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Structure of fundamental solutions of a

conservation law without convexity ⋆

Yong-Jung Kim, Young-Ran Lee

Abstract

This note is devoted to reveal the structure of signed fundamental solu-
tions of a conservation law without the convexity assumption. It is assumed
that the flux is in C1(R) and has a finite number of inflection points. Funda-
mental solutions of the case have been constructed in [9] employing convex
and concave envelopes. This construction provides useful information on the
structure of a fundamental solution in terms of the envelopes and we clarify
the dynamics of a fundamental solution using this structural information.
We classify the types of shocks, rarefaction waves and their interactions
to reach the final stage of its asymptotics. A complete example of such a
dynamics is given with a full characteristic map.

1. Introduction

This note is written under a single purpose to clarify the dynamics of a
fundamental solution to a conservation law without convexity. If the flux is
convex, the structure of a solution to a conservation law is well understood.
In particular one may employ the Lax-Hopf transformation to obtain the
solution almost explicitly. If the flux is not convex, we do not have such
a luxury and the solution may show a completely different behavior. Due
to the complexity of this non-convex case, understanding its dynamics is
limited in compare with a convex case.

In this paper we let u(x, t) be a solution to a conservation law

ut + f(u)x = 0, x ∈ R, t > 0, (1)
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where the flux f is in C1(R) and satisfies the following hypotheses:

the flux f(u) has a finite number of inflection points
and

f(u)/|u| → ∞ as |u| → ∞.
(H1)

If a bounded solution is considered, then the flux value as |u| → ∞ does
not make any difference and hence one may always assume the second hy-
pothesis without loss of generality. The first hypothesis is due to iterative
arguments in the construction of a fundamental solution. Assuming this,
one may obtain a fundamental solution in a finite number of steps [9].

Under a similar hypothesis of a finite number of inflection points, the
existence and uniqueness of bounded solutions to (1) were given by Ballou [1]
and the zero viscosity limit by Tang et al [14] in the class of piecewise smooth
weak solutions. The regularity and asymptotic behavior of the solution have
been obtained by many authors (see [3,8,11]). The structure of a solution
has been studied in [1,3] for the case with a single inflection point.

The behavior of the solution with Riemann initial value is well under-
stood (see [15,2] for example). However, understanding the structure of a
solution is far less satisfactory in compare with the convex case. One of
the reasons is that we do not have a handy tool to view the structure of
the solution. For example the rigorous use of the method of generalized
characteristics is “lengthy and even torturous”. Another reason is the lack
of complete examples that provide the essential feature of its dynamics. In
this paper we survey the structure of a fundamental solution in detail in
terms of the dynamics of convex and concave envelopes.

Since we are interested in a fundamental or a source-type solution to the
conservation law (1), we consider the corresponding initial condition given
by the Dirac-measure,

u(x, 0) = Mδ(x), M ∈ R. (2)

We consider a weak solution that satisfies the Oleinik entropy condition:

l(u) ≤ f(u) for all ul < u < ur and l(u) ≥ f(u) for all ur < u < ul, (3)

where ur and ul are the right and the left hand side limits at a possible
discontinuity point (x, t) and l(u) is the line segment connecting (ur, f(ur))
and (ul, f(ul)), i.e.,

l(u) =
f(ur) − f(ul)

ur − ul

(u − ul) + f(ul), ul = lim
y↑x

u(y, t), ur = lim
y↓x

u(y, t).

Recently Kim and Ha [9] constructed a signed fundamental solution
of a conservation law in a more or less explicit way under (H1). From this
construction one may find basic structures of a fundamental solution, which
are summarized in Lemma 1. Using this structural lemma we clarify what
the types of shocks and rarefaction waves of a fundamental solution are,
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how they appear, interact and vanish, and how the solution reaches the
final stage of the long time asymptotics.

A bounded solution is unique for an initial value problem with a bounded
initial value. However, a fundamental solution is not unique in general. Liu
and Pierre [12] considered source-type solutions under a hypothesis

f(u) ≥ 0 for u ∈ R, (H2)

and showed that the signed fundamental solution to (1,2) is unique. We
extend this uniqueness to a case without (H2) in Theorem 1. Let N0,q(x, t)
be the unique positively signed fundamental solution corresponding to M =
q > 0 and Np,0(x, t) be the negative one with M = −p < 0. The fundamen-
tal solution of a conservation law is known as an N-wave for the Burgers
equation case, which has been easily extended to a case with convex flux.
Therefore, N0,q(x, t) and Np,0(x, t) are generalized signed N-waves under a
flux without convexity.

In this paper we mostly consider the structure of the signed fundamental
solution under the hypotheses (H1). We will classify the types of shocks and
rarefaction waves in Sections 3 and 5 and their possible dynamics such as
branching and merging of shocks in Section 4. Then eventually a complete
scenario of the evolution of a fundamental solution, Figure 7, is given in
Section 6 in terms of the evolution of convex-concave envelopes, Figure
6. The dynamics of the fundamental solution studied in this paper can be
observed by numerical computations. In fact we provide numerical examples
for it in Figures 8 and 9.

In Section 7 the structure of a fundamental solution under the extra hy-
pothesis (H2) is considered. We can easily see that the positive and negative
parts evolve independently and hence

Np,q(x, t) = Np,0(x, t) + N0,q(x, t), q = M + p, (4)

are also solutions to the problem (1,2) under (H2). Hence a fundamental
solution is not unique if solutions with a sign-change are allowed.

It seems that the understanding of a fundamental solution may expand
our knowledge about a general conservation law. For example the well-
known Oleinik estimate,

f ′(u)x ≤ 1/t, t > 0,

holds for the convex case and the equality holds for the fundamental so-
lution. However, it is not satisfied without the convexity assumption and
hence people tried to extend it (see [4,5,7]). Considering its close relation
to a fundamental solution, the understanding of a fundamental solution
without the convexity assumption might give a clue to this issue.
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2. Preliminaries and scaling invariance of source-type solutions

One can easily check that, after an appropriate change of variables which
counts the velocity of the flow at u = 0, we may assume

f(0) = f ′(0) = 0 (5)

without loss of generality. The uniqueness of a signed fundamental solution
is shown for a positive flux (H2), see [12]. In the followings we easily extend
this uniqueness under (H1) only.

Theorem 1 (uniqueness of a signed fundamental solution). Suppose
that the flux f ∈ C1(R) satisfies (H1). Then there exists at most one signed
fundamental solution to (1,2) which has the same sign as the one of M .

Proof. It is enough to show the uniqueness of a positive solution assuming
M > 0. The assumption (H1) and (5) imply that there exists b > 0 such
that f(u) ≥ −bu for all u ≥ 0. Let ϕ(u) = f(u) + bu. Then ϕ(0) = 0 and
ϕ(u) ≥ 0 for all u ≥ 0. Therefore, a positive solution to

ut + ϕ(u)x = 0, u(x, 0) = Mδ(x) (6)

is unique (see Theorem 1.1 [12]). Let u be a positive solution to (1,2) and v
be its translation given by v(x, t) = u(x − bt, t) ≥ 0. Then,

vt + ϕ(v)x = ut − bux + f(u)x + bux = 0.

One can easily check that v satisfies the entropy condition (3) if u does.
Therefore, v is a solution to (6). Let ũ be another positive solution to (1,2)
and ṽ be given similarly by ṽ(x, t) = ũ(x − bt, t). Then, since a positive
solution to (6) is unique, v(x, t) = ṽ(x, t) and hence u(x, t) = ũ(x, t). ⊓⊔

Now we show a scaling argument using this uniqueness theorem. Let
u(x, t) = N0,q(qx, qt) with q > 0. Recall that N0,q(x, t) is the positive solu-
tion of (1,2) with M = q. Then ut = q∂tN0,q(qx, qt), ux = q∂xN0,q(qx, qt),
and hence

ut + f ′(u)ux = q∂tN0,q(qx, qt) + qf ′(N0,q(qx, qt))∂xN0,q(qx, qt) = 0.

Furthermore, since
∫

φ(x)u(x, 0)dx =

∫

φ(x)N0,q(qx, 0)dx =

∫

φ(y/q)δ(y)dy = φ(0)

for any test function φ(x), u(x, t) is the positive source type solution with
M = 1. Therefore, the uniqueness of a signed solution implies that

N0,1(x, t) = N0,q(qx, qt), x ∈ R, t > 0. (7)

Similarly, for negative N-waves, we have

N1,0(x, t) = Np,0(px, pt), x ∈ R, t > 0, (8)
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for any p > 0. These relations indicate that it is enough to study the struc-
tures of N0,1(x, t) and N1,0(x, t) only. We will consider the positive case
only and hence the solution u(x, t) here is basically the positive N-wave
N0,1(x, t). However, for the notational convenience, we stick to use u(x, t)
for the solution of (1,2) with M > 0. The negative case can be considered
similarly and is omitted.

It is well known that a weak solution should satisfy the Rankine-Hugoniot
jump condition at any discontinuity curve x = s(t) which is given by

s′(t) =
f(ur) − f(ul)

ur − ul

, ul = lim
y↑s(t)

u(y, t), ur = lim
y↓s(t)

u(y, t). (9)

On the other hand one may consider a characteristic line x = ξ(t) that
emanates from a point (x0, t0) that satisfies

ξ′(t) = f ′(u(ξ(t), t)), ξ(t0) = x0, (10)

where the domain of the characteristic depends on the continuity and on
the types of discontinuity at (x0, t0) which will be discussed in Sections 3-5.

In the construction of a fundamental solution we heavily refer to the
convex and concave envelopes of the flux which are respectively given by

h(u; ū) := sup
η∈A(0,ū)

η(u), k(u; ū) := inf
η∈B(0,ū)

η(u), (11)

where

A(0, ū) := {η : η′′(u) ≥ 0, η(u) ≤ f(u) for 0 < u < ū}, (12)

B(0, ū) := {η : η′′(u) ≤ 0, η(u) ≥ f(u) for 0 < u < ū}. (13)

Note that we consider a positively signed fundamental solution and hence
our interest is the flux on the domain u ∈ [0,∞) only which has been counted
in the construction of envelopes.

One can easily check that, for any fixed ū > 0, h(u; ū) and k(u; ū) are
convex and concave functions on the interval (0, ū), respectively. Since the
flux function has only a finite number of inflection points, the domain (0, ū)
can be divided into a finite number of subintervals so that envelopes are
linear or identical to the flux on each subinterval. Employing these envelopes
we summarize basic properties of a fundamental solution in the following
lemma which have been obtained in [9] and will be used as our main tools
to study the dynamics of a fundamental solution.

Lemma 1 (structural lemma of a fundamental solution). Let u(x, t)
be the positive source-type solution of the conservation law (1,2) with M > 0
and ū(t) = maxx u(x, t). For a given t > 0, let 0 = a0 < a1 < · · · <
ai0 = ū(t) be the minimal partition of [0, ū(t)] such that the convex envelope
h(u; ū(t)) is either linear or identical to f(u) on each subinterval (ai, ai+1),
0 ≤ i < i0. Similarly, let 0 = b0 < b1 < · · · < bj0 = ū(t) be the min-
imal partition related to the concave envelope k(u; ū(t)). Let ζ0(t) is the
maximum point in the sense that ū(t) = max(u(ζ0(t)+, t), u(ζ0(t)−, t)) and
spt(u(·, t)) = [ζ−(t), ζ+(t)]. Then,
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1. The linear parts of the envelopes are tangent to the flux at intermediate
partition points, i.e.,

h′(ai; ū(t)) = f ′(ai), i = 1, · · · , i0 − 1,

k′(bj ; ū(t)) = f ′(bj), j = 1, · · · , j0 − 1.

2. The maximum ū(t) is strictly decreasing as t → ∞.
3. The solution u(x, t) increases in x on the interval (ζ−(t), ζ0(t)). Fur-

thermore, if h(u; ū(t)) is linear on (ai, ai+1), there exists an increasing
discontinuity that connects u = ai and u = ai+1. If h(u; ū(t)) = f(u) on
(ai, ai+1), there exists a profile that continuously increases from u = ai

to ai+1.
4. The solution u(x, t) decreases in x on the interval (ζ0(t), ζ+(t)). Fur-

thermore, if k(u; ū(t)) is linear on (bj , bj+1), there exists a decreasing
discontinuity that connects u = bj and u = bj+1. If k(u; ū(t)) = f(u) on
(bj , bj+1), there exists a profile that continuously decreases from u = bj+1

to bj.

Remark 1. There are many possible partitions 0 = a0 < a1 < · · · < ai0 =
ū(t) such that h(u; ū(t)) is either linear or identical to f(u) on each subin-
terval (ai, ai+1), 0 ≤ i < i0. However, the partition that consists of the
smallest number of points is unique and we consider this minimal partition
in the lemma. Then, clearly, if the envelope is linear in a subinterval, then
it should be identical to the flux in the adjacent ones.

Lemma 1 provides useful information about the dynamics of the funda-
mental solution. First, if the maximum ū(t) of the solution at a specific time
t > 0 is given, then the exact number of discontinuities and their left and
right hand limits are easily computed. Furthermore, even though we do not
know the exact places of the discontinuities from the lemma, we know how
they are ordered. These discontinuities are connected by rarefaction waves.
Notice that the rarefaction waves can be quite complicated if the flux is not
convex and are not a function of x/t, which will be discussed in Section 5
(see Figure7).

In Figure 1(a) an example of a convex and a concave envelopes on the
domain [0, ū(t)] are given. Note that, since (5) is assumed, the graph of
the flux function should be tangent to the u-axis at the origin. The minimal
partition values ai’s for the convex envelope are marked at the corresponding
tangent points which clearly show the relations in Lemma 1(1). Two linear
parts of the convex envelope indicate that the fundamental solution have two
increasing shocks. One of them jumps from 0 to a1 and the other from a2 to
a3. These shocks clearly satisfy the Oleinik entropy condition (3). Similarly
the concave envelope and the corresponding minimal partition bi’s provide
the decreasing shocks.

As the maximum ū(t) of the fundamental solution decreases, the corre-
sponding envelopes change continuously. However, if the point (ū(t), f(ū(t)))
reaches to a tangent point, then the envelopes change discontinuously and
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ū(t)

b1
b2 b3 b4

a1 a2
a3

f(u)

0

(a) convex and concave envelopes

b1

b1 b2

b3

a1 a2

a3

0

(b) discontinuous change of envelopes

Fig. 1. Examples of envelopes. Minimal partitions consist of 0, ū(t) and co-
ordinates of the horizontal axis (or u-axis) of the tangent points. If both of the
envelopes meet with linear parts as in (b), then the maximum jumps to the nearest
interior partition point a3 in the figure.

an example is given in Figure 1(b). The envelopes in dashed lines are the
case when ū(t) = b1. This implies that the maximum value ū(t) is con-
nected to the value a3 by an increasing shock and also connected to 0 by
a decreasing shock. In other words the solution has an isolated singularity
which is not admissible, see Lemma 3.6 in [9]. By the same reason the case
a3 < ū(t) < b1 is not admissible. Therefore ū(t) jumps from b1 to a3 and
the envelopes evolve from the dashed ones to the solid ones in the figure. In
particular the minimal partition for the concave envelope has new members
and should be re-indexed.

3. Structure of discontinuities

In this section we classify shocks (or discontinuities) of a fundamental
solution. The classification of discontinuity is given by the relation between
the shock speed and the wave speeds of the right and left hand side limits of
the discontinuity. Let x = s(t) be a shock curve and u±

0 = limε↓0 u(s(t0) ±
ε, t0) be one-sided limits at a discontinuity point (s(t0), t0). Let x = ξ+(t)
be the maximal characteristics that emanates from the same point and
x = ξ−(t) be the minimal one. Then one of the backward and the forward
characteristics satisfies

ξ′+(t0) = f ′(u+
0 ), ξ′−(t0) = f ′(u−

0 ), (14)

where the derivatives of characteristics are understood as one sided ones de-
pending on its domain. We are interested in the characteristic that satisfies
(14) since the characteristic that actually carries the information satisfies
this relation.

Using the Oleinik entropy condition (3) one may easily show the follow-
ing well known relations

f ′(u−
0 ) ≥ s′(t0) ≥ f ′(u+

0 ). (15)
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In the followings we classify the shocks into four categories depending whether
the inequalities are strict or not.

3.1. Genuine shock

If both of the inequalities in (15) are strict, i.e.,

f ′(u−
0 ) > s′(t0) > f ′(u+

0 ), (G)

then the discontinuity is called a genuine shock and denoted by the letter
‘G’ in figures below. If a faster characteristic line x = ξ−(t) collides to the
slower shock curve x = s(t) from the left hand side, it should come from
the past (or as t ↑ t0). Similarly, if the slower characteristic line x = ξ+(t)
collides to the shock curve from the right hand side, then it should also come
from the past. Therefore, for a genuine shock, characteristics satisfying (14)
are backward ones and

ξ′−(t) > s′(t0) > ξ′+(t), t0 − ε < t < t0 (16)

for some ε > 0. If one may take t0 − ε = 0, then the characteristic lines are
global, which is always the case with a convex flux.

We may easily see that a genuine shock of a fundamental solution con-
nects the zero value and the maximum ū(t) = maxx u(x, t). If not, the
discontinuity should connect a value of an intermediate partition point, say
ai with i 6= 0, i 6= i0. Since the shock speed s′(t0) is given by the relation in
(9), Lemma 1(1) gives that

s′(t0) = h′(ai; ū(t)) = f ′(ai) = ξ′(t), t0 − ε < t < t0.

Therefore, at least one of the inequalities in (15) is not strict and hence
the shock is not a genuine one. If a genuine shock connects the zero and
the maximum, the corresponding envelope should be a straight line. Fur-
thermore, since both of the envelopes can not be straight lines at the same
time, a fundamental solution has at most one genuine shock at any given
time. If a horizontal line is the convex or the concave envelope, then due to
the normalization (5) one of the inequalities in (15) are not strict. This is a
transition stage of a genuine shock into a contact discontinuity which will
be discussed in the following section for the dynamics of discontinuities.

Now suppose that a concave envelope is a non-horizontal line. Of course,
the discontinuity connects the zero value and the maximum. We may easily
see that if the line is not tangent to the graph of the flux, then it gives a
genuine shock. Suppose that the line is tangent to the flux at the maxi-
mum as in Figure 1(b). Then the flux is locally concave near the maximum
value u = ū(t) and hence the convex envelope is also linear at the point
(ū(t), f(ū(t))). This implies that the maximum is an isolated singularity
which is not admissible. Therefore, such envelopes do not exist. The same
arguments are applied to the convex envelope and we conclude the following.
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Property 1. A positive fundamental solution has at most one genuine shock.
There exists a genuine shock if and only if the convex or the concave envelope
is a non-horizontal line. Furthermore the genuine shock always connects the
maximum value and the zero state.

If the flux is convex, its concave envelope is simply a non-horizontal line
and gives a decreasing genuine shock all the time. Furthermore, there are
no other types of shocks for the convex flux. Figure 2(a) is an illustration
of a genuine shock.

G
(a) genuine shock

II
(b) type II contact

L
(c) left contact

R
(d) right contact

Fig. 2. Examples of shocks.

3.2. Contact shock

A discontinuity of a solution is called a contact shock if it is not a genuine
one. If both of the inequalities in (15) are actually equalities, i.e.,

f ′(u−
0 ) = s′(t0) = f ′(u+

0 ), (II)

then the shock is called of type II and denoted by ‘II’ in the following
figures. One can easily find such a discontinuity. Let ai, i = 0, · · · , i0, be
the minimal partition in Lemma 1 related to the convex envelope h. One
can easily see that if h is linear in an interior subinterval (ai, ai+1) (i.e.,
ai 6= 0 and ai+1 6= ū(t)), then Lemma 1(1) implies that (II) is satisfied. In
this case the shock is placed between two rarefaction waves and hence it
should be a straight line obviously. Since this discontinuity propagates with
characteristic lines, it is not distinguished from the characteristics map (see
Figure 2(b)). One can easily consider type II contacts related to the concave
envelope which is omitted.

If only one of the inequalities in (15) is an equality, then we call it a
contact shock of type I. If the left hand side inequality in (15) is actually an
equality, i.e.,

f ′(u−
0 ) = s′(t0) > f ′(u+

0 ), (L)

then a type I contact is called a left contact and denote it by ‘L’ in the
following figures. This means that the characteristic lines on the left hand
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side of the shock curve have the same speed as the one of the shock. Hence
the characteristic lines are tangent to the shock curve from the left hand
side (see Figures 2(c) and 4(a)).

Similarly, if the right hand side inequality in (15) is an equality, i.e.,

f ′(u−
0 ) > s′(t0) = f ′(u+

0 ), (R)

then a type I contact is called a right contact and denoted by ‘R’ in the
following figures.

A type I contact should connect the maximum ū(t) or the zero value
to an interior partition value. If a shock connects two interior partition
points, then it is of type II as discussed before. Since the maximum can not
be connected by two shocks (see the comments following Figure 1(b)), the
total number of contact shocks is at most three.

Property 2. A signed fundamental solution always has two or three contact
shocks of type I counting a genuine shock as two. If there is not a genuine
shock, then there exist at least one right contact and at least one left contact.

Consider the type I contact connected to the zero value by the concave
envelope. Then it should be a decreasing shock and hence the value zero
is on the right hand side of the discontinuity and the tangent value, b1

in Figure 1(a) for example, is on its left hand side. Hence it should be a
left contact as denoted in Figures 6(b)–(g). The slope of the corresponding
linear part of the concave envelope is not changing for a while as one can
see from the figures. This slope is actually the speed of shock propagation
and hence the shock curve is a straight line. In Figure 2(c) an illustration
of a left contact connecting the zero value is given.

The more interesting type I contact is the one connecting the maximum
ū(t). Consider the linear part of the concave envelope in Figure 1(a) that
connects the maximum and an interior partition value b4. First note that
the right hand side limit of the shock is b4 since the concave envelope gives
a decreasing shock. The speed of the characteristic line carrying this value
is f ′(b4) which is identical to the shock speed and hence the corresponding
discontinuity is always a right contact. One can easily see that the slope of
the linear part decreases as ū(t) decreases (i.e., as t increases). Therefore the
shock curve makes a turn to the left hand side as t increases like in Figure
2(d). Furthermore, the interior tangent value b4 increases, which indicates
that the range covered by rarefaction wave is increasing. In other words
new information is produced and propagates to the future. Therefore, the
characteristic line x = ξ+(t) touching the shock from the right hand side
has a domain t ∈ (t0, t0 +ε) for some ε > 0. In Figure 2(d) this kind of right
contact has been illustrated. Even if the previous discussions are in terms of
the concave envelope, one may continue them for the convex envelope and
obtain the dual statements which can be written as follows.

Property 3. Consider a decreasing type I contact of a positive fundamental
solution. If it connects the zero value, then it is a left contact and a straight
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line. If it connects the maximum, then it is a right contact. We have dual
statements for an increasing type I contact. For the case, if it connects the
zero value, then it is a right contact and a straight line. If it connects the
maximum, then it is a left contact.

4. Dynamics of discontinuities

The convex and the concave envelopes have one end at the origin and
the other end at the point (ū(t), f(ū(t))), where ū(t) = maxx u(x, t) is the
maximum value of the fundamental solution. Since the maximum ū(t) de-
creases in time t, the envelopes and the corresponding minimal partitions
are changing. In the followings we consider the dynamics of shock curves by
tracking these changes. The change of envelopes is due to the decrease of
the maximum value ū(t) and hence only the part of the envelope between
the maximum ū(t) and the very next partition point can be changed as t
increases.

Property 4. All the dynamics of shock discontinuities are produced along
the shock curve that connects the maximum value of the positively signed
fundamental solution.

4.1. Branching

A shock curve may split into two smaller shocks and we call this phe-
nomenon a branching. Consider a shock curve that connects the maximum
value ū(t). Then it should be the genuine shock or of type I. If the corre-
sponding linear part of the envelope touches a hump of the graph of the
flux f(u) on the way, it will split into two linear parts with a non-convex
or a non-concave part in between. Since both of these two linear parts be-
long to the convex envelope or concave envelope, both shocks are increasing
ones or decreasing ones. In other words an increasing shock splits into two
increasing shocks and a decreasing one into two decreasing ones.

One can easily see that, at the moment that the branching process starts,
the slope of the linear parts corresponding to the incoming and outgoing
shocks are all the same. Therefore, the slopes of shock curves at the branch-
ing point in the xt-plane are identical and hence they form smooth curves.

It is clear that the split linear parts are tangent to the graph of the flux
at one end. Since one of the linear part should have the maximum at its
the other end, it gives a contact shock of type I. If the incoming shock is a
contact of type I, then the other outgoing shock is of type II. Therefore, we
may conclude that if the incoming shock is of type I, then, after a branching,
it splits into one contact shock of type I and another one of type II (see Fig.
3(a), the horizontal axis for x and the vertical axis for t). Similarly, if the
incoming shock is a genuine shock, then it splits into two contact shocks of
type I (see Figure 3(b)). Note that type II cannot split.
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R

R

II

(a)Branching (R→R+II)
G

R L

(b)Branching (G→R+L)

Fig. 3. There are only two kinds of branching.

4.2. Merging

Two shocks can be combined and then form a single shock. We call
this phenomenon a merging. In the process these two shocks have differ-
ent monotonicity. One can easily see this phenomenon from the change of
envelopes. As the maximum value ū(t) decreases, a linear part of convex
envelope and a linear part of concave envelope may meet at a point, say
(ū(t0), f(ū(t0))) (see Figures 1(b) or 6(d)). However, in this case it gives a re-
movable jump (see Lemma 4.3 in [9]) and hence the maximum of the funda-
mental solution has a decreasing jump from ū(t0+)

(

:= limt↓t0 maxx u(x, t)
)

to ū(t0−)
(

:= limt↑t0 maxx u(x, t)
)

. In this case ū(t0−) is the largest inte-
rior partition point (e.g., the point a3 in Figure 1(b)). One can easily see
that the slope of the linear parts of envelopes related these two incoming
shocks and one outgoing shock are all distinct and hence the shock curves
are not smooth in general. The phenomenon related to this sudden change
of envelopes will be discussed later for the aspect of a rarefaction wave.

G

LL
(a)Merging (L+L→G)

R

L

II
(b)Merging (R+II→L)

L

LL

R

(c)Merging+Branching

Fig. 4. There are two kinds of merging. The last figure shows an example when
merging and branching occur simultaneously.

In Figure 4(a) two left contacts merge into a genuine shock. If contact
shocks of types I and II are merged, then a contact of type I is produced
(Figure 4(b)). These look like the opposite ways of the branching. However,
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the difference is that in the merging one increasing shock is merged with a
decreasing one to produce another one. Note that, in branching, two shocks
of the same monotonicity are produced. Another difference is that the shock
curves are not smooth after the merging process.

Property 5. The possible cases for a merging phenomena are as follows. If
a merging phenomenon occurs together with others at the same time, one
may obtain variety of phenomena.

1. A right contact is merged with a type II contact and a left contact
emerges. In this case the incoming right contact should be a decreasing
one and the outgoing left contact an increasing one.

2. (a dual case of 1) A left contact is merged with a type II contact and a
right contact emerges.

3. Two right contacts are merged and a genuine shock emerges.
4. (a dual case of 3) Two left contacts are merged and a genuine shock

emerges.

4.3. Merging + Branching

Merging and branching are basic phenomena in the dynamics of dis-
continuities. One may imagine the case that these two appear at the same
time. Since the envelopes may change suddenly after a merging process, a
branching may follow immediately after a merging. The example in Figure
1(b) is the case. Suppose that two incoming shocks meet at a point (x0, t0).
Then the merging process produces one left contact and one right contact
(see Figure 4(c)). Notice that the outgoing shocks should be of the same
monotonicity. In this example they are given by the concave envelope and
hence they are decreasing ones. It is also possible that there are more than
two out going shocks. For example, if there are many wiggles in the inside
hump of Figure 1(b), then there can be many outgoing shocks with same
monotonicity with each other.

4.4. Transforming

A shock may change its type without branching or merging and we call
this phenomenon a transforming. The only possible case is that a genuine
shock is transformed to a contact shock of type I. It always happens when
a genuine shock changes its direction from the negative one to the positive
one or the other way around. For example consider a genuine shock that
moves at a negative speed as in Figure 5(a). If it stops (or the shock curve
becomes vertical) and then moves to the positive direction, then it is not a
genuine shock any more. It becomes a left contact as one can see from the
figure. Similarly, if a genuine shock changes its direction of the positive one
to the negative one, then it becomes a right contact.

In Figure 4(a) two type I contacts are merged into a genuine shock. If
transforming happens simultaneously, then one may see the phenomenon
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that two contacts of type I are merged to produce a single contact of type
I (see Figure 5(b)).

Notice that the phenomenon in Figure 5(b) is a special case of merg-
ing process. However, instead of placing it in the section for merging, we
have it in this transforming section since it is based on the transforming
process. Furthermore, the transforming phenomena is not found under the
extra hypothesis (H2). In fact, if the flux is positive, then the speed of the
genuine shock is strictly positive and hence transforming phenomenon does
not appear. Therefore, under the extra hypothesis (H2), the dynamics of
discontinuities is given by merging and branching only.

G

L

(a)Transforming

L

RR
(b)Merging+Transforming

Fig. 5. Special phenomena without the hypothesis (H2).

5. Structure of rarefaction waves

For the convex flux case there is no contact shock and hence all the
characteristics of a fundamental solution carrying the information of a non-
zero value are emanated from the origin. Therefore, if a fundamental solution
u has a rarefaction profile at a point (x, t), the speed of the characteristic
line that passes through the point is x/t and hence it should be satisfied that
f ′(u(x, t)) = x/t. Furthermore, since f ′ is invertible if the flux is strictly
convex, the rarefaction wave should be given by the following relation

u(x, t) = (f ′)−1(x/t), a(t) ≤ x ≤ b(t), (17)

where [a(t), b(t)] is the support of the fundamental solution u(·, t). However,
if the flux is not convex, then there may exist contact shocks and hence
there are various possibilities for the starting point of the characteristic
line. Furthermore, since f ′ is not invertible in the whole domain, one should
clarify the correct profile that gives the rarefaction wave. In the followings
we classify the rarefaction waves.
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5.1. Centered rarefaction

There are two kinds of centered rarefaction waves. The first one is the one
produced from the initial profile of the Dirac-measure and hence centered
at the origin. Let h(u;∞) be the convex envelope of the flux and 0 = a0 <
a1 < · · · < ai0 < ∞ be the minimal partition. Then the rarefaction wave is
given as

u(x, t) = g∞(x/t), a(t) ≤ x ≤ b(t), 0 < t < ε, (18)

where the function g∞(x) is piecewise continuous and satisfies h′(g∞(x);∞) =
x. Notice that the function g∞(x) has discontinuity and hence u(x, t) given
by (18) has discontinuity which is actually contact shocks of type I or II.
Therefore, the rarefaction wave in (18) should be understood as a sequence
of rarefaction waves divided by contacts of type I or II. In Figure 7 an ex-
ample of initial centered rarefaction wave can be found for t > 0 small. In
the figure one may find that the waves are bounded by a genuine shock and
a contact of type I. Then the inside profile is divided by a discontinuity of
type II.

A centered rarefaction wave may also appear after a merging process.
If a shock collides to another one, then the envelopes change suddenly and
a centered rarefaction wave may appear. For example consider Figure 1(b)
and suppose that two shock curves are merged at a point (x0, t0). Then
the concave envelope jumps from the dashed one to the solid ones and
a nonlinear part in the interval (b2, b3) is added to the concave envelope,
Figure 1(b), which generates a centered rarefaction wave given as

u(x, t) = g1

(x − x0

t − t0

)

, ξ(t) ≤ x ≤ s(t), t0 < t < t0 + ε, (19)

where g1 is the inverse function of the derivative of the concave envelope of
the flux on the domain (b2, b3) and the wave is bounded by a contact line
of type I and a characteristic line, which are given by

ξ(t) = x0 + f ′(b2)(t − t0), s(t) = x0 +
f(b1)

b1
(t − t0), t0 < t < t + ε.

The wave fan which is between two outgoing contacts of type I in Figure
4(c) and emanates from the branching point is a corresponding case.

One may also observe a centered rarefaction wave bounded by two char-
acteristic lines. Consider the change of envelopes in Figure 6(d) after a
merging. Then the interior partition point a2 jumps from a−

2 to a+
2 and

a nonlinear part in the interval (a−
2 , a+

2 ) is added to the convex envelope,
which generates a centered rarefaction wave given as

u(x, t) = g2

(x − x0

t − t0

)

, ξ1(t) ≤ x ≤ ξ2(t), t0 < t < t + ε, (20)

where g2 is the inverse function of the derivative of the convex envelope
of the flux on the domain (a−

2 , a+
2 ) and the wave fan is bounded by two

characteristic lines, which are given by

ξ1(t) = x0 + f ′(a−
2 )(t − t0), ξ2(t) = x0 + f ′(a+

2 )(t − t0), t0 < t < t + ε.
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Figure 4(b) is the corresponding figure. One may find a rarefaction wave
fan centered at the merging point. The angle of this wave fan is same as the
difference of slope of the incoming type II shock and outgoing left contact
at the merging point.

In summary if a portion of the graph of the flux is added to the envelopes
after a merging phenomenon, then a centered rarefaction wave appears.

Remark 2. The solution is continuous along the characteristic ξ1, but not
differentiable. This kind of regularity has been mentioned in Dafermos [3].
The rarefaction wave fan is bounded by a characteristic line at least one side.
However, it is possible that there exist several contacts of type II inside of
the fan.

5.2. Contact rarefaction

A centered rarefaction wave of a fundamental solution is produced in-
stantly at the moment of the initial time or of a merging. A contact rarefac-
tion wave is produced continuously along the contact shock of type I if it is
connected with the maximum value ū(t). A typical example can be found in
Figures 6(a,b). The concave envelope in Figures 6(a) shows that it is about
the moment that the genuine shock splits into two contact shocks of type I.
The concave envelope at a later time is given in Figure 6(b), which shows
that the rarefaction region (b1, b2) is expanding. This indicates that new
information is being produced and propagates to the future. On the other
hand the rarefaction region (a3, ū(t)) for the convex envelope is shrinking.
In other words the information from the past disappears if it meets this
shock.

In summary a contact rarefaction wave is produced by the contact shock
of type I which connects the maximum from one side. For example, the right
contact R in Figure 6(b) connecting b2 and ū(t) is the corresponding one.
This type I contact erases the information of the past from one side and
produces new information from the other side.

6. Example for the dynamics of a fundamental solution

In this section we consider an example of a complete characteristic map
that shows all the dynamics of shocks and rarefaction waves discussed be-
fore. We take a flux in Figure 6 which is complicate enough for this purpose.
Since the change of an envelope is linked to each stage of a solution, all the
dynamics of a solution can be interpreted in terms of envelopes. First eight
figures in Figure 6 are the envelopes of the flux corresponding to the pos-
sible eight stages of the fundamental solution. As an example to show this
connection we put an illustration of a positive N-wave in Figure 6(i), which
belongs to the second stage, Figure 6(b). More examples of N-waves can be
found in [9], Figures 6, 7 and 8, which are actually obtained by computing
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the equation numerically. A complete characteristic map corresponding to
this flux is given in Figure 7 with stage numbers on the left. In the rest of
this section we discuss on the relation between the flux and its characteristic
map.

R
II

G f(u)

0
u

(a) initial structure

R

II

L

L

f(u)

0
u

a−

2
a+

2

(d) 1st merging

L
LLL

f(u)

0
u

(g) after a transforming

R

R
L

II

f(u)

0
u

a1 a2

a3

ū(t)b1
b2

(b) after 1st branching

R
R

L

f(u)

0
u

(e) 2nd merging

G

G

f(u)

0

0
u

(h) final stage

R

R

L
II

II

f(u)

0
u

(c) after 2nd branching

L

G

f(u)

0
u

(f) 3rd merging

R

R

L

II

a1

a2

a3

ū(t)

b1

b2

0
x

u

(i) N-wave in stage 2

Fig. 6. The envelopes of all eight stages. As the maximum of the fundamental
solution decreases the corresponding envelopes change. G: genuine shock, R: right
contact of type I, L: left contact of type I, II: contact of type II. aj , bj in (b), (d)
for horizontal coordinates but vertical in (i).

Due to the second hypothesis in (H1), one can find a moment t0 such that
for all positive t < t0 the concave envelope consists of a single non-horizontal
line. In the case there exists a decreasing genuine shock as denoted in Figure
6(a). In addition, there are two increasing shocks from the very beginning,
one of type I (right contact) and the other of type II. These shocks are
connected by two wave fans centered at the origin.

As t increases, the right contact and the type II contact move at constant
speeds which are the slopes of the corresponding linear parts of the envelopes
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in Figure 6(a). However, the slope of the concave line corresponding to the
genuine shock decreases and hence the shock curve is not linear as one can
find in Figure 7. On the way, we watch two branchings (G→L+R, R→II+R)
in the evolution of the concave envelope while the convex envelope has no
such changes until the fourth stage, see Figures 6(b) and (c). Note that at
every branching point all the curves and the line have the same slope as
shown in Figure 7.

After then, we may observe three merging phenomena (II+R→L, L+II→R,
R+R→G) as illustrated in Figures 6(d)–(f). Note that at every merging
point none of two curves and the line have the same slope. In addition,
centered wave fans appear after the first two mergings. However, if a gen-
uine shock is produced, any kind of rarefaction waves is not produced. This
genuine shock moves to the left slower and slower (very steep in Figure 7
because x is on the horizontal line) until it reaches the speed of zero and
then the genuine shock turns into a left contact which moves to the right,
see Figures 6(g) and 7. (Note that it is possible that, after the third merg-
ing, Figure 6(f), a left contact may appear instead of the genuine shock and
directly go to the stage 7 of Figure 6(g), which is the case discussed in Fig-
ure 5(b).) Finally, this left contact meets with the other left contact after a
long time and generates a genuine shock as in Figure 6(h). The picture in
the circle shows the final merging process. From this moment this genuine
shock is a unique discontinuity and persists forever.

Note that Figure 7 is for an illustration purpose and made under cer-
tain exaggerations to keep the whole dynamics in a single figure. It seems
interesting to compare this illustration with a one obtained from an actual
solution. In fact, we have computed a fundamental solution numerically
and then displayed its dynamics in Figures 8 and 9. In the figure we have
displayed up to the beginning of Stage 7.

In Figure 8 the vector fields (f ′(u), 1) is given after a normalization,
where u is a numerically computed fundamental solution. Then, clearly,
the integral curves are the characteristics of the solution. Shock curves are
formed at the place that the vectors collide to each other. One may observe
the shock curves and easily distinguish if it is a left contact or a right
contact. This shock curves match with Figure 7 pretty well except the ones
near the initial time. For t > 0 small the evolution of the solution is fast and
one may observe numerically if the corresponding part is magnified which
is omitted here.

In Figure 9 simply the wave speed f ′(u) is plotted for the same numerical
solution. In this figure the appearance of the centered rarefaction waves and
propagation of discontinuities discussed before are more clearly observed.
To produce these figures we used MATLAB functions such as ‘quiver’ and
‘contourf’ for a numerical solution obtained using WENO method. These
figures indicate that the theoretical explanation and the numerical simula-
tion match well.
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Fig. 7. Dynamics of characteristics. Numbers in the left indicate the stage of
each strip.

7. Flux under positivity

In this section we consider effects of the positivity of the flux and consider
a flux that satisfies

f(u) ≥ 0 for u ∈ R. (H2)

Under this positivity hypothesis there are several limitations in the evo-
lution of the fundamental solution and hence certain phenomenon does not
appear and the solution becomes simpler. In this section we discuss these
differences.

First one can easily see that the convex envelope h(u; ū(t)) is never
a non-horizontal line in the subinterval (0, a1). Since a contact of type I
should be connected to the zero value or the maximum, there always exist
two contacts of type I counting a genuine shock as two. The positivity of
the flux gives that the convex envelope satisfies h′(u) ≥ 0 for all u ≥ 0.
Therefore, the increasing shocks move to the right and hence the support
of the solution is on the positive side, i.e., spt(u(·, t)) ⊂ [0,∞).

If the fundamental solution has a genuine shock, then the concave en-
velope should be the line connecting the origin and the maximum point
(ū, f(ū)) which should have a strictly positive slope due to (H2). In other
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0

Fig. 8. The vector field for characteristic curves is plotted for a numerical solu-
tion. An integral line of it is a characteristic line of the solution. Collisions in this
vector field indicate the presence of shock curves at the place.

words a genuine shock always moves to the right. Hence the transform-
ing phenomenon in Section 4.4 does not appear and all the dynamics of a
fundamental solution are generated by branching and merging.

In summary, under (H2), there are a unique genuine shock and a finite
number of contact discontinuities of type II at the beginning stage. Note
that contact shock of type I does not appear at this early stage. Then one
might observe two types of branching given in Section 4.1 and two types of
merging given in Section 4.2 in the intermediate stages. In the final stage,
two contacts of types I merge and produce a genuine shock.

It is natural to ask if the signed fundamental solution considered before
is the unique solution of the Cauchy problem (1,2). The uniqueness of the
solution obtained by Krushkov [10] is for a solution with a bounded initial
value. However, it does not imply the uniqueness of a fundamental solution.
In fact the N-waves Np,q(x, t) given in (4) are solutions for all p, q ≥ 0 such
that q − p = M if the flux satisfies the extra hypothesis (H2). Since the
negative part and the positive part of the solution evolve independently,
there is no additional structure to be mentioned about these sign-changing
solutions.
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Fig. 9. The wave speed f ′(u) has been displayed in this figure, where the nu-
merical solution is the one in Fig. 8. This figure clearly shows the interaction
of shock waves and emerging centered rarefaction waves at the place where two
shock waves are merged.
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