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Abstract. We propose a strategy to perform second-order enhancement using slope-limiters
for the simultaneous linear advection of several scalar variables. Our strategy ensures a discrete
min-max principle not only for each variable but also for any number of non-trivial combinations
of them, which represent control variables. This problem arises in fluid mechanics codes using the
Arbitrary Lagrange-Euler formalism, where the additional monotonicity property on control variables
is required by physical considerations within the remap step.
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1. Introduction We are concerned with the design of a second-order scheme
for the numerical solution of the system of linear advections

∂tΨ+u∂xΨ=0, (1.1)

where u∈R is a given velocity field and Ψ=(ψ1, . . . ,ψP )∈R
P
+, with P ∈N

∗, is the
vector of positive unknowns. Although the components of Ψ, called main variables,
are independent from each other at the continuous level, our objective is to ensure a
min-max principle at the discrete level not only for the main variables but also for a
set of physically meaningful control variables

G(Ψ)= (G1(Ψ), . . . ,GQ(Ψ))∈R
Q, Q∈N

∗. (1.2)

The motivation for such a requirement usually comes from the context of the industrial
application at hand and from the observation that, as a consequence of (1.1), the
control quantities are also transported by the advection system

∂tG(Ψ)+u∂xG(Ψ)=0. (1.3)

In order to state the problem more accurately, let us recall some background
material for the scalar linear advection

∂tψ+u∂xψ=0, (1.4)

in which the velocity u is assumed to be uniform and positive. Over a uniform grid
with mesh-size ∆x, the cells of which are indexed by i, and for a time-step ∆t, we
consider the explicit second-order update formula [9]

ψ̂i=ψi−λ
{[
ψi+

1−λ
2 Dψ

i

]
−

[
ψi−1 + 1−λ

2 Dψ
i−1

]}
, (1.5)

where Dψ
i is the slope (multiplied by ∆x) of ψ in cell i, and

λ=
u∆t

∆x
(1.6)
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2 Second-order slope limiters for linear advections with coupling min-max principles

is the CFL ratio. It is well-known [4, 7] that if the slopes are suitably chosen via an
appropriate limiter function

Dψ
i = D̃ψ

i ≡Λ(ψi−ψi−1,ψi+1−ψi), (1.7)

such as minmod, van Leer, superbee. . . then there holds the discrete min-max principle

ψ̂i∈⌊ψi−1,ψi⌉ (1.8)

under the CFL condition λ<1. We systematically use the notation ⌊a,b⌉ for the
convex interval spanned by the real numbers a and b.

Of course, we are going to apply scheme (1.5) to numerically solve system (1.1)
component-wise. If the slopes are limited as in (1.7), i.e.,

Dψp

i = D̃ψp

i ≡Λ(ψpi −ψ
p
i−1,ψ

p
i+1−ψ

p
i ) (1.9)

for 1≤p≤P , then there holds discrete min-max principle component-wise

ψ̂pi ∈⌊ψpi−1,ψ
p
i ⌉. (1.10)

As for the control variables, which are necessarily computed as

Gqi =Gq(Ψi), Ĝqi =Gq(Ψ̂i) (1.11)

for 1≤ q≤Q, there is no reason that we should have the desired min-max principle

Ĝqi ∈⌊Gqi−1,G
q
i ⌉, (1.12)

insofar as the components of Ψ do not “see each other.”
The min-max principle on control variables is a major challenge in many indus-

trial fluid mechanics codes using an ALE (Arbitrary Lagrange-Euler) method [2, 3],
the remap phase of which consists in simultaneously advecting several supposedly in-
dependent variables. Such a requirement is essential for robustness. However, except
for a partially successful attempt by VanderHeyden and Kashiwa [10] for a restricted
setting of the fraction problem, we do not have knowledge of any thoroughly sat-
isfactory solution. The present contribution demonstrates that the component-wise
limitation (1.9) can be actually replaced by a more general framework

Dψp

i =Λp(Ψi−1,Ψi,Ψi+1) (1.13)

which does guarantee (1.10) and (1.12) under the same CFL condition λ<1. This
novel procedure can be extended to the case of a space-dependent velocity field u=
u(x), the sign of which is not necessarily constant. From a practical point of view, the
new slopes will be obtained from the old ones, computed by (1.9), through a projection
mechanism which creates the opportunity for the various (main and control) variables
to see each other. This projection mechanism is optimally designed in order for the
new slopes to be as “close” as possible to the old slopes in some sense, so that sharp
profiles can still be captured.

In order to convey the geometric insights that are at the root of the seemingly
complex algebraic formalism of this work, we focus on two simplest but most impor-
tant examples encountered in the context of Euler-like fluid models: the sum problem
§2 for a flame model [1] and the fraction problem §3 for a two-phase flow model [2].
Section 4 is devoted to the general problem, along with some examples selected from
real-life applications.
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2. The sum problem We are interested in the densities of two species, say,
CH4 and CO2, as well as in their sum which represent the carbon tracer. Let us put

Ψ=(α,β)∈R
2
+, G(Ψ)=α+β∈R+. (2.1)

2.1. Uniform velocity Assume u(x)=u>0. From a time level to the next
one, the update formulae for (α,β) are

α̂i =αi−λ{[αi+
1−λ

2 Dα
i ]−[αi−1+

1−λ
2 Dα

i−1]} (2.2a)

β̂i =βi−λ{[βi+
1−λ

2 Dβ
i ]−[βi−1+1−λ

2 Dβ
i−1]}, (2.2b)

where λ is defined in (1.6). Consider the initial slopes

D̃α
i =Λ(αi−αi−1,αi+1−αi), D̃β

i =Λ(βi−βi−1,βi+1−βi), (2.3)

inspired from the scalar case (1.7) and computed component-wise via a standard
limiter function Λ, such as minmod, van Leer, superbee or ultrabee [4, 7]. The fol-
lowing Lemma recalls a useful property. We use the notations r− =min(r,0) and
r+ =max(r,0) for the negative and positive part of any real number r.

Lemma 2.1. If the slopes (Dα
j ,D

β
j ) in (2.2) satisfy

[D̃α
j ]−≤Dα

j ≤ [D̃α
j ]+, [D̃β

j ]−≤Dβ
j ≤ [D̃β

j ]+ (2.4)

for j= i−1 and j= i, then α̂i∈⌊αi−1,αi⌉ and β̂i∈⌊βi−1,βi⌉.

Proof. This is a consequence of Sweby’s analysis [7], by which an appropriate
choice of the limiter function Λ allows one to express α̂i as a convex combination of
αi−1 and αi (likewise for β̂i). Conditions (2.4) say that the new slopes must be of the
same sign as the old ones, while having smaller absolute values.

The check-sum variable G is computed by Gi=αi+βi and Ĝi= α̂i+ β̂i. It will be
a mistake to take it for granted that the min-max principles on α and β always imply
that on G: this is true only when the min (resp. max) of the sum is equal to the
sum of the min values (resp. max values), which means that α and β both increase
or both decrease from i−1 to i, as highlighted by the following Proposition.

Proposition 2.2. If (αi−αi−1)(βi−βi−1)≥0 and if the slopes (Dα
j ,D

β
j ) satisfy

(2.4) for j= i−1 and j= i, then Ĝi∈⌊Gi−1,Gi⌉.

Proof. In the quarter-plane (α,β)∈R+×R+, let us depict the points

Mi−1 =(αi−1,βi−1), Mi=(αi,βi), M̂i=(α̂i,β̂i). (2.5)

as in Figure 2.1. The min-max principles α̂i∈⌊αi−1,αi⌉ and β̂i∈⌊βi−1,βi⌉, which

follow from Lemma 2.1, amount to saying that M̂i belongs to the rectangle Ri whose
opposite vertices are Mi−1 and Mi and whose sides are parallel to the horizontal and
vertical axes. Draw the lines Gi−1 and Gi defined by α+β=Gi−1 and α+β=Gi.

If (αi−αi−1)(βi−βi−1)≥0, then the rectangle Ri is entirely included in the
strip defined by the parallel lines Gi−1 and Gi. Therefore, the isoline of α+β

passing through M̂i lies between Gi−1 and Gi, which is algebraically equivalent to

Ĝi∈⌊Gi−1,Gi⌉.
If (αi−αi−1)(βi−βi−1)<0, the lines Gi−1 and Gi cut the rectangle Ri into three

pieces, and it may happen that M̂i lies outside the strip, which violates the desired
min-max principle.
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(αi−αi−1)(βi−βi−1)≥0 (αi−αi−1)(βi−βi−1)<0

α

β β

α

Gi−1

Mi−1

Gi

�

M̂i

Mi−1

Gi−1

Mi

Gi

�

M̂i

Mi

Fig. 2.1. Geometric analysis of the min-max principle for the sum problem.

To know what should be done for the case (αi−αi−1)(βi−βi−1)<0, we introduce

Gmi =min{Gi−1,Gi}, GMi =max{Gi−1,Gi}, (2.6)

and seek sufficient conditions in terms of (Dα,Dβ) so that Gmi ≤ Ĝi≤G
M
i at a given

cell i. Unless otherwise indicated, it is assumed that λ<1.

Lemma 2.3. For a given cell i, if

2
λ(Gi −GMi ) ≤ Dα

i +Dβ
i ≤ 2

λ(Gi −Gmi ), (2.7a)

− 2
1−λ(Gi−1−G

m
i ) ≤Dα

i−1 +Dβ
i−1≤− 2

1−λ(Gi−1−G
M
i ), (2.7b)

then Gmi ≤ Ĝi≤G
M
i .

Proof. Subtracting the convex decomposition Gmi =(1−λ)Gmi +λGmi to the sum
of (2.2a) and (2.2b), we obtain

Ĝi−G
m
i =(1−λ)[Gi−G

m
i − λ

2 (Dα
i +Dβ

i )]+λ[Gi−1−G
m
i + 1−λ

2 (Dα
i−1 +Dβ

i−1)]. (2.8)

To ensure Ĝi−G
m
i ≥0, we split the right-hand side into two parts and impose pos-

itivity to each summand. This leads to the right part of (2.7a) and the left part of

(2.7b). We proceed similarly to impose negativity to Ĝi−G
M
i .

The benefit of this splitting approach lies in the fact that the resulting conditions
(2.7) are local: they do not couple the slopes at cell i with those at cell i−1, thus
giving rise to a tractable procedure. It could be legitimately feared that imposing
positivity separately in (2.8) yields too strong conditions which might deteriorate
accuracy. The miracle is yet that accuracy is preserved at a very good level, as shown
by numerical results.

We are now in a position to formulate the new limitation procedure, which ensures
the min-max principle for all cells.

Theorem 2.4. Given an initial choice (D̃α
i ,D̃

β
i ) in accordance with (2.3), let Gi⊂R

2

be the set of all pairs (Dα
i ,D

β
i ) subject to the 6 linear inequality constraints

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi≤D
α
i +Dβ

i ≤Mi, (2.9)
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with

mi=max{ 2
λ [Gi−Gi−1]

− ; 2
1−λ [Gi+1−Gi]

−} (2.10a)

Mi= min{ 2
λ [Gi−Gi−1]

+ ; 2
1−λ [Gi+1−Gi]

+}. (2.10b)

For all i∈Z, define

(Dα
i ,D

β
i )=

{
(D̃α

i ,D̃
β
i ) if D̃α

i D̃
β
i >0

ΠGi
(D̃α

i ,D̃
β
i ) otherwise

(2.11)

where ΠGi
(.) denotes the projection onto the convex set Gi⊂R

2. Then, we have the
min-max principles

α̂i∈⌊αi−1,αi⌉, β̂i∈⌊βi−1,βi⌉, Ĝi∈⌊Gi−1,Gi⌉, (2.12)

at every cell i when updating (α,β) with scheme (2.2).

Proof. The set Gi is obviously convex not empty because it contains (0,0). There-

fore, definition (2.11) makes sense. Note that its shape depends on (D̃α
i ,D̃

β
i ).

At a fixed cell i, if D̃α
i D̃

β
i >0, we necessarily have (αi−αi−1)(βi−βi−1)>0 on

the grounds of the properties of standard limiter functions. According to Proposition
2.2, the default values (Dα

i ,D
β
i )= (D̃α

i ,D̃
β
i ) are suitable. If D̃α

i D̃
β
i ≤0, we are going

to check conditions (2.7). From (2.9) and (2.10), we infer that

2
λ [Gi−Gi−1]

−≤mi≤D
α
i +Dβ

i ≤Mi≤
2
λ [Gi−Gi−1]

+. (2.13)

We claim that [Gi−Gi−1]
− =Gi−G

M
i and [Gi−Gi−1]

+ =Gi−G
m
i . To see this, we

simply have to distinguish two cases Gi−1≤Gi and Gi−1>Gi. This establishes (2.7a).

If D̃α
i−1D̃

β
i−1>0, we also necessarily have (αi−αi−1)(βi−βi−1)>0 thanks to the

properties of standard limiter functions. By virtue of Proposition 2.2, we conclude
that there is no need to check (2.7b). If D̃α

i−1D̃
β
i−1≤0, we write (2.9) and (2.10) for

cell i−1 and observe that

2
1−λ [Gi−Gi−1]

−≤mi−1≤D
α
i−1+Dβ

i−1≤Mi−1≤
2

1−λ [Gi−Gi−1]
+, (2.14)

and once again argue that [Gi−Gi−1]
− =Gi−G

M
i and [Gi−Gi−1]

+ =Gi−G
m
i to

derive (2.7b).
The coding of the projection operator ΠGi

in this problem can be made efficient
through explicit formulae. Figure 2.2 illustrates a few situations for a locally increasing
or decreasing behavior of G. Note that if a local extremum occurs, i.e., (Gi−1−

Gi)(Gi+1−Gi)>0, by (2.10) we have mi=Mi=0, hence DG
i =Dα

i +Dβ
i =0. This

testifies to a clipping mechanism on G in the proposed procedure.

2.2. Variable velocity field The velocities ui+1/2 =u(xi+1/2) are given at the
edges. The advection equation ∂tψ+u∂xψ=0 is discretized by the explicit scheme

ψ̂i=ψi−λ
−
i−1/2

1−|λ|i
2 Dψ

i −λ
+
i−1/2

{
ψi−

[
ψi−1 + 1−|λ|i−1

2 Dψ
i−1

]}
(2.15)

−λ+
i+1/2

1−|λ|i
2 Dψ

i +λ−i+1/2

{
ψi−

[
ψi+1−

1−|λ|i+1

2 Dψ
i+1

]}
,

where

λi±1/2 =
ui±1/2∆t

∆x
, |λ|i=λ+

i−1/2−λ
−
i+1/2. (2.16)
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Dβ
i Dβ

i

Mi Mi
D̃α
i D̃α

i

D̃β
i

D̃β
i

Dα
i Dα

i

mimi

Gi−1≤Gi≤Gi+1 Gi−1 ≥Gi≥Gi+1

•

•

◦

◦

Fig. 2.2. Projection of ( eDα
i , eDβ

i ) onto the convex set Gi for the sum problem.

Such a scheme stems from considerations about conservativity in the remap phase of
the ALE method. We recall [5] that it can only be quasi second-order for a variable
velocity field.

For clarity of language, let us give names to the various situations that may occur
depending on the sign configuration S(i) in the neighborhood of cell i.

I. ui−1/2>0 and ui+1/2≥0 (left to right propagation);
II. ui−1/2≤0 and ui+1/2<0 (right to left propagation);

III. ui−1/2≤0 and ui+1/2≥0 (source);
IV. ui−1/2>0 and ui+1/2<0 (sink).

The min-max principle on ψ reads

ψ̂i∈





⌊ψi−1,ψi⌉ if S(i)= I,

⌊ψi+1,ψi⌉ if S(i)= II,

⌊ψi−1,ψi,ψi+1⌉ if S(i)= III∪ IV.

(2.17)

The aim of the game is the same as before: we transport ψ=α and ψ=β by (2.15)
but require the min-max principle (2.17) on ψ=α,β and G. Of course, we rely on
the kind on analysis as in the uniform velocity case, although the discussion becomes
much more involved.

For simplicity, we make additional assumptions in order to have statements similar
to the uniform case.

1. The CFL condition is about half the previous one. For all cell i, we have

|λi−1/2|+ |λi+1/2|<1. (2.18)

2. The standard limiter function Λ used to compute the initial slopes (2.3) at
cell i is of strength lesser than 2/(1−|λ|i), i.e.,

|Λ(di−1/2,di+1/2)|≤
2

1−|λ|i
min{|di−1/2|,|di+1/2|}. (2.19)



Quang Huy Tran 7

This rules out ultrabee, but authorizes minmod, van Leer, superbee and even
hyperbee based on |λ|i.

3. There is no sequence of source-sink (C–D) or sink-source (D–C) configuration
over two consecutive cells. Put another way,

6 ∃i∈Z | λi−1/2λi+1/2<0 and λi+1/2λi+3/2<0. (2.20)

Such a “saw-tooth” sequence can be avoided by refining the mesh sufficiently,
provided that the velocity field u(x) depends continuously on x.

In preparation for Theorem 2.5, we set

Φi=min{ 2
|λ|i

, 2
1−|λ|i

} (2.21)

and introduce the local bounds

Gmi =1{S(i)=I} min{Gi−1,Gi} (2.22a)

+ 1{S(i)=II} min{Gi+1,Gi}+1{S(i)=III∪IV} min{Gi−1,Gi,Gi+1}

GMi =1{S(i)=I} max{Gi−1,Gi} (2.22b)

+ 1{S(i)=II}max{Gi+1,Gi}+1{S(i)=III∪IV}max{Gi−1,Gi,Gi+1},

where 1{.} is the characteristic function. Once all the Gm and GM have been com-

puted over the domain, we consider the set Gi of all pairs (Dα
i ,D

β
i ) that satisfy:

• For case I (left-to-right propagation)

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi≤D
α
i +Dβ

i ≤Mi, (2.23)

with

mi= Φimax{Gmi −Gi ;Gi −GMi+1} (2.24a)

Mi= Φi min{Gi −Gmi+1 ;GMi −Gi}. (2.24b)

• For case II (right-to-left propagation)

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi≤D
α
i +Dβ

i ≤Mi, (2.25)

with

mi= Φimax{Gmi −Gi ;Gi −GMi−1} (2.26a)

Mi= Φi min{Gi −Gmi−1 ;GMi −Gi}. (2.26b)

• For case III (source)

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi≤D
α
i +Dβ

i ≤Mi, (2.27)

with

mi= Φimax{Gi−G
M
i−1 ;Gi−G

M
i ;Gmi −Gi ;Gmi+1−Gi} (2.28a)

Mi= Φi min{Gi−G
m
i−1 ;Gi−G

m
i ;GMi −Gi ;G

M
i+1−Gi}. (2.28b)

• For case IV (sink), Gi=R
2.
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Theorem 2.5. Given an initial choice (D̃α
i ,D̃

β
i ) in accordance with (2.3), (2.19), let

Gi⊂R
2 be the convex set introduced above. For all i∈Z, define

(Dα
i ,D

β
i )=

{
(D̃α

i ,D̃
β
i ) if D̃α

i D̃
β
i >0

ΠGi
(D̃α

i ,D̃
β
i ) otherwise

(2.29)

where ΠGi
(.) denotes the projection onto the convex set Gi⊂R

2. Then, under assump-
tions (2.18) and (2.20), we have the min-max principle (2.17) for ψ=α,β and G at
every cell i when updating (α,β) with scheme (2.15).

Proof. Since the proof is lengthy and relatively tedious, we are going to sketch
out its beginning in order for the readers to grasp the key ideas. Applying the update
formula (2.15) to ψ=α and β, then adding the equations together and substracting
by Gmi and GMi yields

Ĝi−G
m
i =Ami +Bmi−1 +Cmi+1, Ĝi−G

M
i =AMi +BMi−1 +CMi+1, (2.30)

with

Ami =(1−λ+
i−1/2 +λ−i+1/2)(Gi−G

m
i )−(λ+

i+1/2 +λ−i−1/2)
1−|λ|i

2 DG
i (2.31a)

Bmi−1 =λ+
i−1/2(Gi−1−G

m
i )+λ+

i−1/2
1−|λ|i−1

2 DG
i−1 (2.31b)

Cmi+1 =λ−i+1/2(Gi+1−G
m
i )+λ−i+1/2

1−|λ|i+1

2 DG
i+1, (2.31c)

and

AMi =(1−λ+
i−1/2 +λ−i+1/2)(Gi−G

M
i )−(λ+

i+1/2 +λ−i−1/2)
1−|λ|i

2 DG
i (2.32a)

BMi−1 =λ+
i−1/2(Gi−1−G

M
i )+λ+

i−1/2
1−|λ|i−1

2 DG
i−1 (2.32b)

CMi+1 =λ−i+1/2(Gi+1−G
M
i )+λ−i+1/2

1−|λ|i+1

2 DG
i+1, (2.32c)

using the shorthand notation DG=Dα+Dβ . In conformity with the splitting philos-
ophy already explained for the uniform velocity case, we separately impose

Ami ≥0, Bmi−1≥0, Cmi+1≥0 (2.33a)

AMi ≤0, BMi−1≤0, CMi+1≤0. (2.33b)

We then express (2.33) in terms of DG according to the sign configuration. In case

I (resp. II), we drop out the identically vanishing and useless inequalties on Cm,Mi+1

(resp. Bm,Mi−1 ) and we shift index for the inequalties on Bm,Mi−1 (resp. Cm,Mi+1 ) in order
to ensure the min-max principle at the “receiving” neighbor i+1 (resp. i−1). In case
III, we have to keep all the conditions and shift index for them, because a source does
have an influence on two receiving neighbors. In case IV, there is no need to change
DG
i because a sink does not have any influence on its neighbors and the min-max

principle at a sink is actually ensured by conditions imposed to the two neighbors.

Despite its apparent complexity, this procedure lends itself very well to numerical
implementation. Instead of finding the image of the projection by hands, we can
resort to a subroutine for quadratic minimization under linear inequality constraints.
This will be addressed in §4.
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Fig. 2.3. Main variables α (upper panel) and β (lower panel) for the sum problem.

Remark 2.6. It can be shown that in the (Dα
i ,D

β
i )-plane, the set of points defined

by the inequalities mi≤D
α
i +Dβ

i ≤Mi in cases I, II and III always contain the strip

max{[Gi−Gi−1]
−,[Gi+1−Gi]

−}≤
Dα
i +Dβ

i

Φi
≤min{[Gi−Gi−1]

+,[Gi+1−Gi]
+}.

Therefore, if we accept to project onto a smaller convex set, it is possible to find
the new slopes by explicit formulae. The price to be paid for is a larger amount of
dissipation.

2.3. Numerical results In Figures 2.3 and 2.4, we compare the results of 3
different schemes and the exact solution for an experiment over a positive velocity
field. The initial data have been tailored so that α is decreasing and β is increasing,
therefore we have (αi−αi−1)(βi−βi−1)≤0 for all cell i in the domain. The curves
for the first-order scheme are very much smeared out. Those for the two second-order
schemes are in very good agreement with the exact solution. What we mean by “old
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second-order” is the scheme with the initial slopes, computed component-wise. Of
course, the “new second-order” is endowed with our coupling device for the slopes.
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Fig. 2.4. Control variable G=α+β for the sum problem.

A close inspection of the curves reveals that in the vicinity of x=445, the old
second-order scheme exhibits small spurious oscillations on the control variable G,
as evidenced by the close-up in the lower panel of Figure 2.4. As far as the new
second-order is concerned, there is no violation of the min-max principle.

3. The fraction problem We now turn to the transport of a total density
and a partial density, the quotient of the latter by the former being a mass fraction.
More specifically, we put

Ψ=(ρ,κ)∈R
2
+, Y (Ψ)=

κ

ρ
∈ [0,1]. (3.1)
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3.1. Uniform velocity From a time level to the next one, the update formulae
for (ρ,κ) are

ρ̂i =ρi−λ{[ρi+
1−λ

2 Dρ
i ]− [ρi−1+ 1−λ

2 Dρ
i−1]} (3.2a)

κ̂i =κi−λ{[κi+
1−λ

2 Dκ
i ]− [κi−1+

1−λ
2 Dκ

i−1]}, (3.2b)

where λ is defined in (1.6). Consider the initial slopes

D̃ρ
i =Λ(ρi−ρi−1,ρi+1−ρi), D̃κ

i =Λ(κi−κi−1,κi+1−κi). (3.3)

For the same reasons as in Lemma 2.1, we have the following result.

Lemma 3.1. If the slopes (Dρ
j ,D

κ
j ) in (3.2) satisfy

[D̃ρ
j ]

−≤Dρ
j ≤ [D̃ρ

j ]
+, [D̃κ

j ]
−≤Dρ

j ≤ [D̃κ
j ]

+ (3.4)

for j= i−1 and j= i, then ρ̂i∈⌊ρi−1,ρi⌉ and κ̂i∈⌊κi−1,κi⌉.

The control fraction Y is computed by Yi=κi/ρi and Ŷi= κ̂i/ρ̂i. Contrary to the
intuitive feeling, it will be erroneous to think that carrying out the slope reconstruction
on ρ and Y solves the problem. Indeed, the min (resp. max) of a product is not the
product of the min values (resp. max values).
Proposition 3.2. If (ρi−ρi−1)(κi−κi−1)≤0 and if the slopes (Dρ

j ,D
κ
j ) satisfy (3.4)

for j= i−1 and j= i, then Ŷi∈⌊Yi−1,Yi⌉.

Proof. In the quarter-plane (ρ,κ)∈R+×R+, let us depict the points

Mi−1 =(ρi−1,κi−1), Mi=(ρi,κi), M̂i=(ρ̂i,κ̂i). (3.5)

as in Figure 3.1. The min-max principles ρ̂i∈⌊ρi−1,ρi⌉ and κ̂i∈⌊κi−1,κi⌉, which

follow from Lemma 3.1, amount to saying that M̂i belongs to the rectangle Ri whose
opposite vertices are Mi−1 and Mi and whose sides are parallel to the horizontal and
vertical axes. Draw the lines Yi−1 and Yi defined by κ/ρ=Yi−1 and κ/ρ=Yi.

If (ρi−ρi−1)(κi−κi−1)≤0, then the rectangle Ri is entirely included in the cone
of lines defined by the rays Yi−1 and Yi. Therefore, the isoline of κ/ρ passing through

M̂i lies between Yi−1 and Yi, which is algebraically equivalent to Ŷi∈⌊Yi−1,Yi⌉.
If (ρi−ρi−1)(κi−κi−1)>0, the rays Yi−1 and Yi cut the rectangle Ri into three

pieces, and it may happen that M̂i lies outside the cone, which violates the desired
min-max principle.

To know what should be done for the case (ρi−ρi−1)(κi−κi−1)>0, we introduce

Y mi =min{Yi−1,Yi}, YMi =max{Yi−1,Yi}, (3.6)

and seek sufficient conditions at a given cell i under the assumption λ<1.

Lemma 3.3. For a given cell i, if

YMi Dρ
i + 2

λ (κi −YMi ρi) ≤ Dκ
i ≤ Y mi Dρ

i + 2
λ (κi −Y mi ρi), (3.7a)

Y mi Dρ
i−1−

2
1−λ (κi−1−Y

m
i ρi−1) ≤ Dκ

i−1 ≤YMi Dρ
i−1−

2
1−λ (κi−1−Y

M
i ρi−1), (3.7b)

then Y mi ≤ Ŷi≤Y
M
i .

Proof. A straightforward calculation shows that

κ̂i−Y
m
i ρ̂i=(1−λ)Ami +λBmi−1, κ̂i−Y

M
i ρ̂i=(1−λ)AMi +λBMi−1, (3.8)
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ρ

κ κ

ρ

�

M̂i

M̂i

�

Fig. 3.1. Geometric analysis of the min-max principle for the fraction problem.

with

Ami =(κi − Y mi ρi) − λ
2 (Dκ

i − Y mi Dρ
i ) (3.9a)

AMi =(κi −YMi ρi) − λ
2 (Dκ

i −YMi Dρ
i ) (3.9b)

Bmi−1 =(κi−1− Y mi ρi−1)+
1−λ

2 (Dκ
i−1− Y mi Dρ

i−1) (3.9c)

BMi−1 =(κi−1−Y
M
i ρi−1)+

1−λ
2 (Dκ

i−1−Y
M
i Dρ

i−1). (3.9d)

In order to ensure κ̂i−Y
m
i ρ̂i≥0 and κ̂i−Y

M
i ρ̂i≤0, our strategy consists in splitting

the summands involved in (3.8). By forcibly imposing

Ami ≥0, AMi ≤0, Bmi−1≥0, BMi−1≤0, (3.10)

we end up with the set of inequalities (3.7).

Theorem 3.4. Given an initial choice (D̃ρ
i ,D̃

κ
i ) in accordance with (3.3), let Yi⊂R

2

be the set of all pairs (Dρ
i ,D

ρ
i ) subject to the 8 linear inequality constraints

[D̃ρ
i ]

−≤Dρ
i ≤ [D̃ρ

i ]
+, [D̃κ

i ]
−≤Dκ

i ≤ [D̃κ
i ]

+, mi(D
ρ
i )≤D

κ
i ≤Mi(D

ρ
i ), (3.11)

with

mi(D
ρ
i )=max{YMi Dρ

i + 2
λ(κi−Y

M
i ρi) ; Y mi+1D

ρ
i −

2
1−λ(κi−Y

m
i+1ρi)} (3.12a)

Mi(D
ρ
i )= min{ Y mi Dρ

i + 2
λ(κi−Y

m
i ρi) ; YMi+1D

ρ
i −

2
1−λ(κi−Y

M
i+1ρi)}. (3.12b)

For all i∈Z, define

(Dρ
i ,D

κ
i )=

{
(D̃ρ

i ,D̃
κ
i ) if D̃ρ

i D̃
κ
i <0

ΠYi
(D̃ρ

i ,D̃
ρ
i ) otherwise

(3.13)

where ΠYi
(.) denotes the projection onto the convex set Yi⊂R

2. Then, we have the
min-max principles

ρ̂i∈⌊ρi−1,ρi⌉, κ̂i∈⌊κi−1,κi⌉, Ŷi∈⌊Yi−1,Yi⌉, (3.14)

at every cell i when updating (ρ,κ) with scheme (3.2).
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i

•

•
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i Dρ

i

2
λ(ρi,κi)
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1−λ(ρi,κi)

◦

◦

Fig. 3.2. Projection of ( eDρ
i , eDκ

i ) onto the convex set Yi for the fraction problem.

Proof. The proof is similar to that of Theorem 2.4.
The practical implementation of the projection onto Yi in this problem can be

done via explicit formulae. Figure 3.2 displays a few situations for a locally increasing
or decreasing behavior of Y . It can be readily proven that the constraints mi(D

ρ
i )≤

Dκ
i ≤Mi(D

ρ
i ) correspond in reality to a triangle in the (Dρ

i ,D
κ
i )-plane. The slopes of

its sides are Yi−1, Yi and Yi+1. The side with slope Yi passes through the origin and
connects the points − 2

1−λ (ρi,κi) and 2
1−λ (ρi,κi).

Should a local extremum occurs, i.e., (Yi−1−Yi)(Yi+1−Yi)>0, this triangle de-
generates into the segment joining these two points. Hence, Dκ

i =YiD
ρ
i whenever the

projection operator ΠYi
is activated, and we formally have DY

i =(Dκ
i −YiD

ρ
i )/ρi=0.

This testifies to a clipping mechanism on Y .

3.2. Variable velocity field The setting is identical to that of the sum prob-
lem. Introduce the local bounds

Y mi =1{S(i)=I} min{Yi−1,Yi} (3.15a)

+ 1{S(i)=II} min{Yi+1,Yi}+1{S(i)=III∪IV} min{Yi−1,Yi,Yi+1}

YMi =1{S(i)=I} max{Yi−1,Yi} (3.15b)

+ 1{S(i)=II}max{Yi+1,Yi}+1{S(i)=III∪IV}max{Yi−1,Yi,Yi+1}.

Once all the Y m and YM have been computed over the domain, we consider the set
Yi of all pairs (Dρ

i ,D
κ
i ) that satisfy:

• For case I (left-to-right propagation)

[D̃ρ
i ]

−≤Dρ
i ≤ [D̃ρ

i ]
+, [D̃κ

i ]
−≤Dκ

i ≤ [D̃κ
i ]

+, mi(D
ρ
i )≤D

κ
i ≤Mi(D

ρ
i ), (3.16)

with

mi(D
ρ
i )=max{YMi Dρ

i+Φi(κi−Y
M
i ρi) ; Y mi+1D

ρ
i−Φi(κi−Y

m
i+1ρi)} (3.17a)

Mi(D
ρ
i )= min{Y mi Dρ

i +Φi(κi−Y
m
i ρi) ; YMi+1D

ρ
i−Φi(κi−Y

M
i+1ρi)}. (3.17b)



14 Second-order slope limiters for linear advections with coupling min-max principles

• For case II (right-to-left propagation)

[D̃ρ
i ]

−≤Dρ
i ≤ [D̃ρ

i ]
+, [D̃κ

i ]
−≤Dκ

i ≤ [D̃κ
i ]

+, mi(D
ρ
i )≤D

κ
i ≤Mi(D

ρ
i ), (3.18)

with

mi(D
ρ
i )=max{YMi Dρ

i+Φi(κi−Y
M
i ρi) ;Y mi−1D

ρ
i−Φi(κi−Y

m
i−1ρi)} (3.19a)

Mi(D
ρ
i )= min{Y mi Dρ

i +Φi(κi−Y
m
i ρi) ;YMi−1D

ρ
i−Φi(κi−Y

M
i−1ρi)}. (3.19b)

• For case III (source)

[D̃ρ
i ]

−≤Dρ
i ≤ [D̃ρ

i ]
+, [D̃κ

i ]
−≤Dκ

i ≤ [D̃κ
i ]

+, mi(D
ρ
i )≤D

κ
i ≤Mi(D

ρ
i ), (3.20)

with

mi(D
ρ
i )=max{YMi−1D

ρ
i+Φi(κi−Y

M
i−1ρi);Y

m
i Dρ

i −Φi(κi−Y
m
i ρi); (3.21a)

YMi Dρ
i +Φi(κi−Y

M
i ρi) ;Y mi+1D

ρ
i−Φi(κi−Y

m
i+1ρi)}

Mi(D
ρ
i )= min{Y mi−1D

ρ
i+Φi(κi−Y

m
i−1ρi);Y

m
i Dρ

i +Φi(κi−Y
m
i ρi); (3.21b)

YMi Dρ
i −Φi(κi−Y

M
i ρi) ;YMi+1D

ρ
i−Φi(κi−Y

M
i+1ρi)}.

• For case IV (sink), Yi=R
2.

Theorem 3.5. Given an initial choice (D̃ρ
i ,D̃

κ
i ) in accordance with (3.3), (2.19), let

Yi⊂R
2 be the convex set introduced above. For all i∈Z, define

(Dρ
i ,D

κ
i )=

{
(D̃ρ

i ,D̃
κ
i ) if D̃ρ

i D̃
κ
i <0

ΠYi
(D̃ρ

i ,D̃
κ
i ) otherwise

(3.22)

where ΠYi
(.) denotes the projection onto the convex set Yi⊂R

2. Then, under as-
sumptions (2.18) and (2.20), we have the min-max principle (2.17) for ψ=ρ,κ and
Y at every cell i when updating (ρ,κ) with scheme (2.15).

Proof. The proof is similar to that of Theorem 2.5.
Again, we recommend a minimization subroutine to perform the projection.

Remark 3.6. In the (Dρ
i ,D

κ
i )-plane, let A and B be the points located at

A=−
1

Φi
(ρi,κi), B=

1

Φi
(ρi,κi).

It can be shown that, the set of points defined by the inequalities mi(D
ρ
i )≤D

κ
i ≤

Mi(D
ρ
i ) in cases I, II and III is the segment AB if (Yi−Yi−1)(Yi−Yi+1)≥0. For

(Yi−Yi−1)(Yi−Yi+1)<0, this domain always contain the triangle ABC, in which the
slope of (AC) is Yi+1 and the slope of (CB) is Yi−1. Therefore, if we accept to project
onto a smaller convex set, it is possible to find the new slopes by explicit formulae.
The price to be paid for is a larger amount of dissipation.

3.3. Numerical results In Figures 3.3 and 3.4, we compare the results of 3
different schemes and the exact solution for an experiment over a positive velocity
field. The initial data have been tailored so that ρ and and β are both increasing,
therefore we have (ρi−ρi−1)(κi−κi−1)≥0 for all cell i in the domain. The curves for
the first-order scheme are very much smeared out. Those for the two second-order
schemes are in very good agreement with the exact solution. The labels “old second-
order” and “new second-order” have the same meaning as in §2.3. We see that in the
vicinity of x=1100, the old second-order scheme does not comply with the min-max
principle on the control variable Y . As for the new second-order scheme, it does not
exhibit any oscillation on Y , as testified by the lower panel of Figure 3.4.
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Fig. 3.3. Main variables ρ (upper panel) and κ (lower panel) for the fraction problem.

4. The general problem We go back to the problem stated in the Intro-
duction. The ideas presented for the sum problem and the fraction problem can be
carried over to the case of several control variables G, each of them being a first-order
rational fraction with respect to Ψ∈R

P
+, that is,

Gq(Ψ)=
aq0 +aq1ψ

1 + . . .+aqPψ
P

bq0 +bq1ψ
1 + . . .+bqPψ

P
, (4.1)

with bqp≥0 for all 1≤p≤P , 1≤ q≤Q. This class of homographic functions is wide
enough to represent a vast majority of control variables in real-life applications.

4.1. Uniform velocity Assuming u>0, we define

(ψqi )
m=min{ψqi−1,ψ

q
i }, (ψqi )

M =max{ψqi−1,ψ
q
i }, (4.2)

and

(Gqi )
m=min{Gqi−1,G

q
i }, (Gqi )

M =max{Gqi−1,G
q
i }. (4.3)
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Fig. 3.4. Control variable Y =κ/ρ for the fraction problem.

Our objective is to find the slopes Di=(D1
i , . . . ,D

P
i ), which should be as close as pos-

sible to the initial slopes D̃i=(D̃1
i , . . . ,D̃

P
i ) computed component-wise by a standard

limiter function, so that by updating Ψ with (1.5), we have not only

(ψqi )
m≤ ψ̂qi ≤ (ψqi )

M , (4.4)

but also

(Gqi )
m≤ Ĝqi =Gq(Ψ̂i)≤ (Gqi )

M . (4.5)

Getting rid of the denominator in Gq, the above condition can be cast into two
linear inequalities involving (Ψi−1,Ψi) and (Di−1,Di). The splitting strategy enables
us to break these inequalities into local conditions which do not couple Di−1 and Di.

These conditions, once gathered, express that we must project the initial guess D̃i

onto a convex set Gi⊂R
P defined by 2P bound constraints (to ensure monotonicity

on Ψ) and 4Q non-trivial linear inequalities (to ensure monotonicity on G).
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To carry out this projection, we reformulate the projection operator as a quadratic
minimization problem

min
Di∈Gi

1
2‖Di−D̃i‖

2 (4.6)

subject to linear inequality constraints. We recall that by virtue of Hilbert’s theorem
about projection onto a convex non-empty set, there is a unique solution to problem
(4.6). In the context of the applications we have in mind, the Euclidean norm does
make sense, insofar as the components of Ψ are homogeneous to a density. We advo-
cate the use of an existing subroutine, e.g., the QL algorithm by Schittkowski [6], the
advantage of which lies in its fast convergence. Moreover, it can be initialized with
Di= D̃i, which is not necessarily a feasible point.

Before launching the optimization procedure, however, we have to carefully de-
termine the regions in the Di-space for which the min-max principle on G is auto-
matically guaranteed and for which there is no need to perform projection (for the

sum problem, this region is Dα
i D

β
i >0 and for the fraction problem, this is Dρ

iD
κ
i <0).

This crucial preliminary step is meant to maintain sharp profiles. It can only be done
on a case-by-case basis.

4.2. Variable velocity field The ideas remain the same as in the uniform
velocity case, but the calculations are trickier. On one hand, the definitions of the
local bounds depend on the sign configuration at the edges of each cell. On the other
hand, the inequalities to be split now involve Di−1,Di and Di+1. As a consequence,
after imposing positivity or negativity to the summands separately, we end up with
more than 4Q non-trivial combinations for case III (source). Nevertheless, this is not
a difficulty because the hard part of the job is done by the optimization subroutine.

The extra time incurred by the latter depends on the size of P and Q. Numerical
experiments reveal that for a typical multi-specie flow model (P ≈10, Q≈5), such as
in [1,8], the CPU ratio never exceeds 2. Besides, we have to be aware of the fact that
the remap phase contributes little to the overall computational time of the nonlinear
Euler code. From this global point of view, the reward brought by the min-max
principle on the main and control variables is worth an increase by a factor 2 in the
CPU time of the remap phase, which is not really significant!

4.3. Selected examples In addition to the sum problem and the fraction
problem, we have successfully applied the new slope-limiting method to the following
examples, in which there are two control variables. Since the conclusion is the same
as before, we simply state the problem and do not show the curves.

4.4. The fraction-difference problem Consider Ψ=(ρ,κ)∈R
2
+ and

G(Ψ)= (Y, η)=

(
κ

ρ
, ρ−κ

)
. (4.7)

As explained in §3, we are in a two-phase flow model, the total density of which is ρ
and the gas density of which is κ. The ratio Y =κ/ρ represents the gas mass fraction,
while the difference η=ρ−κ is equal to the liquid density.

4.5. The two-sum four-specie problem Consider Ψ=(α,β,γ,δ)∈R
4
+ and

G(Ψ)= (e, f)= (7α+γ, 2β+2γ+δ) (4.8)
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The densities α, β, γ, δ respectively correspond to the four species C7H16, O2, CO2,
H2O, related to each other through the reversible chemical reaction

C7H16 +11O2 ⇄7CO2 +8H2O (4.9)

which takes place at the known rate

R(α,β,γ,δ)=K+αβ
11−K−γ

7δ8. (4.10)

This implies the evolution equations

Dtα=− R(α,β,γ,δ) (4.11a)

Dtβ=−11R(α,β,γ,δ) (4.11b)

Dtγ= 7R(α,β,γ,δ) (4.11c)

Dtδ= 8R(α,β,γ,δ), (4.11d)

where Dt denotes the total derivative ∂t+u∂x. From (4.11), it can be inferred that

Dte=Dtf =0, (4.12)

which highlights e and f as control variables. In the present case, e is the carbon
tracer, and f the oxygen tracer.

5. Conclusion We hope the slope-reconstruction methodology proposed in
this paper, based on a rigorous analysis while being not too much expensive, will be
helpful to the practitioners who have to daily face similar problems. Current works
are in progress in order to extend this approach to multi-dimensional problems.
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