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Summary. We present a meshfree numerical solver for scalar conservation laws
in one space dimension. Points representing the solution are moved according to
their characteristic velocities. Particle interaction is resolved by purely local particle
management. Since no global remeshing is required, shocks stay sharp and propagate
at the correct speed, while rarefaction waves are created where appropriate. The
method is TVD, entropy decreasing, exactly conservative, and has no numerical
dissipation. Difficulties involving transonic points do not occur, however inflection
points of the flux function pose a slight challenge, which can be overcome by a
special treatment. Away from shocks the method is second order accurate, while
shocks are resolved with first order accuracy. A postprocessing step can recover the
second order accuracy. The method is compared to CLAWPACK in test cases and
is found to yield an increase in accuracy for comparable resolutions.
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1 Introduction

Lagrangian particle methods approximate the solution of flow equations using
a cloud of points which move with the flow. Examples are vortex methods [1],
smoothed particle hydrodynamics (SPH) [13, 5], or generalized SPH methods
[3]. The latter are typically based on generalized meshfree finite difference
schemes [11]. An example is the finite pointset method (FPM) [9]. Moving
the computational nodes with the flow velocity v allows the discretization of
the governing equations in their more natural Lagrangian frame of reference.
The material derivative D

Dt
= ∂

∂t
+ v · ∇ becomes a simple time derivative.

For a conservation law, the natural velocity is the characteristic velocity. In
a frame of reference which is moving with this velocity, the equation states
that the function value remains constant. Of course, this is only valid where
the solution is smooth. In this case, characteristic particle methods are very
simple solution methods for conservation laws.
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In spite of the obvious advantages of particle methods, almost all numerical
methods for conservation laws operate on a fixed Eulerian grid, even though
significant work has to be invested to solve even a simple advection problem
preserving sharp features and without creating oscillations. Leaving aspects of
implementation complexity aside, two main reasons favor fixed grid methods:
First, a fixed grid allows an easy generalization to higher space dimensions
using dimensional splitting. Second, in particle methods one has to deal with
the interaction of characteristics. While the former point remains admittedly
present, the latter aspect is addressed in this contribution.

Most methods which use the characteristic nature of the conservation law
circumvent the problem of crossing characteristics by remeshing. Before any
particles can interact, the numerical solution is interpolated onto “nicely”
distributed particles, for instance onto an equidistant grid – in which case
the approach is essentially a fixed grid method. The CIR-method [2] is an
example. Such approaches incur multiple drawbacks: First, the shortest in-
teraction time determines the global time step. Second, the error due to the
global interpolation may yield numerical dissipation and dispersion. Finally,
such schemes are not conservative when shocks are present. In practice, finite
volume approaches, such as Godunov methods with appropriate limiters [14],
or ENO [6]/WENO [12] schemes are used to compute weak entropy solutions
that show neither too much oscillations nor too much numerical dissipation.

With moving particles, two fundamental problems arise: On the one hand,
neighboring particles may depart from each other, resulting in poorly resolved
regions. On the other hand, a particle may (if left unchecked) overtake a
neighbor, which results in a “breaking wave” solution. The former problem can
be remedied by inserting particles. The latter has to be resolved by merging
particles. When characteristic particles interact (i.e. one overtakes the other)
one is dealing with a shock, thus particles must be merged.

In this contribution, we present a local and conservative particle manage-
ment (inserting and merging particles) that yields no numerical dissipation
(where solutions are smooth) and correct shock speeds (where they are not).
The particle management is based on exact conservation properties between
neighboring particles, which are derived in Sect. 2. In Sect. 3, we outline our
numerical method. The heart of our method, the particle management, is de-
rived in Sect. 4. There, we also show that the method is TVD. In Sect. 5,
we prove that the numerical solutions satisfy the Kružkov entropy condition,
thus showing that the solutions we find are entropy solutions for any convex
entropy function. In Sect. 6, we apply the method to examples and compare
it to traditional finite volume methods using CLAWPACK. In Sect. 7 we
present how non-convex flux functions can be treated. Finally, in Sect. 8, we
outline possible extensions and conclusions. These include applications of the
1D solver itself as well as possible extensions beyond the 1D scalar case.
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2 Scalar Conservation Laws

Consider a one-dimensional scalar conservation law

ut + (f(u))x = 0, u(x, 0) = u0(x) (1)

with f ′ continuous. As long as the solution is smooth, it can be obtained by
the method of characteristics [4]. The function u(x(t), t) is constant along the
characteristic curve

x(t) = x(0) + f ′(u(x(0), 0)) t . (2)

For nonlinear functions f the characteristic curves can “collide”, resulting in
a shock, whose speed is given by the Rankine-Hugoniot condition [4]. Dis-
continuities are shocks only if the characteristic curves run into them. Other
discontinuities become rarefaction waves, i.e. continuous functions which at-
tain every value between the left and the right states. If the flux function f is
convex or concave between the left and right state of a discontinuity, then the
solution is either a shock or a rarefaction. If f ′′ switches sign between between
the two states, then a combination of a shock and a rarefaction occur. These
physical solutions are defined by a weak formulation of (1) accompanied by
an entropy condition.

2.1 Conservation Properties

Conservations laws conserve the total area under the solution

d

dt

∞
∫

−∞

u(x, t) dx = 0 . (3)

The change of area between two moving points b1(t) and b2(t) is given by

d

dt

∫ b2(t)

b1(t)

u(x, t) dx = b′2(t)u(b2(t), t) − b′1(t)u(b1(t), t) +

∫ b2(t)

b1(t)

ut(x, t) dx

= (b′2(t)u(b2(t), t) − b′1(t)u(b1(t), t)) − (f(u(b2(t), t)) − f(u(b1(t), t))) .

If x1(t) and x2(t) are characteristic points, that is, points following the char-
acteristics of a smooth solution as in equation (2), we have that x′1(t) = f ′(u1)
and x′2(t) = f ′(u2). Therefore, the change of area between x1 and x2 is

(f ′(u2)u2 − f ′(u1)u1) − (f(u2) − f(u1)) = [f ′(u)u− f(u)]
u2

u1
, (4)

where [g(x)]
b

a = g(b) − g(a). Equation (4) implies that the change of area
between two characteristic points does not depend on the positions of the
points, only on the left state u1 and right state u2 and the flux function. Since
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the two states do not change as the points move, the area between the two
points changes linearly, as does the distance between them:

d

dt
(x2(t) − x1(t)) = x′2(t) − x′1(t) = f ′(u2) − f ′(u1) = [f ′(u)]

u2

u1
. (5)

If the two points move at different speeds, then there is a time t0 (which may
be larger or smaller than t) at which they have the same position. Thus at
time t = t0 the distance between them, and the area between them equal zero.
From (4) and (5) we have that

∫ x2(t)

x1(t)

u(x, t) dx = (t− t0) · [f ′(u)u− f(u)]
u2

u1
,

x2(t) − x1(t) = (t− t0) · [f ′(u)]
u2

u1
.

In short, the area between two Lagrangian points can be written as
∫ x2(t)

x1(t)

u(x, t) dx = (x2(t) − x1(t)) a(u1, u2) , (6)

where a(u1, u2) is the nonlinear average function

a(u1, u2) =
[f ′(u)u− f(u)]

u2

u1

[f ′(u)]
u2

u1

=

∫ u2

u1

f ′′(u)udu
∫ u2

u1

f ′′(u) du
. (7)

The integral form shows that a is indeed an average of u, weighted by f ′′.
This last observation needs one additional assumption: that the points x1 and
x2 remain characteristic point between t and t0. That is, that a shock does
not develop between the two points before t0. Our numerical method relies
heavily on the nonlinear average a(·, ·).

Lemma 1. Let f be strictly convex or concave in [uL, uU ], that is f ′′ < 0 or
f ′′ > 0 in (uL, uU ). Then for all u1, u2 ∈ [uL, uU ], the average (7) is. . .

1. the same for f and −f . Thus we assume f ′′ > 0 WLOG;
2. symmetric, a(u1, u2) = a(u2, u1). Thus we assume u1 ≤ u2 WLOG;
3. an average, i.e. a(u1, u2) ∈ (u1, u2), for u1 6= u2;
4. strictly increasing in both u1 and u2; and
5. continuous at u1 = u2, with a(u1, u1) = u1.

Proof. We only include here the proof of 4. We show that a(u1, u2) is strictly
increasing in the second argument. Let u1 < u2 < u3, ui ∈ [uL, uU ]. Then

a(u1, u3) =

∫ u2

u1

f ′′(u)udu+
∫ u3

u2

f ′′(u)udu
∫ u3

u1

f ′′(u) du

>
a(u1, u2)

∫ u2

u1

f ′′(u) du+ a(u1, u2)
∫ u3

u2

f ′′(u) du
∫ u3

u1

f ′′(u) du
= a(u1, u2) .

Similar arguments show the result for the first argument. ut
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3 Description of the Particle Method

The first step is to approximate the initial function u0 by a finite number of
points x1, . . . , xm with function values u1, . . . , um. A straightforward strat-
egy is to place x1, . . . , xm equidistant on the interval of interest and assign
ui = u0(xi). More efficient adaptive sampling strategies can be used, since
our method does not impose any requirements on the point distribution. For
instance, one can choose xi and ui to minimize the L1 error, using the specific
interpolation introduced in Sect. 4. This strategy is the topic of future work.
The points are ordered so that x1 < · · · < xm. The evolution of the solution
is found by moving each point xi with speed f ′(ui). This is possible as long
as there are no “collisions” between points. Two neighboring points xi(t) and
xi+1(t) collide at time t+ ∆ti, where

∆ti = −
xi+1 − xi

f ′(ui+1) − f ′(ui)
. (8)

A positive ∆ti indicates that the two points will eventually collide. Thus,
t+ ∆ts is the time of the next particle collision1, where

∆ts = min
i
{∆ti|∆ti ≥ 0} .

For any time increment ∆t ≤ ∆ts the points can be moved directly to their
new positions xi + f ′(ui)∆t. Thus, we can step forward an amount ∆ts, and
move all points accordingly. Then, at least one particle will share its position
with another. To proceed further, we merge each such pair of particles. If the
collision time ∆ti is negative, the points depart from each other. Although
at each of the points the correct function value is preserved, after some time
their distance may be unsatisfyingly large, as the amount of error introduced
during a merge grows with the size of the gaps in the neighboring particles. To
avoid this, we insert new points into large gaps between points before merging
particles. In Sect. 4.1 we derive positions and values of the new particles that
assure that the method is conservative, TVD, and entropy diminishing.

4 Interpolation and Particle Management

The movement of the particles is given by a fundamental property of the
conservation law (1): its characteristic equation (2). We derive particle man-
agement to satisfy another fundamental property: the conservation of area
(3). Using the conservation principles derived in Sect. 2, the function value
of an inserted or merged particle is chosen, such that area is conserved ex-
actly. A simple condition on the particles guarantees that the entropy does not
increase. In addition, we define an interpolating function between two neigh-
boring particles, so that the change of area satisfies relation (4). Furthermore,
this interpolation is an analytical solution to the conservation law.

1 If the set {i|∆ti ≥ 0} is empty, then ∆ts = ∞.
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4.1 Conservative Particle Management

Consider four neighboring particles located at x1 < x2 ≤ x3 < x4 with associ-
ated function values u1, u2, u3, u4. Assume that the flux f is strictly convex
or concave on the range of function values [mini(ui),maxi(ui)]. If u2 6= u3,
the particles’ velocities must differ f ′(u2) 6= f ′(u3), which gives rise to two
possible cases that require particle management:

• Inserting: The two particles deviate, i.e. f ′(u2) < f ′(u3). If the distance
x3 − x2 is larger than a predefined maximum distance dmax, we insert a
new particle (x23, u23) with x2 < x23 < x3 and u23 chosen so that the area
between x2 and x3 is preserved by the insertion:

(x23 − x2) a(u2, u23) + (x3 − x23) a(u23, u3) = (x3 − x2) a(u2, u3) . (9)

This condition defines a function, connecting (x2, u2) with (x3, u3), on
which the new particle has to lie. This function is the interpolation defined
in Sect. 4.2 and illustrated in Fig. 2.

• Merging: The two particles collide, i.e. f ′(u2) > f ′(u3). If the distance
x3−x2 is smaller than a preset value dmin (dmin = 0 is possible), we replace
both with a new particle (x23, u23). The position of the new particle x23 is
chosen with x2 < x23 < x3 and u23 is chosen so that the total area between
x1 and x4 is unchanged:

(x23 − x1) a(u1, u23) + (x4 − x23) a(u23, u4)

= (x2−x1) a(u1, u2) + (x3−x2) a(u2, u3) + (x4−x3) a(u3, u4) . (10)

Any particle (x23, u23) with x2 < x23 < x3 that satisfies (10) would be a
valid choice. We choose x23 = x2+x3

2 , and then obtain u23 such that (10)
is satisfied. Figure 1 illustrates the merging step.

Observe that inserting and merging are similar in nature. Conditions (9) and
(10) for u23 are nonlinear (unless f is quadratic, see Remark 1). For most cases
u23 = u2+u3

2 is a good initial guess, and the correct value can be obtained by
a few Newton iteration steps. The next few claims attest that we can find a
unique value u23 that satisfies (9) and (10).

Lemma 2. The function value u23 for the particle at x23 is unique.

Proof. We show the case for merging. The argument for insertion is similar.
From Lemma 1 we have that both a(u1, ·) and a(·, u4) are strictly increasing.
Thus, the LHS of (10) is strictly increasing, and cannot be the same for
different values of u23. ut

Lemma 3. If x2 = x3 = x23, there exists u23 ∈ [u2, u3] which satisfies (10).

Proof. WLOG we assume that u2 ≤ u3. First, we define
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A = (x2 − x1) a(u1, u2) + (x4 − x2) a(u3, u4), and

B(u) = (x2 − x1) a(u1, u) + (x4 − x2) a(u, u4) .

Equation (10) is now simply B(u23) = A. The monotonicity of a implies that

B(u2) ≤ A ≤ B(u3) . (11)

Since a is continuous, so is B, and the existence of u23 follows the intermediate
value theorem. ut

Corollary 1. If particles are merged only according to Lemma 3, then the to-
tal variation of the solution is either the same as before the merge, or smaller.

Merging points only when x2 = x3 can be too restrictive. Fortunately, the
following claim allows for a little more freedom.

Theorem 1. Consider four consecutive particles (xi, ui) ∀i = 1, . . . , 4. Merg-
ing particles 2 and 3 so that x23 = x2+x3

2 yields u23 ∈ [u2, u3] if

x3 − x2

|u3 − u2|
≤

1

16

(

min |f ′′|

max |f ′′|

)6
min (x4 − x2, x3 − x1)

|max(u3, u2) − min(u4, u1)|
. (12)

Here the min and max of f ′′ are taken over the maximum range of u1, . . . , u4.
This condition is naturally satisfied if x2 = x3.

Proof (outline). The full proof will be given in a future paper. The idea is to
merge in two steps: First, we find a value ũ such that setting u2 = u3 = ũ
(while leaving x2 and x3 unchanged) results in the same area. Then, we merge
the two points to u23. In the first step we bound ũ away from u2 and u3 (but
inside [u2, u3]), and in the second step we bound |u23 − ũ| from above. ut

Theorem 2. The particle method can run to arbitrary times.

Proof. Let uL = mini ui, uU = maxi ui, and C = max[uL,uU ] |f
′′(u)|·(uU−uL).

For any two particles, one has |f ′(ui+1) − f ′(ui)| ≤ C. Define ∆xi = xi+1 −
xi. After each particle management, the next time increment (as defined in
Sect. 3) is at least ∆ts ≥

mini ∆xi

C
. If we do not insert particles, then in each

merge one particle is removed. Hence, a time evolution beyond any given time
is possible, since the increments ∆ts will increase eventually. When a particle
is inserted (whenever two points are at a distance more than dmax), the created
distances are at least dmax

2 , preserving a lower bound on the following time
increment. ut
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Figure 1. Merging two particles
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Figure 2. Definition of the interpolation

4.2 Conservative Interpolation

The particle management does not require an interpolation between points. As
it stands, it complements the characteristic movement to yield a full particle
method for the conservation law (1) that can run for arbitrarily long times.
Yet, for plotting the solution and interpreting approximation properties, it is
desirable to define an interpolation that is compatible with the conservation
principles of the underlying partial differential equation. We define such an
interpolation between each two neighboring points (x1, u1) and (x2, u2).

In the case u1 = u2, we define the interpolation to be a constant. In the
following, we describe the case u1 6= u2. Assume that f is strictly convex or
concave in [u1, u2]. Therefore f ′(u1) 6= f ′(u2). Hence, as derived in Sect. 2.1,
the solution either came from a discontinuity (i.e. it is a rarefaction) or it will
become a shock. The time ∆t1 until this discontinuity happens is given by (8).
At time t+ ∆t1 the points have the same position x1 = x2 = xsh, as shown in
Fig. 2. At this time the interpolation must be a straight line connecting the
two points, representing a discontinuity at xsh. We require any point of the
interpolating function (x, u) to move with its characteristic velocity f ′(u) in
the time between t and t+ ∆t1. This defines the interpolation uniquely as

x(u) = x1 − t1 (f ′(u) − f ′(u1)) = x1 +
f ′(u) − f ′(u1)

f ′(u2) − f ′(u1)
(x2 − x1) . (13)

Defining x as a function of u is in fact an advantage, since at a discontinuity
characteristics for all intermediate values u are defined. Thus, rarefaction fans
arise naturally if f ′(u1) < f ′(u2). Since f ′′ has no inflection points between
u1 and u2, the inverse function u(x) exists. However, it is only required at
a single point for particle management. For plotting purposes we can always
plot x(u) instead.

Lemma 4. The interpolation (13) is a solution of the conservation law (1).

Proof. Using that ẋi(t) = f ′(ui) for i = 1, 2 one obtains
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∂x

∂t
(u, t) = ẋ1 +

f ′(u) − f ′(u1)

f ′(u2) − f ′(u1)
(ẋ2 − ẋ1)

= f ′(u1) +
f ′(u) − f ′(u1)

f ′(u2) − f ′(u1)
(f ′(u2) − f ′(u1)) = f ′(u) .

Thus every point on the interpolation u(x, t) satisfies the characteristic equa-
tion (2). ut

Corollary 2 (exact solution property). Consider characteristic particles
with x1(t) < x2(t) < · · · < xn(t) for t ∈ [t1, t2]. At any time consider the func-
tion defined by the interpolation (13). This function is a classical (i.e. con-
tinuous) solution to the conservation law (1). In particular, it satisfies the
conservation properties given in Sect. 2.1.

Theorem 3 (TVD). With the assumptions of Theorem 1, the particle method
is total variation diminishing.

Proof. Due to Corollary 2, the characteristic movement yields an exact solu-
tion, thus the total variation is constant. Particle insertion simply refines the
interpolation, thus preserves the total variation. Due to Theorem 1, merging
of particles yields a new particle with a function value u23 between the values
of the removed particles. Thus, the total variation is the same as before the
merge or smaller. ut

Remark 1. The method is particularly efficient for quadratic flux functions. In
this case the interpolation (13) between two points is a straight line, since f ′ is
linear. Furthermore, the average (7) is the arithmetic mean a(u1, u2) = u1+u2

2 ,
since f ′′ is constant. Consequently, the function values for particle insertion
and merging can be computed explicitly.

Remark 2. The method has some similarity to front tracking by Holden et
al. [7], and some fundamental differences. In front tracking, one approximates
the flux function by a piecewise linear, and the solution by a piecewise constant
function. Shocks are moved according to the Rankine-Hugoniot condition. In
comparison, our method uses the wave solutions. Hence, in front tracking
everything is a shock; in the particle method, everything is a wave.

5 Entropy

We have argued in Sect. 4.2 that due to the constructed interpolation the
particle method naturally distinguishes shocks from rarefaction fans. In this
section, we show that the method in fact satisfies the entropy condition

η(u)t + q(u) ≤ 0 (14)

if a technical assumption on the resolution of shocks is satisfied. We consider
the Kružkov entropy pair ηk(u) = |u− k|, qk(u) = sign(u − k)(f(u) − f(k)).
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As argued by Holden et al. [8], if (14) is satisfied for ηk, then it is satisfied
for any convex entropy function. Relation (14) implies that the total entropy
∫

ηk(u(x)) dx does not increase in time for all values of k. Using the inter-
polation (13) we show that the numerical solution obtained by the particle
method satisfies this condition.

Lemma 5 (entropy for merging). Consider four particles located at x1 <
x2 = x3 < x4, with the middle two to be merged. We consider the case f ′′ > 0,
i.e. u2 > u3 WLOG.2 If the resulting value u23 satisfies u1 ≥ u23 ≥ u4, then
the Kružkov entropy does not increase due to the merge.

Proof. We consider the segment [x1, x4]. Let u(x) and ũ(x) denote the inter-
polating function before resp. after the merge. The area under the function
is preserved. We present the proof for k ≤ u23. For k ≥ u23 the proof is sim-
ilar. The interpolating function u is monotone in the value of its endpoints,
thus u(x) ≤ ũ(x) for x ∈ [x2, x4]. Since |x| = x− 2Θ(−x), where Θ(x) is the
Heaviside step function, we can write

∫ x4

x1

|u−k| dx =

∫ x4

x1

(u−k) dx− 2

∫ x4

x1

(u−k)Θ(k−u) dx

=

∫ x4

x1

(ũ−k) dx− 2

∫ x4

x2

(u−k)Θ(k−u) dx

≥

∫ x4

x1

(ũ−k) dx− 2

∫ x4

x2

(ũ−k)Θ(k−u) dx ≥

∫ x4

x1

|ũ−k| dx .

Thus, the entropy does not increase due to the merge. ut

The assumption of Lemma 5 implies that shocks must be reasonably well
resolved before the points defining it are merged. It is satisfied if left and
right of a shock points are not too far away. In the method, it can be ensured
by an entropy fix : A merge is rejected a posteriori if the resolution condition
is not satisfied. Then, points are inserted near the shock, and the merge is
re-attempted. It remains to show in future work that with this procedure
Theorem 2 still holds.

Theorem 4. The presented particle method yields entropy solutions.

Proof. During the characteristic movement of the points the entropy is con-
stant, since due to Corollary 2 the interpolation is a classical solution to the
conservation law. Particle insertion does not change the interpolation, thus
it does not change the entropy. Merging does not increase the entropy if the
conditions of Lemma 5 are satisfied. ut

2 For the case f ′′ < 0, all following inequality signs must be reversed.
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6 Numerical Results

The particle method is particularly well suited for initial conditions that are
composed of similarity solutions. By construction, the movement of the parti-
cles yields the exact solution as long as the solution is smooth. General initial
conditions can be approximated by the interpolation (13). Good strategies of
sampling initial conditions shall be addressed in future work. Figure 3 shows
a smooth initial function u0(x) = exp

(

−x2
)

cos (πx) and its time evolution
under the flux function f(u) = 1

4u
4. The curved shape of the interpolation

is due to the nonlinearity in f ′. At time t = 0.25 the solution (obtained by
CLAWPACK using 80000 points) is still smooth, and thus represented exactly
on the particles. At time t = 8 shocks and rarefactions have occurred and in-
teracted. Although the numerical solution uses only a few points, it represents
the true solution well.

−2 0 2
−0.5

0

0.5

1 t=0

 

 
True
PM

−2 0 2
−0.5

0

0.5

1 t=0.25

 

 
True
PM

−2 0 2
−0.5

0

0.5

1 t=8

 

 
True
PM

Figure 3. The particle method for f(u) = 1

4
u4 before and after a shock

The accuracy of the particle method is measured numerically. We consider
the flux function and initial conditions as used in Fig. 3. For a sequence of
resolutions h, the initial data are sampled, and the particle method is applied
(dmax = 1.9h). Figure 4 shows the L1-error to the correct solution (obtained
by a computation with much higher resolution, verified with CLAWPACK).
While the solution is smooth (t = 0.25), the method is second order accu-
rate, as is sampling the initial data. After a shock has occurred (t = 0.35),
the approximate solution (dots) becomes only first order accurate, since the
shock has just been treated by particle management, thus an error of the or-
der height×width of the shock is made. A postprocessing step (squares) can
recover the second order accuracy: At merged particles, discontinuities are
placed so that the total area is preserved.

7 Non-Convex Flux Functions

So far we have only considered flux functions with no inflection points (i.e. f ′′

has always the same sign) on the region of interest. In this section, we gen-
eralize to flux functions for which f ′′ has a finite number of zero crossings
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Figure 4. Error to the correct solution before and after a shock

u∗1 < · · · < u∗k. Between two such points u ∈ [u∗i , u
∗

i+1] the flux function is ei-
ther convex or concave. We impose the following requirement for any set of
particles: Between any two neighboring particles for which f ′′ has opposite
sign, there must be an inflection particle (x, u∗i ). Thus, between two neighbor-
ing particles, f has never an inflection point, and most results from the pre-
vious sections apply. The interpolation between any two particles is uniquely
defined by (13). It has infinite slope at the inflection points, but this is harm-
less. The characteristic movement of particles is the same as for flux func-
tions without inflection points. The only complication is merging of particles
when an inflection particle is involved: The standard approach, as presented
in Sect. 4.1, removes two colliding points and replaces them with a point of a
different function value. If an inflection particle is involved in a collision, we
must merge points in a different way so that an inflection particle remains.
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Figure 5. Particle management around an inflection particle (f ′′(u3) = 0)

We present one such special merge for dealing with a single inflection
point (we do not consider here the interaction of two inflection points). Also,
we only consider a collision where the positions are exactly the same. Since the
inflection particle must remain (although its position may change), we consider
five neighboring particles and not four as before. Let (xi, ui), i = 1, . . . , 5 be
these particle so that x2 = x3, f ′′(u3) = 0, and (WLOG) f ′′′ > 0, i.e. the
inflection particle is the slowest. The other cases are simple symmetries of this
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situation. We present three successive steps to finding the final configuration
of the particles. Each next step is attempted if the previous one failed.

1. Remove particle 2 and increase x3 to satisfy the area condition. This fails
if x3 needs to be increased beyond x4.

2. Remove particle 2, set x3 = x4 and increase both to satisfy the area con-
dition. This fails if x3, x4 need to be increased beyond x5.

3. Remove particle 4, set x3 = x5 and find u2 to satisfy the area condition.
This cannot fail if the previous two have failed.

Formally, the resulting configuration could require another, immediate, merge
(since x3 = x4 or x3 = x5). However, we need not merge these points as they
move away from each other. The five point particle management guarantees
that in each merging step one particle is removed, thus Theorem 2 holds.

1 2 3

0

0.2

0.4

0.6

0.8

1 t=0.1

 

 
True
CP
PM

1 2 3

0

0.2

0.4

0.6

0.8

1 t=0.3

 

 
True
CP
PM

1 2 3

0

0.2

0.4

0.6

0.8

1 t=0.8

 

 
True
CP
PM

Figure 6. Numerical results for the Buckley-Leverett equation

As numerical evidence of the performance, we apply our method to the
Buckley-Leverett equation (see LeVeque [10]), defined by the flux function

f(u) = u2

u2+ 1

2
(1−u)2

. It is a simple model for two-phase fluid flow in a porous

medium. We consider piecewise constant initial data with a large downward
jump crossing the inflection point, and a small upward jump. The large jump
develops a shock at the bottom and a rarefaction at the top, the small jump is
a pure rarefaction. Around t = 0.2, the two similarity solutions interact, thus
lowering the separation point between shock and rarefaction. Figure 6 shows
the reference solution (solid line, by CLAWPACK using 80000 points). The
solution obtained by our particle method (dots) is compared to a second order
CLAWPACK solution (circles) of about the same resolution. While the finite
volume scheme loses the downward jump very quickly, the particle method
captures the behavior of the solution almost precisely. Only directly near the
shock inaccuracies are visible, which are due to the crude resolution. The
solution away from the shock is nearly unaffected by the error at the shock.
Note that although we impose a special treatment only at the inflection point,
the switching point between shock and rarefaction is identified correctly.
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8 Conclusions and Outlook

We have presented a particle method for 1D scalar conservation laws, which
is based on the characteristic equations. The associated interpolation yields
an analytical solution wherever the solution is smooth. Particle management
resolves the interaction of characteristics locally while conserving area. Thus,
shocks are resolved without creating any numerical dissipation away from
shocks. The method is TVD and entropy decreasing, and shows second-order
accuracy. It deals well with non-convex flux functions, as the results for the
Buckley-Leverett equation show. The particle method serves as a good alter-
native to fixed grid methods whenever 1D scalar conservation laws have to be
solved with few degrees of freedom, but exact conservation and sharp shocks
are desired. An application, which we plan to investigate in future work, is non-
linear flow in networks (e.g. traffic flow in road networks). For large networks,
only a few number of unknowns can be devoted to the numerical solution on
each edge. We regard the current work as a first step towards a more general
particle method. Future work will focus on three main directions:

• Source terms: Source terms in an equation ut + (f(u))x = g(x, u) could
be handled using a fractional step method: In each time step, we would
first move the particles according to ut + (f(u))x = 0 (including particle
management), then change their values according to an integral formula-
tion of ut = g(x, u). In the latter step, the constructed interpolation can
be used.

• Systems of conservation laws: The particle method is based on similar-
ity solutions of the conservation law. For simple systems, such as the shal-
low water equations in 1D, the analytical solutions to Riemann problems
are known. Two complications arise in the generalization of the method:
– To connect two general states in a hyperbolic system, intermediate

states have to be included.
– For a general system it is not clear at which velocity to move the

particles.
• Higher space dimensions: Scalar conservation laws in higher space di-

mensions can be reduced to 1D problems to be solved by fractional steps. In
principle, this dimensional splitting can be used with the particle method.
However, remeshing would be required between the different spacial di-
rections, thus the benefits of the meshfree approach would be lost. For
the generalization to a fundamentally meshfree approach in higher space
dimensions, the following problem has to be overcome: In 1D one is never
truly meshfree, since the points have a natural ordering. The method uses
this in the interpolation and to detect shocks. In 2D/3D shocks can occur
without particles colliding, as they can move past each other. Other mesh-
free methods, such as FPM applied to the Euler equations, circumvent this
issue by using the pressure to regulate shocks.
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