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Abstract

We propose an original relaxation scheme for scalar conservation laws of the form
∂tu + ∂x(u(1 − u)g(u)) = 0, where g ∈ C 1([0, 1]; R). Those scalar conservation laws
come from a drift-flux model for two-phase flows [16]. Unlike Jin and Xin’s approach
[12], the new relaxation strategy does not involve any tuning parameter, but makes use
of the Born-Infeld system [5,18]. The advantage of this new method is that it enables
us to achieve a maximum principle on the velocities w = (1 − u)g and z = −ug, and
to control the sign of the numerical flux. Stability is established for a wide class of
eligible functions g. This method can be plugged into a scheme for two-phase fluids,
for which numerical experiments are shown.
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1 Introduction

As a sequel to the previous works [2, 3] on relaxation methods for the simulation of two-
phase flows in pipelines, this paper is a first step toward the multi-component case. More
specifically, it shows how a numerical difficulty that arises in a large two-phase multi-
component system can be most adequately solved by some unexpected theoretical devel-
opments for a scalar conservation law.

For the sake of simplicity, let us use Lagrangian mass coordinates to introduce the
problem. In [2, 3], we proposed to solve the drift-flux model [16, 17]

∂tτ − ∂mv = 0 (1.1a)

∂tv + ∂mP = 0 (1.1b)

∂tY − ∂mσ = 0, (1.1c)
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by the relaxation model

∂tτ − ∂mv = 0 (1.2a)

∂tv + ∂mΠ = 0 (1.2b)

∂tΠ+a2∂mv = λ(P − Π) (1.2c)

∂tY − ∂mΣ = 0 (1.2d)

∂tΣ− b2∂mY = λ(σ − Σ). (1.2e)

In (1.1), the slip
σ = ρY (1 − Y )φ(τ, Y, v) (1.3)

and the total pressure
P = p(τ, Y ) + ρY (1 − Y )φ2(τ, Y, v) (1.4)

are functions of the specific volume τ = ρ−1 ∈ R
∗
+, the gas mass-fraction Y ∈ [0, 1] and

the mixture velocity v. The thermodynamic pressure p in (1.4) and the hydrodynamic
slip velocity φ in (1.3) are algebraic closure laws.

The relaxation method consists in replacing the highly nonlinear quantities P and σ by
the new variables Π and Σ, to which (1.2c) and (1.2e) are imposed as governing equations
Note that the subsystem (1.2d)–(1.2e) can be seen as the Jin-Xin relaxation [12] applied
to (1.1c), considered as a “scalar” conservation law on Y . The tuning parameters a, b are
at our disposal in order to stabilize the method. It was shown in [2, 3] that under the
Whitham conditions

a2 > −Pτ + P 2
v (1.5a)

b > |σY |, (1.5b)

the relaxation system (1.2) is a “good” approximation to the original system (1.1) in the
limit λ → ∞. Furthermore, at the discrete level, when the variables are updated by a
first-order explicit scheme, we are in a position to guarantee a positivity principle for the
specific volume and the mass-fraction, namely,

τ > 0 and Y ∈ [0, 1] (1.6)

as soon as a, b are larger than some known and computable bounds. This is the main
advantage of relaxation over other numerical schemes [7, 8,15].

To take into account the multi-component nature of the flow, we want to add two
additional balance laws to model (1.1), namely,

∂t(Y ξ) − ∂m(ξσ) = 0 (1.7a)

∂t((1 − Y )η) + ∂m(ησ) = 0. (1.7b)

The variables (ξ, η) ∈ [0, 1]2 are the partial fractions of some component in the gas and
liquid phase, and do appear as new arguments of P and σ. Combining (1.7) with (1.1c),
we get

∂tξ −
σ

Y
∂mξ = 0 (1.8a)

∂tη +
σ

1 − Y
∂mη = 0, (1.8b)
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which shows that −σ/Y and σ/(1−Y ) are characteristic speeds of the system (1.1), (1.8).
The relaxation version of (1.7) is

∂t(Yξ) − ∂m(ξΣ) = 0 (1.9a)

∂t((1 − Y )η) + ∂m(ηΣ) = 0. (1.9b)

Combining (1.9) with (1.2d), we get

∂tξ −
Σ

Y
∂mξ = 0 (1.10a)

∂tη +
Σ

1 − Y
∂mη = 0, (1.10b)

which shows that −Σ/Y and Σ/(1−Y ) are characteristic speeds of the system (1.2), (1.10).
The trouble with this relaxation strategy is that when we need to know the velocities

−
Σ∗

Y ∗
and

Σ∗

1 − Y ∗
(1.11)

of the intermediate state (in the solution of the Riemann problem associated with the
(Y,Σ)-subsystem), we are faced with a division problem between two vanishing numbers.
The handling of this problem proves to be awkward, especially in the neighborhood of
single-phase states where Y ∗ → 0 or 1.

It could be argued that the actual update of ξ, η by (1.9) does not require the velocities
(1.11). The only thing we need to know is Σ∗, the sign of which is sufficient to decide
about the upwind values for ξ, η. While this argument is true for an explicit scheme, in
which case the relaxation (1.9) coincides with Larrouturou’s decoupling device [13], it falls
flat if our ultimate goal to work out an implicit scheme in the fashion of Baudin et al. [3].
Indeed, in order to interpret the scheme as a Roe method, we have to be able to compute
the speeds (1.11) in an efficient way. A final, albeit accidental observation is that the Σ∗

coming from Jin-Xin’s method (1.2d)–(1.2e) for (1.1c) may have the “wrong” sign when b
is too large (see §3 for details).

In the present work, we would like to put forward a new relaxation approach to the
“scalar” equation (1.1c), the interest of which is to ensure a maximum principle on the
values of the Lagrangian velocities ρ(1−Y )φ and −ρYφ for the intermediate state, and to
secure the correct sign for the final numerical flux Σ∗. To the astonishment of ourselves, the
new relaxation philosophy resorts to a system of equations studied by Born and Infeld [5]
about a century ago in electrodynamics! This is why we also call it the Born-Infeld
relaxation for short.

This paper is organized as follows. First, in §2, the Born-Infeld relaxation is presented
in its purest essence for the scalar case, along with its numerous and elegant properties.
This is most fundamental part of our contribution, the theoretical results of which are
carried over to an arbitrary flux function in Appendix A. Then, in §3, we show how to
integrate this scalar method into a more intricate relaxation scheme for the full drift-flux
model in Lagrangian coordinates. The case of Eulerian coordinates is addressed in §4,
where numerical results are supplied in order to compare the new relaxation scheme to
the standard one.

2 Relaxation via Born-Infeld for scalar conservation laws

Let us start by assuming that ρ = 1 and φ = φ(Y ), which allows us to consider (1.1c)
as scalar conservation law. In order to comply with the usual notations for hyperbolic
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equations and to highlight the abstract nature of the Born-Infeld relaxation method, we
proceed to the change of notations

Y → u, −σ → f, −φ → g, m → x. (2.1)

We consider the conservation law (1.1c), rewritten as

∂tu + ∂xf(u) = ∂tu + ∂x(u(1 − u)g(u)) = 0 (2.2)

and defined for u ∈ [0, 1] under the hypothesis g ∈ C 1([0, 1]; R). In particular, g is
bounded. Equation (2.2) can be thought of as two nonlinear convective equations

∂t(u) + ∂x(u · w(u)) = 0 or ∂t(1 − u) + ∂x((1 − u) · z(u)) = 0 (2.3)

with the apparent velocities

w(u) = (1 − u)g(u) =
f(u)

u
and z(u) = −ug(u) = −

f(u)

1 − u
. (2.4)

The difference
g(u) = w(u) − z(u) (2.5)

then appears to be the slip velocity between the phase u and the phase 1−u. By inverting
(2.4), we have

u =
z(u)

z(u) − w(u)
and f(u) =

w(u)z(u)

z(u) − w(u)
(2.6)

provided that w(u) 6= z(u).

2.1 Change of variables

As we seek to ensure a monotonicity principle for the phase velocities, it is natural to
choose them as evolution variables. Let us introduce the pair of independent variables
(W,Z), meant to be the relaxation counterparts of the equilibrium values (w(u), z(u)).
The formulae (2.6) suggest to define the pair (U,F ), the relaxation counterparts of the
equilibrium values (u, f(u)), as

U(W,Z) =
Z

Z − W
and F (W,Z) =

WZ

Z − W
(2.7)

for W 6= Z. In the same spirit as (2.1), the variable F is the new notation for −Σ. The
inverse transformation of (2.7) is

W (U,F ) =
F

U
and Z(U,F ) = −

F

1 − U
. (2.8)

In imitation of (2.5), we also define

G(W,Z) = W − Z (2.9)

to be the relaxation version of the slip velocity g(u). Then,

F = U(1 − U)G, W = (1 − U)G, Z = −UG. (2.10)
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Our first task is to clarify the ranges of the variables involved so that the transforma-
tions (2.7)–(2.8) make sense and so that we can make the identification U ≡ u ∈ [0, 1].
Let Ω ⊂ R

2 be the (W,Z)-domain defined as

Ω = {R− × R+} ∪ {R+ × R−} \ (0, 0) (2.11)

and let 0 ⊂ [0, 1] × R be the (U,F )-domain defined as

0 = ]0, 1[×R ∪ (0, 0) ∪ (1, 0). (2.12)

Proposition 2.1. The pair (U(W,Z), F(W,Z)) introduced in (2.7) is well-defined for all
(W,Z) ∈ Ω. The domain of F can be extended to Ω = Ω ∪ (0, 0) by continuity by setting

F (0, 0) = 0. (2.13)

The pair (W (U,F ), Z(U,F )) introduced in (2.8) is well-defined for (U,F ) ∈ 0̊ = 0 \
{(0, 0) ∪ (1, 0)}. The domain of (W,Z) can be extended to 0 by continuity along the
equilibrium manifold F = f(U) by setting

(W (0, 0), Z(0, 0)) = (w(0), z(0)) and (W (1, 0), Z(1, 0)) = (w(1), z(1)). (2.14)

Proof From the first part of (2.7), we have

U(1 − U) = −
WZ

(Z − W )2
. (2.15)

Hence, U ∈ [0, 1] if and only if WZ ≤ 0, which means that (W,Z) ∈ Ω. Then, the pair
(U,F ) is well-defined by (2.7) if and only if W 6= Z, which amounts to (W,Z) ∈ Ω. At
the origin, F can be extended by (2.13) because

lim
(W,Z)∈Ω→(0,0)

F (W,Z) = 0. (2.16)

It is not possible to do the same for U , but this does not cause any harm to the method.
If (U,F ) ∈ 0̊, there is no problem in computing (W,F ) via (2.8). We cannot do this

for U = 0 or 1, but if F = f(U) = U(1−U)g(U), then simplifications occur, which enables
us to define (W,Z) at (U,F ) = (0, 0) and (1, 0).

The key fact on which we wish to draw attention is that F can be defined continuously
over Ω, so that the Born-Infeld flux is always well-defined (see Theorem 2.5) and therefore
the new relaxation method can be applied even for single-phase states U = 0 or 1.

2.2 Relaxation system

Definition 2.1. The Born-Infeld relaxation system for the scalar conservation law (2.2)
is defined as

∂tW + Z∂xW = λ[w(U(W,Z)) − W ] (2.17a)

∂tZ + W∂xZ = λ[z(U(W,Z)) − Z], (2.17b)

for (W,Z) ∈ Ω, where λ > 0 is the relaxation coefficient.
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This name is justified by the fact that when λ = 0, system (2.17) coincides with Serre’s
form [18] of the Born-Infeld equations. The historical Born-Infeld system [5,19] stems from
quantum mechanics and is actually more sophisticated. To our knowledge, this is the first
time that it appears in the design of relaxation schemes, a context totally unrelated to
field theory.

It seems to be the first time too that a nonlinear combination of the relaxation equa-
tions must be used in order to recover the “original” equation, as indicated in the following
Lemma.

Lemma 2.1. For all λ > 0, smooth solutions of (2.17) are also solution of

∂tU(W,Z) + ∂xF (W,Z) = 0. (2.18)

Proof Since smooth solutions are differentiable, we multiply (2.17a) by UW = ZG−2,
(2.17b) by UZ = −WG−2 and add them together. It is readily checked that the left-hand
side of the sum is equal to ∂tU + ∂xF . As for the right-hand side, it also vanishes thanks
to

Z(w(U) − W ) − W (z(U) − Z) = Zw(U) − Wz(U) = g(U)[(1 − U)Z + UW ] (2.19)

and because of (2.7).
For the moment, the property (2.18) holds true only for smooth solutions. In order to

extend it to weak solutions, we simply need to have a linear degeneracy of the characteristic
fields of (2.17).

Proposition 2.2. The eigenvalues (Z,W ) of (2.17), both linearly degenerate, are respec-
tively associated with the strong Riemann invariants W and Z.

Proof See [18].
This expected degeneracy is in accordance with the orthodoxy in the area of relaxation

systems [6, 10, 11]. The fact that all characteristic fields are degenerate by construction
enables us to state a more complete equivalent result.

Theorem 2.1. For all λ > 0, the Born-Infeld relaxation system (2.17) is equivalent to
the system

∂tU + ∂x(U(1 − U)G) = 0 (2.20a)

∂tG + G2 ∂x U = λ[g(U) − G]. (2.20b)

in the sense of weak solutions, where (U,G) ∈ [0, 1] × R is considered as a pair of inde-
pendent variables.

Proof Thanks to linear degeneracy, we can restrict ourselves to smooth solutions. Equa-
tion (2.20a) is none other than (2.18) of Lemma 2.1. As for (2.20b), it can obtained by
subtracting (2.17b) to (2.17a) and by arguing that

Z∂xW − W∂xZ = (ZWU |G − WZU |G)∂xU + (ZWG|U − WZG|U)∂xG (2.21)

in the left-hand side.
In preparation for the generalization of the Born-Infeld to an arbitrary flux function

(see Appendix), we point out the following property.
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Corollary 2.1. The Born-Infeld relaxation system satisfies the additional equation

∂t((1 − 2U)G) − ∂x(U(1 − U)G2) = λ(1 − 2U)[g(U) − G], (2.22)

the left-hand side of which is in conservation form.

Proof Let I = (1−2U)G and K = −U(1−U)G2. In terms of (W,Z), we have I = W +Z
and K = WZ. Adding (2.17a) and (2.17b) together, we obtain the desired equality

∂tI + Z∂xW + W∂xZ = λ{(1 − u) − u}[g(U) − G]. (2.23)

because Z∂xW + W∂xZ = ∂x(WZ) = ∂xK.

2.3 Chapman-Enskog analysis and Whitham condition

We now show the extent to which the Born-Infeld relaxation system (2.17), or its equivalent
form (2.20), is actually a “good” approximation to the original equation (2.2).

Theorem 2.2. At the first order approximation in λ−1, the solution u to relaxation system
(2.17) or 2.20) satisfies the equivalent equation

∂tu + ∂xf(u) = λ−1∂x{−[f ′(u) − w(u)][f ′(u) − z(u)]∂xu}. (2.24)

Proof With the identification u ≡ U , we insert the standard Chapman-Enskog expansion

G = g(u) + λ−1g1 + O(λ−2) (2.25)

into (2.20b). Keeping the leading terms only, we obtain

−g1 = ∂tg(u) + g2(u)∂xu. (2.26)

Arguing that ∂tu = −∂xf(u) is valid at the zeroth-order, we transform the right-hand side
into

−g1 = [g2(u) − g′(u)f ′(u)]∂xu, (2.27)

Now, plugging (2.25) into the first equation of (2.20), moving first-order terms to the
right-hand side and using (2.27), we end up with

∂tu + ∂xf(u) = λ−1∂x{−u(1 − u)g1} (2.28a)

= λ−1∂x{u(1 − u)[g2(u) − g′(u)f ′(u)]∂xu}. (2.28b)

Let us rearrange the kernel

D(u) = u(1 − u)[g2(u) − g′(u)f ′(u)]. (2.29)

On one hand,
u(1 − u)g2(u) = −w(u)z(u). (2.30)

On the other hand, multiplying the equality f ′ = (1−2u)g+u(1−u)g′ by f ′ and isolating
the product g′f ′, we have

u(1 − u)g′(u)f ′(u) = [f ′(u)]2 − (1 − 2u)g(u)f ′(u) (2.31a)

= [f ′(u)]2 − (w(u) + z(u))f ′(u). (2.31b)

Inserting (2.30) and (2.31) into (2.29) yields

D(u) = −w(u)z(u) + (w(u) + z(u))f ′(u) − [f ′(u)]2 (2.32a)

= −[f ′(u) − w(u)][f ′(u) − z(u)], (2.32b)

which completes the proof.
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Theorem 2.3. A sufficient condition for the relaxation system (2.20) to be a dissipa-
tive approximation of the original equation (2.2) is that the Whitham subcharacteristic
condition

f ′(u) ∈ ⌊w(u), z(u)⌉, (2.33)

holds for all u in the range of the problem at hand.

Proof At the continuous level, the dissipative approximation means that the kernel D(u)
in the equivalent equation (2.24) be a diffusive kernel, i.e., D(u) ≥ 0. This amounts to

[f ′(u) − w(u)][f ′(u) − z(u)] ≤ 0, (2.34)

hence (2.33).
Rigorously speaking, we should have required D(u) > 0 at the PDE level. At the

discrete level, however, we will see in §2.5 that D(u) ≥ 0 is sufficient to guarantee the
monotonicity of the numerical flux.

Unsurprisingly, the Whitham condition demands that the eigenvalue of the original
equation be enclosed by the two eigenvalues of the relaxation system [19]. The novel
feature is that, in the present method, condition (2.33) may appear to be quite severe:
only a class of flux functions f are eligible for the Born-Infeld relaxation. Let us investigate
further into this class of flux functions. The boundedness of g implies f(0) = f(1) = 0,
and we can write

w(u) =
f(u) − f(0)

u − 0
and z(u) =

f(1) − f(u)

1 − u
. (2.35)

From (2.35), we infer the geometrical interpretation depicted in Fig. 1. On the curve C

given by the Cartesian equation f = f(u), let M = (u, f) be a running point, A = (0, 0)
and B = (1, 0). Then, w is the slope of AM, while z is that of BM. Condition (2.33)
amounts to saying that the tangent to C at M lies outside the angular sector ∠(MA,MB).

0 1 u

M

f

A Bw(u) z(u)

f(u)

u

Figure 1: Geometrical interpretation of the Whitham condition.

For u = 0 or 1, the Whitham condition holds with equality, since f ′(0) = w(0) and
f ′(1) = z(1). We are going to characterize the Whitham condition for a local point
u ∈ ]0, 1[ in two different ways. The first way is a condition in terms of w and z alone.

Lemma 2.2. Let u ∈ ]0, 1[. The Whitham condition (2.33) is satisfied at u if and only if
the functions w and z are decreasing at u when f(u) > 0, increasing at u when f(u) < 0,
and critical when f(u) = 0.
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Proof A straightforward computation shows that

w′ =
uf ′ − f

u2
and z′ = −

(1 − u)f ′ + f

(1 − u)2
. (2.36)

Suppose f(u) > 0. After (2.4), we have z(u) < 0 < w(u), because u ∈ ]0, 1[. Thus,
condition (2.33) boils down to

z(u) = −
f(u)

1 − u
≤ f ′(u) ≤

f(u)

u
= w(u). (2.37)

This double inequality is equivalent to

−[(1 − u)f ′(u) + f(u)] ≤ 0 and uf ′(u) − f(u) ≤ 0, (2.38)

whence z′(u) ≤ 0 and w′(u) ≤ 0. We proceed similarly in the case f(u) < 0 for which
w(u) < 0 < z(u). If f(u) = 0, necessarily w(u) = z(u) = 0 because u 6∈ {0, 1}. By (2.33),
we have f ′(u) = 0, from which we deduce that w′(u) = z′(u) = 0 via (2.36). To establish
the converse, we follow the same steps in reverse order.

It follows that a convex or concave function f with f(0) = f(1) = 0 is eligible functions
all over [0, 1]. In Lemma 2.2, the function g is hardly visible. We now give it a prominent
role in the second test of the Whitham condition. The result below will be useful in §3.

Lemma 2.3. Let u ∈ ]0, 1[. The Whitham condition (2.33) is satisfied at u if and only if

g′(u) ∈

⌊
−

g(u)

u
,

g(u)

1 − u

⌉
. (2.39)

Proof In terms of g, we have

w′ = −g + (1 − u)g′ and z′ = −g − ug′. (2.40)

We apply Lemma 2.2. If g(u) > 0, then f(u) > 0 and the decreasing conditions w′(u) ≤ 0
and z′(u) ≤ 0 imply

g(u) ≥ max{(1 − u)g′(u),−ug′(u)}. (2.41)

Likewise, if g(u) < 0, we arrive at

g(u) ≤ min{(1 − u)g′(u),−ug′(u)}. (2.42)

From (2.41) and (2.42), we infer (2.39) for g(u) 6= 0. If g(u) = 0, by Lemma 2.2, we must
have w′(u) = z′(u) = 0, and using (2.40), we have g′(u) = 0. The converse follows the
same lines.

2.4 Riemann problem

As was explained in [2, 3], we need to solve the Riemann problem corresponding to the
homogeneous relaxation system in order to know the value of the numerical flux.

A generic point in Ω is designated by v = (W,Z). From now on, the symbols v− and
v+ stand for the negative and positive parts of any real number v ∈ R. For (a, b) ∈ R

2,
we use the notation

⌊a, b⌉ = {ra + (1 − r)b, r ∈ [0, 1]}. (2.43)

We also denote by 1{.} the characteristic function.
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W W

ZZ

vL

ṽ vR

vLṽ

vR

1a 1b

W W

ZZ

vL

ṽL ṽR

vR
vL

vR ṽR

ṽL

2a 2b

Figure 2: Solution to the Riemann problem for the homogeneous Born-Infeld system.

Theorem 2.4. Let vL = (WL, ZL) ∈ Ω and vR = (WR, ZR) ∈ Ω be two arbitrarily given
states. Define the two speeds

sL = min(WL, ZL) ≤ 0 and sR = max(WR, ZR) ≥ 0. (2.44)

When λ = 0, the solution to (2.17) for (t, x) ∈ R
∗
+ × R with the initial data

v(t = 0;x) = vL1{x<0} + vR1{x>0} (2.45)

is given by

1. If WLWR ≥ 0 and ZLZR ≥ 0,

v(t, x) = vL1{x<tsL} + ṽ1{tsL<x<tsR} + vR1{x>tsR} (2.46)

with ṽ = (W̃ , Z̃) = (W−
L + W+

R , Z−
L + Z+

R ). The intermediate state ṽ satisfies the
maximum principle

W̃ ∈ ⌊WL,WR⌉, Z̃ ∈ ⌊ZL, ZR⌉. (2.47)

2. If WLWR < 0 or ZLZR < 0,

v(t, x) = vL1{x<tsL} + ṽL1{tsL<x<0} + ṽR1{0<x<tsR} + vR1{x>tsR} (2.48)

with ṽL = (W̃L, Z̃L) = (W−
L , Z−

L ) and ṽR = (W̃R, Z̃R) = (W+
R , Z+

R ). The intermedi-
ate states ṽL and ṽR satisfy the maximum principle

W̃L ∈ ⌊WL,WR⌉, Z̃L ∈ ⌊ZL, ZR⌉ (2.49a)

W̃R ∈ ⌊WL,WR⌉, Z̃R ∈ ⌊ZL, ZR⌉. (2.49b)
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Proof In the (W,Z)-plane, W -curves are vertical lines, while Z-curves are horizontal
lines. Riemann problems can thus be solved “by hand,” depending on the locations of the
two initial states, as depicted in Fig. 2. The claims about the maximum principle are easy
to check.

The benefit of the maximum principle (2.47), (2.49) is obvious: should we need the
apparent velocities at some intermediate state, we no longer have to worry about the
division problem for (1.11), as mentioned in the Introduction. We now concentrate on the
flux that is to be plugged in the numerical scheme. In this respect, it is well known [9,14]
that in the context of Godunov-like methods, we have to extract the interface values

W ∗ = W (x/t = 0+), Z∗ = Z(x/t = 0+) (2.50)

from the full Riemann solution. In the special cases sL = 0 or sR = 0, although W ∗, Z∗

may take different values at x/t = 0+ and at x/t = 0−, the relaxed flux

F ∗ = F (W ∗, Z∗) =
W ∗Z∗

Z∗ − W ∗
(2.51)

is continuous across x/t = 0, as detailed by the following procedure.

Theorem 2.5. Let vL = (WL, ZL) ∈ Ω and vR = (WR, ZR) ∈ Ω be two arbitrarily given
states.

1. If WLWR ≥ 0 and ZLZR ≥ 0, then the intermediate state (W̃ , Z̃) = (W−
L +W+

R , Z−
L +

Z+
R ), defined in Theorem 2.4, necessarily belongs to Ω, and

F ∗ = F (W̃ , Z̃). (2.52)

2. If WLWR < 0 or ZLZR < 0, then F ∗ = 0.

In all cases, the relaxed flux satisfies the sign property

F ∗ · F (WL, ZL) ≥ 0, F ∗ · F (WR, ZR) ≥ 0. (2.53)

Proof The proof is done with the help of Theorem 2.4, the extension (2.13) and by
scrutinizing all the situations that can occur. We leave it to the reader.

The sign property (2.53) is a major asset of the Born-Infeld relaxation when it comes
to make use of the flux F ∗ for a further purpose. It helps us avoid a bad upwinding in
(1.9), as was sketched out in the Introduction and as will be more thoroughly described in
§3.3. To emphasize that F ∗ depends on the left state vL and the right state vR, we write

F ∗ = F (vL,vR). (2.54)

Definition 2.2. Let uL ∈ [0, 1] and uR ∈ [0, 1] be two arbitrary states. Consider v(uL) =
(w(uL), z(uL)) and v(uR) = (w(uR), z(uR)). Then,

HBI(uL, uR) = F (v(uL),v(uR)) (2.55)

is said to be the Born-Infeld numerical flux associated to (uL, uR).

Thanks to Theorem 2.5, the Born-Infeld numerical flux is well-defined for all (uL, uR) ∈
[0, 1]2. It is a trivial matter to check that this is a consistant flux, that is, HBI(u, u) = f(u)
for all u ∈ [0, 1].
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2.5 Stability at the discrete level

In §2.3, the Whitham condition was derived and discussed at the continuous level from the
Chapman-Enskog analysis. We are going to evidence its connection with the monotonicity
of the numerical flux at the discrete level. Consider the first-order explicit scheme

un+1
i = un

i −
∆t

∆x
[H(un

i , un
i+1) − H(un

i−1, u
n
i )]. (2.56)

We recall [9] that the numerical flux H is said to be monotonous if it is increasing with
respect to its first argument and decreasing with respect to its second argument. If we
specify H(uL, uR) for the arguments, then monotonicity is expressed as

HuL
≥ 0 and HuR

≤ 0. (2.57)

provided that the partial derivatives exist. We wish to investigate about the monotonicity
of the Born-Infeld numerical flux HBI(uL, uR) defined in (2.55).

Theorem 2.6. Assume that g(u) keeps a constant sign over u ∈ ]0, 1[. Then the Born-
Infeld numerical flux HBI(uL, uR) is monotonous for all (uL, uR) ∈ ]0, 1[2 if and only if
the Whitham condition (2.33) is satisfied for all u ∈ ]0, 1[.

Proof Let us assume g < 0. Then

vL = (WL, ZL) = (w(uL), z(uL)) ∈ R
∗
− × R

∗
+ (2.58a)

vR = (WR, ZR) = (w(uR), z(uR)) ∈ R
∗
− × R

∗
+. (2.58b)

We are in Case 1a of Fig. 2, which yields v∗ = ṽ = (WL, ZR). It follows that

HBI(uL, uR) =
w(uL)z(uR)

z(uR) − w(uL)
(2.59)

Thus, the Born-Infeld numerical flux is differentiable and one has

HBI
uL

= w′(uL)

[
z(uR)

z(uR) − w(uL)

]2

(2.60a)

HBI
uR

= −z′(uR)

[
w(uL)

z(uR) − w(uL)

]2

. (2.60b)

The monotonicity conditions (2.57) take place if and only if w′(uL) ≥ 0 and z′(uR) ≥ 0
for all (uL, uR) ∈ ]0, 1[2. This is equivalent to saying that w′(u) ≥ 0 and z′(u) ≥ 0 for
all u ∈ ]0, 1[. Since f(u) < 0, this is still equivalent to the statement that the Whitham
condition (2.33) is satisfied at all u ∈ ]0, 1[ by virtue of Lemma 2.2. The case g > 0 works
alike.

As a matter of fact, it is fair to point out that for the Jin-Xin relaxation scheme, the
monotonicity of the numerical flux

HJX(uL, uR) =
f(uL) + f(uR)

2
− b

uR − uL

2
for all (uL, uR) (2.61)

is also equivalent to the non-strict Whitham condition

b ≥ |f ′(u)| for all u. (2.62)

In Appendix A, we will show that this equivalence still holds true for a generalized Born-
Infeld relaxation method.
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3 Relaxation via Born-Infeld for a Lagrangian two-phase

drift-flux model

Let us return back to the two-phase system (1.1), that we rewrite as

∂tτ − ∂mv = 0 (3.1a)

∂tv + ∂mP (u) = 0 (3.1b)

∂tY − ∂m σ(u) = 0, (3.1c)

with the vector notation

u := (τ, v, Y ) ∈ R
∗
+ × R × [0, 1] =: £ (3.2)

and under the assumption

Pτ (u) =
∂P

∂τ |Y,v
(u) < 0, ∀u ∈ £. (3.3)

Except for simple slip laws, this assumption is usually not enough to ensure hyperbolicity
for (3.1). Since

σ(u) = Y (1 − Y )ρφ(u), (3.4)

we introduce

w(u) = −
σ(u)

Y
= −(1 − Y )ρφ(u), z(u) =

σ(u)

1 − Y
= Yρφ(u) (3.5)

by analogy with (2.4). These can be interpreted as Lagrangian convective velocities for
the phases, to the extent that

∂t(Y ) + ∂m(Y w(u)) = 0, and ∂t(1 − Y ) + ∂m((1 − Y )z(u)) = 0. (3.6)

The difference
g(u) = w(u) − z(u) = −ρφ(u) (3.7)

then appears to be the Lagrangian slip velocity between the gas (Y ) and the liquid (1−Y ).
The transformations (3.5) can be inverted to yield

Y =
z(u)

z(u) − w(u)
, −σ =

w(u)z(u)

z(u) − w(u)
(3.8)

provided that w(u) 6= z(u).

3.1 Relaxation system

The basic idea is to apply the Born-Infeld relaxation of §2 to the single equation (3.1c),
while keeping the same relaxation technique as [2, 3] for P (u) in the acoustic block. To
express this more clearly, we need a few notations.

As in §2, we consider the pair (W,Z) ∈ Ω to be the relaxation counterparts of the
equilibrium values (w(u), z(u)). In imitation of (3.8), we define

Υ(W,Z) =
Z

Z − W
, −Σ(W,Z) =

WZ

Z − W
(3.9)
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to be the relaxation counterparts of (Y,−σ(u)), with the implicit identification Υ ≡ Y ∈
[0, 1]. The inverse transformation of (3.9) is

W (Υ,Σ) = −
Σ

Υ
, Z(Υ,Σ) =

Σ

1 − Υ
. (3.10)

Define
G = W − Z. (3.11)

Then,
−Σ = Υ(1 − Υ)G, W = (1 − Υ)G, Z = −ΥG. (3.12)

Finally, the relaxation version of the vector notation (3.2) is

U = (τ, v,Υ(W,Z)) ∈ £. (3.13)

The relaxation strategy we propose for (3.1) consists in considering the system

∂tτ − ∂mv = 0 (3.14a)

∂tv + ∂mΠ = 0 (3.14b)

∂tΠ + a2∂mv = λ(P (U) − Π) (3.14c)

∂tW + Z∂mW = λ(w(U) − W ) (3.14d)

∂tZ + W∂mZ = λ( z(U) − Z) (3.14e)

for λ > 0, in which (τ, v,Π,W,Z) are considered as independent variables. Unlike (3.1),
the homogeneous case λ = 0 of system (3.14) never fails to be hyperbolic, provided that
a 6= 0. Its (unordered) eigenvalues

−a, W, 0, Z, +a, (3.15)

associated with the strong Riemann invariants

Π − av, Z, Π + a2τ, W, Π + av (3.16)

are all linearly degenerate. This allows us to derive the equivalent form

∂tτ − ∂mv = 0 (3.17a)

∂tv + ∂mΠ = 0 (3.17b)

∂tΠ+ a2∂mv = λ(P (u) − Π) (3.17c)

∂tY + ∂mY (1 − Y )G = 0 (3.17d)

∂tG+ G2∂mY = λ( g(u) − G), (3.17e)

along the same lines as in §2.
Should the multi-component conservation laws

∂t(Y ξ) − ∂m(ξσ) = 0 (3.18a)

∂t((1 − Y )η) + ∂m(ησ) = 0 (3.18b)

be appended to system (3.1), in which case (ξ, η) must also be considered as inputs for
(P, σ), we would attach the subsystem

∂t(Υξ) − ∂m(ξΣ) = 0 (3.19a)

∂t((1 − Υ)η) + ∂m(ηΣ) = 0 (3.19b)

to the relaxation system (3.14), where Υ(W,Z) and Σ(W,Z) are given by (3.9).

14



3.2 Whitham conditions and closure laws

The essence of the relaxation technique advocated in [3] is to envision the acoustic block
(3.14a)–(3.14c) as separated from the kinematic block (3.14d)–(3.14e). This is achieved
by setting λ = 0 and to solve the corresponding Riemann problem. But this decoupling
paradigm goes even further. It was justified at length in [3] that in the Chapman-Enskog
analysis for λ → ∞, it is still legitimate to see the two blocks as independent from each
other. As far as stability is concerned, this argument leads to the Whitham conditions

a ≥ {−Pτ + P 2
v }(u) (3.20a)

−σY (u) ∈ ⌊w(u), z(u)⌉ (3.20b)

for all u under consideration. In (3.20b), the symbol σY stands for the partial derivative

σY =
∂σ

∂Y |τ,v
. (3.21)

Observe that condition (3.20b) is none other than inequality (2.33) of Theorem 2.3 for
f ≡ −σ and u ≡ Y . For the stability of system (3.19a), this is a heuristic requirement.

Since σ = Y (1 − Y )φ, we apply Lemma 2.3 to characterize the Whitham condition
(3.20b) in terms of φ alone. This gives rise to

φY (u) ∈

⌊
−

φ(u)

Y
,

φ(u)

1 − Y

⌉
. (3.22)

The miracle is that most of the slip laws commonly used by physicists pass the test (3.22)!
To name a few:

• The dispersed law for small bubbles of gas in the liquid

φ =
V∞τ

1 − Y
(3.23)

for a given V∞ ∈ R. This law is not valid for Y → 1.

• The Zuber-Findlay law [4,20] for intermittent regimes

φ =
(C0 − 1)v + C1

(1 − Y )[1 − C0(1 − τ0
ℓ /τ)]

(3.24)

where C0 > 1, C1 ∈ R and τ0
ℓ > 0 are given constants. This law is not valid for

Y → 1 either.

• The modified Zuber-Findlay law

φ = −
µv + ν

1 − µ(1 − Y )(1 − τ0
ℓ /τ)

(3.25)

where µ ∈ ]0, 1[, ν ∈ R and τ0
ℓ > 0 are given constants. This law is valid for all

Y ∈ [0, 1].

The actual verification follows from straightforward calculations that we leave to the
reader. As revealed by the calculations, φY covers the whole interval in the right-hand
side of (3.22), which means that the Whitham bounds are “optimal.”
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3.3 Explicit scheme

In the context of oil and gas transportation along a pipeline, the situation that is of interest
to engineers is, undoubtedly, subsonic flow with low Mach numbers. Since the relaxation
parameter a is comparable to the Lagrangian speed of acoustic waves, we typically have

a ≫ max{|w(u)|, |z(u)|}. (3.26)

At the discrete level, let us consider a uniform mesh of size ∆m and a time-step ∆t.
Since ±a are the dominant eigenvalues of the relaxation system (3.14), we have to respect
the CFL condition

a∆t

∆m
< 1, (3.27)

where a itself abides by a discrete version of the Whitham condition (3.20a), namely,

a = max
j∈Z

{−Pτ + P 2
v }(u

n
j ). (3.28)

In (3.28), the subscript j denotes the cell index and the superscript n the current time-
level. Within the framework of a first-order explicit schemes, the update formulae for (3.1)
using the relaxation method (3.14) are

τn+1
j − τn

j

∆t
−

v∗j+1/2 − v∗j−1/2

∆m
=0

vn+1
j − vn

j

∆t
+

Π∗
j+1/2 − Π∗

j−1/2

∆m
=0

Y n+1
j − Y n

j

∆t
−

Σ∗
j+1/2 − Σ∗

j−1/2

∆m
=0,

(3.29)

with

v∗j+1/2 =
vn
j + vn

j+1

2
−

Pn
j+1 − Pn

j

2a

Π∗
j+1/2 =

Pn
j + Pn

j+1

2
− a

vn
j+1 − vn

j

2

(3.30)

and
−Σ∗

j+1/2 = F (vn
j ,vn

j+1). (3.31)

In (3.30), Pn
j = P (un

j ). As for the notation F (vL,vR) for the Godunov flux as a function
of the left and right initial velocities v = (W,Z) in (3.31), it was defined in §2, by equation
(2.54). Here, the input arguments are

vn
j = (w(un

j ), z(un
j )), vn

j+1 = (w(un
j+1), z(un

j+1)). (3.32)

Had we applied Jin-Xin’s relaxation

∂tY − ∂mΣ = 0 (3.33a)

∂tΣ− b2∂mY = λ(σ(u) − Σ), (3.33b)

to the “scalar” equation (3.1c) with a Whitham-complying choice for b, e.g.,

b = max
j∈Z

|σY (un
j )|, (3.34)
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the update formulae would have been the same as (3.29)–(3.30), but with

Σ∗
j+1/2 =

σn
j + σn

j+1

2
+ b

Y n
j+1 − Y n

j

2
. (3.35)

using the short-hand notation σn
i = σ(un

i ). As a result, Σ∗
i+1/2 may have a sign opposite

to that of the σ’s if b is large. More accurately, for

b >

∣∣∣∣∣
σn

j+1 − σn
j

Y n
j+1 − Y n

j

∣∣∣∣∣ , (3.36)

which is not so large a bound, for this is the discrete version of b > |σY |, we have

Σ∗
j+1/2 6∈ ⌊σn

j , σn
j+1⌉. (3.37)

Thus, Σ∗
j+1/2 can be positive while σn

j and σn
j+1 are both negative, or vice-versa. Therefore,

in the discretization

(Y ξ)n+1
j − (Y ξ)nj

∆t
−

(ξΣ)∗j+1/2 − (ξΣ)∗j−1/2

∆m
= 0

((1 − Y )η)n+1
j − ((1 − Y )ξ)nj

∆t
+

(ηΣ)∗j+1/2 − (ηΣ)∗j−1/2

∆m
= 0

(3.38)

of (3.19a), the upwinded values

(ξ∗j+1/2, η
∗
j+1/2) =

{
(ξn

j , ηn
j+1) if Σ∗

j+1/2 < 0

(ξn
j+1, η

n
j ) if Σ∗

j+1/2 > 0,
(3.39)

are likely to come from the “wrong” side. Although this cannot be blamed for creating
instabilities, it induces more dissipation.

As announced in the Introduction, the real drawback of (3.33) turns up when we need
to know the velocities

Σ∗
j+1/2

Y ∗
j+1/2

and
Σ∗

j+1/2

1 − Y ∗
j+1/2

(3.40)

corresponding to the intermediate state, with

Y ∗
j+1/2 =

Y n
j + Y n

j+1

2
+

σn
j+1 − σn

j

2b
. (3.41)

Indeed, the values (3.40) are the speeds of waves advecting ξ and η in the Riemann problem
at edge j +1/2. We have to compute them in order to construct an equivalent Roe-matrix
that would enable us to extend the scheme to an implicit or hybrid explicit-implicit time-
integration [3]. In the neighborhood of single-phase states, i.e., Y = 0 or 1, the practical
implementation of (3.40) is flawed with division-by-zero problems, the handling of which is
awesome. The advantage of the Born-Infeld relaxation is that we do not have to compute
the velocities of the intermediate state by a risky floating operation.
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4 Relaxation via Born-Infeld for an Eulerian two-phase drift-

flux model

The Eulerian formulation of the two-phase model (3.1) is

∂t(ρ) + ∂x(ρv) = 0 (4.1a)

∂t(ρv) + ∂x(ρv2 +P (q)) = 0 (4.1b)

∂t(ρY ) + ∂x(ρYv−σ(q)) = 0, (4.1c)

with the vector notation

q ∈€ = {(ρ, ρv, ρY ) | ρ > 0, v ∈ R, Y ∈ [0, 1]}. (4.2)

On the grounds of practicalities, we use the same letters P, σ to designate functions of
the Eulerian variables q ∈ € in (4.1) and functions of the Lagrangian variables u ∈ £ in
(3.1). We recall that ρ = τ−1 is the density. We impose the same condition (3.3) on the
total pressure P , without the guarantee of hyperbolicity except for the usual slip laws.

4.1 Relaxation system

We introduce (W,Z) ∈ Ω in the same fashion as in §3. For convenience, we denote the
relaxation counterpart of q by

Q = (ρ, ρv, ρΥ(W,Z)), (4.3)

in which Υ is computed by (3.9). Following the philosophy of [2, 3], we decide that the
relaxation system for (4.1) is the Eulerian transform of (3.14), which yields

∂t(ρ) + ∂x(ρv) = 0 (4.4a)

∂t(ρv) + ∂x(ρv2 + Π) = 0 (4.4b)

∂t(ρΠ) + ∂x(ρΠv + a2v) = λρ(P (Q) − Π) (4.4c)

∂t(ρW )+ ∂x(ρWv) + Z∂xW = λρ(w(Q) − W ) (4.4d)

∂t(ρZ) + ∂x(ρZv) + W∂xZ = λρ( z(Q) − Z) (4.4e)

The last two equations can be recombined to give

∂tW+ (v + Zτ)∂xW = λ(w(Q) − W ) (4.5a)

∂tZ + (v + Wτ)∂xZ = λ( z(Q) − Z). (4.5b)

It is easy to check that the relaxation system (4.4) is always hyperbolic. Its (unordered)
eigenvalues

v − aτ, v + Wτ, v, v + Zτ, v + aτ, (4.6)

associated with the Riemann invariants (3.16), are all linearly degenerate. This allows us
to derive the equivalent form

∂t(ρ) + ∂x(ρv) = 0 (4.7a)

∂t(ρv) + ∂x(ρv2 + Π) = 0 (4.7b)

∂t(ρΠ)+ ∂x(ρΠv + a2v) = λρ(P (q) − Π) (4.7c)

∂t(ρY )+ ∂x(ρY v + Y (1 − Y )G) = 0 (4.7d)

∂t(ρG)+ ∂x(ρGv) + G2∂xY = λρ( g(q) − G) (4.7e)
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by standard calculations, with g(q) = −ρY (1 − Y )φ(q).
Should the multi-component conservation laws

∂t(ρYξ) + ∂x(ξ(ρYv − σ)) = 0 (4.8a)

∂t(ρ(1 − Y )η) + ∂x(η(ρ(1 − Y )v + σ)) = 0 (4.8b)

for some component be appended to system (4.1), in which case (ξ, η) must also be con-
sidered as inputs for (P, σ), we would attach the subsystem

∂t(ρΥξ) +∂x(ξ(ρΥv − Σ)) = 0 (4.9a)

∂t(ρ(1 − Υ)η) +∂x(η(ρ(1 − Υ)v + Σ)) = 0 (4.9b)

to (4.4), where Υ(W,Z) and Σ(W,Z) are given by (3.9).
The Whitham conditions are those of (3.20). The typical low-Mach flow that is of

interest to us is now expressed in terms of Eulerian velocities as

|a| ≫ max{|w(q)|, |z(q)|, |ρv|}, (4.10)

which implies v − aτ < 0 and v + aτ > 0.

4.2 Explicit scheme

At the discrete level, let us consider a uniform mesh of size ∆x and a time-step ∆t. Since
v± aτ are the dominant eigenvalues of the relaxation system (4.4), we have to impose the
CFL restriction

∆t

∆x
max
i∈Z

|vn
i ± aτn

i | < 1, (4.11)

where a is given by (3.28). The subscript i denotes the cell index and the superscript n
the current time-level. Within the framework of a first-order explicit schemes, the update
formulae for (4.1) using the relaxation method (4.4) are

(ρ)n+1
i − (ρ)ni

∆t
+

(ρv)↓i+1/2 − (ρv)↓i−1/2

∆x
= 0

(ρv)n+1
i − (ρv)ni

∆t
+

(ρv2 + Π)↓i+1/2 − (ρv2 + Π)↓i−1/2

∆x
= 0

(ρY )n+1
i − (ρY )ni

∆t
+

(ρYv − Σ)↓i+1/2 − (ρYv − Σ)↓i−1/2

∆x
= 0.

(4.12)

Contrary to the Lagrangian case, the Godunov-type values denoted by (.)↓i+1/2 do not

necessarily coincide with the intermediate state (.)∗i+1/2 of the homogeneous Born-Infeld

subproblem (4.5) at edge i + 1/2.
For convenience, let us switch to the notation using subscripts L and R for the left

and right states of the Riemann problem. After Theorem 2.4, introduce

sL = min(w(qL), z(qL)) ≤ 0 and sR = max(w(qR), z(qR)) ≥ 0. (4.13)

Under assumption (4.10), the eigenvalues involved in the Riemann problem associated to
(4.4) are increasingly ordered as

vL − aτL < v∗ + sLτ∗
L ≤ v∗ ≤ v∗ + sRτ∗

R < vR + aτR (4.14)
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where (see [1–3] for details)

τ∗
L = τL +

vR − vL

2a
−

PR − PL

2a2
(4.15a)

τ∗
R = τR +

vR − vL

2a
+

PR − PL

2a2
(4.15b)

and

v∗ =
vL + vR

2
−

PR − PL

2a

Π∗ =
PL + PR

2
− a

vR − vL

2
,

(4.16)

with a clear separation of the orders of magnitude between the speeds

min{|vL − aτL|, |vL + aτL|} ≫ max{|v∗ + sLτ∗
L|, |v

∗ + sRτ∗
R|}. (4.17)

Since vL − aτL < 0 and vR + aτR > 0, we always have

v↓ = v∗, Π↓ = Π∗. (4.18)

As for τ↓ and Σ↓, distinction has to be made between several cases depending on the signs
of v∗+sLτ∗

L, v∗ and v∗+sRτ∗
R. Without entering a tedious discussion including all equality

cases, we claim that

τ↓ = τL1{v∗+sLτ∗
L

>0} + τ∗
L1{v∗+sLτ∗

L
<0<v∗} (4.19a)

+ τ∗
R1{v∗<0<v∗+sRτ∗

R
} + τR1{v∗+sRτ∗

R
<0}

Σ↓ = σL1{v∗+sLτ∗
L

>0} − F (vL,vR)1{(v∗+sLτ∗)(v∗+sRτ∗
R

)<0} (4.19b)

+ σR1{v∗+sRτ∗
R

<0}

with vL = (w(qL), z(qL)) and vR = (w(qR), z(qR)). The computation of Y ↓ is lengthier
to explain. In case 1 of Theorem 2.4, we write

Y ↓ = YL1{v∗+sLτ∗
L

>0} + U(ṽ)1{(v∗+sLτ∗
L
)(v∗+sRτ∗

R
)<0} + YR1{v∗+sRτ∗

R
<0}, (4.20)

and in case 2, we write

Y ↓ = YL1{v∗+sLτ∗
L

>0} + U(ṽL)1{v∗+sLτ∗
L

<0<v∗} (4.21a)

+ U(ṽR)1{v∗<0<v∗+sRτ∗
R
} + YR1{v∗+sRτ∗

R
<0}

whenever it makes sense to compute U(.) by (2.7), that is, for ṽ 6= (0, 0) or ṽL,R 6= (0, 0).
It happens that in all situations where U(.) is not well-defined, we do not really need Y ↓,
thanks either to (v∗ + sLτ∗

L)(v∗ + sRτ∗
R) > 0 or to v↓ = 0.

4.3 Numerical results

We compare the numerical solution computed with the Born-Infeld relaxation to that of
the relaxation introduced in [2]. All the runs are performed over a 100m-long pipeline,
discretized by cells of size 0.5m. The experiments involve Riemann problems with various
types of slip law, for which the original system (4.1) is hyperbolic and admits 3 eigenvalues

λ1(q) < λ2(q) < λ3(q), with |λ2(q)| ≪ |λ1(q)| ≈ |λ3(q)|. (4.22)

20



400

420

440

460

480

500

0 10 20 30 40 50 60 70 80 90 100

D
en

si
ty

 (
kg

/m
3)

x (m)

Born−Infeld
Exact

Relaxation

Figure 3: Experiment 1

As for the pressure law, we assume an incompressible liquide ρℓ(p) = ρ0
ℓ and a perfect gas

ρg(p) = p/a2
g, which leads to

p(ρ, ρY ) =
a2

gρY

1 − τ0
ℓ ρ(1 − Y )

(4.23)

by virtue of the identity
ρY

ρg(p)
+

ρ(1 − Y )

ρℓ(p)
= 1. (4.24)

Unless otherwise indicated, we use τ0
ℓ = 10−3m3/kg and ag = 300m/s.

4.3.1 Experiment 1

The simplest slip law to begin with is φ ≡ 0, which means that the gas is moving at the
same speed v as the liquid. In this experiment, ag = 100m/s. Consider the left L and
right R states 


ρ
Y
v



L

=




500
0.2

34.423


 and




ρ
Y
v



R

=




400
0.2
50


 . (4.25)

These have been tailored so that the solution to the Riemann problem is a pure 1-
rarefaction, the front of which moves at the speed (λ1)L = −40.12m/s and the tail of
which moves at the speed (λ1)R = −15.77m/s. The snapshot in Fig. 3 corresponds to
time T = 0.8s.

We see that the two approximate solutions are correct and roughly identical. This
suggests that the numerical dissipation introduced by the two schemes is the same. This
conclusion is confirmed by the next two experiments.
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4.3.2 Experiment 2

The second slip law we consider is the Zuber-Findaly law (3.24), with C0 = 1.07 and
C1 = 0.21620. The initial left and right states are




ρ
Y
v



L

=




453.19
0.70543 . 10−2

24.807


 and




ρ
Y
v



R

=




454.91
0.10804 . 10−1

1.7460


 . (4.26)

These have been tailored so that the solution to the Riemann problem is made up of a
1-shock, a 2-contact discontinuity and a 3-shock. The result is shown in Fig. 4, which
corresponds to the final time T = 0.5s. Again, the two schemes exhibit the same behavior.

4.3.3 Experiment 3

The slip is now the dispersed law (3.23) with V∞ = −4480.9. The initial left and right
states are




ρ
Y
v



L

=




901.11
1.2330 . 10−3

0.95027


 and




ρ
Y
v



R

=




208.88
4.2552 . 10−2

0.78548


 . (4.27)

These have been tailored so that the solution to the Riemann problem is a 2-contact
discontinuity propagating at speed 1m/s. The result is shown in Fig. 4 at time T = 20s.

This experience with a non-zero slip law and a slow contact discontinuity is usually
stiff enough to rank the schemes. Here, this is not the case and the two relaxation schemes
behave very similarly.

5 Conclusion

As evidenced throughout this contribution, there is a close connection between scalar
conservation laws of the type (2.2) and the Born-Infeld equations (2.17). Insofar as the
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relaxation method we propose takes advantage of this connection, it looks somehow more
natural than the standard Jin-Xin relaxation. For one, there is no need for tuning an
extra parameter in order to ensure stability. For another, the eigenvalues of the relaxation
system coincide with the physically meaningful phase velocities associated to the original
equation.

Besides the aesthetic appeal of the calculations presented in §2 (see Appendix A for
more results in the same vein), the Born-Infeld relaxation method is all the more attractive
that, in terms of numerical quality, it does compete well with the Jin-Xin method in which
the least diffusion amount is set. For practitioners, the very fact that no free parameter is
required might be regarded as a drawback, for there is no “screwdriver” at our disposal to
force diffusion when the flux does not belong to the class of eligible functions. However,
this class of eligible functions is not as narrow as one might think. It comes as a mystical
surprise that, in the area of drift-flux model for two-phase flows, the Whitham condition
is met by the most commonly used slip laws!

Once integrated into a full computational process for two-phase flow systems via the
decoupling paradigm of [3], the Born-Infeld scalar relaxation helps us solve the tricky
issue related to the the phase velocities of the intermediate state, as well as the less tricky,
albeit unpleasant issue of the sign of the numerical flux. This makes it easier to upgrade
the method to a hybrid explicit-implicit time integration. Numerical experiments show
that the overall relaxation scheme behaves well compared to the former one based on the
Jin-Xin relaxation.
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[8] I. Faille and E. Heintzé, A rough finite volume scheme for modeling two phase flow in a
pipeline, Computers and Fluids, 28 (1999), pp. 213–241.

[9] E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, Mathématiques
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A Generalized Born-Infeld for an arbitrary flux

This appendix aims at providing an abstract setting that extends the Born-Infeld relax-
ation to a general scalar conservation law

∂tu + ∂xf(u) = 0, u ∈ [0, 1], (A.1)

where the flux f(u) is not necessarily of the form u(1 − u)g(u).
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A.1 Admissible changes of variables

Let us consider the homogeneous Born-Infeld system

∂tW + Z∂xW = 0 (A.2a)

∂tZ + W∂xZ = 0 (A.2b)

for (W,Z) ∈ Ω. A pair (E,R) of smooth functions of (W,Z) ∈ Ω̊ is said to be an entropy-
flux pair for (A.2) if we have the conservation law

∂tE(W,Z) + ∂xR(W,Z) = 0. (A.3)

Despite the label “entropy,” no convexity property is required on E.

Lemma A.1. A necessary and sufficient condition for (E,R) to be an entropy-flux pair
for the homogeneous Born-Infeld system is

RW = ZEW , RZ = WEZ . (A.4)

Then, the entropy function E obeys the Goursat equation

EW − EZ + (Z − W )EWZ = 0, (A.5)

the general solution of which is

E(W,Z) =
A(W ) + B(Z)

Z − W
, R(W,Z) =

ZA(W ) + WB(Z)

Z − W
, (A.6)

where A and B are two arbitrary smooth functions.

Proof See [18].
To quote a few examples, the pair (U,F ) introduced in (2.7) is an entropy-flux pair

with (A,B) = (0, Z). The pair (I,K) = (W + Z,WZ), which shortly appeared in the
proof of Corollary 2.1, is also an entropy-flux pair with (A,B) = (−W 2, Z2).

ℵ Ω R
2

(U,F )
(A.14)

//

∈

(W,Z)
(A.13a)
oo

(A.13b)
//

∈

(I,K)

∈

(A.7)

From now on, we consider two general entropy-flux pairs, also denoted by (U,F ) and
(I,K), as depicted in diagram (A.7). Of course, the first pair (U,F ) is meant to be
the relaxation counterparts of the equilibrium values (u, f(u)). We require that the F
can be extended by continuity to all (W,Z) ∈ Ω. We also require that the mapping
(W,Z) 7→ (U,F ) be well-defined and invertible for (W,Z) ∈ Ω̊, which allows us to consider
its inverse (U,F ) 7→ (W,Z), defined over some domain ℵ ⊂ [0, 1] × R that we do not seek
to clarify further, insofar as our calculations are essentially formal.

Definition A.1. The change of variables (W,Z) ⇆ (U,F ) is said to be admissible if

1. Each of the pairs (U,W ) and (U,Z) can replace (U,F ) as independent variables. In
other words,

WF (U,F ) 6= 0, ZF (U,F ) 6= 0 (A.8)

for all (U,F ) under consideration.
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2. The equilibrium speeds, defined as

w(u) = W (u, f(u)), z(u) = Z(u, f(u)), (A.9)

remain bounded for u ∈ [0, 1].

The second pair (I,K) is intended to play the role of ((1 − 2U)G,−U(1 − U)G2) in
(2.22) of Corollary 2.1. To be more accurate, let us chain the mappings to obtain

I (U,F ) = I(W (U,F ), Z(U,F )), K (U,F ) = K(W (U,F ), Z(U,F )). (A.10)

Definition A.2. The change of variables (W,Z) → (I,K) is said to be admissible if

1. The pair (U,I ) can replace (U,F ) as independent variables. In other words,

IF (U,F ) 6= 0 (A.11)

for all (U,F ) under consideration.

2. The equilibrium values for the entropy-flux (I,K), defined as

I(u) = I (u, f(u)), K(u) = K (u, f(u)) (A.12)

remain bounded for u ∈ [0, 1].

For later use, let us specify the compatibility conditions (A.4) as

FW = ZUW , FZ = WUZ (A.13a)

KW = ZIW , KZ = WIZ . (A.13b)

Moreover, as a consequence of (A.13a), we end up with

WU = −WWF , ZU = −ZZF (A.14)

by differentiating the inverse mapping (U,F ) 7→ (W,Z).

A.2 Relaxation system

Our departure point is now the basic variables (U,F ), from which we define (W,Z) and
(I ,K ), in accordance with diagram (A.7) and so as to be endowed with admissible
changes of variables in the sense of Definitions A.1 and A.2.

Definition A.3. For a given choice of admissible changes of variables, the generalized
Born-Infeld relaxation of equation (A.1) is the system

∂tW + Z∂xW = λWF [f(U(W,Z)) − F ] (A.15a)

∂tZ + W∂xZ = λ ZF [f(U(W,Z)) − F ], (A.15b)

for (W,Z) ∈ Ω, where λ > 0 is the relaxation coefficient.
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In (A.15), the quantities (WF , ZF ) have to be understood as functions of the velocity-
like variables (W,Z) via

WF = WF (U(W,Z), F (W,Z)), ZF = ZF (U(W,Z), F (W,Z)). (A.16)

Note that the right-hand sides of (A.15) are not written in the same form as those of
(2.17). However, they do have the same values when f = u(1 − u)g and for the change of
variables (2.7)–(2.8).

As in Proposition 2.2, the characteristic fields of the Born-Infeld system (A.15) are
linearly degenerate, which enables us to extend results valid for smooth solutions to weak
solutions.

Theorem A.1. The generalized Born-Infeld relaxation system (A.15) is equivalent to the
conservative form

∂tU + ∂xF = 0 (A.17a)

∂tI (U,F ) + ∂xK (U,F ) = λIF (U,F )[f(U) − F ]. (A.17b)

Proof To prove (A.17a), multiply (A.15a) by UW , (A.15b) by UZ , add them together and
make use of (A.13a). The right-hand side vanishes because UW WF + UZZF = UF = 0.
Proceed similarly for (A.17b) and invoke the chain rule IW WF + IZZF = IF .

A.3 Chapman-Enskog analysis and Whitham condition

The good news is that the equivalent equation given in Theorem 2.2 is still valid, although
its proof now involves more tortuous calculations.

Theorem A.2. At the first order approximation in λ−1, the solution u to relaxation
system (A.17) satisfies the equivalent equation

∂tu + ∂xf(u) = λ−1∂x{−[f ′(u) − w(u)][f ′(u) − z(u)]∂xu}. (A.18)

Proof With u ≡ U , we insert the standard Chapman-Enskog expansion

F = f(u) + λ−1f1 + O(λ−2) (A.19)

into (A.17b). Keeping the leading terms only, while remembering that all functions of
(U,F ) must be evaluated at (u, f(u)), yields

−IF (u, f(u))f1 = ∂tI (u, f(u)) + ∂xK (u, f(u)) (A.20a)

= I
′(u, f(u))∂tu + K

′(u, f(u))∂xu (A.20b)

= [K ′(u, f(u)) − f ′(u)I ′(u, f(u))]∂xu (A.20c)

where (.)′ designates the total derivative with respect to u, namely,

(.)′ =
d

du
(.) = ∂U (.) + f ′(u)∂F (.). (A.21)

Inserting (A.21) into (A.20c), and with the help of (A.13b), we obtain

K
′ − f ′(u)I ′ = [KW W ′ + KZZ ′] − f ′(u)[IW W ′ + IZZ ′] (A.22a)

= [ZIW W ′ + WI ′Z ] − f ′(u)[IW W ′ + IZZ ′] (A.22b)

= (z(u) − f ′(u))W ′IW + (w(u) − f ′(u))Z ′IZ . (A.22c)
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Applying (A.21) again to transform (W ′, Z ′) and invoking (A.14), we end up with

−IF (u, f(u))f1 = −IF (f ′(u) − w(u))(f ′(u) − z(u))∂xu. (A.23)

After simplification by IF 6= 0, plug f1 into (A.17a) and deduce the desired result.

Theorem A.3. A sufficient condition for the relaxation system (A.17) to be a dissipa-
tive approximation of the original equation (A.1) is that the Whitham subcharacteristic
condition

f ′(u) ∈ ⌊w(u), z(u)⌉ (A.24)

holds for all u in the range of the problem at hand.

Proof Identical to that of Theorem 2.3.

A.4 Numerical flux and monotonicity

Like the Born-Infeld relaxation of §2, the Riemann problem associated with (A.15) can be
solved for the initial left and right data

vL = (w(uL), z(uL)), vR = (w(uR), z(uR)). (A.25)

The intermediate states obey a maximum principle componentwise, as in Theorem 2.4.
As in Theorem 2.5, the flux F ∗ at x = 0 always makes sense, and satisfies a sign property.
This allows us to consider the numerical flux

HBI(uL, uR) = F (vL,vR) = F ∗ (A.26)

and to ask question about the equivalence between the monotonicity of HBI and the
Whitham condition (A.24), as was the case in Theorem 2.6.

Theorem A.4. Assume that each component of the pair (w(u), z(u)) keeps a constant sign
over u ∈ ]0, 1[. Then a necessary condition for the Born-Infeld numerical flux HBI(uL, uR)
to be monotonous for all (uL, uR) ∈ ]0, 1[2 is that the Whitham condition (A.24) is satisfied
for all u ∈ ]0, 1[.

This condition is also sufficient if each component of the pair (UW (W,Z), UZ (W,Z))
keeps a constant sign for all (W,Z) at issue.

Proof Without loss of generality, suppose we are in Case 1a of Fig. 2, that is, w < 0
and z > 0. Then the intermediate state is v∗ = ṽ = (w(uL), z(uR)), and

HBI(uL, uR) = F (w(uL), z(uR)). (A.27)

By differentiation,

HBI
uL

= FW (w(uL), z(uR))w′(uL) = z(uL)UW (w(uL), z(uR))w′(uL), (A.28)

where we have used (A.13a). Let

b(uL, uR) = UW (w(uL), z(uR))w′(uL). (A.29)

Then,
HBI

uL
= b(uL, uR)z(uL). (A.30)
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Similarly, we have
HBI

uR
= a(uL, uR)w(uR). (A.31)

with
a(uL, uR) = UZ(w(uL), z(uR))z′(uR). (A.32)

Therefore, the monotonicity conditions HBI
uL

≥ 0 and HBI
uR

≤ 0 are tantamount to

a(uL, uR) ≥ 0, b(uL, uR) ≥ 0. (A.33)

Taking the derivatives of

u = U(w(u), z(u)), f(u) = F (w(u), z(u)) (A.34)

with respect to u, we obtain

1 = UW (w(u), z(u))w′(u) + UZ(w(u), z(u))z′(u) (A.35a)

f ′(u) = FW (w(u), z(u))w′(u) + FZ(w(u), z(u))z′(u) (A.35b)

= z(u)UW (w(u), z(u))w′(u) + w(u)UZ(w(u), z(u))z′(u), (A.35c)

again because of (A.13a). With the notations (A.29), (A.32), this system can be cast
under the form

1 = a(u, u) + b(u, u) (A.36a)

f ′(u) = w(u)a(u, u) + z(u)b(u, u). (A.36b)

The Whitham condition (A.24) says that f ′(u) must be a convex combination of w(u) and
z(u). In view of (A.36), this is equivalent to

a(u, u) ≥ 0, b(u, u) ≥ 0. (A.37)

It is plain that

(A.33) for all (uL, uR) ∈ ]0, 1[2 =⇒ (A.37) for all u ∈ ]0, 1[.

Hence, monotonicity of the numerical flux implies the Whitham condition. Furthermore,
from the definitions (A.29), (A.32), we clearly see that if (UW , UZ) keeps a constant sign
componentwise, the monotonicity condition (A.33) splits into two separated and decoupled
conditions, one on z′(uL), the other on w′(uR). The Whitham condition (A.37) also splits
into two conditions, one on z′(u), the other on w′(u). In this case, we have the converse

(A.37) for all u ∈ ]0, 1[ =⇒ (A.33) for all (uL, uR) ∈ ]0, 1[2,

which completes the proof.
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