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Abstract. The paper focuses on the uniqueness issue for scalar convection-diffusion
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1. Introduction

1.1. The problem

We are interested in the uniqueness question for nonlinear strongly degenerate par-

abolic scalar convection-diffusion initial-value problems of the type

ut +
(

F (u, x) − D(u, x)x

)

x
= 0 , (x, t) ∈ ΠT = R × (0, T ) , (1.1)

u(x, 0) = u0(x), x ∈ R ,

with the discontinuous flux and diffusion functions

F (u, x) =

{

f(u) , x > 0 ,

g(u) , x < 0 ,
and D(u, x) =

{

A(u) , x > 0 ,

B(u) , x < 0 .

Here, u = u(x, t) ≥ 0 is the unknown function, and the given data are: T > 0,

u0 ∈ L∞(R), f and g are Lipschitz continuous convective flux functions, and A and

B are non-decreasing Lipschitz continuous diffusion functions satisfying A(0) =

B(0) = 0. Each diffusion function is constant on a finite number of disjoint closed

intervals and on the complement A′ > 0 (B′ > 0) holds. When they are constant,

Equation (1.1) degenerates to a hyperbolic equation. Consequently, discontinuities

may appear in the solution also away from the spatial discontinuity at x = 0 of the

flux and diffusion functions.
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1.2. Applications

Equations like (1.1) arise in different applications. When D = 0, Equation (1.1)

becomes a first-order hyperbolic model, a conservation law with a discontinuous

flux, which appears in the modelling of two-phase flow in heterogeneous media

[31,33], traffic flow with abruptly changing surface conditions, or number of lanes,

[9,10,41], and continuous sedimentation in a clarifier-thickener unit [13,14,19,21]. In

these three areas of application it is also natural to consider a second-order model

with diffusion present: see [28,42] in the case of two-phase flow, [10] in traffic flow,

and [15] in continuous sedimentation.

In particular, we highlight the well-posedness analysis of the idealized model of

continuous sedimentation with compression in a clarifier-thickener unit presented

by Bürger et al. [15]. The model can be written

ut + f
(

γ(x), u
)

x
=

(

γ1(x)A(u)x

)

x
, (1.2)

where γ(x) is a piecewise constant vector-valued function and γ1(x) is the char-

acteristic function of a bounded interval, which corresponds to the total depth of

the sedimentation tank. At one inlet and two outlets of the sedimentation tank

the flux function is space-discontinuous. There is diffusion present only inside the

sedimentation tank. At the three locations of the spatial flux-discontinuities, the

diffusion term is either continuous (inlet), or identically zero on one side and not

the other (outlets). Equation (1.1) serves as a model of each of these three locations

corresponding to A = B (inlet), B = 0 (outlet at the top) and A = 0 (outlet at the

bottom), respectively. The presence of this space-discontinuous diffusion term has

been the motivation for the analysis in the present paper. The results of [15] are

based on the analyses by Karlsen et al. [34,35] and Bürger et al. [14].

1.3. Two entropy concepts

A general result on uniqueness was obtained by Karlsen et al. [35], who analyzed

the initial-value problem for the strongly degenerate parabolic equation

ut + f
(

γ(x), u
)

x
= A(u)xx , (1.3)

where γ(x) is a piecewise smooth and bounded vector-valued function with a finite

number of discontinuities. A Kružkov-type entropy condition was proposed and

uniqueness was shown via L1 stability of weak entropy solutions, provided that an

additional ‘crossing condition’ holds. This condition involves the two flux functions

f
(

γ(xd ± 0), ·
)

, where xd is a point where γ is discontinuous. The key issue in

the analysis of (1.3) concerns each such spatial discontinuity of the convective flux

function. Ignoring a possible smooth x-dependence of γ(x) between the spatial

discontinuities, we may set f(u) := f
(

γ(xd + 0), u
)

and g(u) := f
(

γ(xd − 0), u
)

,

and refer to (1.1) with A = B for simplicity of notation and the purpose of the

present paper.
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The Kružkov-type entropy condition by Karlsen et al. [35] implies partly the

standard entropy condition away from the spatial discontinuities (see Wu and

Yin [47] and Evje and Karlsen [29]), partly an interface entropy condition at such

discontinuities. It yields the physically relevant solution of the clarifier-thickener

(CT) problem for given initial data. Let us call such a solution a clarifier-thickener

entropy (CTE) solution to distinguish it from another type of entropy solution

commented on below (well aware of the fact that there are several other suitable

applications except sedimentation). We note that the uniqueness issue for CTE so-

lutions has been widely studied, mostly in the hyperbolic special case when D = 0

in (1.1), e.g. [7,14,15,18,19,20,27,30,31,32,35,36,37,38,39,44,45].

In the notation of (1.1), the crossing condition in [35] imposes conditions on f

and g, for example, that the graphs of f and g may intersect at most at one point.

The crossing condition has also been used in [14,36] by Bürger, Karlsen et al. The

reason for its presence has been to rule out situations in which their Kružkov-type

CTE condition seems not to be sufficiently strong. It is also concluded in [35] that

limit solutions of the numerical schemes, used there to prove existence, seem to

satisfy some additional entropy condition which is not captured by theirs.

In consequence, Bürger et al. [16] propose another Kružkov-type entropy for-

mulation, which does not require the crossing condition to ensure uniqueness. They

treat, for clarity, the hyperbolic case of (1.1) when D = 0, but comment that the

analysis could be generalized to include diffusion. Their interface entropy inequal-

ity involves both a problem-specific ‘flux connection’, introduced by Adimurthi et

al. [2], and a single ‘adapted Kružkov entropy’ of the type used by Audusse and

Perthame [6]. Audusse and Perthame introduced an infinite family of adapted en-

tropies and showed uniqueness without an interface condition and without any

assumption on the traces of the solution at x = 0. In a simpler setup, the idea of

using adapted entropies goes back to Baiti and Jenssen [8].

The problem-specific flux connection (in [16]) should be defined a priori and

it corresponds to a stationary solution, which is either an undercompressive or

marginally undercompressive wave at x = 0. Adimurthi et al. [1,2,3] used such

a connection in an interface entropy condition to prove uniqueness for piecewise

smooth solutions. The condition implies that the solution contains no undercom-

pressive waves at x = 0 except possibly the problem-specific flux connection. The

condition is physically motivated in two-phase flow in heterogeneous media, see

Kaasschieter [33], who derives such a condition in the hyperbolic limit of a par-

abolic equation in which an application-specific nonlinear diffusion term vanishes.

With this new flux-connection-adapted-entropy (FCAE) condition at x = 0 and

the standard Kružkov entropy condition ([40]) away from x = 0, Bürger et al. [16]

establish uniqueness and existence (for the hyperbolic case D = 0) and generalize

the results in [2].

There are some advantages with the FCAE condition. The crossing condition is

not needed and proofs of convergence of numerical algorithms are easier, see [16].
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Most important is perhaps the fact that the FCAE solutions seem to be the phys-

ically relevant ones for two-phase flow in heterogeneous media, see [3,33], and in

the modelling of traffic flow, see [9]. We emphasize that different solutions may be

picked by the CTE and the FCAE conditions, see Bürger et al. [12]. The possi-

bility of adapting the entropy condition to different physical problems is then an

advantage. However, this has so far only been done for these two physical problems

(two-phase flow and traffic flow), where the flux functions are not too complicated.

A disadvantage of the FCAE concept in the corresponding references above is

that it rely heavily on the shape of the fluxes. Either f and g should be both

strictly monotone or both unimodal. The CT problem is in general more complex

where f may have both a local minimum and a local maximum (in the interior of

the range of u). In a recent paper, Adimurthi et al. [4] generalize their previous

flux-connection entropy condition to the case of several extrema of f and g. A

vector of flux connections should be defined a priori and their coupling condition

is rather involved. They assume that f ′ and g′ have opposite signs at each flux

intersection and that the fluxes are equal at the endpoints of the range of u. Both

these assumptions are not satisfied in the general CT problem. Furthermore, the

FCAE concept has so far only been presented for the hyperbolic subcase when

D = 0 in (1.1).

Another feature of the CT problem is that the fluxes f and g vary with time via

volume fluxes and a feed inlet. Furthermore, these fluxes are often used as control

variables, which means that they depend on the solution, see [22,23,24,25,26]. This

suggests that if the FCAE concept should be adapted to the CT problem, the flux

connection should depend on the solution instead of being defined a priori. Today

it is not clear how this should be done. The CTE concept handles such situations

automatically. Therefore, further development of the CTE concept is of interest.

1.4. The present entropy condition

This paper deals with the CTE concept. We present an interface entropy condition

at x = 0 for (1.1), called Condition Γ, which implies uniqueness without the cross-

ing condition. Thereby, more general flux functions are allowed, for example, with

several flux crossings. The condition is a reformulation and extension of the one

in [18], in which the hyperbolic case (D = 0) was treated. It implies the Kružkov-

type CTE condition used in [35]. Consequently, when the fluxes f and g satisfy the

crossing condition, Condition Γ and the Kružkov-type CTE condition in [35] pick

the same solution.

The difference between the two entropy conditions is the following. Condition Γ

utilizes more specific information of the solution at time t and the flux functions.

Firstly, the crossing condition is an a priori condition on the flux functions with

no connection to the actual solution. Secondly, given a solution at time t with the

traces u± = u(0±, t), the Kružkov-type CTE condition (in [35]) imposes restric-

tions on both f and g on the whole interval between u+ and u−; denote this closed
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interval by ch(u+, u−). This is unnecessarily strong, since some parts of the fluxes

within this interval may be altered arbitrarily without influencing the solution at

all. Condition Γ, on the other hand, imposes restrictions on f only in a closed subin-

terval ch(u+, ū) ⊂ ch(u+, u−) and on g on the subinterval ch(ū, u−) ⊂ ch(u+, u−).

Conversely, within these subintervals the fluxes cannot be altered arbitrarily with-

out violating the solution. In this sense, Condition Γ is also a necessary condition

for uniqueness for CTE solutions. In the hyperbolic case this is supported by the

viscous profile analyses in [20,27]. Furthermore, the geometrical interpretation of

Condition Γ is more direct than the Kružkov-type condition in [35]. This makes

the construction of stationary solutions easier, see the last section here and the

stationary solutions in [15,17] by Bürger et al.

In [5], Aguilar et al. considered the case of (1.1) where the flux function has

no spatial discontinuity (f = g) but there is a discontinuity in the diffusion func-

tion corresponding to A = 0 and B′ > 0. Their coupling condition at x = 0, [5,

Eq. (3.13)], is a special case of Condition Γ.

In this paper, we do not treat the existence problem, but merely assume that

there exists a weak entropy solution of (1.1) (in a way that is specified below). For

the equations that are treated by Bürger, Karlsen et al. in [11,14,15,34,35,36], the

proofs of existence are carried out by showing convergence of different numerical

methods. We refer to those papers for substantial reviews and references of the

previous results on uniqueness, existence and numerical methods of either different

subcases of (1.1) (such as the hyperbolic case D = 0, or A = B with or without

convexity conditions on f and g) or cases when there is an additional smooth x-

dependence of the convective flux besides a finite number of x-discontinuities.

The proof of uniqueness of solutions for the clarifier-thickener model (1.2) by

Bürger et al. [15] follows closely the one in [35] and required only small modifications.

With similar modifications, the proof also covers the slightly more general situation

(1.1) if the crossing condition is satisfied. Note that the crossing condition is indeed

satisfied in the CT problem (1.2), see [14].

In Section 2, the assumptions, Condition Γ and the main theorem are stated. In

[18], Condition Γ was presented for the hyperbolic case (D = 0) in a more involved

way. It is reviewed and reformulated as entropy inequalities in Section 3. In Section 4

it is extended to include the degenerate parabolic case. Some immediate properties

are stated together with the fact that it implies the Kružkov-type CTE inequality

used in [15,35]. The proof of uniqueness can be found in Section 5. It follows closely

the one in [35]. Modifications are done mainly where the crossing condition and

their coupling condition were used, but also to cope with the assumption that

u ∈ L∞ instead of L1 (which is used in [15,35]). This is because we are interested in

solutions that do not tend to zero far away, which is natural because of the non-linear

flux functions. The simple geometrical interpretation of Condition Γ facilitates the

construction of stationary solutions. Such examples are given in Section 6, where a

monotonicity property of the solutions can also be found.
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2. Weak entropy solution and L1 stability

Definition 2.1 (weak solution). A function u : ΠT → R is called a weak solution

of (1.1) if it satisfies the following assumptions:

(A.1) u ∈ L∞(ΠT ), A(u)x ∈ L∞
(

(0,∞) × (0, T )
)

and B(u)x ∈ L∞
(

(−∞, 0) ×

(0, T )
)

.

(A.2) For a.e. t ∈ (0, T ), A
(

u(·, t)
)

, B
(

u(·, t)
)

∈ C(R).

(A.3) For all test functions ϕ ∈ C∞
0 (ΠT ),

∫∫

ΠT

(

uϕt +
(

F (u, x) − D(u, x)x

)

ϕx

)

dx dt = 0 .

(A.4) The initial condition is satisfies in the following sense, for any r > 0:

lim
τց0

1

τ

∫ τ

0

∫ r

−r

|u(x, t) − u0(x)| dx dt = 0 .

(A.5) The following traces exist for a.e. t ∈ (0, T ):

u± = u±(t) := ess lim
εց0

u(±ε, t) ∈ L∞(0, T ) ,

Au = Au(t) := (A(u)x)+ ∈ L∞(0, T ) ,

Bu = Bu(t) := (B(u)x)− ∈ L∞(0, T ) .

The assumption u ∈ L1 in [15,35] by Bürger, Karlsen et al. is here relaxed, since

we are interested in solutions that may not tend to zero far away. We refer to [35] for

discussions and proofs of the existence of traces in (A.5) in special cases of (1.1).

Note that the continuity assumption (A.2) includes the fact that both A(u) and

B(u) are continuous over the spatial discontinuity. This is also assumed by Bürger

et al. [15] and motivated in that paper.

Note that (A.3) implies the Rankine-Hugoniot condition at x = 0 (cf. [35]):

f(u+) −Au = g(u−) − Bu . (2.1)

For two real numbers α and β, we define the closed convex hull of these by

ch(α, β) :=
[

min(α, β), max(α, β)
]

,

and let the sign function be

sign(α) =















−1 , α < 0 ,

0 , α = 0 ,

1 , α > 0 .

Definition 2.2 (entropy solution). A weak solution u of (1.1) is called an en-

tropy solution if the following conditions hold:
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(E.1) For any c ∈ R and all test functions 0 ≤ ϕ ∈ C∞
0

(

(−∞, 0) × (0, T )
)

,
∫∫

ΠT

(

|u − c|ϕt + sign(u − c)
(

g(u) − g(c) − B(u)x

)

ϕx

)

dx dt ≥ 0 .

and for any c ∈ R and all test functions 0 ≤ ϕ ∈ C∞
0

(

(0,∞) × (0, T )
)

,
∫∫

ΠT

(

|u − c|ϕt + sign(u − c)
(

f(u) − f(c) − A(u)x

)

ϕx

)

dx dt ≥ 0 .

(E.2) (Condition Γ) For a.e. t ∈ (0, T ) there exists a number ū ∈ ch(u−, u+) such

that the following holds:

(u+ − ū)
(

f(v) − η
)

≥ 0 ∀v ∈ ch(u+, ū) ,

(ū − u−)
(

g(v) − η
)

≥ 0 ∀v ∈ ch(u−, ū) ,

where η := f(u+) −Au = g(u−) − Bu .

Theorem 2.3 (L1 stability and uniqueness). Let u and v be two weak entropy

solutions of (1.1) with the initial data u0 and v0, respectively. For a.e. t ∈ (0, T )

and any number N > 0,
∫

R

∣

∣u(x, t) − v(x, t)
∣

∣wN (x) dx ≤ eCt

∫

R

∣

∣u0(x) − v0(x)
∣

∣wN (x) dx ,

where

wN (x) =























1

1 + (x + N)2
, x ≤ −N ,

1 , |x| ≤ N ,
1

1 + (x − N)2
, x ≥ N ,

and C > 0 is a finite constant, which is independent of N , but depends on the flux

and diffusion functions.

The proof can be found in Section 5. For degenerate parabolic equations with

smooth coefficients, a similar stability inequality with a weight function can be

found in the early paper by Vol’pert and Hudjaev [46].

3. Entropy condition in the hyperbolic case, D = 0

When there is no diffusion term (D = 0), (1.1) becomes the hyperbolic equation

with a discontinuous flux function,

ut +
[

H(x)f(u) +
(

1 − H(x)
)

g(u)
]

x
= 0 . (3.1)

For this type of equation, the aim of [18,19] was to present a procedure to construct

unique piecewise smooth solutions from bounded piecewise smooth and piecewise

monotone initial data. An additional complication was a time dependent source

term, which can be incorporated into g, but we do not take it into account here.
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The constructed solutions were assumed to stay sufficiently regular: piecewise C1

and traces along x = 0 piecewise monotone. The following traces were also needed:

u± := lim
εց0

u±(t + ε) .

In order to state and reformulate Condition Γ, we recall some further notation

from [18]. Note that the Rankine-Hugoniot condition of (3.1) at x = 0 is

f(u+) = g(u−) . (3.2)

Definition 3.1. Given u+, u− ∈ R, define (cf. Figure 1)

f̂(u; u+) :=











min
v∈[u,u+]

f(v) , u ≤ u+ ,

max
v∈[u+,u]

f(v) , u > u+ ,

P (f ; u+) := {u+} ∪
{

u ∈ R : u < u+; f̂(u + ε; u+) > f̂(u; u+) ∀ε > 0
}

∪
{

u : u > u+; f̂(u − ε; u+) < f̂(u; u+) ∀ε > 0
}

,

ǧ(u; u−) :=











max
v∈[u,u−]

g(v) , u ≤ u−

min
v∈[u−,u]

g(v) , u > u−











= ĝ(u−; u) ,

N(g; u−) := {u−} ∪
{

u ∈ R : u < u−; ǧ(u + ε; u−) < ǧ(u; u−) ∀ε > 0
}

∪
{

u : u > u−; ǧ(u − ε; u−) > ǧ(u; u−) ∀ε > 0
}

.

For the projection on the u-axis of the intersection of the graphs of f̂ and ǧ we

define

Ū = Ū(u+, u−) :=
{

u ∈ R : f̂(u; u+) = ǧ(u; u−)
}

and let ū ∈ Ū ∩ch(u−, u+) denote an arbitrary point. Since f̂ is non-decreasing and

ǧ is non-increasing, the set Ū is an interval, which may consist of a single point ū

(cf. Figures 2–5). Furthermore, introduce the set of pairs

Γ(u+, u−) :=
{

(α, β) ∈ R
2 : f(α) = g(β) = f̂(Ū ; u+)

}

.

Note that, in this section, the number ū belongs to the set Ū , in contrast to the

general formulation of Condition Γ in Definition 2.2.

The set Γ contains generally several pairs that satisfy the Rankine-Hugoniot

condition (3.2) and therefore are candidates of ‘new’ boundary values for the con-

tinuation of a (piecewise smooth) solution at t = 0+. However, it turns out that

only one of these pairs are possible for the continuation of a solution. Therefore,

the following condition was introduced in [18].

Condition Γ (version 1, D = 0, piecewise smooth solutions): (u+, u−) ∈

Γ(u+, u−) for every t ∈ (0, T ).

A characterization of a solution that satisfies this condition is the following.

Firstly, the variation of u(·, t) is minimized. Secondly, if there is more than one pair
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f

f

f̂

f̂

P1P1P0 P−1P−1 u+

u+

Fig. 1. Examples of graphs of f (solid) and the two main possibilities for f̂(·;u+) (grey). The set
P = ∪iPi, where P0 = u+ in the right-hand figure.

(u+, u−) with the same variation, then the jump |u+ − u−| is minimized, see [18,

Examples 2.7 and 2.8]. The order of these minimizations is important, since there

need not exist a minimal jump. If interpreting u+ and u− as possible ‘inner states’

along x = 0, the minimal jump condition by Gimse and Risebro [30] is equivalent

to Condition Γ.

For the simpler Riemann problem, where the initial data consist of a single step

at x = 0 between two constants u±, Condition Γ reduces to

(u+, u−) = c(u+, u−) :=
(

P (f ; u+) × N(g; u−)
)

∩ Γ(u+, u−) , (3.3)

where the set on the right hand side consists of precisely one member (since the

restrictions f |P and g|N are injective, see [18, Proposition 2.11]). Hence, the coupling

function c is well-defined. For the construction of solutions, locally in time, when the

initial-value function is piecewise smooth and piecewise monotone, the procedure in

[18] utilizes the coupling function c twice. For such regular solutions, the fixed-point

relation (u+, u−) = c(u+, u−) holds for almost all t, which leads to the following

alternative way of formulating the entropy condition.

Condition Γ (version 2, D = 0): (u+, u−) = c(u+, u−) for a.e. t ∈ (0, T ).

This fixed-point condition implies that the flux level of the intersection, which

we denote by η, satisfies

f̂(Ū ; u+) = f(u+) = η = ǧ(Ū ; u−) = g(u−) . (3.4)

Note also that this version does not require the assumption on piecewise smoothness

(but of course the existence of u±). Another version written in terms of entropy

inequalities is the following.

Condition Γ (version 3, D = 0): For a.e. t ∈ (0, T ) and arbitrary ū ∈ Ū ∩
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η
η

f

f

f̂

f̂

g
g

ǧ
ǧ

NN
PP

u+ūū

Fig. 2. Left: Case 1, where ū = u+ = u
−

. Right: Case 2a, where u
−

= ū. The sets N and P are,
for clarity, indicated above the u-axis.

ch(u−, u+),

(u+ − ū)
(

f(v) − η
)

≥ 0 ∀v ∈ ch(u+, ū) , (3.5)

(ū − u−)
(

g(v) − η
)

≥ 0 ∀v ∈ ch(u−, ū) , (3.6)

where η = f(u+) = g(u−) .

Claim 3.2. Versions 2 and 3 of Condition Γ are equivalent.

Proof. Given the two numbers u±, we can define f̂ , ǧ, P , N , the coupling function

c and the set of pairs Ū . Note also that the Rankine-Hugoniot condition (3.2) is

satisfied in both versions. There are three (disjoint) cases that may occur depending

on the set Ū . (The function values of the coupling function c is written out in these

cases in [18].)

Case 1 : Ū = {ū} with ū ∈ N ∩ P , see Figure 2 (left). It is clear that the only

fixed point in version 2 is (u+, u−) = (ū, ū). Then version 3 is trivially satisfied.

Conversely, assume that the pair (u+, u−) satisfies version 3. Assume first that

u+ < ū. Then (3.5) gives f(ū) ≤ η = f(u+). On the other hand, the facts that

u+ ∈ P and the restriction f |P is increasing imply that f(u+) < f(ū), and we

have a contradiction. If u+ > ū holds, we arrive in the analogous contradiction

with reversed inequalities. Similarly, we get contradictions for the two cases u− ≶ ū

(with g instead of f). The only remaining possibility is (u+, u−) = (ū, ū), and we

have above concluded that this pair satisfies version 2.

Case 2a: Ū = {ū} with ū ∈ N \P . Thus, there is a plateau of f̂(·; u+) at the flux

level of intersection with ǧ(·; u−), see Figure 2 (right). Version 2 implies (3.4) and

specifically u− = ū. Then (3.6) is trivially satisfied. To see that also (3.5) is satisfied

we consider first the case when ū < u+, as in Figures 2 (right) and 3. According to
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) =

η η

f f

f̂

f̂

g

g
ǧ

ǧ

N N
P P

u+ u+ū ū

Fig. 3. Two more examples of case 2a. Note that the values of f outside the interval [ū, u+] are
irrelevant, and likewise for g away from ū = u

−
.

the definition of f̂ and (3.4), we have

f(v) ≥ min
w∈[v,u+]

f(w) = f̂(v; u+) = f(u+) = η , ū ≤ v ≤ u+ , (3.7)

which implies (3.5). The case u+ < ū is analogous:

f(v) ≤ max
w∈[u+,v]

f(w) = f̂(v; u+) = f(u+) = η , u+ ≤ v ≤ ū ,

which also implies (3.5). Conversely, assume that (u+, u−) satisfies version 3. As-

sume first that u− < ū. Then (3.6) implies that g(ū) ≥ η = g(u−). On the other

hand, since the restriction g|N is decreasing, we have g(u−) > g(ū), and we have a

contradiction. Analogously, the case u− > ū yields a contradiction. Hence, u− = ū

holds. There are two possibilities for u+. Assume first that u+ > ū holds. Then

(3.5) implies that f(v) ≥ η = f(u+) for all v ∈ [ū, u+]. The definition of f̂ then

implies that f̂(v; u+) = η for all v ∈ [ū, u+], which in turn implies that (u+, ū) is a

fixed point of the coupling function c. Thus, version 2 is satisfied. The other case

u+ < ū yields analogously that version 2 is satisfied.

Case 2b: Ū = {ū} with ū ∈ P \N . This case is symmetrical to case 2a: substitute

u− for u+ and f for g.

Case 3 : Either the set Ū is infinite (an interval of non-zero length) or ū /∈

N ∪ P . This means that plateaus of both f̂(·; u+) and ǧ(·; u−) lie at the flux level

η of the intersection. Assume that version 2 holds. If u− = u+, then version 3 is

trivially satisfied. Consider now the case u− < u+. (The case u− > u+ can be

dealt with in a symmetrical way as was done with cases 2a and 2b.) Depending

on the relative location of the two intervals ch(u−, u+) = [u−, u+] and Ū there

are different subcases, see Figures 4 and 5, in which (u+, u−) is a fixed point of the

coupling function c. In all such cases we can conclude that for every ū ∈ Ū∩[u−, u+]
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(u

η

f

f̂ = ǧ

g

N
P

u− u+Ū

η

f

f̂

g

ǧ

N
P

u− u+u1 Ū

Fig. 4. Examples of case 3 when [u
−

, u+] ⊂ Ū . Left: Ū = R. Right: Ū = [u1,∞). Note that
f̂(u; u+) = ǧ(u;u

−
) for u ≥ u1.

η

f

f̂

g

ǧ

N
P

u− u+Ū

η

f

f̂

g

ǧ

N
P

u− u+Ū

Fig. 5. Examples of case 3 when [u
−

, u+] is not a subset of Ū . Left: u
−

∈ Ū and u+ /∈ Ū . Right:
u
−

/∈ Ū and u+ /∈ Ū . Note that the special case when Ū contains only the single point ū /∈ N ∪ P
is illustrated by the right-hand figure by moving the graph of g to the left (or the graph of f to
the right) such that Ū shrinks to a point.

both (3.7) and the analogous relation

g(v) ≥ min
w∈[u−,v]

g(w) = ǧ(v; u−) = g(u−) = η , u− ≤ v ≤ ū

hold. Hence, version 3 is satisfied. Conversely, assume that the pair (u+, u−) satisfies

version 3. In the case u− = u+, the pair is clearly a fixed point of the coupling

function c in version 2. By symmetry it suffices now to consider the case u− < u+.

First, we shall conclude that (3.4) holds, i.e., the flux level η = f(u+) = g(u−) equals

the level of intersection. The fact that f̂ is non-decreasing implies η = f(u+) ≥

f̂(Ū ; u+). Suppose that strict inequality holds, i.e.,

η = f(u+) > f̂(Ū ; u+) . (3.8)

This means that f and f̂(·; u+) have the qualitative relation shown in Figure 1 (left),
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where the plateau of intersection lies below f(u+). Let u1 denote the right endpoint

of that plateau. Hence, η = f(u+) > f(u1) = f̂(Ū ; u+). Since u1 ∈ Ū ∩ [u−, u+] and

u1 < u+ hold, (3.5) in version 3 implies f(u1) ≥ η. This inequality contradicts (3.8),

and therefore (3.4) holds. This means that in the left case of Figure 1, u+ = u1 = the

right endpoint of the plateau involved in the intersection. In any case, there exists

a ū ∈ Ū ∩ [u−, u+] with u− < ū < u+ (since Ū is either infinite or ū /∈ N ∪P ). Then

(3.5) implies f(v) ≥ η = f(u+) for v ∈ [ū, u+], and (3.6) implies g(v) ≥ η = g(u−)

for v ∈ [u−, ū]. The definitions of f̂ , ǧ, P , N and c then yield that (u+, u−) is a

fixed point of version 2.

Remark 3.3. In the special case f = g, Condition Γ implies the standard entropy

condition by Oleinik [43], which for a stationary discontinuity can be written

(u+ − u−)
(

f(v) − η
)

≥ 0 ∀v ∈ ch(u−, u+) ,

where η = f(u−) = f(u+) .
(3.9)

If u− = u+, then both (3.9) and Condition Γ are satisfied trivially. If u− 6= u+,

then the intersection of f̂ and f̌ is necessarily of case-3 type. Furthermore, Ū =

ch(u−, u+) holds. Then either of the special choices ū = u− in (3.5) or ū = u+ in

(3.6) is equivalent to (3.9).

Remark 3.4. Note that the crossing condition, which has been used in [14,35,36]

in order to show uniqueness, may not be satisfied when Condition Γ is. For example,

the number of flux crossings of f and g is irrelevant for Condition Γ, but the crossing

condition allows at most one such.

4. Entropy condition in the general case

The coupling condition for the parabolic equation (1.1) is a generalization of Con-

dition Γ (version 3) above in two ways. Firstly and obviously, the flux value η has

to include the diffusion functions. Secondly, it turns out in the proof of uniqueness

below that the explicit knowledge of the set Ū is redundant. In the hyperbolic sub-

case this set is informative when constructing solutions. For the uniqueness it is,

however, sufficient to know that there exists a number ū ∈ ch(u−, u+).

Condition Γ (general version): For a.e. t ∈ (0, T ) there exists a number ū ∈

ch(u−, u+) such that the following holds:

(u+ − ū)
(

f(v) − η
)

≥ 0 ∀v ∈ ch(u+, ū) ,

(ū − u−)
(

g(v) − η
)

≥ 0 ∀v ∈ ch(u−, ū) ,

where η := f(u+) −Au = g(u−) − Bu .

Remark 4.1. As a straightforward generalization of Remark 3.3, Condition Γ im-

plies the standard entropy condition for strongly degenerate parabolic equations in



January 3, 2008

14 Stefan Diehl

the special case f = g and A = B, cf. assumption (E.1) in Definition 2.2, which for

a stationary discontinuity can be written as

(u+ − u−)
(

f(v) − η
)

≥ 0 ∀v ∈ ch(u−, u+) ,

where η = f(u−) −
(

A(u)x

)

−
= f(u+) −Au ,

(4.1)

see Evje and Karlsen [29].

The following lemma contains some direct consequences of Condition Γ, which

we shall refer to in Section 5.

Lemma 4.2. Condition Γ yields the following, where ū ∈ ch(u−, u+):

u− < ū ≤ u+ =⇒ g(v) ≥ η for u− ≤ v ≤ ū , (4.2)

u− ≤ ū < u+ =⇒ f(v) ≥ η for ū ≤ v ≤ u+ , (4.3)

u− < ū < u+ =⇒

{

g(v) ≥ η for u− ≤ v ≤ ū ,

f(v) ≥ η for ū ≤ v ≤ u+ ,
(4.4)

u+ < ū ≤ u− =⇒ f(v) ≤ η for u+ ≤ v ≤ ū , (4.5)

u+ ≤ ū < u− =⇒ g(v) ≤ η for ū ≤ v ≤ u− , (4.6)

u+ < ū < u− =⇒

{

f(v) ≤ η for u+ ≤ v ≤ ū ,

g(v) ≤ η for ū ≤ v ≤ u− .
(4.7)

The following properties of the diffusion coefficient on either side of x = 0 now

follow directly. For example, v = u− in (4.2) yields g(u−) ≥ η, which is equivalent

to Bu ≥ 0.

Corollary 4.3. Condition Γ implies the following, where ū ∈ ch(u−, u+):

u− < ū ≤ u+ =⇒ Bu ≥ 0 , (4.8)

u− ≤ ū < u+ =⇒ Au ≥ 0 , (4.9)

u− < ū < u+ =⇒

{

Bu ≥ 0 ,

Au ≥ 0 ,
(4.10)

u+ < ū ≤ u− =⇒ Au ≤ 0 , (4.11)

u+ ≤ ū < u− =⇒ Bu ≤ 0 , (4.12)

u+ < ū < u− =⇒

{

Bu ≤ 0 ,

Au ≤ 0 .
(4.13)

The coupling condition at a spatial discontinuity used in Karlsen et al. [35] and

Bürger et al. [15] is the following Kružkov-type inequality. For a.e. t ∈ (0, T ),

sign(u+ − v)
(

η − f(v)
)

− sign(u− − v)
(

η − g(v)
)

≤
∣

∣f(v) − g(v)
∣

∣ ∀v ∈ R ,

(4.14)

where η = f(u+) −Au = g(u−) − Bu.
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Theorem 4.4. Condition Γ implies the Kružkov-type entropy condition (4.14).

Proof. For v /∈ ch(u−, u+), sign(u+ − v) = sign(u−− v) holds and implies that the

left-hand side of (4.14) is equal to

±
(

η − f(v)
)

∓
(

η − g(v)
)

= ±
(

g(v) − f(v)
)

≤
∣

∣f(v) − g(v)
∣

∣ .

Consider the case v ∈ ch(u−, u+). If u− = u+, then v = u− = u+ and the left-hand

side of (4.14) is zero. Assume now that u− < u+ (the other case is symmetric). The

left-hand side of (4.14) is then equal to

η − f(v) + η − g(v) = 2η − f(v) − g(v) . (4.15)

One of (4.2), (4.3) and (4.4) holds, and each of these inequalities implies that (4.15)

is less than or equal to g(v) − f(v) or f(v) − g(v).

5. Proof of the uniqueness

The major part of the proof of Theorem 2.3 follows the one presented by Karlsen et

al. [35]. A minor thing is that they consider A = B in (1.1), however, modifications

to the case A 6= B are straightforward, cf. [15]. The major modifications are made

at the place where the crossing condition and their coupling condition were needed.

To handle the relaxed assumption that u ∈ L∞ instead of L1 (which is used in

[15,35]) a weight function is introduced.

The following three lemmas can be extracted from [35] (where they are proved)

and are directly needed here in the modification of the uniqueness proof. They all

follow from the continuity assumption (A.2) and the assumption that the diffusion

functions A and B are non-decreasing. The first one is Lemma 2.5 in [35]. Note

that it is slightly stronger than Corollary 4.3, since it states that the signs of Au

and Bu are determined by the sign of the jump in u. On the other hand, it requires

assumption (A.2), which Corollary 4.3 does not.

Lemma 5.1. A weak solution u of (1.1) satisfies for a.e. t ∈ (0, T )

(u+ − u−)Au ≥ 0 , (u+ − u−)Bu ≥ 0 .

The remaining two lemmas contain some technical details. The next is Lemma 2.2

in [35].

Lemma 5.2. Let u and v be two weak solutions. Then the following holds for

a.e. t ∈ (0, T ):

(|A(u) − A(v)|x)+ =

{

sign(u+ − v+)(Au −Av) , if A(u+) 6= A(v+) ,

|Au −Av| , if A(u+) = A(v+) ,

(|B(u) − B(v)|x)− =

{

sign(u− − v−)(Bu − Bv) , if B(u−) 6= B(v−) ,

−|Bu − Bv| , if B(u−) = B(v−) .
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The whole Lemma 2.9 in [35] is not needed in the uniqueness proof below, but only

the following main parts.

Lemma 5.3. Let u and v be two weak solutions, which satisfy u− > v− and u+ <

v+ for a fixed t ∈ (0, T ) (such that all traces exist). Then the following holds:

If u+ < u−, then

v− ∈ (u+, u−) =⇒ Bv = 0 ,

v+ ∈ (u+, u−) =⇒ Av = 0 .

If v− < v+, then

u− ∈ (v−, v+) =⇒ Bu = 0 ,

u+ ∈ (v−, v+) =⇒ Au = 0 .

Proof of Theorem 2.3. The proof of Theorem 2.1 in Karlsen et al. [35] can

be followed with the following modifications. Straightforward modifications in the

notation are needed to cover the case A 6= B instead of A = B (which is also

noticed by these authors in [15]). Consider condition (E.1) in Definition 2.2. Since

A is non-decreasing, we can rewrite

sign(u − c)A(u)x = sign
(

A(u) − A(c)
)(

A(u) − A(c)
)

x
=

∣

∣A(u) − A(c)
∣

∣

x

and since A
(

u(·, t)
)

is continuous, we can move the partial derivative with respect

to x to the test function. The same can be done for the term with B and hence we

have
∫∫

ΠT

(

|u − c|ϕt + sign(u − c)
(

F (u, x) − F (c, x)
)

ϕx

+
∣

∣D(u, x) − D(c, x)
∣

∣ϕxx

)

dx dt ≥ 0

for all 0 ≤ ϕ ∈ C∞
0

(

ΠT \{(0, t) : 0 < t < T }
)

and any constant c ∈ R. Starting from

this inequality and the weak formulation (A.3), the ‘doubling of variables’ argument

in [35, Appendix A] yields the following inequality for two weak entropy solutions

u and v:
∫∫

ΠT

(

|u − v|ϕt + sign(u − v)
(

F (u, x) − F (v, x)
)

ϕx

+
∣

∣D(u, x) − D(v, x)
∣

∣ϕxx

)

dx dt ≥ 0

(5.1)

for all 0 ≤ ϕ ∈ C∞
0

(

ΠT \ {(0, t) : 0 < t < T }
)

. Via a limiting argument this

inequality is, in [35], extended to the larger class of test functions 0 ≤ ϕ ∈ C∞
0 (ΠT )

provided that the following inequality

S := sign(u+ − v+)
(

f(u+) − f(v+)
)

− (|A(u) − A(v)|x)+

− sign(u− − v−)
(

g(u−) − g(v−)
)

+ (|B(u) − B(v)|x)− ≤ 0
(5.2)
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holds at an arbitrary time point when the traces exist. The inequality (5.2) corre-

sponds to [35, Equation (2.27)] (see also [15, Equation (4.38)]) and it was proved

by considering 7 cases depending on the relative order of the numbers u− and v−,

and u+ and v+. It is only case 6 (and thereby also automatically the symmetrical

case 7) that requires a modification, since this required the crossing condition and

their entropy coupling condition. In case 6, u− > v− and u+ < v+ hold. Lemma 5.2

then implies that

S = −
(

f(u+) − f(v+)
)

+ (Au −Av) −
(

g(u−) − g(v−)
)

+ (Bu − Bv)

= 2(ηv − ηu) ,

where ηv := f(v+) − Av = g(v−) − Bv and analogously for ηu. Now we consider

several subcases, which in turn is divided into further subcases, depending on the

order of the six numbers u±, v±, ū and v̄. To make it easier for the reader, the

inequalities that distinguish each subcase are underlined.

I. u+ < v−: We have

u+ < v− < u− , (5.3)

u+ < v+ .

Equation (5.3) implies, by Lemma 5.3, that Bv = 0. We now consider

different possible placements of v+:

a. u+ < v+ < v− < u−: Lemma 5.3 then gives that also Av = 0 holds.

We now consider different possible placements of ū ∈ [u+, u−]:

i. u+ ≤ ū ≤ v+ < v− < u−: Then (4.6) implies

g(v−) ≤ ηu =⇒ S ≤ 2
(

ηv − g(v−)
)

= −2Bv = 0 . (5.4)

ii. u+ < v+ < ū ≤ v− < u−: Then (4.7) implies the same inequality

and result as (5.4).

iii. u+ < v+ < v− < ū ≤ u−: Then (4.5) implies

f(v+) ≤ ηu =⇒ S ≤ 2
(

ηv − f(v+)
)

= −2Av = 0 . (5.5)

b. u+ < v+ = v− < u−: Necessarily, v̄ = v+ = v− holds and Av = 0 by

Lemma 5.3. Consider different possible placements of ū:

i. u+ ≤ ū ≤ v̄ < u−: Then (4.6) implies

g(v̄) ≤ ηu =⇒ S ≤ 2
(

ηv−g(v̄)
)

= 2
(

ηv−g(v−)
)

= −2Bv = 0 .

ii. u+ < v̄ < ū ≤ u−: Then (4.5) implies

f(v̄) ≤ ηu =⇒ S ≤ 2
(

ηv−f(v̄)
)

= 2
(

ηv−g(v+)
)

= −2Av = 0 .

c. u+ < v− < v+ < u−: Lemma 5.3 implies that Av = 0. Consider dif-

ferent possible placements of ū:

i. u+ ≤ ū ≤ v− < v+ < u−: Then (4.6) implies (5.4).
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ii. u+ < v− < ū < v+ < u−: Then (4.7) implies

f(ū) ≤ ηu , (5.6)

g(ū) ≤ ηu . (5.7)

Consider different placements of v̄ ∈ [v−, v+]:

α. v− ≤ v̄ < ū ≤ v+: Then (4.3) (in the variable v) implies

f(ū) ≥ ηv. This inequality together with (5.6) gives

S ≤ 2
(

f(ū) − f(ū)
)

= 0 .

β. v− < ū ≤ v̄ ≤ v+: Analogously to case α, (4.2) implies g(ū) ≥

ηv. Together with (5.7) we conclude that S ≤ 0.

iii. u+ < v− < v+ ≤ ū ≤ u−: Then (4.5) implies (5.5).

d. u+ < v− < u− ≤ v+: Consider different possible placements of ū:

i. u+ ≤ ū ≤ v− < u− ≤ v+: Then (4.6) implies (5.4).

ii. u+ < v− < ū < u− ≤ v+: Then (4.7) implies (5.6) and (5.7).

Consider different placements of v̄ ∈ [v−, v+]:

α. v− ≤ v̄ < ū < v+: Then (4.3) (in the variable v) implies

f(ū) ≥ ηv. This inequality together with (5.6) implies S ≤ 0.

β. v− < ū ≤ v̄ ≤ v+: Analogously to case α, (4.2) implies g(ū) ≥

ηv. Together with (5.7) we can conclude that S ≤ 0 holds.

iii. u+ < v− < ū = u− ≤ v+: Then (4.5) implies (5.6). Consider

different placements of v̄ ∈ [v−, v+]:

α. v− ≤ v̄ < ū = u− ≤ v+: Then (4.3) (in the variable v) implies

f(ū) ≥ ηv. This inequality together with (5.6) implies S ≤ 0.

β. v− < ū = u− ≤ v̄ ≤ v+: Inequality (4.2) (in the variable v)

implies

g(u−) ≥ ηv =⇒ S ≤ 2
(

g(u−) − ηu
)

= 2Bu ≤ 0 , (5.8)

where the latter inequality follows from Lemma 5.1.

II. u+ = v−: We have

u+ = v− < u− ,

u+ < v+ .

We now consider the possible placements of v+:

a. u+ = v− < v+ < u−: Then Lemma 5.3 implies Av = 0. Consider

different placements of ū:

i. u+ = v− = ū < v+ < u−: Inequality (4.6) implies

g(ū) ≤ ηu =⇒ S ≤ 2
(

ηv−g(ū)
)

= 2
(

ηv−g(v−)
)

= −2Bv ≤ 0 ,

where the latter inequality follows from Lemma 5.1.
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ii. u+ = v− < ū < v+ < u−: The same arguments as in case Icii can

be applied.

iii. u+ = v− < v+ ≤ ū ≤ u−: The same arguments as in case Iciii can

be applied.

b. u+ = v− < u− ≤ v+: Consider different placements of ū:

i. u+ = v− = ū < u− ≤ v+: The same arguments as in case IIai can

be applied.

ii. u+ = v− < ū < u− ≤ v+: The same arguments as in case Idii can

be applied.

iii. u+ = v− < ū = u− ≤ v+: The same arguments as in case Idiii can

be applied.

III. u+ > v−: We have

v− < u+ < v+ ,

v− < u− .

By interchanging u and v, and minus and plus signs, we see that this case

is completely analogous to I.

Hence, (5.2) holds and thereby (5.1) for test functions 0 ≤ ϕ ∈ C∞
0 (ΠT ). A mod-

ification at the end of the proof in [35] is now done to deal with the fact that

u ∈ L∞(ΠT ) instead of L1(ΠT ). For a given s ∈ (0, T ), let s0, τ and κ satisfy

0 < s0 < s0 + τ < s < s + κ < T and define

βτ,κ(t) :=



































0 , 0 ≤ t ≤ s0 ,
1
τ (t − s0) , s0 ≤ t ≤ s0 + τ ,

1 , s0 + τ ≤ t ≤ s ,

− 1
κ (t − s − κ) , s ≤ t ≤ s + κ ,

0 , s + κ ≤ t ≤ T .

For a real number a, set

µa(x) :=
1

1 + (x − a)2
, x ∈ R .

Then 0 < µa ≤ 1 holds and one can easily verify that |µ′
a| ≤ C1µa and |µ′′

a | ≤ C2µa

for some constants C1 and C2, which are independent of a (since the effect of a is

merely a translation). For N > 0, we define the weight function

wN (x) :=















µ−N (x) , x ≤ −N ,

1 , |x| ≤ N ,

µN (x) , x ≥ N ,

and conclude that wN ∈ C1(R), w′
N (x) = w′′

N (x) = 0 for |x| < N , |w′
N | ≤ C1wN

and |w′′
N | ≤ C2wN with the same constants as above. Let h ∈ C∞(R) take values
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in [0, 1] such that

h(x) :=

{

0 , x ≤ 0 ,

1 , x ≥ 1 .

For r > N set

αr(x) := h(x + r + 1) − h(x − r) , x ∈ R .

Then suppαr ⊆ [−r−1, r+1], 0 ≤ αr ≤ 1, |α′
r| ≤ ‖h′‖L∞(R) and |α′′

r | ≤ ‖h′′‖L∞(R).

To obtain compact support, define

wN,r := wNαr .

Then we can conclude that 0 ≤ wN,r ≤ 1, wN,r ր wN as r → ∞, w′
N,r(x) =

w′′
N,r(x) = 0 for |x| < N and

|w′
N,r| ≤

(

C1 + ‖h′‖L∞(R)

)

wN =: C3wN ,

|w′′
N,r| ≤

(

C2 + 2C1‖h
′‖L∞(R) + ‖h′′‖L∞(R)

)

wN =: C4wN ,

where we note that C3 and C4 neither depend on r nor N . Via a standard regular-

ization argument, ϕ(x, t) = wN,r(x)βτ,κ(t) can be used as a test function in (5.1),

which then yields

1

κ

∫ s+κ

s

∫

R

|u − v|wN,r dx dt ≤
1

τ

∫ s0+τ

s0

∫

R

|u − v|wN,r dx dt

+C3

∫ s+κ

s0

∫

|x|>N

|F (u, x) − F (v, x)|wN (x) dx dt

+C4

∫ s+κ

s0

∫

|x|>N

∣

∣D(u, x) − D(v, x)
∣

∣wN (x) dx dt .

(5.9)

Since f , g, A and B are Lipschitz, the last two terms in (5.9) can be estimated by

C

∫ s+κ

s0

∫

|x|>N

|u − v|wN dx dt ≤ C

∫ s+κ

s0

∫

R

|u − v|wN dx dt ,

for some constant C, which is independent of r and N . Let s0 ց 0 and use the

triangle inequality on the first term on the right-hand side of (5.9) to obtain

1

κ

∫ s+κ

s

∫

R

|u − v|wN,r dx dt ≤

∫

R

|u0 − v0|wN,r dx +
1

τ

∫ τ

0

∫ r+1

−r−1

|u − u0| dx dt

+
1

τ

∫ τ

0

∫ r+1

−r−1

|v − v0| dx dt + C

∫ s+κ

0

∫

R

|u − v|wN dx dt .

(5.10)

By assumption (A.4) in Definition 2.1, the second and third terms on the right-hand

side tend to zero as τ ց 0. Then we can let r → ∞ in (5.10) so that wN,r is replaced

by wN . Defining

E(t) :=

∫

R

|u − v|wN dx ,
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(5.10) thus yields

1

κ

∫ s+κ

s

E(t) dt ≤ E(0) + C

∫ s+κ

0

E(t) dt .

By Fubini’s theorem, E ∈ L1(0, T ). For s being a Lebesgue point of E , we can let

κ ց 0 and get

E(s) ≤ E(0) + C

∫ s

0

E(t) dt .

Since the set of Lebesgue points of E has full measure, Grönwall’s lemma gives

finally

E(s) ≤ eCsE(0) , a.e. s ∈ (0, T ) .

6. Construction of piecewise smooth stationary solutions

In order to provide examples of jumps at x = 0, we consider here time-independent

piecewise smooth solutions u = u(x) of (1.1). The simple geometric interpretation of

Condition Γ will thereby be enlightened. The constructed solutions below naturally

contain examples of the different types of hyperbolic waves of Section 3 (cases 1–3),

i.e., from undercompressive to overcompressive waves.

For stationary solutions, equation (1.1) can be reformulated in the following way

in the weak sense, having the Rankine-Hugoniot condition at every discontinuity of

u(x) in mind,
(

F (u, x) − D(u, x)′
)′

= 0 , x ∈ R

⇐⇒ η = F (u, x) − D(u, x)′ , x ∈ R

⇐⇒















η = g(u) − B(u)′ , x < 0 ,

η = f(u+) −Au = g(u−) − Bu , x = 0 ,

η = f(u) − A(u)′ , x > 0 ,

for some constant η ∈ R. These equations include possible jumps away from x = 0.

For example, a jump between u(x0 − 0) and u(x0 + 0) at x0 < 0 satisfies
(

g(u) − B(u)′
)∣

∣

x=x0−
= η =

(

g(u) − B(u)′
)∣

∣

x=x0+
.

When examining possible stationary solutions it is thus natural to start from a

constant value of η, which can be interpreted as the physical constant flux for all x.

If there is no diffusion, η equals the convective flux. When there is diffusion present,

the diffusion term B(u)′ is the difference between the convective flux and η.

In intervals of x ∈ R where the equation is hyperbolic (‘hyperbolic intervals’) it

follows that the solution is piecewise constant. In the ‘parabolic intervals’, A′ > 0

or B′ > 0 holds (positive diffusion), wherefore the solution obeys the ordinary

differential equation

u′ =
g(u) − η

B′(u)
in parabolic intervals in x < 0 (6.1)
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and the corresponding one in x > 0 containing f and A. Hence, we have the following

geometrically appealing equivalence:

g(u) S η ⇐⇒ u′ S 0 in parabolic intervals in x < 0 (6.2)

and analogously for x > 0 and f . Hence, when the solution is increasing, the graph

of g lies above the flux value η. Note the similarity with Condition Γ, which says

that a jump at x = 0 with u− < u+ is correct if there exists a number ū ∈ [u−, u+]

such that the graphs of g and f lie above the flux value η in the intervals [u−, ū]

and [ū, u+], respectively. The same interpretation holds for jumps away from x = 0,

however, with ū = u− or ū = u+, see (4.1). This property also holds for the

purely hyperbolic case, which enlightens the connection between Condition Γ and

the vanishing viscosity method (the diffusion tends to zero).

Because of the continuity assumption (A.2) in Definition 2.1, no discontinuity

of u is possible in a parabolic interval, since the diffusion functions are strictly

increasing there. Equivalently, a jump discontinuity is possible only if the left and

right limits lie in a closed interval where the diffusion function is constant. At x = 0,

both A and B have to be constant, but not necessarily the same constant. We write

this important fact in a lemma, cf. Evje and Karlsen [29].

Lemma 6.1. Given a jump discontinuity at a point x = x0, i.e. u(x0−) 6= u(x0+).

If x0 ≥ 0, then u(x0−), u(x0+) ∈ [α1, α2] where A′(v) = 0 for v ∈ (α1, α2). If x0 ≤

0, then u(x0−), u(x0+) ∈ [β1, β2] where B′(v) = 0 for v ∈ (β1, β2). In particular,

u−, u+ ∈ [max(α1, β1), min(α2, β2)].

Note that A(u+) 6= B(u−) may hold. For sufficiently regular solutions, the

monotonicity properties of Lemma 5.1 can be extended. Note that the entropy

condition is not needed in the following theorem.

Theorem 6.2. A time-independent piecewise smooth and piecewise monotone weak

solution of (1.1) which has a jump discontinuity at x = 0, i.e. u− 6= u+, is monotone

in a neighbourhood of x = 0.

Proof. Consider a sufficiently small neighbourhood of x = 0 within which the

only jump is at x = 0. If the solution is constant on both sides of x = 0, the

statement is true. By Lemma 6.1, u−, u+ ∈ [β1, β2] where B is constant. Assume

first that the solution is increasing on the left-hand side. Then it is parabolic there

and satisfies (6.1) with B′(u) > 0. Since u is increasing, u− = β1 has to hold. Thus,

β1 = u− < u+ ≤ β2 holds. If u is constant on the right side of x = 0, the theorem

is true. Otherwise, u is either increasing or decreasing on the right-hand side of

x = 0. Hence, it is parabolic there and u+ is an endpoint of an interval [α1, α2]

where A is constant. Lemma 6.1 gives that also u− ∈ [α1, α2]. Since u− < u+, the

only possibility is that u+ = α2. Consequently, in a right neighbourhood of x = 0,

the solution satisfies u > α2 = u+, which means that it is increasing. Finally, if the

solution is decreasing on the left, the analogous arguments imply that the solution

is decreasing in a whole neighbourhood of x = 0.
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Fig. 6. The flux functions g and f and the diffusion function A in the case uα = 2.

For the stationary solutions constructed below, we use the notation

u(x) =

{

ul(x) , x < 0 ,

ur(x) , x > 0 .

Then, ul(0−) = u− and ur(0+) = u+ hold.

6.1. A family of examples

We choose the following flux and diffusion functions:

f(u) = (u − 2)(6 − u) , A(u) = (u − uα)H(u − uα) ,

g(u) = u(4 − u) , B(u) = 0 ,

where H is the Heaviside step function and uα is a constant, see Figure 6. We can

directly conclude the following:

• Since B = 0, the restriction ul of the solution is piecewise constant.

• By Lemma 6.1, the restriction ur of the solution is parabolic in an open

x-interval if and only if ur > uα holds there.

• By Lemma 6.1, u− 6= u+ implies max(u+, u−) ≤ uα. The same is true for

any discontinuity in x > 0. Hence, the only possibility for a discontinuity

between a hyperbolic and a parabolic region is that the limit value on the

parabolic side is uα.

• If there is a discontinuity at x = x1 ≥ 0 and the solution is parabolic

in x > x1, then, since A′(u) = H(u − uα) = 1, it satisfies the one-sided

boundary-value problem

u′
par = f(upar) − η , x > x1 ,

upar(x1) = uα .
(6.3)
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Hence, it satisfies, in a right neighbourhood of x = x1,

f(upar) > η . (6.4)

Depending on the flux value η and the constant uα we shall see that either there

exists no stationary solution, there is a unique one or there may be a whole family

of such. From the graph of g we can directly conclude that there exists no solution

for η > 4. We start with the flux value at which the graphs intersect.

6.1.1. The constant flux is η = 3

Consider first x < 0. The equation η = g(u) has the two solutions u = 1 and u = 3.

By Oleinik’s entropy inequality (3.9), the only possible jump at a point x0 < 0 is

from 1 to 3 in the x-direction. The solution on the left-hand side is thus one of the

following:

ul(x) ≡ 1 , (6.5)

ul(x) =

{

1 , x < x0 ,

3 , x0 < x < 0 ,
(6.6)

ul(x) ≡ 3 , (6.7)

for some constant x0 < 0. From (6.4) and the graph of f we can conclude that the

only possibility for a parabolic solution in a right neighbourhood of x = x1 ≥ 0 is

if 3 < uα < 5. The solution of (6.3) for 3 < uα < 5 is

upar(x) =
5e2(x−x1)(uα − 3) + 3(5 − uα)

e2(x−x1)(uα − 3) + 5 − uα
, x > x1 . (6.8)

Note that it increases to 5 as x → ∞. For other values of uα, the only possibility

is a hyperbolic piecewise constant solution. The equation η = f(u) yields the two

solutions u = 3 and u = 5. By the entropy condition, the only possibility for a jump

between these values is from 3 to 5 in the direction of the x-axis. Hence, we can

conclude the following.

• uα < 3: A parabolic solution on the right-hand side of x = 0 is not possible,

since this required 3 < uα < 5.

∗ u− = 1: Since max(u−, u+) ≤ uα < 3 is required, a hyperbolic solution

on the right of x = 0 with u+ = 3 or u+ = 5 is also ruled out. Hence,

no stationary solution exists.

∗ u− = 3: The solution on the left-hand side is either (6.6) or (6.7) and

on the right-hand side ur(x) ≡ 3, see Figure 7 (left).

• 3 ≤ uα < 5: The solution on the left-hand side is either (6.5), (6.6) or (6.7).

With upar defined by (6.8), there is a parameter family of solutions on the

right-hand side:

ur(x) =

{

3 , 0 < x < x1 ,

upar(x) , x > x1 ,
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Fig. 7. Stationary solutions when η = 3. Left: The case uα < 3, where the discontinuity is located
at x0 < 0. Right: The case uα ≥ 5, where x0 ≤ 0 and x1 ≥ 0.
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Fig. 8. Stationary solutions when η = 3 and 3 ≤ uα = 4 < 5. Possible locations of the discontinu-
ities are x0 ≤ 0 and x1 ≥ 0. Hence, the solution with only one jump at x = 0 from 1 to uα = 4 is
also possible.

where the parameter x1 ≥ 0, see Figure 8 (left). In fact, there is also the

possible constant solution ur(x) ≡ 3 (corresponding to x1 → ∞), see Fig-

ure 8 (right). The solution has at most two jumps. Firstly, we can conclude

that all possible jumps at x = 0, which are (u−, u+) = (1, 3), (1, uα) and

(3, uα), satisfy Condition Γ with ū = 3. Secondly, the possible jump at

x = x1 > 0 from 3 to uα satisfies (4.1), which is Condition Γ in the special

case f = g and A = B.

• uα ≥ 5: The solution is never parabolic, since this required 3 < uα < 5.

The solution on the left-hand side is either (6.5), (6.6) or (6.7), with the

possibilities u− = 1 and 3. Similarly, the solution on the right-hand side is
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either ur(x) ≡ 3, ur(x) ≡ 5, or there is a jump at x1 > 0 from 3 to 5, see

Figure 7 (right). All the possible jumps (u−, u+) = (1, 3), (1, 5) and (3, 5)

satisfy Condition Γ with ū = 3.

6.1.2. The constant flux is η < 3

The graphs of f and g reveal that the same qualitative behaviour will appear for

any η < 3. For simplicity, we let η = 0 in this subsection.

In x < 0, the possible solutions are the following:

ul(x) ≡ 0 , (6.9)

ul(x) =

{

0 , x < x0 ,

4 , x0 < x < 0 ,
(6.10)

ul(x) ≡ 4 , (6.11)

for some constant x0 < 0. From (6.4) we can conclude that the only possibility for

a parabolic solution in a right neighbourhood of x = x1 ≥ 0 is when 2 < uα < 6.

The solution of (6.3) for 2 < uα < 6 is

upar(x) =
6e4(x−x1)(uα − 2) + 2(6 − uα)

e4(x−x1)(uα − 2) + 6 − uα
, x > x1 . (6.12)

Note that it increases to 6 as x → ∞. For other values of uα, the only possibility

is a hyperbolic piecewise constant solution. The equation η = f(u) yields the two

solutions u = 2 and u = 6. Hence, we can conclude the following.

• uα < 2: Irrespective of whether u− = 0 or u− = 4, neither a hyperbolic nor

a parabolic solution is possible on the right-hand side. Hence, no stationary

solution exists.

• 2 ≤ uα < 4: The only possible solution on the left-hand side is (6.9). With

upar defined by (6.12), there is a parameter family of solutions on the right-

hand side:

ur(x) =

{

2 , 0 < x < x1 ,

upar(x) , x > x1 ,
(6.13)

where the parameter x1 ≥ 0. In fact, there is also the possible constant

solution ur(x) ≡ 2 (corresponding to x1 → ∞), see Figure 9. Firstly, we

can conclude that the possible jumps at x = 0, which are (u−, u+) = (0, 2)

and (0, uα), both satisfy Condition Γ with ū = 2. Secondly, the possible

jump at x = x1 > 0 from 2 to uα satisfies the entropy inequality (4.1).

• 4 ≤ uα < 6: The solution on the left-hand side is either (6.9), (6.10) or

(6.11). On the right-hand side the solution is (6.13) with x1 ≥ 0 or x1 → ∞,

see Figure 10. The possible jumps at x = 0, which satisfy Condition Γ, are

(u−, u+) = (0, 2) with ū = 2, (0, uα) with ū = 2, and (4, uα) with ū = 4.
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Fig. 9. Stationary solutions when η = 0 < 3 and 2 ≤ uα = 3 < 4. The discontinuity between a
hyperbolic and parabolic region is located at x1 ≥ 0.
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Fig. 10. Stationary solutions when η = 0 < 3 and 4 ≤ uα = 5 < 6. The discontinuities are located
at x1 ≥ 0 or x1 → ∞, and x0 ≤ 0 or x0 → −∞. Hence, the solution with only one jump from 0
to 5 is also possible.

The other jumps satisfy Oleinik’s entropy condition (3.9). The solution has

at most two jumps.

• uα ≥ 6: The solution is always hyperbolic. On the left-hand side it is either

(6.9), (6.10) or (6.11). Similarly, on the right-hand side it is ur(x) ≡ 2,

ur(x) ≡ 6 or there is a jump at x1 > 0 from 2 to 6, see Figure 11. The

possible jumps that satisfy Condition Γ are (u−, u+) = (0, 2) and (0, 6)

with ū = 2, and (u−, u+) = (4, 6) with ū = 4.
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Fig. 11. Stationary solutions when η = 0 < 3 and uα = 6. The discontinuities are located at x1 ≥ 0
or x1 → ∞, and x0 ≤ 0 or x0 → −∞. Hence, the solution with only one jump from 0 to 6 is also
possible.

6.1.3. The constant flux satisfies 3 < η ≤ 4

Assume first that 3 < η < 4. It will be obvious that the case η = 4 can then be

seen as a limit case. Denote the two solutions of the equation η = g(u) by ug1 and

ug2 > ug1 and analogously for f . Hence, we have (cf. Figure 6, left)

ug1 < ug2 < uf1 < uf2 .

We can conclude, partly that either u− = ug1 or u− = ug2 must hold, partly that

the two ‘hyperbolic’ possibilities in x > 0 are uf1 and uf2, partly that the only

possibility for a parabolic solution in x > 0 is when uf1 < uα < uf2, see (6.4).

If uα < uf1, then a hyperbolic solution in x > 0 is also ruled out since such a

solution has to satisfy max(u−, u+) ≤ uα by Lemma 6.1.

If uα ≥ uf1, a solution with a jump from u− = ug1 or ug2 up to u+ ≥ uf1 is a

weak solution. However, since both graphs of f and g lie below the flux level η in

the interval (ug2, uf1) ⊂ [u−, u+], there exists no ū ∈ [u−, u+] to fulfil Condition Γ.

Hence, no stationary solution exists.

6.2. Example of a discontinuity between parabolic regions

In order to exemplify Theorem 6.2 with parabolic regions on both sides of x = 0,

we choose the same flux functions as above, but change the diffusion functions, see

Figure 12 (left):

f(u) = (u − 2)(6 − u) , A(u) = max
(

min(u, 1), u − 2
)

,

g(u) = u(4 − u) , B(u) = min(u, 3/2) .

When η = 0 a stationary solution is
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Fig. 12. The diffusion functions (left) and the parabolic solution with a jump when η = 0.

u(x) =















12

3 + 5e−4x
, x < 0 ,

6(e4x + 1)

3 + e4x
, x > 0 ,

(6.14)

see Figure 12 (right). The discontinuity satisfies Condition Γ with ū = u+ = 3.

Note that by Lemma 6.1 any solution has to satisfy u−, u+ ∈ [3/2, 3], since

this is the largest interval where both A and B are constant. Other solutions are

obtained if the solution (6.14) on the right-hand side is substituted for ur(x) ≡ 2 or

ur(x) =







2 , 0 < x < x1 ,

6(e4(x−x1) + 1)

3 + e4(x−x1)
, x > x1 ,

for some x1 > 0. Condition Γ is satisfied with ū = u+ = 2 and the jump at x1 from

2 to 3 is satisfied by (4.1).

6.3. Examples of non-monotone solutions

Theorem 6.2 yields that the only possibility for a non-monotone solution in a neigh-

bourhood of x = 0 is a continuous one. This can be exemplified by the following

functions, see Figure 13 (upper left):

f(u) = (u − 1)2 , A(u) = u ,

g(u) = 2 − (u − 1)2 , B(u) = bu ,
(6.15)

where b > 0. Since the diffusion functions are never constant, a discontinuity is

not possible, according to Lemma 6.1. Let η = 1. Then the two intersections of g

and f coincide with the solutions of the equations η = g(u) and η = f(u). Hence,

two continuous and monotone solutions are u(x) ≡ 0 and u(x) ≡ 2, x ∈ R. To

obtain non-constant bounded solutions of (6.1) and the corresponding equation for
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Fig. 13. The flux functions g and f and three examples (a = 0.4, 1 and 1.9) of the parameter
family of non-monotone continuous solutions when A(u) = u B(u) = 2u and η = 1.

f , which are pieced together continuously at x = 0, it must hold that 0 < u(0) < 2.

Then the solution family is

u(x) =















2a

a + (2 − a)e−2x/b
, x < 0 ,

2a

a + (2 − a)e2x
, x > 0 ,

where a = u(0) ∈ (0, 2) .

see Figure 13.
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