5, as a function
of ∆x. Top left: L1 norm, top right: L2

norm, left: L∞ norm.

see that both div0 and div∗ seem to converge to zero for the SUS scheme at the
expected first order accuracy, but div0 does not seem to converge to zero for the TF
scheme, although this scheme preserves div∗ to machine precision. This example
indicates that although a scheme preserves some discrete divergence, other discrete
divergences need not be small.

Since the SUS-scheme proposed here is not conservative, it is interesting to see
how much of B is lost. We have measured the relative conservation error defined
as

100×
2∑
i=1

|
∫∫

Bi,∆t(x, y, t)−Bi,∆t(x, y, 0) dxdy|
|
∫∫

Bi,∆t(x, y, 0) dxdy|
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∆x = 2−6 ∆x = 2−7 ∆x = 2−8 ∆x = 2−9 ∆x = 2−10 ∆x = 2−11

SUS 1.4577 0.7774 0.4019 0.2044 0.1031 0.0518
Table 3.1. Relative conservation errors for the SUS scheme.

From table 3.1, it is clear that although some mass is lost due to the fact that
SUS scheme is not conservative, the errors are quite small and converge to zero as
the mesh is refined at the expected first order of accuracy.

3.3. Example 3. If u(x, y) = (−y, x), i.e., a rotation around the origin, the solu-
tion to (1.3) in two space dimensions is given by

B(x, t) = R(t)B0(R(−t)x),

where R(t) is a rotation matrix for a rotation with angle t. This means that
B(x, 2π) = B0(x), which makes comparisons between approximations and the exact
solution easy. We have taken the initial data from [18],

(3.2) B0(x, y) = 4
(
−y
x− 1

2

)
e−20((x−1/2)2+y2).

Note that div (B0) = 0. We have used the computational domain (x, y) ∈ Ω =
[−1, 1]2 and Neumann boundary conditions, and compared the SUS and the TF
schemes. In table 3.2 we show the relative L2 errors produced by the schemes, for
∆x = ∆y = 2−5, . . . , 2−10, where both schemes used the CFL-number 1/2. The
relative error is defined as

e = 100×

∥∥B∆t(·, 2π)−B∆t(·, 0)
∥∥
L2(Ω)

‖B∆t(·, 0)‖L2(Ω)

.

Although we observed that the two schemes produced solutions which were different

∆x = 2−5 ∆x = 2−6 ∆x = 2−7 ∆x = 2−8 ∆x = 2−9 ∆x = 2−10

SUS 79 61 42 26 15 8
TF 67 52 36 23 13 7

Table 3.2. Relative errors for the SUS and TF schemes with ini-
tial data given by (3.2).

in some details, both schemes have comparable L2 errors. Also the numerical
convergence rate of both schemes is slightly less than one. Therefore, for a scheme
to work reasonably well, it does not seem crucial that it preserves some discrete
divergence.

3.4. Example 4. The analysis presented in this paper can easily be extended to a
time dependent velocity filed u = u(x, t). Therefore we present an example with a
time dependent velocity field. This velocity field originates from a simulation of the
well-known test case for magnetohydrodynamics called the “Orszag-Tang vortex”,
and is given as a table1 uni,j .

1This table can be downloaded from http://folk.uio.no/~franzf/OT300x300.tar.gz
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We have used the computational domain (x, y) ∈ [0, 2π]2 with periodic boundary
conditions, and t ∈ [0, π]. The initial magnetic field is

B0(x, y) =
(
− sin(y)
sin(2x)

)
.

In this example, ∆t is not constant, and the time steps are given in the table.
Although u is initially smooth, it develops shocks after some time steps. The test
used ∆x = ∆y = 2π/300. Figure 3.2 shows the approximations generated by the
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Figure 3.2. The approximations at t = π, left column: SUS, right
column: TF.

SUS and the TF schemes for this example. The solution is complicated, with many
features, but we see that the schemes produce similar results. In Figure 3.3 we illus-
trate this by plotting the approximation to B1 along the lines y = (122/300)× 2π
and y = (293/300) × 2π. From this figure, we see that the TF scheme resolve
discontinuities better, but since it is less stable, some of the “spikes” are numerical
artifacts and reflect the lack of TV D property in the TF scheme. We should em-
phasize that even though our analysis requires that the velocity field u is sufficiently
smooth, we have found that the SUS scheme works very well even for non-smooth
velocity fields.

4. Conclusions

Based on these numerical experiments, we conclude that the stable upwind
scheme (2.8) proposed in this paper is robust, efficient and reasonably accurate
compared with other first order schemes.



STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION 29

Figure 3.3. Left: B1(x, 2.54, π), right: B1(x, 6.13, π).

Regarding divergence preservation, the divergence errors generated by the scheme
are small and converge to zero with ∆t. Furthermore, two different discrete forms
of the divergence are of the same magnitude. On the other hand, even though
the scheme of Torrilhon and Fey (1.20) preserves one form of discrete divergence,
it does not preserve other discrete divergences. Therefore, we think that if a nu-
merical scheme for (1.1) is stable, exact divergence preservation is not necessary to
obtain good results.

We also remark that it is straightforward to extend our result to three space di-
mensions, i.e., B = (B1, B2, B3)(x, y, z), by upwinding the Godunov-Powell source
term. We plan to extend the ideas presented here both to unstructured meshes and
higher orders in a forthcoming paper.
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