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Abstract. We show that the Camassa–Holm equation ut − uxxt + 3uux −
2uxuxx− uuxxx = 0 possesses a global continuous semigroup of weak dissipa-
tive solutions for initial data u|t=0 inH1. The result is obtained by introducing
a coordinate transformation into Lagrangian coordinates. Stability in terms
of H1 and L∞ norm is discussed.
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1. Introduction

The Camassa–Holm equation

(1.1) ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = ū,

has been extensively studied since the first systematic analysis in [5, 6]. Part of the
attraction is the surprising complexity of the equation and its deep and nontrivial
properties. To list a few of its peculiarities: The Camassa–Holm equation has a
bi-Hamiltonian structure [16], it is completely integrable [5], and it has infinitely
many conserved quantities [5].

Here we study the equation with κ = 0 on the real line, that is,

(1.2) ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,

and henceforth we refer to (1.2) as the Camassa–Holm equation.
The equation enjoys two distinct classes of solutions, and the dichotomy between

the two classes is associated with wave breaking, which takes place in finite time in
such a way that the H1 and L∞ norms of the solution remain finite while the spatial
derivative ux becomes unbounded pointwise. Classical solutions can only develop
singularities in finite time in the form of wave breaking, cf. [11], and criteria for wave
breaking are available, cf. e.g., [14]. More precisely, Constantin, Escher, and Molinet
[12, 14, 15] showed the following result: If the initial data u|t=0 = ū ∈ H1(R) and
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ū− ū′′ is a positive Radon measure, then equation (1.2) has a unique global weak
solution u ∈ C([0, T ], H1(R)), for any T positive, with initial data ū. However, any
solution with odd initial data ū in H3(R) such that ūx(0) < 0 blows up in a finite
time.

The dichotomy between the two classes of solutions can nicely be illustrated by
studying multipeakon solutions of the Camassa–Holm of the form

(1.3) u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)|,

where the (pi(t), qi(t)) satisfy the explicit system of ordinary differential equations

q̇i =

n
∑

j=1

pje
−|qi−qj |, ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |.

Observe that the solution (1.3) is not smooth even with continuous functions
(pi(t), qi(t)); one possible way to interpret (1.3) as a weak solution of (1.2) is to
rewrite the equation (1.2) as

ut +
(1

2
u2 + (1 − ∂2

x)
−1(u2 +

1

2
u2
x)
)

x
= 0.

Wave breaking may appear when at least two of the qi’s coincide. If all the pi(0)
have the same sign, the peakons move in the same direction. Higher peakons move
faster than the smaller ones, and when a higher peakon overtakes a smaller, there is
an exchange of mass, but no wave breaking, and the qi(t) remain distinct, and one
has a global solution. However, if some of pi(0) have opposite sign, wave breaking
may incur, see, e.g., [2, 24]. For simplicity, consider the case with n = 2 and one
peakon p1(0) > 0 (moving to the right) and one antipeakon p2(0) < 0 (moving to
the left). In the symmetric case (p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the
solution will vanish pointwise at the collision time t∗ when q1(t

∗) = q2(t
∗), that

is, u(t∗, x) = 0 for all x ∈ R. Clearly, at least two scenarios are possible; one is
to let u(t, x) vanish identically for t > t∗, and the other possibility is to let the
peakon and antipeakon “pass through” each other in a way that is consistent with
the Camassa–Holm equation. In the first case the energy

∫

(u2 + u2
x) dx decreases

to zero at t∗, and remains equal to zero for t ≥ t∗, while in the second case, the
energy remains constant except at t∗. Clearly, the well-posedness of the equation
is a delicate matter in this case. The first solution could be denoted a dissipative
solution, while the second one could be called conservative. Other solutions are
also possible.

Multipeakons play a fundamental role for the Camassa–Holm equation. Indeed,
if the initial data ū is in H1 and ū − ū′′ is a positive Radon measure, then one
can construct a sequence of multipeakons that converges in L∞

loc(R;H1
loc(R)) to

the unique global solution of the Camassa–Holm equation, see [19]. Note that in
this case there will be no wave breaking and dissipative and conservative solutions
coincide.

The problem of continuation beyond wave breaking has been considered by Bres-
san and Constantin [3, 4] and Holden and Raynaud [22]. Bressan and Constantin
reformulated the Camassa–Holm equation as a semilinear system of ordinary dif-
ferential equations taking values in a Banach space. This formulation allowed them
to continue the solution beyond collision time, giving either a global conservative
solution where the energy is conserved for almost all times or a dissipative solution
where energy may vanish from the system. Local existence of the semilinear sys-
tem is obtained by a contraction argument. Furthermore, the clever reformulation
allows for a global solution where all singularities disappear. Going back to the
original function u, one obtains a global solution of the Camassa–Holm equation.
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The well-posedness, i.e., the uniqueness and stability of the solution, is addressed
as follows. In the conservative case one includes in addition to the solution u, a
family of non-negative Radon measures µt with density u2

x dx with respect to the
Lebesgue measure. The pair (u, µt) constitutes a continuous semigroup, in partic-
ular, one has uniqueness and stability. On the other hand, in the dissipative case,
their solution is characterized by an entropy condition of the form

(1.4) ux(x, t) ≤ C(1 + t−1)

where the constant C only depends on the H1 norm of the initial data. The
uniqueness issue is considerably more delicate in the dissipative case. The procedure
in [4] yields a unique semigroup of solutions in H1. However, this does not exclude
the possibility that there exist other solutions that satisfy the entropy condition
(1.4).

In the present paper, as in Bressan and Constantin [4], we reformulate the equa-
tion using a different set of variables and obtain a semilinear system of ordinary
differential equations. However, the change of variables we use is distinct from that
of Bressan and Constantin and simply corresponds to the transformation between
Eulerian and Lagrangian coordinates. Let u = u(t, x) denote the solution (which
corresponds to Eulerian coordinates), and y(t, ξ) the corresponding characteristics
(and we identify the variable ξ with a “particle”), thus yt(t, ξ) = u(t, y(t, ξ)). Our
new variables are y(t, ξ) and

(1.5) U(t, ξ) = u(t, y(t, ξ)), h(t, ξ) = (u2 + u2
x)◦y yξ,

where U corresponds to the Lagrangian velocity while h is the change in Lagrangian
energy distribution along the particle path. Furthermore, let
(1.6)

Q(t, ξ) = −1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη,

P (t, ξ) =
1

4

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη.

Then one can show that

(1.7)











yt = U,

Ut = −Q,
ht = −2QUyξ + (3U2 − 2P )Uξ,

is equivalent to the Camassa–Holm equation (in Lagrangian coordinates). Indeed, a
major part of the paper is to study the properties of the system, or rather a slightly
extended system, and its relationship to the Eulerian variable. After differentiating
(1.7) with respect to ξ, we obtain

(1.8)



















yξt = Uξ,

Uξt =
1

2
h+

(

1

2
U2 − P

)

yξ,

ht = −2QUyξ +
(

3U2 − 2P
)

Uξ,

which is semilinear in (yξ, Uξ, h). In [4], the Lagrangian velocity U is used, and the
second variable, q = (1 + u2

x) ◦ yyξ is equivalent to the Lagrangian energy density
h = (u2+u2

x)◦yyξ. The third variable v = 2 arctan(ux◦y), with no obvious physical
interpretation, is necessary to close the system of ordinary differential equations so
that a contraction argument can be applied. In this article, we rather use the
characteristic y(t, ξ) itself as the third variable.

Dissipative solutions differ from conservative solutions when particles collide,
that is, where yξ(t, ξ) = 0 for ξ in an interval of positive length. If we solve (1.7)
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and (1.8), we obtain the conservative solution. However, to obtain the dissipative
solution, we impose that when particles collide, they lose their energy, that is, if
yξ(τ, ξ) = 0 for some τ , then we set h(τ, ξ) = 0. One can show that yξ(τ, ξ) = 0
implies Uξ(τ, ξ) = 0 so that the system (1.8) implies that, for t ≥ τ ,

yξ(t, ξ) = Uξ(t, ξ) = h(t, ξ) = 0.

After defining

τ(ξ) = sup{t ∈ R
+ | yξ(t′, ξ) > 0 for all 0 ≤ t′ < t},

the modified system to be solved reads (where χB is the indicator function of the
set B)

yt = U, Ut = −Q,(1.9)


















yξt = χ{τ(ξ)>t}Uξ,

Uξt = χ{τ(ξ)>t}
(1

2
h+

(

1

2
U2 − P

)

yξ
)

,

ht = χ{τ(ξ)>t}
(

− 2QUyξ +
(

3U2 − 2P
)

Uξ
)

,

(1.10)

where Q and P are given by

Q(t, ξ) = −1

4

∫

τ(η)>t

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη,

P (t, ξ) =
1

4

∫

τ(η)>t

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη.

Due to the singularity resulting from the use of the indicator function, existence of
solutions is not evident. Global existence of solutions of (1.9)–(1.10), described in
Theorem 2.11, is obtained starting from a contraction argument which offers short
time existence, see Theorem 2.8. Part of the analysis is to identify an appropriate
set, denoted G, of initial data that is invariant under the flow, and that is consis-
tent with the transition back to Eulerian variables. The proper set is introduced
in Definition 2.2. The stability issue is considerably more subtle for dissipative so-
lutions compared to conservative solutions. Let us give a verbal explanation here.
Assuming a solution X(t) = (y, U, h) of the system (1.9)–(1.10), we consider a given
particle, that is, we fix ξ. The solution can be proven to be confined between two
circles (see equations (3.1) and Figure 3). If the solution is below the horizontal
axis yξ, the time evolution drives the solution into the origin. For conservative
solutions, the solution should just continue past the origin, while for dissipative so-
lutions, the solution should terminate at the origin. In the case of initial data that
are close to the origin, but on opposite sides of the horizontal axis, time evolution
will move the solutions apart in the dissipative case, and thus there is no stability in
the Euclidean norm. However, one has to introduce a different measure of distance
that separates points that are near the origin but on opposite sides of the horizontal
axis. The new distance dR is defined in (3.2) in terms of a function g (introduced
in Definition 2.1) that treats the origin properly. The key result concerning global
time stability states that (see Theorem 4.1 for exact conditions) for two solutions
X(t) and X̄(t) we have

sup
t∈[0,T ]

dR(X(t), X̄(t)) ≤ KdR(X0, X̄0)

for some constant K and any given T .
The next step is to transfer this stability into a similar statement in the Eulerian

variable u. However, this is complicated by the redundancy in variables from three
Lagrangian variables into the single Eulerian variable. This is associated with the
notion of relabeling, which corresponds to the proper identification of the exact class
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of Lagrangian variables that corresponds to one and the same Eulerian variable.
The definition of equivalence classes used in the conservative case, will not work for
dissipative solutions. The relabeling is discussed in Section 5. More precisely (see
Definition 5.3), X̄ = (ζ̄ , U, ζ̄ξ, Ūξ, h̄) ∈ G is a relabeling of X = (ζ, U, ζξ , Uξ, h) ∈ G
if there exists a function ψ such that ψ(ξ) − ξ ∈ L∞(R), ψξ − 1 ∈ L∞(R) ∩ L2(R),
ψξ ≥ 0, limξ→−∞(ψ(ξ) − ξ) = 0 such that ȳ = y ◦ ψ and Ū = U ◦ ψ (recall
that y = ζ + ξ and ȳ = ζ̄ + ξ̄). However, this is not an equivalence relation in
the dissipative case, basically because ψ−1 is either not well-defined or sufficiently
regular.

Section 6 discusses the transformation from Lagrangian to Eulerian variables. A
key observation is that Eulerian variable u corresponds to a particular relabeling,
namely where y(ξ) = ξ. The mapping introduces a metric dH1 , defined indirectly.
The existence of a metric is new. In terms of this metric the main result, Theorem
6.6, reads as follows:
There exists a semigroup Tt of weak dissipative solutions of the Camassa–Holm
equation, that is, for any initial data u0 in H1, u(t, x) = Tt(u0) is a weak solution of
(2.1). The semigroup Tt is continuous with respect to the metric dH1 on bounded sets
of H1, that is, for any M > 0 and any sequence un ∈ H1 such that ‖un‖H1 ≤ M ,
we have limn→∞ dH1(un, u) = 0 implies limn→∞ dH1(Tt(un), Tt(u)) = 0.
Furthermore, in Proposition 6.7 we show the following entropy condition. Given
any initial data u0 ∈ H1, the dissipative solution satisfies

(1.11) ux ≤ 2

t
+
√

2 ‖u0‖H1

for almost every x and all t ≥ 0.
In Section 7 this metric is related to the standard metrics in H1 and L∞.

Two results are proved: In Proposition 7.1 we prove that for un ∈ H1 such
that if ‖un − u‖H1 → 0, then dH1 (un, u) → 0. In Proposition 7.2 the roles are
interchanged: For given un, u ∈ H1 such that dH1 (un, u) → 0, we show that
‖un − u‖L∞ → 0. These results are new.

Global dissipative solutions of a more general class of equations were derived by
Coclite, Holden, and Karlsen [7, 8], improving upon [25, 26]. In their approach the
solution was obtained by first regularizing the equation by adding a small diffusion
term εuxx to the equation, and subsequently analyzing the vanishing viscosity limit
ε → 0. In this paper we take a completely different look at dissipative solutions
by analyzing in great detail what happens as collisions in a particle, or Lagrangian
formulation, applying methods that previously have been employed for conservative
solutions [22]. Difference schemes that converge to dissipative solutions can be
found in [9, 10], see also [18].

2. Existence of solutions

In [22], we showed that the Camassa–Holm equation formally is equivalent to
a system of ordinary differential equations corresponding to a transformation from
Eulerian to Lagrangian variables. We recall the reformulation here. Observe first
that the equation (1.2) can be rewritten as the following system

ut + uux + Px = 0,(2.1a)

P − Pxx = u2 +
1

2
u2
x.(2.1b)

We have an explicit expression for P

(2.2) P (t, x) =
1

2

∫

R

e−|x−z|(u2 +
1

2
u2
x

)

(t, z) dz.
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For a smooth solution u we can reformulate (2.1) as

(2.3) (u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x.

Define the characteristics y(t, ξ) as the solutions of

(2.4) yt(t, ξ) = u(t, y(t, ξ))

for a given y(0, ξ). The Lagrangian velocity is given by U(t, ξ) = u(t, y(t, ξ)). Then
we find

(2.5) Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px◦y (t, ξ),

using (2.1a). From (2.2) we infer (at one step changing variables z = y(t, η))

Px◦y (t, ξ) = −1

2

∫

R

sgn(y(t, ξ) − z)e−|y(t,ξ)−z|(u2(t, z) +
1

2
u2
x(t, z)) dz

= −1

2

∫

R

sgn(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1

2
u2
x(t, y(t, η))

)

yξ(t, η) dη

= −1

4

∫

R

sgn(y(ξ) − y(η)) exp(− |y(ξ) − y(η)|)
(

U2yξ + h
)

(η) dη

where the t variable has been dropped to simplify the notation, and where we have
introduced

(2.6) h(t, ξ) = (u2 + u2
x)◦y yξ.

Later we will prove that y is an increasing function for any fixed time t. If, for the
moment, we take this for granted, then Px◦y is equivalent to Q where

(2.7) Q(t, ξ) = −1

4

∫

R

sgn(ξ− η) exp
(

− sgn(ξ− η)(y(ξ)− y(η))
)(

U2yξ +h
)

(η) dη,

which shows that (2.5) rewrites to

(2.8) Ut = −Q.
To derive an equation for ht we first introduce the cumulative Lagrangian energy

(2.9) H(t, ξ) =

∫ y(t,ξ)

−∞
(u2 + u2

x) dx, Hξ = h,

which implies

ht = Hξt =
d

dξ

( d

dt

∫ y(t,ξ)

−∞
(u2 + u2

x) dx
)

=
d

dξ

(

(u2 + u2
x)◦y yt +

∫ y(t,ξ)

−∞
(u2 + u2

x)t dx
)

=
d

dξ

(

(u2 + u2
x)◦y yt +

∫ y(t,ξ)

−∞

(

(u3 − 2Pu)x − (u(u2 + u2
x))x

)

dx
)

=
d

dξ

(

(u2 + u2
x)◦y yt +

[

(u3 − 2Pu) − u(u2 + u2
x)
]y(t,ξ)

−∞

)

=
d

dξ
(u3 − 2Pu)◦y =

d

dξ
(U3 − 2P ◦y U)

= −2QUyξ + (3U2 − 2P )Uξ(2.10)

where we have used (2.3).
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To summarize, we have obtained the following system

(2.11)











yt = U,

Ut = −Q,
ht = −2QUyξ + (3U2 − 2P )Uξ,

where Q(t, ξ) is given by (2.7), and

(2.12) P (t, ξ) =
1

4

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη.

After differentiating the first two equations in (2.11), we obtain

(2.13)



















yξt = Uξ,

Uξt =
1

2
h+

(

1

2
U2 − P

)

yξ,

ht = −2QUyξ +
(

3U2 − 2P
)

Uξ,

that we can rewrite in compact form as

(2.14) Zt = F (X)Z

where X and Z are given by X = (y, U, h) and Z = (yξ , Uξ, h) and the definition of
the 3×3 matrix F (X) follows from (2.13). From (2.14), one can see that the system
(2.13) is semilinear with respect to Z. In [22], it is proven that the system (2.11)
is a well-posed system of ordinary differential equations in a Banach space, and in
this way we obtain that the existence, uniqueness and stability of solutions of this
system. When going back to the Eulerian variables, we have to take into account
a new variable µ which corresponds to the energy density and whose absolutely
continuous part coincides with (u2 + u2

x) dx. We have that for a set of times which
can only have zero measure, µ admits singular parts, which means that a strictly
positive amount of energy is concentrated on a null set. This happens precisely
when particles collide, that is, when yξ(t, ξ) = 0 for ξ in an interval of strictly
positive length. Intuitively, if we allow particles to rebound with a strength which
depends on the amount of energy transported by the colliding particles, we obtain
the conservative solutions. If, at collision, we reset the energy transported by the
colliding particles to zero, the particles will not rebound and remain stuck; some
energy will be lost and the solutions we obtain are dissipative. The conservative
solutions are obtained by solving (2.11) and (2.13).

However, we here choose a different approach, as it is also possible to obtain the
dissipative solutions by modifying (2.13) in the following way. Let τ(ξ) be the first
time when yξ(t, ξ) vanishes, i.e.,

(2.15) τ(ξ) = sup{t ∈ R
+ | yξ(t′, ξ) > 0 for all 0 ≤ t′ < t}.

The dissipative solutions are obtained by imposing that

yξ(t, ξ) = 0 for all t ≥ τ(ξ).

As explained earlier, the energy transported by colliding particles is reset to zero,
and we require that h(t, ξ) = 0 for all t > τ(ξ). Thus, the expressions (2.7) and
(2.12) for Q and P become
(2.16)

Q(t, ξ) = −1

4

∫

τ(η)>t

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη,

and

(2.17) P (t, ξ) =
1

4

∫

τ(η)>t

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη,
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respectively. In this section we will prove the existence of solutions X = (y, U, h)
of

(2.18) yt = U, Ut = −Q,
and

(2.19)



















yξt = χ{τ(ξ)>t}Uξ,

Uξt = χ{τ(ξ)>t}
(1

2
h+

(

1

2
U2 − P

)

yξ
)

,

ht = χ{τ(ξ)>t}
(

− 2QUyξ +
(

3U2 − 2P
)

Uξ
)

,

for Q and P given by (2.7) and (2.17), respectively, where τ is defined by (2.15).
The system (2.19) can be rewritten in the compact form

(2.20) Zt = χ{τ(ξ)>t}F (X)Z

where Z = (yξ , Uξ, h). Going back to the original variable u, we obtain the dissi-
pative solution. However, this requires careful analysis. Note that in (2.19), we do
not reset h(t, ξ) to zero for t ≥ τ(ξ) because it simplifies the analysis. The behavior
of the system remains unchanged because in the new definition of P and Q given
in (2.16) and (2.17) the regions where t ≥ τ(ξ) are excluded from the domain of
integration.
Notation: To ease the presentation we introduce the following notation for the
Banach spaces we will often use. Let

E = L2(R) ∩ L∞(R)

and

W = L2(R) × L2(R) × L1(R),

W̄ = E ∩ E ∩ L1(R),

V = L∞(R) × L2(R) × L2(R) × L2(R) × L1(R),

V̄ = L∞(R) ×E ×E ×E × L1(R).

For subdomains Ω of R, we denote

E(Ω) = L2(Ω) ∩ L∞(Ω)

and similarly, W (Ω), W̄ (Ω), V (Ω) and V̄ (Ω). For any function f ∈ C([0, T ], B) for
T ≥ 0 and B a normed space, we denote

‖f‖L1
T
B =

∫ T

0

‖f(t, · )‖B dt and ‖f‖L∞

T
B = sup

t∈[0,T ]

‖f(t, · )‖B .

In the case B = Lp(R), we write ‖f‖L1
TB

= ‖f‖L1
TL

p
R

. For the existence results,

the function g defined below does not play a particular role; nonetheless it will be
discussed now as it will play an important role in the definition of the semigroup
metric in the following sections.

Definition 2.1. For x = (x1, x2, x3, x4, x5) ∈ R
2, we define

g1(x) = |x4| + 2(1 + x2
2)x3,

g2(x) = x3 + x5,

and

(2.21) g(x) =

{

min(g1(x), g2(x)) if x4 ≤ 0,

g2(x) if x4 > 0.
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Equivalently, we have

g(x) =

{

|x4| + 2(1 + x2
2)x3, if x ∈ Ω,

x3 + x5, otherwise,

where Ω is the following subset of R
5

(2.22) Ω = {x ∈ R
5 | |x4| + 2(1 + x2

2)x3 ≤ x3 + x5 and x4 ≤ 0},

see Figure 3.

We introduce the set G as follows.

Definition 2.2. The set G consists of all triplet (ζ, U, h) such that

X = (ζ, U, ζξ , Uξ, h) ∈ V̄ ,(2.23a)

g(y, U, yξ, Uξ, h) − 1 ∈ E,(2.23b)

yξ ≥ 0, h ≥ 0, almost everywhere,(2.23c)

lim
ξ→−∞

ζ(ξ) = 0,(2.23d)

1

yξ + h
∈ L∞(R),(2.23e)

yξh = y2
ξU

2 + U2
ξ almost everywhere,(2.23f)

where we denote y(ξ) = ζ(ξ) + ξ.

To simplify the notation, we will denote by X both (ζ, U, h) and (ζ, U, ζξ , Uξ, h)
and it should be clear from the context which of these functions X refers to. We
want to prove that, for initial data in X0 ∈ G, there exists a solution X(t) of
(2.18) and (2.19). For this purpose we introduce the following system which follows
directly from (2.18) and (2.19) after making the identification q ↔ yξ, w ↔ Uξ,
namely

ζt = U and Ut = −Q,(2.24)


















qt = χ{τ(ξ)>t}w,

wt = χ{τ(ξ)>t}(
1

2
h+

(

1

2
U2 − P

)

q),

ht = χ{τ(ξ)>t}(−2QUq +
(

3U2 − 2P
)

w),

(2.25)

where Q and P are given by
(2.26)

Q(t, ξ) = −1

4

∫

τ(η)>t

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2q + h
)

(η) dη,

and

(2.27) P (t, ξ) =
1

4

∫

τ(η)>t

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2q + h
)

(η) dη.

The definition of τ given by (2.15) (after replacing yξ by the corresponding variable
q) is not appropriate for q ∈ C([0, T ], L∞(R)), and, in addition, it is not clear from
this definition whether τ is measurable or not. That is why we replace this definition
by the following one. Let {ti} be a dense countable subset of [0, T ]. Define

At =
⋃

n≥1

⋂

ti≤t

{

ξ ∈ R | q(t, ξ) > 1

n

}

.



10 HOLDEN AND RAYNAUD

The sets At are measurable for all t, and we have At′ ⊂ At for t ≤ t′. We consider
a dyadic partition of the interval [0, T ] (that is, for each n, we consider the set
{2−niT}2n

i=0) and set

τn(ξ) =

2n

∑

i=0

iT

2n
χi,n(ξ)

where χi,n is the indicator function of the set A2−niT \A2−n(i+1)T . The function τn

is by construction measurable. One can check that τn(ξ) is increasing with respect
to n, it is also bounded by T . Hence, we can define

τ(ξ) = lim
n→∞

τn(ξ),

and τ is a measurable function. The next lemma gives the main property of τ .

Lemma 2.3. If, for every ξ ∈ R, q(t, ξ) is positive and continuous with respect to
time, then

(2.28) τ(ξ) = sup{t ∈ R
+ | q(t′, ξ) > 0 for all 0 ≤ t′ < t},

that is, we retrieve the definition (2.15).

Proof. We denote by τ̄ (ξ) the right-hand side of (2.28), and we want to prove that
τ̄ = τ . We claim that

(2.29) for all t < τ̄ (ξ), we have ξ ∈ At, and for all t ≥ τ̄ (ξ), we have ξ /∈ At.

If t < τ̄ (ξ), then inf t′∈[0,t] q(t
′, ξ) > 0 because q is continuous in time and positive.

Hence, there exists an n such that inf t′∈[0,t] q(t
′, ξ) > 1

n and ξ ∈ ⋂ti≤t
{

ξ ∈ R | q(ti, ξ) > 1
n

}

so that ξ ∈ At. If t ≥ τ̄ (ξ), then there exists a sequence ti(k) of elements in
the dense family {ti} of [0, T ] such that ti(k) ≤ τ̄ ≤ t and limk→∞ ti(k) = τ̄ .
Since q(t, ξ) is continuous, limk→∞ q(ti(k), ξ) = q(τ̄ (ξ), ξ) = 0 and for any integer

n > 0, there exists a k such q(ti(k), ξ) ≤ 1
n and ti(k) ≤ t. Hence, for any n > 0,

ξ /∈ ⋂ti≤t
{

ξ ∈ R | q(ti, ξ) > 1
n

}

and therefore ξ /∈ At. When τ̄ (ξ) > 0, for any

n > 0, there exists 0 ≤ i ≤ 2n−1 such that 2−niT < τ̄ ≤ 2−n(i+1)T . From (2.29),
we infer that ξ ∈ A2−niT \A2−n(i+1)T . Hence, τn(ξ) = 2−niT , so that

τ̄(ξ) − T

2n
≤ τn(ξ) ≤ τ̄ (ξ) +

T

2n
.

Letting n tend to infinity, we conclude that τ(ξ) = τ̄(ξ). If τ̄(ξ) = 0, then ξ /∈ At
for all t ≥ 0 and τn(ξ) = 0 for all n. Hence, τ(ξ) = τ̄ (ξ) = 0. �

We denote generically (ζ, U, q, w, h) by X and the triplet (q, w, h) by Z. The
existence of solutions is proved by a contraction argument in the Banach space V̄ .
We define the mapping P : X ∈ C([0, T ], V̄ ) 7→ X̃ ∈ C([0, T ], V̄ ) as follows. Given

X , we compute (P,Q) as defined in (2.26) and (2.27). Then, X̃ = P(X) is given
for each ξ ∈ R, by the solutions of

(2.30) Ũt(t, ξ) = Q(t, ξ), ζ̃t(t, ξ) = Ũ(t, ξ)

and, for t ≤ τ̃ (ξ), as the solution of the system of ordinary differential equations

(2.31)























q̃t(t, ξ) = w̃(t, ξ),

w̃t(t, ξ) =
1

2
h̃(t, ξ) +

(

1

2
Ũ2 − P

)

(t, ξ)q̃(t, ξ),

h̃t(t, ξ) = −2(QŨ)(t, ξ)q̃(t, ξ) +
(

3Ũ2 − 2P
)

(t, ξ)w̃(t, ξ),

with initial data (ζ0, U0, q0, w0, h0) = (ζ0, U0, ζ0,ξ , U0,ξ, h0) for a givenX0 = (ζ0, U0, h0)

in G. For t > τ̃ , we set Z̃(t, ξ) = Z̃(τ(ξ), ξ). In a compact form we may write

(2.32) Z̃t(t, ξ) = χ{τ̃(ξ)>t}(ξ)F (X, Ũ )Z̃(t, ξ),
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with a slight abuse of the notation of F when compared to (2.20). Note that, in

this definition, we do not reset the energy density h̃ to zero after collision but keep
the value it reached just before the collision. By direct integrations, from (2.30),

we first obtain Ũ as Q is given and then ζ̃. The equation Z̃t = F (X, Ũ)Z̃ is linear
and therefore it admits a unique global solution in [0, T ]. Hence, we can define

Z̃(t, ξ) for t ∈ [0, τ(ξ)] and for t ≥ τ(ξ), Z̃(t, ξ) = Z̃(τ(ξ), ξ). The mapping P is
thus well-defined.

We have identified q with yξ. However, yξ does not decay at infinity and yξ does
not belong to L2(R) but yξ − 1 = ζξ belongs to L2(R). That is why we introduce
the new variable v = q − 1. Let BM denote the following subset of V̄ :
(2.33)

BM =
{

X = (ζ, U, v, w, h) ∈ V̄ | ‖X‖V + ‖g(X) − 1‖E +

∥

∥

∥

∥

1

q + h

∥

∥

∥

∥

L∞

T
L∞

R

≤M
}

.

In the definition of BM , we slightly abused the notation by denoting g(y, U, q, w, h)
by g(X), and we will continue to do so in the remaining text.

The following lemma contains the estimate we will need for P and Q.

Lemma 2.4. (i) For all X ∈ C([0, T ], BM ), we have

(2.34) ‖Q‖L∞

T (L2
R
∩L∞

R
) + ‖P‖L∞

T (L2
R
∩L∞

R
) ≤ C(M)

for a constant C(M) which only depends on M .

(ii) For all X = (ζ, U, v, w, h) and X̄ = (ζ̄ , Ū , v̄, w̄, h̄) in C([0, T ], BM), we have

∥

∥Q− Q̄
∥

∥

L1
T

(L2
R
∩L∞

R
)
+
∥

∥P − P̄
∥

∥

L1
T

(L2
R
∩L∞

R
)

≤ C(M)

(

T
(

∥

∥ζ − ζ̄
∥

∥

L∞

T
L∞

R

+
∥

∥U − Ū
∥

∥

L∞

T
L2

R

+ ‖v − v̄‖L∞

T L2
R

+
∥

∥h− h̄
∥

∥

L∞

T
L1

R

)

+ ‖τ − τ̄‖L1
R

+

∫

R

∣

∣

∣

∣

∫ τ̄

τ

(
∣

∣h̄(t, ξ)
∣

∣χ{τ<τ̄}(ξ) + |h(t, ξ)|χ{τ̄<τ}(ξ)
)

dt

∣

∣

∣

∣

dξ

)

for a constant C(M) which only depends on M .

Proof. We establish only the estimates for Q as the estimates for P can be obtained
in exactly the same way. Let f(ξ) = χ{ξ>0}(ξ)e

−ξ . We can write Q as Q = Q1 +Q2

with

(2.35) Q1(t, ξ) = −e
−ζ(ξ)

4
(f ? [χ{τ(ξ)>t}r])(t, ξ)

where

(2.36) r = r1 + r2, r1 = eζU2(1 + v), and r2 = eζh,

and a similar expression for Q2, see [22]. We recall Young’s inequalities for con-
volution product of Lp functions: For any f ∈ Lp and g ∈ Lq with 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞ and 1

r = 1
p + 1

q − 1 ≥ 0, we have

(2.37) ‖f ? g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

This implies

‖Q1(t, · )‖E ≤ 1

4

∥

∥e−ζ
∥

∥

L∞

R

(
∥

∥f ? [χ{τ(ξ)>t}r1]
∥

∥

E
+
∥

∥f ? [χ{τ(ξ)>t}r2]
∥

∥

E
)

≤ C(M)
(

(‖f‖L1
R

+ ‖f‖L2
R

) ‖r1‖L2
R

+ (‖f‖L1
R

+ ‖f‖L∞

R

) ‖r2‖L1
R

)

≤ C(M)
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where we have denoted by C(M) a generic constant that only depends on M . We
will continue to denote by C(M) such generic constants. We have

f ?
(

[χ{τ(ξ)>t}r] − [χ{τ̄(ξ)>t}r̄]
)

= f ? [χ{τ(ξ)>t}χ{τ(ξ)<τ̄(ξ)}(r − r̄)]

(2.38)

+ f ? [(χ{τ(ξ)>t} − χ{τ̄(ξ)>t})χ{τ(ξ)<τ̄(ξ)}r̄]

+ f ? [χ{τ̄(ξ)>t}χ{τ(ξ)≥τ̄(ξ)}(r − r̄)]

+ f ? [(χ{τ(ξ)>t} − χ{τ̄(ξ)>t})χ{τ(ξ)≥τ̄(ξ)}r].

We estimate each of these terms. The first and the third ones are similar, that is
why we treat only the first one. After applying Young’s inequalities, we obtain

∥

∥f ? [χ{τ(ξ)>t}χ{τ(ξ)<τ̄(ξ)}(r1 − r̄1)]
∥

∥

E
≤ (‖f‖L1

R

+ ‖f‖L2
R

) ‖r1 − r̄1‖L2
R

≤ C(M)
( ∥

∥ζ − ζ̄
∥

∥

L∞

R

+
∥

∥U − Ū
∥

∥

L2
R

+ ‖v − v̄‖L2
R

)

,

and
∥

∥f ? [χ{τ(ξ)>t}χ{τ(ξ)<τ̄(ξ)}(r2 − r̄2)]
∥

∥

E
≤ (‖f‖L2

R

+ ‖f‖L∞

R

) ‖r2 − r̄2‖L1
R

≤ C(M)
( ∥

∥ζ − ζ̄
∥

∥

L∞

R

+
∥

∥h− h̄
∥

∥

L1
R

)

.

As far as the second term in (2.38) is concerned (the fourth term will be treated
similarly), we have (χ{τ(ξ)>t}−χ{τ̄(ξ)>t})χ{τ(ξ)<τ̄(ξ)} = −χ{τ(ξ)≤t<τ̄(ξ)}, and there-
fore

∥

∥f ? [(χ{τ(ξ)>t}−χ{τ̄(ξ)>t})χ{τ(ξ)<τ̄(ξ)}r̄1]
∥

∥

L∞

T
E

≤ (‖f‖L2
R

+ ‖f‖L∞

R

)
∥

∥

∥
χ{τ(ξ)≤t<τ̄(ξ)}e

ζ̄Ū2(1 + v̄)
∥

∥

∥

L1
TL

1
R

≤ C(M)

∫

R×R

χ{τ(ξ)≤t<τ̄(ξ)}(ξ) dξdt ≤ C(M) ‖τ − τ̄‖L1
R

,

after applying Fubini’s theorem. Similarly, we get
∥

∥f ? [(χ{τ(ξ)>t} − χ{τ̄(ξ)>t})χ{τ(ξ)<τ̄(ξ)}h̄]
∥

∥

L∞

T
E

≤ (‖f‖L2
R

+ ‖f‖L∞

R

)
∥

∥

∥
χ{τ(ξ)≤t<τ̄(ξ)}e

ζ̄ h̄
∥

∥

∥

L1
T
L1

R

≤ C(M)

∫

R

∫ τ̄(ξ)

τ(ξ)

∣

∣h̄(t, ξ)
∣

∣χ{τ(ξ)<τ̄(ξ)}(ξ) dtdξ.

�

We introduce the sets

(2.39) Aε =
{

ξ ∈ R | 0 < q0(ξ) ≤ ε and − ε ≤ w0(ξ) < 0
}

and

(2.40) Kγ =
{

ξ ∈ R | h0(ξ) ≥ γ
}

.

As the next lemma shows, the domains Aε and Kγ are domains for which we
know a priori that the particles they contain are going to collide. This a pri-
ori control is essential when proving existence and stability. Since ∩n>0A 1

n
= ∅,

limε→0 meas(Aε) = 0. We have

meas(Kγ) ≤
1

γ

∫

R

h0(ξ) dξ ≤
1

γ
‖h0‖L1

R

and therefore limγ→∞ meas(Kγ) = 0. The structure of (2.31), and, in particular,
the semilinearity plays a crucial role as the following lemma shows. We need to



DISSIPATIVE SOLUTIONS FOR THE CAMASSA–HOLM EQUATION 13

study two solutions X and X̃ , and we denote the corresponding quantities associ-
ated with X̃ with a tilde, that is, τ̃ , etc.

Lemma 2.5. Given X0 ∈ BM0 for some constant M0, given X = (ζ, U, v, w, h) ∈
C([0, T ], BM ), we denote X̃ = (ζ̃ , Ũ , ṽ, w̃, h̃) the solution of (2.30), (2.31), that is,

X̃ = P(X) with initial data X0. Let M̄ = ‖P‖L∞

T
L∞

R

+ ‖Q‖L∞

T
L∞

R

+ M0. The

following holds:
(i) For all t and almost all ξ

(2.41) q̃(t, ξ) ≥ 0, h̃(t, ξ) ≥ 0,

and

(2.42) q̃h̃ = Ũ2q̃2 + w̃2.

Thus, q̃(t, ξ) = 0 implies w̃(t, ξ) = 0. We recall the notation q̃ = ṽ + 1.

(ii) We have

(2.43)

∥

∥

∥

∥

1

q̃ + h̃
(t, · )

∥

∥

∥

∥

L∞

R

≤ 9

2
eCT

∥

∥

∥

∥

1

q0 + h0

∥

∥

∥

∥

L∞

R

for all t ∈ [0, T ] and a constant C which depends on M̄ and T . In particular, q̃+ h̃
remains bounded strictly away from zero.

(iii) There exists an ε depending only on T and M̄ such that if ξ ∈ Aε, then

X̃(t, ξ) ∈ Ω for all t ∈ [0, T ] (see (2.22) and Figure 3 for the definition of Ω), q̃(t, ξ)
is a decreasing function and w̃(t, ξ) an increasing function of time, and therefore
we have

(2.44) − ε ≤ w̃(t, ξ) ≤ 0 and 0 ≤ q̃(t, ξ) ≤ ε

for all t ∈ [0, T ]. In addition, for ε sufficiently small, depending only on M̄ and T ,
we have

(2.45) Aε ⊂
{

ξ ∈ R | 0 < τ(ξ) < T
}

.

(iv) There exists a γ depending only on T and M̄ such that if ξ ∈ Kγ , then X̃(t, ξ) ∈
Ω for all t ∈ [0, T ], q̃(t, ξ) is a decreasing function and w̃(t, ξ) an increasing function
of time, and therefore

w0(ξ) ≤ w̃(t, ξ) ≤ 0 and 0 ≤ q̃(t, ξ) ≤ w0(ξ).

In addition, for γ sufficiently large, depending only on M̄ and T , we have

(2.46) Kγ ⊂
{

ξ ∈ R | 0 ≤ τ̃ (ξ) < T
}

.

(v) For any ε > 0 and γ > 0, there exists T > 0 such that

(2.47)
{

ξ ∈ R | 0 < τ̃ (ξ) < T
}

⊂ Aε ∪ Kγ .
Proof. (i) Since X0 ∈ G, the equations (2.41), (2.42) and the inequality (2.43) hold
for almost every ξ ∈ R at t = 0. We consider such a ξ and will drop it in the
notation. From (2.31), we have, on the one hand,

(q̃h̃)t = q̃th̃+ h̃tq̃ = w̃h̃+ 3Ũ2w̃q̃ − 2QŨq̃2 − 2Pw̃q̃,

and, on the other hand,

(q̃Ũ2 + w̃2)t = 2q̃tq̃Ũ
2 + 2q̃2ŨtŨ + 2w̃tw̃

= 3w̃Ũ2q̃ − 2Pw̃q̃ + h̃w̃ − 2q̃2QŨ.

Thus, (q̃h̃− q̃2Ũ2 − w̃2)t = 0, and since q̃w̃(0) = (q̃2Ũ2 + w̃2)(0), we have q̃h̃(t) =

(q̃2Ũ2 + w̃2)(t) for all t ∈ [0, T ]. We have proved (2.42). From the definition of
τ , we have that q̃(t) > 0 on [0, τ(ξ)) and by definition of q̃, we have q̃(t) = 0 for
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t ≥ τ(ξ). Hence, q̃(t) ≥ 0 for t ≥ 0. From (2.42), it follows that, for t ∈ [0, τ),

h̃(t) = Ũ2 q̃2+w̃2

q̃ (t) and therefore h̃(t) ≥ 0. By continuity (with respect to time) of

h̃, we have h̃(τ(ξ)) ≥ 0 and, since the variable does not change for t ≥ τ(ξ), we

have h̃(t) ≥ 0 for all t ≥ 0.

(ii) We consider a fixed ξ that we ignore in the notation. We denote
∣

∣

∣
Z̃
∣

∣

∣

2
=

(q̃2 + w̃2 + h̃2)1/2 the Euclidean norm of Z̃ = (q̃, w̃, h̃). Since Z̃t = F (X, Ũ)Z̃, we
have

d

dt
|Z̃|−2

2 = −2|Z̃|−4
2 Z̃ · dZ̃

dt
= −2|Z̃|−4

2 Z̃ · F (X, Ũ)Z̃

≤ sup
t∈[0,T ]

|F (X(t), Ũ(t))||Z̃|−2
2 .

We have |F (X(t), Ũ(t))| ≤ K(|P (t)|+ |Q(t)|+ |Ũ(t)|) ≤ K(‖P‖L∞

T
L∞

R

+‖Q‖L∞

T
L∞

R

+

‖Ũ‖L∞

T
L∞

R
) for a constant K which depends on the norm chosen for the matrix

F . From (2.30), we infer ‖Ũ‖L∞

T
L∞

R
≤ M0 + T ‖Q‖L∞

T
L∞

R

≤ C(M̄, T ) for a con-

stant depending only on M̄ and T . We denote generically by C(M̄, T ) such con-

stant. Hence,
∣

∣

∣
F (X(t), Ũ(t))

∣

∣

∣
≤ C(M̄ , T ). Applying Gronwall’s lemma, we obtain

|Z(t)|−2
2 ≤ e2C(M̄,T )T |Z(0)|−2

2 . Hence,

(2.48)
1

|q̃| + |w̃| + |h̃|
(t) ≤ 3

|q̃| + |w̃| + |h̃|
(0)eC(M̄,T )T .

From (2.42), as q̃ and h̃ are positive, we have

|w̃(t)| ≤
√

q̃(t)h̃(t) ≤ 1

2
(q̃(t) + h̃(t)),

and therefore (|q̃| + |w̃| + |h̃|)(t) ≤ 3
2 (q̃ + h̃)(t). Hence, (2.48) yields

1

q̃ + h̃
(t) ≤ 9

2
eC(M̄,T )T 1

q0 + h0
.

(iii) We claim that there exists a constant ε(M̄, T ) depending only on M̄ and T
such that, for all ε ≤ ε(M̄, T ), ξ ∈ R and t ∈ [0, T ],

(2.49) q̃(t, ξ) ≤ ε and w̃(t, ξ) = 0 implies q̃(t, ξ) = 0

and

(2.50) q̃(t, ξ) ≤ ε implies w̃t(t, ξ) ≥ 0.

We consider a fixed ξ ∈ R and suppress it in the notation. If w̃(t) = 0, then (2.42)

yields q̃(t)h̃(t) = q̃(t)2Ũ2(t). Assume that q̃(t) 6= 0, then h̃(t) = q̃(t)Ũ2(t). We have

seen in the proof of (ii) that ‖Ũ‖L∞

T
L∞

R
≤ C1(M̄, T ) for some constant C1(M̄, T )

depending only on M̄ and T and therefore h̃(t) = q̃(t)Ũ2(t) ≤ εC1(M̄, T )2. From

Lemma (ii), we have h̃(t) + q̃(t) ≥ (C2(M̄, T ))−1 for some constant C2(M̄, T )

depending only on M̄ and T . Hence, (C2(M̄, T ))−1 ≤ h̃(t) + q̃(t) ≤ C1(M̄, T )2ε.
By choosing ε(M̄, T ) ≤ (2C1(M̄, T )C2(M̄, T )2)−1, we are led to a contradiction.
Hence, q̃(t) = 0, and we have proved (2.49). If q̃(t) ≤ ε, we have

w̃t =
1

2
(h̃+ q̃) + (

1

2
Ũ2 − P − 1

2
)q̃ ≥ (2C2(M̄, T ))−1 − C3(M̄, T )q̃

≥ (2C2(M̄, T ))−1 − 2C3(M̄, T )ε.(2.51)

By choosing ε(M̄, T ) ≤ (4C2(M̄, T )C3(M̄, T ))−1, we get w̃t ≥ 0, and we have
proved (2.50). For any ε ≤ ε(M̄, T ), we consider a given ξ in Aε and again suppress
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it in the notation. We define

t0 = sup{t ∈ [0, τ̃ ] | q̃(t′) < 2ε and w̃(t′) < 0 for all t′ ≤ t}.
Let us prove that t0 = τ̃ . Assume the opposite, that is, t0 < τ̃ . Then, we have either
q̃(t0) = 2ε or w̃(t0) = 0. We have q̃t = w̃ ≤ 0 on [0, t0] and q̃(t) is decreasing on this
interval. Hence, q̃(t0) ≤ q̃(0) ≤ ε, and therefore we must have w̃(t0) = 0. Then,
(2.49) implies q̃(t0) = 0, and therefore t0 = τ̃ , which contradicts our assumption.
From (2.51), we get, for ε sufficiently small,

0 = w̃(τ) ≥ w̃(0) − (4C2(M̄, T ))−1τ̃ ,

and therefore τ̃ ≤ 4εC2(M̄, T ). By taking ε small enough we can impose τ̃ < T ,
which proves (2.45). It is clear from (2.50) that w̃ is increasing. Assume that

X̃(t, ξ) leaves Ω for some t. Then, after using item (ii), we get

(C1(M̄, T ))−1 ≤ q̃(t) + h̃(t) ≤ |w̃(t)| + 2(1 + Ũ2(t))q̃(t) ≤ C2(M̄, t)ε

for two constants C1(M̄, T ) and C2(M̄, T ) depending only on M̄ and T and, by
taking ε small enough, we are led to a contradiction.

(iv) Let us consider a given ξ in Kγ . We are going to determine a lower bound
on γ depending only on M̄ and T such that the conclusion of the lemma holds.
For γ large enough, we have X0(ξ) ∈ Ω as otherwise g(X0(ξ)) = q0 + h0 and
M0 + 1 ≥ g(X0(ξ)) = q0 +h0 ≥ γ would lead to a contradiction. Hence, w0(ξ) ≤ 0.
We now ignore the dependence on ξ in the notation. We define t0 as

t0 = sup{t ∈ [0, τ̃ ] | w̃(0) ≤ w̃(t̄) ≤ 0 for all 0 ≤ t̄ ≤ t}.
On [0, t0], we have q̃t = w̃ ≤ 0 so that q̃ is decreasing and therefore 0 ≤ q̃(t) ≤ q̃(0)
for t ∈ [0, t0]. Hence, the functions w̃(t) and q̃(t) are bounded on [0, t0] by a
their values at initial time and |w̃(t)| ≤ M0 and |q̃(t)| ≤ M0 + 1 on [0, t0]. From

the governing equation for h̃, i.e., h̃t = −2Qq̃ + (3Ũ2 − 2P )w̃, it follows that

h̃t ≥ −C(M̄), and we can choose γ large enough so that h(t) ≥ γ
2 on [0, t0]. We

can also choose γ large enough so that, on [0, t0],

|w̃| + 2(1 + Ũ2)q̃ ≤ C(M̄ ) ≤ γ

2
≤ h̃(t) + q̃(t),

and therefore X̃(t) remains in Ω for t ∈ [0, t0]. The function w̃(t) is strictly increas-
ing on [0, t0], indeed we have

(2.52) w̃t(t) =
1

2
h̃(t) + (

1

2
U2(t) − P (t))q̃(t) ≥ γ

4
− C(M̄) >

γ

8
,

for γ large enough. Thus we have proved that the conclusions of (iv) hold for
[0, t0], and now we are going to prove that t0 = τ̃ . From (2.52), we get that
w̃(t, ξ) ≥ w̃(0, ξ) + γ

8 t, and there exists t1 ≤ 8γ−1 |w̃(0, ξ)| γ−1 = γ−1C(M̄) such
that w̃(t1) = 0. We choose γ large enough so that t1 ≤ t0 (if t0 = 0, we set

t1 = t0 = 0) and t1 < T . From item (i), we get q̃(t1)h̃(t1) = Ũ2(t1)q̃
2(t1), so that

either q̃(t1) = 0 or γ
2 ≤ h̃(t1) = Ũ2(t1)q̃(t1) ≤ C(M̄). By taking γ large enough,

we can exclude the latter alternative and therefore q̃(t1) = 0, and t1 is a collision
time for the particle ξ, i.e., t1 = τ̃ (ξ) and t1 = t0 = τ̃ . Since t1 < T , we have also
proved (2.46). The conclusions of point (iv) hold on [0, τ̃ ], but they also hold on
[τ̃ , T ] as q̃(t) = w̃(t) = 0 on this interval.

(v) Without loss of generality we assume T ≤ 1. From item (ii), there exists

ε′ depending only on M̄ such that (q̃(t, ξ) + h̃(t, ξ))(2(Ũ2(t, ξ) + 1))−1 ≥ ε′ for all
ξ and t ∈ [0, T ]. Let ε̄ = min(ε, ε′). We consider a fixed ξ, which we will drop in
the notation, such that τ̃ (ξ) < T and ξ ∈ Kcγ . After applying Gronwall’s lemma
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on (2.32), we get that |Z̃(t)| ≤ C(M̄, T )|Z̃(0)| ≤ C(M̄, γ) for a constant C(M̄, γ)
depending only on M̄ and γ as we assumed that T ≤ 1. Let us introduce

t0 = inf{t ∈ [0, τ̃) | 0 < q̃(t̄) ≤ ε̄, −ε̄ < w̃(t̄, ξ) ≤ 0 for all t̄ ∈ [t, τ̃ )}.
Since q̃tt(τ̃ ) = w̃t(τ̃ ) = 1

2 h̃(τ̃ ) > 0 and q̃t(τ̃ ) = w̃(τ̃ ) = q̃(τ̃ ) = 0, the definition of t0
is well-posed when τ̃ > 0, and we have t0 < τ̃ . Assume that t0 > 0, then q(t0) = 0
or q̃(t0) = ε̄ or w̃(t0) = −ε̄ or w̃(t0) = 0. We cannot have q̃(t0) = 0 by the definition

of τ̃ . If q̃(t0) = ε̄, then 0 = q̃(τ̃ ) = q̃(t0) +
∫ τ̃

t0
w̃(t) dt implies 0 ≥ ε̄ − ε̄(τ̃ − t0)

which leads to a contradiction if we choose T < 1. If w̃(t0) = −ε̄, then the second
equation in (2.31) implies 0 ≤ −ε̄+C(M̄, γ)(τ̃−t0) which leads to a contradiction if

T is chosen small enough. At last, if w̃(t0) = 0 then, by (2.42), q̃(t0)Ũ(t0)
2 = h̃(t0)

and it implies ε̄ ≥ q(t0) ≥ q̃(t0)+h̃(t0)

Ũ2(t0)+1
= 2ε′ which contradicts the definition of ε̄.

Hence, t0 = 0 and then ξ ∈ Aε̄ ⊂ Aε, and we have proved (iv). �

For anyX0 ∈ G, we have, by definition, that ‖X0‖V̄ +‖g(X0) − 1‖E+
∥

∥

∥

1
q0+h0

∥

∥

∥

L∞

<

∞. The following lemma holds.

Lemma 2.6. Given M ≥ 0, there a time T̄ and M̄ > 0 such that, for all T ≤ T̄ and
any initial data X0 ∈ G∩BM , P is a mapping from C([0, T ], BM̄ ) to C([0, T ], BM̄ ).

Proof. To simplify the notation, we denote generically by K(M) and C(M̄ ) increas-
ing functions of M and M̄ , respectively. The functions K(M) and C(M̄) — that
may change from line to line — can always be computed explicitly but in order to
ease the notation and because the exact expressions of these functions do not mat-
ter in the end, we do not compute their detailed form. Without loss of generality,
we assume T ≤ 1 and that there exists γ such that the conclusions of Lemma 2.5
hold for t ∈ [0, T ]. We consider the following sets:

B1 = {ξ ∈ R | 0 ≤ h0(ξ) ≤M}, B2 = {ξ ∈ R | M < h0(ξ) < γ},
and B3 = Kγ = {ξ ∈ R | γ ≤ h0(ξ)}.

We have meas(B2 ∪ B3) ≤ 1
M ‖h0‖L1(R) ≤ 1. Let X ∈ C([0, T ], BM̄ ) for a value of

M̄ that will be determined at the end as a function of M . We can assume without
loss of generality that M̄ ≥M . Let X̃ = P(X). From Lemma 2.5, we have

(2.53) ‖Q‖L∞

T
E ≤ C(M̄) and ‖P‖L∞

T
E ≤ C(M̄ ).

Since Ũt = −Q, we get

(2.54) ‖Ũ‖L∞

T
E ≤ ‖U0‖E + T ‖Q‖L∞

T
E ≤M + C(M̄)T,

and, since ζ̃t = Ũ , we get

(2.55) ‖ζ̃‖L∞

T
L∞

R
≤M + ‖Ũ‖L∞

T
L∞

R
T ≤M + C(M̄)T.

On B1, we have ‖h0‖L2(B1) ≤M ‖h0‖L1(B1)
and therefore ‖h0‖E(B1)

≤ K(M). From

(2.31), by the Minkowsky inequality for integrals (see [23, Theorem 5.60]), we get

‖ṽ(t, · )‖ ≤ ‖v0‖ +

∫ t

0

‖w̃(t′, · )‖ dt′,(2.56a)

‖w̃(t, · )‖ ≤ ‖w0‖ + ‖1

2
Ũ2 − P‖T(2.56b)

+

∫ t

0

(1

2
‖h̃(t′, · )‖ + ‖1

2
Ũ2 − P‖L∞‖ṽ(t′, · )‖

)

dt′,

‖h̃(t, · )‖ ≤ ‖h0‖+ ‖2QŨ‖T(2.56c)
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+

∫ t

0

(

‖2QŨ‖L∞‖ṽ(t′, · )‖ + ‖3Ũ2 − 2P‖L∞‖w̃(t′, · )‖
)

dt′,

where ‖ · ‖ stands for either the L1, L2, or the L∞ norms. On B1, the inequalities
(2.56) imply

‖(ṽ, w̃, h̃)(t, · )‖E(B1) ≤ K(M) + C(M̄)T + C(M̄)

∫ t

0

‖(ṽ, w̃, h̃)(t′, · )‖E(B1) dt
′

and, by Gronwall’s lemma,

(2.57) ‖(ṽ, w̃, h̃)‖L∞

T
E(B1) ≤ (K(M) + C(M̄)T )eC(M̄)T .

From (2.42), we have h̃ = Ũ2(1 + ṽ)2 − h̃ṽ + w̃2. Hence,

‖h̃‖L∞

T L1(B1) ≤ ‖Ũ‖2
L∞

T
E(B1)

(1 + 2‖ṽ‖L∞

T E(B1) + ‖ṽ‖2
L∞

T
E(B1)

)

+ ‖h̃‖2
L∞

T
E(B1)

‖ṽ‖2
L∞

T
E(B1)

+ ‖w̃‖2
L∞

T
E(B1)

(2.58)

≤ (K(M) + C(M̄)T )eC(M̄)T ,(2.59)

from (2.57). On B2, we have ‖h0‖L2(B2)
≤ γM ≤ C(M̄) if we assume without loss

of generality that M̄ ≥ γ. The inequality (2.56c) yields

(2.60) ‖h̃‖L∞

T
E(B2) ≤ C(M̄ )(1 + ‖(ṽ, w̃)‖L∞

T
E(B2)

).

The inequalities (2.56a) and (2.56b) give

‖(ṽ, w̃)(t, · )‖E(B2) ≤ K(M) + C(M̄)T + T‖h̃‖L∞

T E(B2) +

∫ t

0

‖(ṽ, w̃)(t′, · )‖E(B2) dt
′

and, by Gronwall’s lemma,

(2.61) ‖(ṽ, w̃)‖L∞

T
E(B2) ≤ (K(M) + C(M̄)T + T‖h̃‖L∞

T
E(B2))e

C(M̄)T .

After inserting (2.60) into (2.61), we get

(2.62) ‖(ṽ, w̃)‖L∞

T
E(B2) ≤ (K(M) + C(M̄)T + ‖(ṽ, w̃)‖L∞

T
E(B2)T )eC(M̄)T ,

which after choosing T small enough, implies

(2.63) ‖(ṽ, w̃)‖L∞

T
E(B2) ≤ (K(M) + C(M̄)T )eC(M̄)T .

On B3 = Kγ , we can apply Lemma 2.5 and get ‖q̃‖L∞

T
L∞(B3) ≤ ‖q0‖L∞(B3),

‖w̃‖L∞

T
L∞(B3) ≤ ‖w0‖L∞(B3) so that, since meas(B3) ≤ 1,

(2.64) ‖(ṽ, w̃)‖L∞

T
E(B3) ≤ K(M).

From (2.56c), we get

‖h̃‖L∞

T L1(B2∪B3) ≤M + C(M̄)‖(ṽ, w̃)‖L∞

T L1(B2∪B3)

≤M + C(M̄)‖(ṽ, w̃)‖L∞

T L∞(B2∪B3)

because meas(B2 ∪ B3) ≤ 1. By (2.63) and (2.64), it follows that

(2.65) ‖h̃‖L∞

T L1(B2∪B3) ≤ (K(M) + C(M̄ )T )eC(M̄)T .

Gathering (2.54), (2.55), (2.57), (2.59), (2.63), (2.64) and (2.65), we get

(2.66) ‖X̃‖L∞

T V̄ ≤ (K(M) + C(M̄)T )eC1(M̄)T .

We claim that

(2.67) g(X̃(t, ξ)) ≤ g(X̃0(ξ)) + C

∫ t

0

z(t′, ξ) dt′

where z(t, ξ) denotes (|Ũ |+ |ṽ|+ |w̃|+ |h̃|+ |P |+ |Q|)(t, ξ), and where the constant

C in (2.67) depends on ‖q̃‖L∞

T
L∞(R), ‖Ũ‖L∞

T
L∞(R), ‖P̃‖L∞

T
L∞(R) and ‖Q̃‖L∞

T
L∞(R).
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In particular, by (2.66), C is bounded by some constant depending only on M̄ . Let
us prove this claim. We consider a fixed ξ and drop it in the notation. We have
d
dtg2(X̃(t)) = ∇g2(X̃) · dX̃dt . Hence, since ∇g2(X̃) = (0, 0, 1, 0, 1), we get that for

any t̄ such that g(X̃(t̄)) = g2(X̃(t̄)),

g(X̃(t)) ≤ g2(X̃(t)) ≤ g2(X̃(t̄)) + C(M̄)

∫ t

t̄

z(t′) dt′

= g(X̃(t̄)) + C(M̄ )

∫ t

t̄

z(t′) dt′(2.68)

for any t ∈ [t̄, T ]. In particular, (2.68) implies the claim (2.67) if X0 ∈ Ωc. If

X0 ∈ Ω, since |∇g1(X̃)| = |[0, 2Ũ q̃, 2(1 + Ũ2),−1, 0]| ≤ C(M̄), we get

g1(X̃(t)) ≤ g1(X0) + C(M̄)

∫ t

0

z(t′, ξ) dt′

= g(X0) + C(M̄)

∫ t

0

z(t′, ξ) dt′.(2.69)

If X̃(t) ∈ Ω, then the claim (2.67) follows from (2.69). If X̃(t) ∈ Ωc, then we

consider the first time t̄ when X̃ leaves Ω. We have either w̃(t̄) = 0 or g1(X̃(t̄)) =

g2(X̃(t̄)). In the latter case, the claim follows from combining (2.69) and (2.68). If

w̃(t̄) = 0, then, from (2.42), either q̃(t̄) = 0 so that τ̃ (ξ) = t̄ and X̃ does not leave Ω

or h̃(t̄) = Ũ2(t̄)q̃(t̄). In this case, g1(X̃(t̄)) = 2(1+Ũ2)q̃(t̄) > (1+Ũ2)q̃(t̄) = g2(X̃(t̄))

which cannot hold as, by continuity, we must have g1(X̃(t̄)) ≤ g2(X̃(t̄)). Hence, we
have proved the claim (2.67). From (2.67), we get that

(2.70) ‖g(X̃) − 1‖L∞

T
E(B1∪B2) ≤M + C(M̄)T ‖z‖L∞

T
E(B1∪B2)

≤M + C(M̄)T

because ‖z‖L∞

T E(B1∪B2)
≤ C(M̄) by (2.63), (2.66), and (2.53). For ξ ∈ B3, we can

apply Lemma 2.5 which tells us that X̃(t, ξ) ∈ Ω for all t so that

g(X̃(t, ξ)) = g1(X̃(t, ξ)) = (|w̃| + 2(1 + U2)q̃)(t, ξ) ≤ (K(M) + C(M̄))eC(M̄)T

from (2.66). Since meas(B3) ≤ 1, it implies

(2.71) ‖g(X̃) − 1‖L∞

T
E(B3) ≤ (K(M) + C(M̄)T )eC(M̄)T .

Gathering (2.70) and (2.71), we get

(2.72) ‖g(X̃) − 1‖L∞

T
E ≤ (K(M) + C(M̄)T )eC(M̄)T .

From (2.43), we get

(2.73)

∥

∥

∥

∥

1

q̃ + h̃

∥

∥

∥

∥

L∞

T L∞

R

≤ K(M)eC(M̄)T .

Gathering (2.66), (2.72) and (2.73), we finally obtain

‖X̃‖L∞

T
V̄ + ‖g(X̃) − 1‖L∞

T
E +

∥

∥

∥

∥

1

q̃ + h̃

∥

∥

∥

∥

L∞

T L∞

≤ (K1(M) + C1(M̄))eC(M̄)T

for some constant K1(M) and C1(M̄) that only depends on M and M̄ , respectively.
We now set M̄ = 2K1(M), we can choose T small enough such that (K1(M) +

C1(M̄)T )eC1(M̄)T ≤ 2K1(M) = M̄ and therefore ‖X̃‖L∞

T V̄ + ‖g(X̃) − 1‖L∞

T
E +

∥

∥

∥

1
q̃+h̃

∥

∥

∥

L∞

T
L∞

≤ M̄ . �
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Given X0 ∈ BM , by Lemma 2.6, there exists an M̄ which depends only on M
such that P is a mapping from C([0, T ], BM̄) to C([0, T ], BM̄ ) for T small enough.
We denote by Im(P) the image by P of C([0, T ], BM̄), i.e.,

Im(P) =
{

P(X) | X ∈ C([0, T ], BM̄ )
}

.

The following lemma holds.

Lemma 2.7. There exists T̄ > 0 such that, for all T < T̄ , the mapping P : Im(P) →
Im(P) is a contraction in V̄ .

Proof. Let X , X̄ be two elements of Im(P). We denote X = (ζ,U , q,w,h,U ) =
P(X), Z = (q,w,h), X̄ = (ζ̄, Ū , q̄, w̄, h̄) = P(X̄) and Z̄ = (q̄, w̄, h̄). Given
ε > 0, let Gε = Aε ∩ K 1

ε
. From Lemma 2.5, we know that, for T small enough,

{ξ ∈ R | τ (ξ) < T or τ̄ (ξ) < T} ⊂ Gε and we consider such T . Without loss of
generality we also assume T ≤ 1.

Step 1: Estimates for
∫ τ̄

τ h̄(t, ξ) dt,
∫ τ

τ̄ h(t, ξ) dt and ‖τ − τ̄‖L1
R

.

Recall that we denote by C(M) a generic constant that may change from line to
line but only depend on M . Let us now consider ξ such that τ(ξ) 6= τ̄ (ξ). Without
loss of generality we assume τ̄ (ξ) < τ(ξ). At time t = 0, X and X̄ coincide,
and therefore we cannot have τ(ξ) = 0 because it would imply τ̄ (ξ) = 0. Hence,
0 < τ̄ (ξ) < τ(ξ) ≤ T . Since X belongs to the image of P , we can apply Lemma 2.5

with X̃ = X and get that there exists ε̄ such that for any ε ≤ ε̄, w(t, ξ) ∈ Ω and,
in particular, w(t, ξ) ≤ 0. Hence, from (2.31), we get that for t ∈ [τ̄(ξ), τ(ξ)]

0 ≥ w(t, ξ) = w(τ̄ , ξ) +
1

2

∫ t

τ̄

h(t′, ξ) dt′ +

∫ t

τ̄

(
1

2
U − P )q(t′, ξ) dt.

Hence,
∫ τ

τ̄

h(t, ξ) dt ≤ −w(τ̄ , ξ) + C(M)

∫ τ

τ̄

q(t′, ξ) dt′

≤ w̄(τ̄ , ξ) − w(τ̄ , ξ) + C(M)

∫ τ

τ̄

q(t′, ξ) − q̄(t′, ξ) dt′

≤ C(M)(‖w − w̄‖L∞

T E + ‖q − q̄‖L∞

T E)(2.74)

where we have used the fact that w̄(τ̄ , ξ) = 0 and q̄(t, ξ) = 0 for t ∈ [τ̄ (ξ), τ(ξ)].
Since X(t) ∈ BM̄ , 1/(q(t, ξ) + h(t, ξ)) ≤ M̄ , we have

τ(ξ) − τ̄ (ξ) ≤ 1

M̄

∫ τ

τ̄

(h+ q)(t, ξ) dt

≤ C(M)(‖w − w̄‖L∞

T
E + ‖q − q̄‖L∞

T
E) +

1

M̄

∫ τ

τ̄

(q − q̄)(t, ξ) dt

≤ C(M)(‖w − w̄‖L∞

T
E + ‖q − q̄‖L∞

T
E).(2.75)

From (2.74) and (2.75), we get

(2.76) ‖τ − τ̄‖L1
R

+

∫

R

∣

∣

∣

∫ τ̄

τ

( ∣

∣h̄(t, ξ)
∣

∣χτ<τ̄(ξ) + |h(t, ξ)|χτ̄<τ (ξ)
)

dt
∣

∣

∣
dξ

≤ C(M) meas(Gε)
∥

∥X − X̄
∥

∥

L∞

T E
.

Step 2: Estimate for
∥

∥Z − Z̄
∥

∥

L∞

T
W̄ (Gc

ε)
.

For ξ ∈ Gcε, we have Zt = F (X,U )Z and Z̄t = F (X, Ū )Z̄ for all t ∈ [0, T ]. Hence,

(2.77)
∥

∥(Z − Z̄)(t, · )
∥

∥

E(Gc
ε)

≤
∫ t

0

∥

∥

(

F (X,U ) − F (X̄, Ū )
)

(t′, · )Z(t′, · )
∥

∥

E(Gc
ε)
dt′
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+

∫ t

0

∥

∥F (X̄, Ū )(Z − Z̄)(t′, · )
∥

∥

E(Gc
ε)
dt′.

We have

(

F (X,U ) − F (X̄, Ū )
)

Z =
[

0,
(1

2
(U 2 − Ū

2
) − (P − P̄ )

)

q,

− 2(QU − Q̄Ū )q +
(

3(U 2 − Ū
2
) − 2(P − P̄ )

)

w
]

,

and therefore

(2.78)
∥

∥(F (X,U ) − F (X̄, Ū ))Z
∥

∥

L1
TE

≤ C(M)
( ∥

∥Q− Q̄
∥

∥

L1
T
E

+
∥

∥P − P̄
∥

∥

L1
T
E

+
∥

∥U − Ū
∥

∥

L1
T
E

)

.

Applying Gronwall’s lemma to (2.77), as
∥

∥F (X̄, Ū )
∥

∥

L∞

T
L∞(R)

≤ C(M), we get

(2.79)
∥

∥Z − Z̄
∥

∥

E(Gc
ε)

≤ C(M)
∥

∥(F (X,U ) − F (X̄, Ū))Z
∥

∥

L1
T
E
.

Hence, since
∥

∥U − Ū
∥

∥

L1
T
E
≤ T

∥

∥Q− Q̄
∥

∥

L1
T
E

from (2.30), we get by (2.78) that

(2.80)
∥

∥Z − Z̄
∥

∥

L∞

T
E(Gc

ε)
≤ C(M̄ , T )

(
∥

∥Q− Q̄
∥

∥

L1
T
E

+
∥

∥P − P̄
∥

∥

L1
T
E

)

.

Lemma 2.4 and (2.76) then give us

(2.81)
∥

∥Z − Z̄
∥

∥

L∞

T E(Gc
ε)

≤ C(M)(T + meas(Gε))
∥

∥X − X̄
∥

∥

L∞

T V̄
.

From (2.42), we have h = U 2(1 + v)2 + w2 − vh and a similar expression for h̄. It
follows that

∥

∥h − h̄
∥

∥

L1(Gc
ε)

≤ C(M)
∥

∥X − X̄
∥

∥

V̄ (Gc
ε)

+
∥

∥vh − v̄h̄
∥

∥

L1(Gc
ε)

(2.82)

≤ C(M)(
∥

∥X − X̄
∥

∥

V̄ (Gc
ε)

+
∥

∥h − h̄
∥

∥

L2(Gc
ε)

),

and (2.81) gives us

(2.83)
∥

∥Z − Z̄
∥

∥

L∞

T W̄ (Gc
ε)

≤ C(M)(T + meas(Gε))
∥

∥X − X̄
∥

∥

L∞

T V̄
.

Step 3: Estimate for
∥

∥Z − Z̄
∥

∥

L∞

T W̄ (Gε)
.

We assume without loss of generality that τ̄ (ξ) < τ (ξ) ≤ T . From Lemma 2.5, we
have that q is positive decreasing and w is negative decreasing so that

(2.84) |q(t, ξ)| ≤ |q(τ̄ , ξ)| and |w(t, ξ)| ≤ |w(τ̄ , ξ)|
for t ∈ [τ̄ (ξ), T ], and therefore
(2.85)
|q(t, ξ) − q̄(t, ξ)| ≤ |q(τ̄ , ξ) − q̄(τ̄ , ξ)| and |w(t, ξ) − w̄(t, ξ)| ≤ |w(τ̄ , ξ) − w̄(τ̄ , ξ)|

for t ∈ [τ̄ (ξ), T ] because q̄(t, ξ) = w̄(t, ξ) = 0 for t ∈ [τ̄ (ξ), T ]. For t ∈ [τ̄ (ξ), T ], we
have ht = −2(QU)q + (3U 2 − 2P )w and h̄t = 0. Hence,

(2.86)
∣

∣(h − h̄)(t, ξ)
∣

∣ ≤
∣

∣(h − h̄)(τ, ξ)
∣

∣+ C(M)(|(q − q̄)(τ, ξ)| + |(w − w̄)(τ, ξ)|),
from (2.84) and (2.85). For t ∈ [0, τ̄ ], we have Zt = F (X,U )Z and Z̄t =
F (X, Ū )Z̄. We proceed as in the previous step and in the same way as we ob-
tained (2.79), we now obtain

|(Z − Z̄)(τ̄ , ξ)| ≤ C(M)
∥

∥(F (X,U ) − F (X̄, Ū))Z
∥

∥

L1
T
L∞

R

,

and, after using (2.78) and (2.80), we get

(2.87) |(Z − Z̄)(τ̄ , ξ)| ≤ C(M)(T + meas(Gε))
∥

∥X − X̄
∥

∥

L∞

T
V̄
.



DISSIPATIVE SOLUTIONS FOR THE CAMASSA–HOLM EQUATION 21

Combining (2.85), (2.86) and (2.87), we get

(2.88) |(Z − Z̄)(t, ξ)| ≤ C(M)(T + meas(Gε))
∥

∥X − X̄
∥

∥

L∞

T
V̄

for all t ∈ [0, T ]. We take ε small enough so that meas(Gε) ≤ 1, and then (2.88)
implies

(2.89) ‖(Z − Z̄)‖L∞

T
W̄ (Gε) ≤ C(M)(T + meas(Gε))

∥

∥X − X̄
∥

∥

L∞

T V̄
.

Step 4: Conclusion.
Combining (2.83) and (2.89), we get

(2.90)
∥

∥Z − Z̄
∥

∥

L∞

T W̄
≤ C(M)(T + meas(Gε))

∥

∥X − X̄
∥

∥

L∞

T V̄
.

From (2.30), we obtain
∥

∥U − Ū
∥

∥

L∞

T
E
≤ T

∥

∥Q− Q̄
∥

∥

L∞

T
E

≤ C(M̄ , T )(T + meas(Gε))
∥

∥X − X̄
∥

∥

L∞

T
V̄

(2.91)

by Lemma 2.4 and (2.76). We have also
(2.92)
∥

∥ζ − ζ̄
∥

∥

L∞

T L∞(R)
≤ T

∥

∥U − Ū
∥

∥

L∞

T L1(R)
≤ C(M)(T + meas(Gε))

∥

∥X − X̄
∥

∥

L∞

T V̄

by (2.91). Combining (2.90), (2.91) and (2.92), we get
∥

∥X − X̄
∥

∥

L∞

T
V̄
≤ C(M)(T + meas(Gε))

∥

∥X − X̄
∥

∥

L∞

T
V̄
.

Finally, as limε→0 meas(Gε) = 0, we can choose first ε > 0 and then T > 0 small
enough such that

∥

∥X − X̄
∥

∥

L∞

T
V̄
≤ 1

2

∥

∥X − X̄
∥

∥

L∞

T
V̄
,

and thus P is a contraction. �

The physical or Lagrangian variables are (y, U, h). However, the analysis is
carried out with the variables (ζ, U, ζξ , Uξ, h) which belong to the Banach space
V̄ . In the remaining part of the paper, we will for the sake of clarity intentionally
abuse the notation and denote generically (y, U, h), (ζ, U, h) or (ζ, U, ζξ , Uξ, h) by
the same symbol X . We denote (ζξ , Uξ, h) generically by Z.

Theorem 2.8 (Short time solution). For any initial data in X0 = (y0, U0, h) ∈ G,
there exists a time T > 0 such that there exists a unique solution X = (ζ, U, h) ∈
C([0, T ], V̄ ) of (2.18) and (2.19). Moreover X(t) ∈ G for all t ∈ [0, T ].

Proof. For a short enough time T , we obtain from Lemma 2.7 that P is a con-
traction on Im(P), and therefore, there exists a unique fixed point (ζ, U, v, w, h) ∈
C([0, T ], V̄ ) which is solution to (2.31). We have to prove that Uξ = w and yξ = q.
We can rewrite Q as

Q = −1

4
e−y(ξ)

∫ ξ

−∞
(U2q + h)(η)χ{τ(η)>t}(η)e

y(η) dη

+
1

4
ey(ξ)

∫ ∞

ξ

(U2q + h)(η)χ{τ(η)>t}(η)e
−y(η) dη,

and we can see that Q is differentiable. A direct computation gives us that

(2.93) Qξ = −1

2
(U2q + h)(ξ)χ{τ(ξ)>t}(ξ) + qP,

and Qξ ∈ L1
loc([0, 1] × R). In addition, as q(t, ξ) = χ{τ(ξ)>t}(ξ)q(t, ξ), we have

wt(t, ξ) = −Qξ(t, ξ), that is,

(2.94) w(t, ξ) = U0ξ(ξ) −
∫ t

0

Qξ(t
′, ξ) dt′.
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On the other hand, we have

U(t, ξ) = U0(ξ) −
∫ t

0

Q(t′, ξ) dξ.

Using Fubini’s theorem and integrating by parts, one can prove that
∫

R

ψ(ξ)wξ(t, ξ) dξ +

∫

R

ψξ(ξ)w(t, ξ) dξ = 0

for any ψ smooth with compact support, and therefore w = Uξ. In the same way,
as

ζ(t, ξ) = ζ0 +

∫ t

0

U(t′, ξ) dt′ and v(t, ξ) = ζ0ξ +

∫ t

0

Uξ(t
′, ξ) dt′

because Uξ = w, we get v = ζξ . Let us prove that X(t) ∈ G for all t. From (2.41)
and (2.42), we get q(t, ξ) ≥ 0, h(t, ξ) ≥ 0 and qh = U 2q2 + w2 for all t and almost
all ξ and therefore, since Uξ = w and yξ = q, the conditions (2.23c) and (2.23f)

are fulfilled. Since ζ(t, ξ) = ζ(ξ, 0) +
∫ t

0 U(t, ξ) dt, by the Lebesgue dominated

convergence theorem, we obtain limξ→−∞ ζ(t, ξ) = 0 because U ∈ H1(R). Hence,
since in additionX(t) ∈ BM̄ , X(t) fulfills all the conditions (2.23) andX(t) ∈ G. �

Note that the set G ∩ BM is closed with respect to the topology of V̄ . We have

ht = (−2QUyξ + (3U2 − 2P )Uξ)χ{τ(ξ)>t}(ξ),

and, since yξ(t, ξ) = Uξ(t, ξ) = 0 for t ≤ τ(ξ) and Pξ = yξQ, we get that, for all
time,

(2.95) ht = −2QUyξ + (3U2 − 2P )Uξ = (U3 − 2PU)ξ.

The time derivative of h is an exact derivative in ξ. We have that (ζ, U, ζξ , Uξ, h) is

a fixed point of P , and the results of Lemma 2.5 hold for X = X̃ = (ζ, U, ζξ , Uξ, h).
Since this lemma is going to be used extensively we rewrite it for the fixed point
solution X . For this purpose, we redefine BM , Aε and Kγ , see (2.33), (2.39) and
(2.40), as

BM =
{

X = (ζ, U, ζξ, Uξ, h) ∈ V̄ | ‖X‖V̄ + ‖g(X) − 1‖E +

∥

∥

∥

∥

1

yξ + h

∥

∥

∥

∥

L∞(R)

≤M
}

with X = (ζ, U, ζξ , Uξ, h),

(2.96) Aε =
{

ξ ∈ R | 0 < yξ(0, ξ) ≤ ε and − ε ≤ Uξ(0, ξ) < 0
}

,

and

(2.97) Kγ =
{

ξ ∈ R | h0(ξ) ≥ γ
}

.

Recall that g(X) denotes g(y, U, yξ, Uξ, h). Lemma 2.5 rewrites as follows.

Lemma 2.9. Given a constant M0, initial data X0 ∈ BM0 , let X = (ζ, U, ζξ , Uξ, h) ∈
C([0, T ], BM ) denote the solution of (2.18) and (2.19) with initial data X0. Intro-
duce M̄ = ‖P‖L∞

T L∞(R) + ‖Q‖L∞

T L∞(R) +M0. The following holds:

(i) We have

(2.98)

∥

∥

∥

∥

1

yξ + h
(t, · )

∥

∥

∥

∥

L∞

R

≤ 9

2
eCT

∥

∥

∥

∥

1

y0ξ + h0

∥

∥

∥

∥

L∞

R

for all t ∈ [0, T ] and a constant C which depends on M̄ and T .

(ii) There exists an ε depending only on T and M̄ such that if ξ ∈ Aε, then yξ(t, ξ)
is a decreasing function and Uξ(t, ξ) an increasing function of time and therefore
we have

(2.99) − ε ≤ Uξ(t, ξ) ≤ 0 and 0 ≤ yξ(t, ξ) ≤ ε
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for all t ∈ [0, T ]. In addition, for ε sufficiently small, depending only on M̄ and T ,
we have

(2.100) Aε ⊂
{

ξ ∈ R | 0 < τ(ξ) < T
}

.

(iii) There exists γ depending only on M̄ and T such that, if ξ ∈ Kγ then (y, U, yξ, Uξ, h)(t, ξ) ∈
Ω for all t ∈ [0, T ], yξ(t, ξ) is a decreasing function and Uξ(t, ξ) an increasing func-
tion of time and therefore

Uξ(0, ξ) ≤ Uξ(t, ξ) ≤ 0 and 0 ≤ yξ(t, ξ) ≤ yξ(0, ξ).

In addition, for γ sufficiently large, depending only on M̄ and T , we have

(2.101) Kγ ⊂
{

ξ ∈ R | 0 ≤ τ(ξ) < T
}

.

(iv) For any ε > 0 and γ > 0, there exists T > 0 such that

(2.102)
{

ξ ∈ R | 0 < τ(ξ) < T
}

⊂ Aε ∪ Kγ .
To prove global existence of the solution we will use the estimate contained in

the following lemma.

Lemma 2.10. Given M0 > 0 and T0 > 0, there exists a constant M which only
depends on M0 and T0 such that, for any X0 = (y0, U0, h0) ∈ BM0 , the following
holds:
(i) if h0 ∈ E(B) for some set B, then ‖Z‖L∞

T
E(B) is bounded by a constant that

depends only on M and ‖h0‖E(B);

(ii) X(t) ∈ BM for all t ∈ [0, T ], where X(t) denotes the short time solution on
[0, T ] with T ≤ T0 given by Theorem 2.8 for initial data X0.

Proof. From (2.95), we get
(2.103)
∫ N

−N
h(t, ξ) dξ =

∫ N

−N
h(0, ξ) dξ+

∫ t

0

(

(U3−2PU)(t′, N)−(U3−2PU)(t′,−N)
)

dt′.

Since U(t, · ) ∈ H1(R), limξ→±∞ U(t, ξ) = 0. By the Lebesgue dominated conver-
gence theorem, and since h is positive, by letting N tend to infinity in (2.103), we
get that

(2.104) ‖h(t, · )‖L1 = ‖h0‖L1

for all t ∈ [0, T ]. We denote generically by M a constant that depends only on M0

and T0. To simplify the notation we suppress the dependence in t for the moment.
We have

U2(ξ) =

∫ ξ

−∞
U(η)Uξ(η) dη −

∫ ∞

ξ

U(η)Uξ(η) dη

≤
∫

R

U(η)Uξ(η) dη =

∫

{yξ(η)>0}
U(η)Uξ(η) dη(2.105)

since, from (2.23e), Uξ(ξ) = 0 when yξ(ξ) = 0. For almost every ξ such that
yξ(ξ) > 0, we have

|U(ξ)Uξ(ξ)| =

∣

∣

∣

∣

∣

√
yξU(ξ)

Uξ(ξ)
√

yξ(ξ)

∣

∣

∣

∣

∣

≤ 1

2

(

U(ξ)2yξ(ξ) +
U2
ξ (ξ)

yξ(ξ)

)

=
1

2
h(ξ),

from (2.23e). Inserting this inequality in (2.105), we obtain

(2.106) ‖U(t, · )‖L∞(R) ≤
1√
2
‖h(t, · )‖1/2

L1(R) =
1√
2
‖h0‖1/2

L1(R) ≤M.

From (2.11), we obtain that

(2.107) |ζ(t, ξ)| ≤ |ζ(0, ξ)| + ‖U(t, · )‖L∞(R) T ≤M,
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that is, ‖ζ(t, · )‖L∞

R

≤M . Since h and yξ are positive, we have

(2.108) |Q(t, ξ)| ≤ 1

4
‖U(t, · )‖2

L∞(R)

∫

R

e−|y(t,ξ)−y(t,η)|yξ(t, η) dη +
1

4

∫

R

h(t, η) dη,

and, after a change of variables, we obtain
(2.109)

|Q(t, ξ)| ≤M

∫

R

e−|y(t,ξ)−η| dη +
1

4
‖h(t, · )‖L1(R) = 2M +

1

4
‖h0‖L1(R) ≤M.

A similar bound holds for P . To summarize, we have established that

(2.110) ‖ζ(t, · )‖L∞(R) + ‖U(t, · )‖L∞(R) + ‖h(t, · )‖L1(R)

+ ‖P (t, · )‖L∞(R) + ‖Q(t, · )‖L∞(R) ≤M.

Let us consider a set B such that ‖h0‖E(B) is finite. We have, from (2.35), that

‖Q1(t, · )‖L2(B) ≤M
∥

∥f ? χ{τ(ξ)>t}r
∥

∥

L2(B)

≤M ‖f‖L∞(R)

∥

∥χ{τ(ξ)>t}r
∥

∥

L2(B)

≤M ‖r(t, · )‖L2(B)

≤M(‖U(t, · )‖L2(B) + ‖ζξ(t, · )‖L2(B) + ‖h(t, · )‖L2(B)).

The same bound holds for Q2, and therefore

(2.111) ‖Q(t, · )‖L2(B) ≤M(‖U(t, · )‖L2(B) + ‖ζξ(t, · )‖L2(B) + ‖h(t, · )‖L2(B)).

Similarly, one proves

(2.112) ‖P (t, · )‖L2(B) ≤M(‖U(t, · )‖L2(B) + ‖ζξ(t, · )‖L2(B) + ‖h(t, · )‖L2(B)).

Let α(t) = ‖U(t, · )‖E(B) + ‖ζξ(t, · )‖E(B) + ‖Uξ(t, · )‖E(B) + ‖h(t, · )‖E(B). From

the integrated versions of (2.18) and (2.19), after taking the E(B)-norm on both
sides, adding the four norms and using (2.112) and (2.111), we obtain

α(t) ≤ α(0) +M +M

∫ t

0

α(t′) dt′.

Hence, Gronwall’s lemma gives us that

(2.113) α(t) ≤ (α(0) +M)eMT ≤ C

for some constant C which depends only on M and ‖h0‖E(B). We have thus proved

(i).
We consider the constant γ given by Lemma 2.9 (iii). By (2.110) and Lemma

2.9, the constant γ only depends on M0 and T0 and therefore ‖h0‖E(Kc
γ) ≤ M .

Then (2.104), (2.107) and item (i) of the present lemma with B = Kcγ imply that
‖X(t, · )‖V̄ (Kc

γ) ≤ M . For ξ ∈ Kγ , by Lemma 2.9, yξ(t, ξ) is positive decreasing in

time while Uξ(t, ξ) is negative and increasing. Hence,

(2.114) ‖yξ(t, · )‖L∞(Kγ) ≤M and ‖Uξ(t, · )‖L∞(Kγ) ≤M.

We have meas(Kγ) ≤ 1
γ

∫

R
h0(ξ) dξ ≤ M and therefore (2.114) implies together

with (2.104), (2.107) and (2.106) that ‖X‖V̄ (Kγ) ≤ M . Hence, ‖X‖V̄ ≤ M . To

estimate ‖g(X) − 1‖E , we use the claim (2.67) which in the present context rewrites

(2.115) g(X(t, ξ)) ≤ g(X0(ξ)) +M

∫ t

0

z(t′, ξ) dt′
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where z(t, ξ) denotes (|U |+ |ζξ|+ |Uξ|+ |h|+ |P |+ |Q|)(t, ξ). We use the Minkowski
inequality on (2.115) and get

‖g(X(t, · )) − 1‖E(Kc
γ) ≤ ‖g(X0(ξ)) − 1‖E(Kc

γ) +M

by (2.113), (2.111), and (2.112). For ξ ∈ Kγ , we have X(t, ξ) ∈ Ω and there-
fore g(X(t, ξ)) = −Uξ + 2(1 + U2)yξ. Hence, ‖g(X(t, · )) − 1‖E(Kγ) ≤ M because

‖X‖V̄ ≤ M and meas(Kγ) ≤ M . Thus we have proved that ‖g(X(t, · )) − 1‖E ≤
M . It remains to prove that

∥

∥

∥

1
yξ+h

∥

∥

∥

L∞

T L∞

R

≤ M , but this follows directly from

(2.98) now that we have established that ‖P‖L∞

T
L∞

R

+ ‖Q‖L∞

T
L∞

R

≤M . �

We can now prove global existence of solutions.

Theorem 2.11 (Global solution). For any initial data in (y0, U0, h0) ∈ G, there
exists a unique global solution (y, U, h) ∈ C(R+,G) of (2.18) and (2.19).

Proof. The argument is somewhat classical but is complicated here by the fact that
the short term solution described in Theorem 2.8 does not provide any lower bound
on the time of existence of the solution. Let us introduce the maximum time of
existence Tmax defined as follows

Tmax = sup{t ∈ R+ | the solution X(t) to (2.11) exists in [0, t]}.
Let us assume that Tmax < ∞. From the previous lemma, there exists an M such
that X(t) ∈ BM for all t ∈ [0, Tmax). From the local existence theorem, there exists
T such that the solution is defined on [0, T ]. We then set the constant γ given by
Lemma 2.9 (iii) so that (2.101) holds. From (2.18), we get
(2.116)
‖ζ(t′, · ) − ζ(t, · )‖L∞(R) ≤M |t′ − t| and ‖U(t′, · ) − U(t, · )‖E ≤ C(M) |t′ − t|

for a constant C(M) depending only on M . We denote generically by C(M) such
constants. From Lemma 2.10 (i), we have ‖h0‖E(Kc

γ) ≤ C(M) and ‖h(t, · )‖E(Kc
γ) ≤

C(M). From (2.20), we get

(2.117) ‖Z(t′, · ) − Z(t, · )‖E(Kc
γ) ≤

∫ t′

t

‖F (X)Z‖E(Kc
γ) ≤ C(M) |t′ − t| .

After using (2.23f) we obtain

‖h(t′, · ) − h(t, · )‖L1(Kc
γ)

=
∥

∥[U2(1 + ζξ)
+U2

ξ − hζξ ](t
′, · ) − [U2(1 + ζξ)

2 + U2
ξ − hζξ ](t, · )

∥

∥

L1(Kc
γ)

≤ C(M)(‖U(t′, · ) − U(t, · )‖L2(Kc
γ) + ‖Z(t′, · ) − Z(t, · )‖L2(Kc

γ))

≤ C(M) |t′ − t| .
Hence,

∥

∥X(t′, · ) − X̄(t, · )
∥

∥

V̄ (Kc
γ)

≤ C(M) |t′ − t| .
For ξ ∈ Kγ , from (2.101), we have ζξ(t

′, ξ) = ζξ(t, ξ), Uξ(t
′, ξ) = Uξ(t, ξ) and

h(t′, ξ) = h(t, ξ) for t′ ≥ t ≥ T . Therefore,

(2.118)
∥

∥X(t′, · ) − X̄(t, · )
∥

∥

V̄
≤ C(M) |t′ − t| .

Since V̄ is a Banach space, (2.118) implies that the limit of X(t) exists as t tends to
Tmax and we denote it by X̄. We claim that X̄ belongs to G. The conditions (2.23c),
(2.23d), (2.23f) hold because L∞ or L1 convergence implies almost everywhere
convergence up to a subsequence. Since X(t) ∈ BM for all t ∈ [0, Tmax), we have
∥

∥

∥

1
yξ+h (t, · )

∥

∥

∥
≤M and therefore

∥

∥

∥

1
ȳξ+h̄

∥

∥

∥
≤M and the condition (2.23e) is fulfilled.

It remains to check (2.23b). First we prove that the mapping g defined in (2.21) is
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lower-semicontinuous. Indeed, let us consider a sequence xn in R
5 which converges

to x = (x1, x2, x3, x4, x5). We denote g3 = min(g1, g2). If x4 < 0, or x4 > 0,
then we use the continuity of g3 and g2 to conclude that limn→∞ g(xn) = g(x). If
x4 = 0, we have that g3(x

n) ≤ g(xn) and therefore

g(x) = g3(x) = lim inf g3(x
n) ≤ lim inf g(xn)

and g is lower semi-continuous. We consider a sequence tn → Tmax such that
X(tn, ξ) converges to X̄(ξ) for almost every ξ. Since yξ and h are positive, we can
check from the definition of g that g(X) − yξ is also positive. Hence, by the lower
semicontinuity of g, we get that

0 ≤ g(X̄(ξ)) − ȳξ(ξ) ≤ lim inf
(

g(X(tn, · )) − yξ(tn, ξ)
)

≤ 2M

and g(X̄) − 1 belongs to L∞(R) because
∥

∥g(X̄) − 1
∥

∥

L∞(R)
≤
∥

∥g(X̄) − ȳξ
∥

∥

L∞(R)
+

∥

∥ζ̄ξ
∥

∥

L∞(R)
≤ 3M . The composition of an increasing lower semicontinuous function

with a lower semicontinuous function is also lower semincontinuous. Hence, since
z 7→ z2 is increasing for z ≥ 0 and g(X) − yξ is positive, we have that

(g(X̄(ξ)) − ȳξ(ξ))
2 ≤ lim inf(g(X(tn, ξ)) − yξ(tn, ξ))

2

and
∫

R

∣

∣g(X̄(ξ)) − ȳξ(ξ)
∣

∣

2
dξ ≤

∫

R

lim inf |g(X(tn, ξ)) − yξ(tn, ξ)|2 dξ

≤ lim inf

∫

R

|g(X(tn, ξ)) − yξ(tn, ξ)|2 dξ(2.119)

by Fatou’s Lemma. We have ‖g(X(tn, · )) − yξ(tn, · )‖L2(R) ≤ ‖g(X(tn, · )) − 1‖L2(R)+

‖ζξ(tn, · )‖L2(R) ≤ 2M and (2.119) implies
∥

∥g(X̄) − 1
∥

∥

L2(R)
≤
∥

∥g(X̄) − ȳξ
∥

∥

L2(R)
+
∥

∥ζ̄ξ
∥

∥

L2(R)
≤ 3M.

Hence, X̄ fulfills (2.23b) and X̄ belongs to G. We can then apply Theorem 2.8 and
get the existence of a short time solution with initial data X̄ which, combined with
X on [0, Tmax), gives a solution on [0, Tmax + δ] for some δ > 0. The assumption
regarding Tmax is contradicted, and we have proved the global existence of solutions.

�

3. Short time stability

First we give a short description of the dynamics of the system (2.19) for a given
particle ξ. We consider a solution X(t) = (y, U, h) ∈ C(R+,G) of (2.18) and (2.19).
By Lemma 2.10, there exists an M depending on T and the initial data such that
X(t) ∈ BM for all t ∈ [0, T ]. For a given ξ ∈ R (that we drop in the notation), we
obtain, from (2.23e) and (2.23f), that

(3.1) U2
ξ + y2

ξ ≤ C1yξ and C2yξ ≤ U2
ξ + y2

ξ

for two strictly positive constants C1 and C2 that depend on T and M . The
projection of the trajectory X(t) in the plane (yξ, Uξ) lies between the two circles
defined by the equations (3.1), see Figure 3. The two circles intersect at the origin.
The origin is an attractive point when Uξ < 0 and repulsive one when Uξ > 0, since
we have, from (2.19), that, close to the origin (that is, yξ ≈ Uξ ≈ 0),

(yξ,t, Uξ,t) ≈ (0,
1

2
h)

and h ≈ yξ + h ≥ 1
M > 0 as yξ + h is always bounded strictly away from zero.

When dealing with conservative solutions, (yξ(t), Uξ(t)) always follows the vector
field defined by (2.14) and can go through the origin. With dissipative solutions, we
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Figure 1. For a solution X = (y, U, h), we have that yξ(t, ξ) and
Uξ(t, ξ) belong to the dashed region contained between the two
circles, see (3.1). The origin is a point of attraction for Uξ < 0 and
a repulsive point for Uξ > 0.

terminate the process at the origin so that when (yξ(t), Uξ(t)) reaches the origin,
it does not go any further.

As far as stability is concerned in the case of dissipative solution, we face the
following problem: If we consider two initial data X0 and X̄0 close to the origin
and close to each other for some given ξ, the first one being below the horizontal
axis, that is, U0ξ(ξ) < 0, and the other above, that is, Ū0ξ(ξ) > 0 and look at their
trajectory, we will observe that the first point will reach the origin and stop while
the second one will travel away from the origin. Thus, these two points which may
be very close (with respect to the Euclidean distance) at the beginning, that is,
∣

∣U − Ū
∣

∣, |yξ − ȳξ|,
∣

∣Uξ − Ūξ
∣

∣ and
∣

∣h− h̄
∣

∣ may be as small as we want, will stray
apart very quickly. Therefore, in order to obtain stability, we need a new distance
that separates points that have negative and positive Uξ and that are close to the
origin.

We introduce the mapping d : R
5 × R

5 → R+ defined as

d(x, x̄) =

5
∑

i=2

|xi − x̄i| + |g(x) − g(x̄)|

for x, x̄ in R
5. For a subset Ω of R, we define the mapping dΩ : G × G → R+ as

(3.2) dΩ(X, X̄) =
∥

∥X − X̄
∥

∥

V (Ω)
+
∥

∥g(X) − g(X̄)
∥

∥

L2(Ω)

for X , X̄ in G. Then, dR defines a distance on G. For two points X0(ξ) and X̄0(ξ)
close to the origin such that U0,ξ(ξ) < 0 and U0,ξ(ξ) > 0, we have d(X0(ξ), X̄0(ξ)) =
∣

∣Z0(ξ) − Z̄0(ξ)
∣

∣ +
∣

∣g(X0(ξ)) − g(X̄0(ξ))
∣

∣ ≈
∣

∣g(X0(ξ)) − g(X̄0(ξ))
∣

∣ ≈ h0(ξ) ≥ 1
M

which is bounded away from zero, see Figure 3, so that X0(ξ) and X̄0(ξ) which are
close to each other in the Euclidian distance are no longer closer with respect to
the metric d. Of course, there is a degree of arbitrariness in the choice of g which
we will not discuss here. However, two properties of g are essential:
(i) g splits the collision point (as we just explained, see Figure 3).
(ii) g is positive homogenous in the three last variables, that is, g(x1, x2, λx3, λx4, λx5) =
λg(x1, x2, x3, x4, x5) for all λ ≥ 0 and x ∈ R

5.
The last property is going to be used in Sections 5–6 when we map back the

solutions into Eulerian coordinates.
Our goal in this section is to prove the following short-time stability theorem.
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1

Figure 2. Plot of the function g for x1, x2, x5 fixed. The function
g separates the origin for positive and negative values of x4. The
hole in the middle corresponds to the inner circle in Figure 3, a
region where the solutions cannot enter.

�������������������������

���������������������������
��
��
��
��
��
��

��
��
��
��
��
��
��

1
2(1+x

2

4
)

|x2| + x1 = ν

x1 = ν

x2

x1

Ω

ν

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
�����������������������
��
��
��
��
��
��

��
��
��
��
��
��
��

x1 = ν

Ω0

Ω
−

x1

x2

ν

Figure 3. Plots of the region Ω, Ω− and Ω0. We denote ν =
x1+x3

2(1+x2
4)

. We plot the projection of the domains in the (x1, x2)

plane for ν and x4 fixed. Note that the region inside the inner
circle is excluded for the solutions, see Figure 3.

Theorem 3.1 (short-time stability). Given M > 0, there exist constants K, ε and
T̄ all depending only on M such that, for any initial data X0, X̄0 in BM , we have

(3.3) sup
t∈[0,T ]

dR(X(t), X̄(t)) ≤ KdR(X0, X̄0)

for any T ≤ T̄ such that

meas({ξ ∈ R | 0 < τ(ξ) < T}) + meas({ξ ∈ R | 0 < τ̄ (ξ) < T}) ≤ ε.

In this short-time stability theorem we impose that the measure of the set of the
particles that will collide before T is bounded by a small constant ε.

The existence of the solutions has been established in C(R, V̄ ), and, in partic-
ular, for a solution X = (y, U, h), ζξ(t, · ), and Uξ(t, · ) belong to L∞ for all time.



DISSIPATIVE SOLUTIONS FOR THE CAMASSA–HOLM EQUATION 29

However, we establish stability only for L2 norms, see the definition (3.2) of dR.
We need this stronger result in order to prove Proposition 5.2 which allows us to
go back to Eulerian coordinates. For h, we use the L1 norm because it is the only
norm which is invariant with respect to relabeling, a property which is needed in
Section 5, see (5.8).

In order to prove this result, we need to establish several auxiliary results. We
introduce the sets

Ω− =
{

x ∈ R
5 | x4 ≤ 0

}

,

ΩM =
{

x ∈ R
5 | |x2| + |x3| + |x4| ≤M

}

,

see Figure 3. The mapping g is of course not Lipschitz on R
5 (otherwise it would

be have been useless to introduce it), but we have following result.

Lemma 3.2. The restrictions of g to Ωc ∩ ΩM and Ω− ∩ ΩM are Lipschitz. More
precisely, for any M > 0, there exists a constant κ > 0 only depending on M such
that

|g(x) − g(x̄)| ≤ κ

5
∑

i=2

|xi − x̄i|

for any x, x̄ ∈ Ωc ∩ ΩM or any x, x̄ ∈ Ω− ∩ ΩM .

Proof. The case where both x and x̄ belong to Ωc is straightforward as

|g(x̄) − g(x)| = |x̄3 + x̄5 − x3 − x5| ≤ |x̄3 − x3| + |x̄5 − x5| ≤ |x̄ − x| .
Let us consider the case where x and x̄ belong to Ω−, that is, x4 ≤ 0 and x̄4 ≤ 0. If
−x4+2(1+x2)

2x3 ≤ x3+x5, then g(x) = −x4+2(1+x2)
2x3. If −x̄4+2(1+x̄2)

2x̄3 ≤
x̄3 + x̄5, g(x̄) = −x̄4 + 2(1 + x̄2)

2x̄3, and the result follows directly from the fact
that the mapping (x2, x3, x4) 7→ −x4 + 2(1 + x2)

2x3 is Lipschitz on bounded sets
and therefore when x and x̄ belong ΩM . We denote the Lipschitz constant of the
previous mapping by κ̃. If −x̄4 + 2(1 + x̄2)

2x̄3 ≥ x̄3 + x̄5, g(x̄) = x̄3 + x̄5 and we
have

|g(x̄) − g(x)| ≤
∣

∣x̄3 + x̄5 + x4 − 2(1 + x2
2)x3

∣

∣

≤ |x̄3 − x3| + |x̄5 − x5| +
∣

∣x3 + x5 + x4 − 2(1 + x2
2)x3

∣

∣

= |x̄3 − x3| + |x̄5 − x5| + x3 + x5 + x4 − 2(1 + x2
2)x3

≤ 2 |x̄3 − x3| + 2 |x̄5 − x5| + x4 − 2(1 + x2
2)x3 − (x̄4 − 2(1 + x̄2

2)x̄3)

≤ (2 + κ̃)

5
∑

i=2

|xi − x̄i| .

�

The following lemma describes the situation when for two solutions of (2.18) and
(2.19), the mapping g behaves like a Lipchitz function.

Lemma 3.3. Given M ≥ 0, there exist T > 0, κ > 0 and δ > 0 which depend only
on M such that for any ξ ∈ R satisfying d(X0(ξ), X̄0(ξ)) < δ we have

(3.4)
∣

∣g(X(t, ξ)) − g(X̄(t, ξ))
∣

∣ ≤ C(
∣

∣U(t, ξ) − Ū(t, ξ)
∣

∣+
∣

∣Z(t, ξ) − Z̄(t, ξ)
∣

∣)

for all t ∈ [0, T ] and the solutions X(t) and X̄(t) with any initial data X0 and X̄0

in BM .

Proof. Without loss of generality, we assume T ≤ 1. From Lemma 2.10, there exists
M̄ depending only on M such that X(t) and X̄(t) belong to BM̄ for all t ∈ [0, T ].
We consider ξ ∈ R such that d(X(0, ξ), X̄(0, ξ)) < δ for a δ that we are going to
determine. We drop ξ in the notation. Since X(t) and X̄(t) belong to ΩM̄ , by
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Lemma 3.2, we can see that the lemma will be proved if we can prove that X(t)
and X̄(t) belong to the same set, either Ωc or Ω−. Let Ω0 denote the set

(3.5) Ω0 =

{

x ∈ R
5 | x3 ≤ x3 + x5

2(1 + x2
2)

and x4 ≤ 0

}

,

see Figure 3. We consider the following three cases: (i) X0, X̄0 ∈ Ω0; (ii) X0 ∈
Ω0, X̄0 ∈ Ωc0; and (iii) X0, X0 ∈ Ωc0.

Case (i). Since Ω0 ⊂ Ω−, X and X̄ also belong to Ω−. Let t0 be the first time
when X exits Ω−. By continuity, we have Uξ(t0) = 0. From (2.23f) we infer that
(1 +U2)yξ(t0) = (yξ + h)(t0) because we cannot have yξ(t0) = 0 as the points that
reach the origin remain there. Let z(t) = 2(1 + U 2(t))yξ(t) − (yξ + h)(t), we have
z(0) ≤ 0 because X(0) ∈ Ω0 and z(t0) = (yξ+h)(t0) ≥ 1

M̄
. On the other hand, from

(2.19), zt can be computed, and we obtain zt ≤ C1(M̄) for some constant C1(M̄)
only depending on M̄ and therefore on M , so that z(t) ≤ z(0)+C1(M̄)T . Hence, if
we choose T small enough so that T < (M̄C1(M̄))−1, we obtain z(t0) <

1
M , which

is a contradiction, and we have proved that X remains in Ω−. Similarly one proves
that X̄ remains in Ω−.

Case (ii). We have already seen that we can choose T small enough so that X(t)
remains in Ω− for t ∈ [0, T ]. Let us denote z̄(t) = 2(1 + Ū2(t))ȳξ(t) − (ȳξ + h̄)(t).
For z as defined above, we have z(0) ≤ 0. Hence, z̄(0) ≤ z(0) + |z̄(0) − z(0)| ≤
C(M̄)(

∣

∣Ū(0) − U(0)
∣

∣ + |ȳξ(0) − yξ(0)| +
∣

∣h̄(0) − h(0)
∣

∣) for some constant only de-

pending on M̄ and therefore z̄(0) ≤ C(M̄)δ. We claim that, for δ small enough,
X̄0 ∈ Ω−. Let us assume the opposite. Then, |U0,ξ−Ū0,ξ| ≤ δ implies |Ū0,ξ| ≤ δ and
|U0,ξ| ≤ δ because U0,ξ ≤ 0 and Ū0,ξ ≥ 0. Since X0 ∈ Ω0, we have 2(1 + U2

0 )y2
0,ξ ≤

y2
0,ξ + h0y0,ξ and it implies, by (2.23f), that (1 +U2

0 )y2
ξ ≤ U2

ξ and therefoer yξ ≤ δ.
We have

δ ≥ g(X̄0) − g(X0) ≥ ȳ0,ξ + h̄0 − |U0,ξ| − 2(1 + U2
0 )y0,ξ ≥

1

M
− C(M)δ

and, by taking δ small enough, we are led to a contradiction. Hence, X̄0 ∈ Ω−.
Again, let us consider the first time t0 when X̄ leaves Ω−. We have z̄(t0) =
(ȳξ+ h̄)(t0) ≥ 1

M̄
and z̄(t0) ≤ z̄(0)+C(M̄)T implies 1

M̄
≤ C(M̄)(δ+T ) which leads

to a contradiction if we choose T and δ small enough. Hence, X̄ remains in Ω−.

Case (iii). In this case, since Ωc0 ⊂ Ωc, X and X̄ also belong to Ωc. We consider
z(t) as defined before. Since X ∈ Ωc0, we have z(0) ≥ 0. Let us denote by t0
the first time when X leaves Ωc. Since the origin is a repulsive point in Ωc, see
Figure 3, we must have |Uξ(t0)| + 2(1 + U2)(t0)yξ(t0) = (yξ + h)(t0) which gives
Uξ(t0) = z(t0). Inserting this into (2.23f), we obtain after some computation that

z(t0) = − yξ+h√
4U2+5

(t0). Thus, −z(t0) ≤ −z(0) + C1(M̄)T implies (C2(M̄))−1 ≤
yξ+h√
4U2+5

(t0) ≤ C1(M̄)T , which leads to a contradiction if T is chosen small enough.

We have thus proven that X remains in Ωc, and the same result holds by the same
argument for X̄. �

When dealing with discontinuous systems of ordinary differential equations in
finite dimensions, it is essential to have some control over the time when the solu-
tions hit the discontinuity line and change behavior. Consider the situation with
two solutions with initial data that are close and such that one solution hits the
discontinuity line soon after the other. If the time between the two solutions hit the
discontinuity line goes to zero, then, for stability reasons, the difference between
the initial data should also go to zero. This is precisely the content of the next
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lemma. Note that this property has already been used when proving the existence
of solutions, see (2.75).

Lemma 3.4. Given M ≥ 0, there exist T and δ which depend only on M such
that, for any ξ ∈ R that satisfies d(X0(ξ), X̄0(ξ)) ≤ δ, we have

(3.6) (τ̄ − τ)(ξ) +

∫ τ̄

τ

h̄(t, ξ) dt ≤ C(M)
∣

∣Z(τ(ξ), ξ) − Z̄(τ(ξ), ξ)
∣

∣

if τ(ξ) < τ̄(ξ) ≤ T , and

(3.7) (τ − τ̄)(ξ) +

∫ τ

τ̄

h(t, ξ) dt ≤ C(M)
∣

∣Z(τ̄ (ξ), ξ) − Z̄(τ̄ (ξ), ξ)
∣

∣

if τ̄(ξ) < τ(ξ) ≤ T , for a constant C(M) depending only on M and any solutions
X(t) and X̄(t) with initial data X0 and X̄0 in BM .

Proof. We assume without loss of generality that T ≤ 1. There exist ε and γ
depending only onM such that for any ξ ∈ Āε∪K̄γ and ξ ∈ Aε∪Kγ , the conclusions
of items (ii) and (iii) in Lemma 2.9 hold, that is, X̄(t, ξ) ∈ Ω, ȳξ(t, ξ) decreasing
and Ūξ(t, ξ) negative and increasing for t ∈ [0, 1] and the corresponding properties
for X(t, ξ). From Lemma 2.9 item (iv), there exists T depending only on M , ε
and γ and therefore only on M such that {0 < τ(ξ) < T} ⊂ Aε/2 ∪ K2γ . Let us
consider ξ ∈ R such that τ(ξ) < τ̄(ξ) ≤ T . Then, ξ ∈ Aε/2 ∪ K2γ or τ(ξ) = 0.
We set δ = min(ε/2, γ) and δ depends only on M . If ξ ∈ Aε/2 or τ(ξ) = 0, we

have
∣

∣Ū0ξ(ξ)
∣

∣ ≤
∣

∣U0ξ(ξ) − Ū0ξ(ξ)
∣

∣ + |U0ξ(ξ)| ≤ ε and |ȳ0ξ(ξ)| ≤ |y0ξ(ξ) − ȳ0ξ(ξ)| +
|y0ξ(ξ)| ≤ ε. Since X(t, ξ) ∈ Ω, g(X0(ξ)) = −U0ξ(ξ) + 2(1 + U2)yξ(ξ) for some
constant C(M) depending only on M , and we have

g(X̄0(ξ)) ≤ δ + |g(X0(ξ))| ≤
ε

2
+ C(M)ε <

1

M
≤ ȳ0ξ(ξ) + Ū0ξ(ξ)

for ε small enough and depending only on M . Hence, g(X̄0(ξ)) < ȳ0ξ(ξ) + Ū0ξ(ξ),
which implies that X̄0(ξ) ∈ Ω so that U0ξ(ξ) ≤ 0. Thus we have proved that
ξ ∈ Aε. If ξ ∈ K2γ , we have h̄0(ξ) ≥ |h0(ξ)| − δ ≥ γ and ξ ∈ Kγ . From the
governing equation (2.19), we obtain

Ūξ,t(t, ξ) ≥ h̄(t, ξ) − C(M)ȳξ(t, ξ)

for some constant C(M) depending only on M . Hence, after integrating over the
time interval [τ, τ̄ ],

(3.8) Ūξ(τ̄ (ξ), ξ) ≥ Ūξ(τ(ξ), ξ) +
1

2

∫ τ̄

τ

h̄(t, ξ) dt− C(M)T ȳξ(τ, ξ)

because ȳξ(t, ξ) is decreasing so that ȳξ(t, ξ) ≤ ȳξ(τ(ξ), ξ) for t ≥ τ . Since X̄(t, ξ) ∈
Ω, we have Ūξ(t, ξ) ≤ 0 and (3.8) yields, for T small enough,

1

2

∫ τ̄

τ

h̄(t, ξ) dξ ≤ 2(
∣

∣Ūξ(τ(ξ), ξ)
∣

∣ + |ȳξ(τ(ξ), ξ)|)

= 2(
∣

∣Ūξ(τ(ξ), ξ) − Uξ(τ(ξ), ξ)
∣

∣ + |ȳξ(τ(ξ), ξ) − yξ(τ(ξ), ξ)|).(3.9)

By Lemma 2.10, there exists M̄ depending only on M such that X̄(t) ∈ BM̄ for
t ∈ [0, 1]. We have, as 1

M̄
≤ h̄+ ȳξ,

1

M̄
(τ̄ − τ)(ξ) ≤

∫ τ̄

τ

(h̄+ ȳξ)(t, ξ) dt ≤ 4
∣

∣Z(τ(ξ), ξ) − Z̄(τ(ξ), ξ)
∣

∣ + yξ(τ(ξ), ξ),

by (3.9) and because yξ(t, ξ) ≤ yξ(τ, ξ) for t ≥ τ . Hence, (τ̄−τ)(ξ) ≤ C(M)
∣

∣Z(τ(ξ), ξ) − Z̄(τ(ξ), ξ)
∣

∣

because yξ(t, ξ) = 0 for t ≥ τ(ξ) and we have proved (3.6). The inequality (3.7) is
proved in the same way. �
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We can now start the proof of the short time stability theorem, Theorem 3.1.

Proof of Theorem 3.1. We divide the proof in several steps. Without loss of gener-
ality, we assume T ≤ 1.

Step 1: Estimates for
∥

∥P − P̄
∥

∥

L1
T (L∞

R
∩L2

R
)

and
∥

∥Q− Q̄
∥

∥

L1
T (L∞

R
∩L2

R
)
.

For ξ such that τ(ξ) < τ̄ (ξ), we obtain after using Gronwall’s lemma in (2.19), that

(3.10)
∣

∣(Z − Z̄)(τ, ξ)
∣

∣ ≤ C(M)
( ∣

∣(Z − Z̄)(0, ξ)
∣

∣+
∥

∥(F (X) − F (X̄))Z
∥

∥

L1
T
L∞

R

)

.

We have

(3.11) (F (X) − F̄ (X̄))Z =
(

0,
(1

2
(U2 − Ū2) − (P − P̄ )

)

yξ,

− 2(QU − Q̄Ū)yξ +
(

3(U2 − Ū2) − 2(P − P̄ )
)

Uξ

)

.

Hence, as ‖P‖L∞

T
L∞

R

+ ‖Q‖L∞

T
L∞

R

≤ C(M), see (2.34), we have

(3.12)
∥

∥(F (X) − F (X̄))Z
∥

∥

L1
T
L∞

R

≤ C(M)
( ∥

∥U − Ū
∥

∥

L1
T
L∞

R

+
∥

∥P − P̄
∥

∥

L1
TL

∞

R

+
∥

∥Q− Q̄
∥

∥

L1
TL

∞

R

)

and

(3.13)
∥

∥(F (X) − F (X̄))Z
∥

∥

L1
TL

2
R

≤ C(M)
( ∥

∥U − Ū
∥

∥

L1
TL

2
R

+
∥

∥P − P̄
∥

∥

L1
T
L2

R

+
∥

∥Q− Q̄
∥

∥

L1
T
L2

R

)

.

From (3.10) and (3.12), we get

(3.14)
∣

∣(Z − Z̄)(τ, ξ)
∣

∣ ≤ C(M)
( ∣

∣(Z − Z̄)(0, ξ)
∣

∣+
∥

∥U − Ū
∥

∥

L1
TL

∞

R

+
∥

∥Q− Q̄
∥

∥

L1
TL

∞

R

+
∥

∥P − P̄
∥

∥

L1
TL

∞

R

)

.

From (2.18), we get
∥

∥U − Ū
∥

∥

L∞

T
L∞

R

≤
∥

∥U0 − Ū0

∥

∥

L∞

R

+
∥

∥Q− Q̄
∥

∥

L1
T
L∞

R

and (3.14) rewrites

(3.15)
∣

∣(Z − Z̄)(τ, ξ)
∣

∣ ≤ C(M)
(
∣

∣(Z − Z̄)(0, ξ)
∣

∣ +
∥

∥Q− Q̄
∥

∥

L1
T
L∞

R

+
∥

∥P − P̄
∥

∥

L1
T
L∞

R

)

.

To simplify the notation, let us introduce z(ξ) and z̄(ξ) defined by

z(ξ) = χ{τ(ξ)<τ̄(ξ)}(ξ)
(

(τ̄ − τ)(ξ) +

∫ τ̄

τ

h(t, ξ) dt
)

and

z̄(ξ) = χ{τ̄(ξ)<τ(ξ)}(ξ)
(

(τ − τ̄)(ξ) +

∫ τ

τ̄

h̄(t, ξ) dt
)

.

Then, Lemma 2.4 rewrites as

(3.16)
∥

∥Q− Q̄
∥

∥

L1
T

(L2
R
∩L∞

R
)
+
∥

∥P − P̄
∥

∥

L1
T

(L2
R
∩L∞

R
)

≤ C(M)

(

T
∥

∥X − X̄
∥

∥

L∞

T
V

+ ‖z‖L1
R

+ ‖z̄‖L1
R

)

.

Step 2: Estimates for ‖z‖L1
R

and ‖z̄‖L1
R

.

Let us introduce the set A = {ξ ∈ R | d(X(0, ξ), X(0, ξ)) ≤ δ} where δ, which
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depends only on M , is given by Lemma 3.4. From (3.15), (3.16) and Lemma 3.4,
we infer that, for ξ ∈ A,

z(ξ) ≤ C(M)

(

∣

∣(Z − Z̄)(0, ξ)
∣

∣+
∥

∥U0 − Ū0

∥

∥

L∞

R

+T
∥

∥X − X̄
∥

∥

L∞

T V
+‖z‖L1

R

+‖z̄‖L1
R

)

.

Hence,

(3.17) z(ξ) ≤ C(M)d(X0(ξ), X̄0(ξ)) + C(M)
∥

∥U0 − Ū0

∥

∥

L∞

R

+ C(M)
(

T
∥

∥X − X̄
∥

∥

L∞

T V
+ ‖z‖L1

R

+ ‖z̄‖L1
R

)

.

The same estimate holds for z̄(ξ). From (2.19), we get

(3.18)
1

2

∫ T

0

h(t) dt = U(T, ξ) − U(0, ξ) −
∫ T

0

(
1

2
U2(t, ξ) − P (t, ξ))yξ(t, ξ) dt

so that
∫ T

0
h(t, ξ) dt ≤ C(M). For the same reasons, we have

∫ T

0
h̄(t, ξ) dt ≤ C(M)

and therefore z(ξ) + z̄(ξ) ≤ C(M). It implies that the inequality (3.17) holds also
for ξ ∈ Ac, that is, those ξ which satisfy d(X0(ξ), X̄0(ξ)) ≥ δ, as

z(ξ) ≤ C(M)
d(X0(ξ), X̄0(ξ))

δ
≤ C(M) d(X0(ξ), X̄0(ξ)),

and therefore inequality (3.17) holds for every ξ ∈ R. Let us introduce

CTτ = {ξ ∈ R | 0 < τ(ξ) < T} and CTτ̃ = {ξ ∈ R | 0 < τ(ξ) < T}.
By the assumptions of the theorem we have meas(CTτ ∪ CTτ̄ ) ≤ ε for some ε we have
to determine, and we may assume without loss of generality that ε ≤ 1. We have,
after using Cauchy–Schwarz, that
(3.19)
∫

CT
τ ∪CT

τ̄

d(X0(ξ), X̄0(ξ)) dξ ≤ (meas(CTτ ∪ CTτ̄ )1/2 + 1)dR(X0, X̄0) ≤ 2dR(X0, X̄0)

and

(3.20)

∫

CT
τ ∪CT

τ̄

∥

∥U0 − Ū0

∥

∥

L∞

R

≤ C(M)
∥

∥U0 − Ū0

∥

∥

H1(R)
≤ C(M)dR(X0, X̄0)

by the Sobolev embedding L∞(R) ⊂ H1(R). We integrate (3.17) and its counter-
part with z̄ over CTτ ∪ CTτ̄ . Since τ̄ (ξ) − τ(ξ) = 0 on the complement of CTτ ∪ CTτ̄ we
obtain, after using (3.19) and (3.20), that

(3.21) ‖z‖L1
R

+ ‖z̄‖L1
R

≤ C(M)dR(X0, X̄0) + C(M)T
∥

∥X − X̄
∥

∥

L∞

T
V

+ C0(M) meas(CTτ ∪ CTτ̄ )(‖z‖L1
R

+ ‖z̄‖L1
R

)

for some constant C0(M) only depending on M . Let ε = (2C0(M))−1, if T is such
that meas(CTτ ∪ CTτ̄ ) ≤ ε, then (3.21) implies

(3.22) ‖z‖L1
R

+ ‖z̄‖L1
R

≤ C(M)dR(X0, X̄0) + C(M)T
∥

∥X − X̄
∥

∥

L∞

T
V
.

Step 3: Estimates for
∥

∥Z − Z̄
∥

∥

L∞

T
W

.

With the estimate (3.22) on ‖z‖L1
R

+ ‖z̄‖L1
R

, we can rewrite (3.16) as follows

(3.23)
∥

∥Q− Q̄
∥

∥

L1
T (L2

R
∩L∞

R
)
+
∥

∥P − P̄
∥

∥

L1
T (L2

R
∩L∞

R
)

≤ C(M)dR(X0, X̄0) + C(M)T
∥

∥X − X̄
∥

∥

L∞

T
V
.

Moreover, by integrating (ζ − ζ̄)t = U − Ū , we obtain that
∥

∥ζ − ζ̄
∥

∥

L∞

T
L∞

R

≤
∥

∥ζ(0, · ) − ζ̄(0, · )
∥

∥

L∞

R

+ T
∥

∥U − Ū
∥

∥

L∞

T
L∞

R
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≤ dR(X0, X̄0) + CT (
∥

∥U − Ū
∥

∥

L∞

T
L2

R

+
∥

∥Uξ − Ūξ
∥

∥

L∞

T
L2

R

)(3.24)

where C denotes the constant of the Sobolev embedding L∞ ⊂ H1. By integrating
(U − Ū)t = Q− Q̄, we obtain
(3.25)
∥

∥U − Ū
∥

∥

L∞

T
L2

R

≤ ‖U(0, · ) − U(0, · )‖L2
R

+
∥

∥Q− Q̄
∥

∥

L1
T
L2

R

≤ dR(X0, X̄0)+
∥

∥Q− Q̄
∥

∥

L1
T
L2

R

and, by (3.25),

(3.26)
∥

∥U − Ū
∥

∥

L∞

T
L2

R

≤ C(M)
(

dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

)

.

Let us denote G = R \ (CTτ ∪ CTτ̄ ∪K1 ∪ K̄1), see (2.97) for the definition of K1 and
K̄1. By Lemma 2.10, we have that ‖h‖L∞

T
E(G) ≤ C(M) and ‖h̄‖L∞

T
E(G) ≤ C(M)

as ‖h0‖E(G) and
∥

∥h̄0

∥

∥

E(G)
are bounded. For ξ ∈ G, we have Zt = F (X)Z and

Z̄t = F (X̄)Z̄ for all t ∈ [0, T ], and, after applying Gronwall’s lemma, we obtain

∥

∥Z(t, · ) − Z̄(t, · )
∥

∥

L2(G)
≤ C(M)

(

∥

∥Z(0, · ) − Z̄(0, · )
∥

∥

L2(G)
(3.27)

+
∥

∥(F (X) − F (X̄))Z
∥

∥

L1
T
L2(G)

)

.

From (3.13), it follows that

∥

∥Z − Z̄
∥

∥

L∞

T
L2(G)

≤ C(M)
(

∥

∥Z(0, · ) − Z̄(0, · )
∥

∥

L2
R

+
∥

∥U − Ū
∥

∥

L1
T
L2

R

+
∥

∥P − P̄
∥

∥

L1
T
L2

R

+
∥

∥Q− Q̄
∥

∥

L1
T
L2

R

)

which implies, after using (3.26) and because
∥

∥h− h̄
∥

∥

L2(G)
≤ C(M)

∥

∥h− h̄
∥

∥

L1(G)
,

that

(3.28)
∥

∥Z − Z̄
∥

∥

L∞

T
L2(G)

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

).

After using (2.23f) we obtain
∥

∥h− h̄
∥

∥

L∞

T L1(G)
= ‖U2(1 + ζξ)

2 + U2
ξ − hζξ − Ū2(1 + ζ̄ξ)

2 + Ū2
ξ + h̄ζ̄ξ‖L∞

T
L1(G)

≤ C(M)(
∥

∥U − Ū
∥

∥

L∞

T
L2(G)

+
∥

∥Z − Z̄
∥

∥

L∞

T
L2(G)

).

Hence, by (3.28), (3.26), we get

(3.29)
∥

∥Z − Z̄
∥

∥

L∞

T W (G)
≤ C(M)(dR(X0, X̄0) + T

∥

∥X − X̄
∥

∥

L∞

T V
).

Let us consider ξ ∈ Gc = CTτ ∪ CTτ̄ ∪ K1 ∪ K̄1, we assume without loss of generality
that τ(ξ) ≤ τ̄ (ξ) ≤ T . We have meas(K1) ≤

∫

R
h0 ≤ M and a similar inequality

for K̄1 so that meas(Gc) ≤ C(M). For t ∈ [τ, τ̄ ], we have Z(t, ξ) = Z(τ, ξ) and
Z̄t = F (X̄)Z̄. Hence,

d

dt
(Z̄(t, ξ) − Z(t, ξ)) = F (X̄)(Z̄(t, ξ) − Z(t, ξ)) + F (X̄)Z(τ, ξ)

and, after applying Gronwall’s lemma, we obtain

(3.30)
∣

∣Z̄(t, ξ) − Z(t, ξ)
∣

∣ ≤ C(M)
(
∣

∣Z̄(τ, ξ) − Z(τ, ξ)
∣

∣+

∫ τ̄

τ

∣

∣F (X̄)Z(τ, ξ)
∣

∣ dt
)

because
∥

∥F (X̄)
∥

∥

L1
TL

∞

R

≤ C(M). We have F (X̄)Z(τ, ξ) = (0, 1
2h(τ, ξ), 0) because

yξ(τ, ξ) = Uξ(τ, ξ) = 0. Hence,
∫ τ̄

τ

∣

∣F (X̄)Z(τ, ξ)
∣

∣ dt =
1

2

∫ τ̄

τ

h(τ, ξ) dt ≤ 1

2

∫ τ̄

τ

∣

∣h(t, ξ) − h̄(t, ξ)
∣

∣ dt+

∫ τ̄

τ

h̄(t, ξ) dt
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and (3.30) becomes, after using (3.6),

∣

∣Z̄(t, ξ) − Z(t, ξ)
∣

∣ ≤ C(M)
( ∣

∣Z̄(τ, ξ) − Z(τ, ξ)
∣

∣+
1

2
T sup
t∈[τ,τ̄]

∣

∣h̄(t, ξ) − h(t, ξ)
∣

∣

)

.

Hence, for T small enough, we obtain

(3.31)
∣

∣Z̄(t, ξ) − Z(t, ξ)
∣

∣ ≤ C(M)
∣

∣Z̄(τ, ξ) − Z(τ, ξ)
∣

∣ .

For t ≤ τ(ξ), we have Zt = F (X)Z and Z̄t = F (X̄)Z̄ and, after applying Gronwall’s
lemma, we obtain
∣

∣Z̄(t, ξ) − Z(t, ξ)
∣

∣ ≤ C(M)
(
∣

∣Z̄(0, ξ) − Z(0, ξ)
∣

∣+
∥

∥(F (X) − F (X̄))Z
∥

∥

L1
T
L∞

R

)

,

which, by (3.12), gives
∣

∣Z̄(t, ξ) − Z(t, ξ)
∣

∣ ≤ C(M)
( ∣

∣Z̄(0, ξ) − Z(0, ξ)
∣

∣+
∥

∥P − P̄
∥

∥

L1
TL

∞

R

+
∥

∥Q− Q̄
∥

∥

L1
TL

∞

R

)

and, using (3.23),
(3.32)
∣

∣Z̄(t, ξ) − Z(t, ξ)
∣

∣ ≤ C(M)
( ∣

∣Z̄(0, ξ) − Z(0, ξ)
∣

∣+ dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T V

)

.

Due to (3.31), the inequality (3.32) holds not only for t ∈ [0, τ ] but also for t ∈ [0, T ].
We integrate (3.32) and get
∥

∥Z̄(t, · ) − Z(t, · )
∥

∥

L1(Gc)
≤ C(M)

∥

∥Z̄(0, · ) − Z(0, · )
∥

∥

L1(Gc)

+ C(M) meas(Gc)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

)

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

)(3.33)

because meas(Gc) ≤ 1. Since ‖ζξ‖L∞

T
L∞

R

, ‖Uξ‖L∞

T
L∞(R),

∥

∥ζ̄ξ
∥

∥

L∞

T L∞

R

and
∥

∥Ūξ
∥

∥

L∞

T L∞

R

are bounded by some constant depending only on M , we have
∥

∥Z(t, · ) − Z̄(t, · )
∥

∥

W (Gc)
≤ C(M)

∥

∥Z̄(t, · ) − Z̄(t, · )
∥

∥

L1(Gc)
,

and (3.33) yields
∥

∥Z̄(t, · ) − Z(t, · )
∥

∥

W (Gc)
≤ C(M)(dR(X0, X̄0) + T

∥

∥X − X̄
∥

∥

L∞

T V
).

Hence, combining (3.34), (3.29), we get

(3.34)
∥

∥Z̄ − Z
∥

∥

L∞

T
W

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

).

Step 4: Estimates for
∥

∥g(X(t, · ) − g(X̄(t, · ))
∥

∥

L2(R)
.

We consider the constant δ which depends only on M (as we assume T ≤ 1) given
by Lemma 3.3. If ξ is such that d(X0(ξ), X̄0(ξ)) < δ, then (3.4) holds. If ξ is such

that d(X0(ξ), X̄0(ξ)) ≥ δ, we have
∣

∣g(X(t, ξ)) − g(X̄(t, ξ))
∣

∣ ≤ C(M)
δ d(X0(ξ), X̄0(ξ))

because ‖g(X(t, · ))‖L∞ and
∥

∥g(X̄(t, · ))
∥

∥

L∞
are bounded by some constant de-

pending only on M . In any case we have

(3.35)
∣

∣g(X(t, ξ)) − g(X̄(t, ξ))
∣

∣

≤ C(M)
( ∣

∣U(t, ξ) − Ū(t, ξ)
∣

∣+
∣

∣Z(t, ξ) − Z̄(t, ξ)
∣

∣+ d(X0(ξ), X̄0(ξ))
)

.

We integrate (3.35) over G and get

(3.36)
∥

∥g(X) − g(X̄)
∥

∥

L∞

T
L2(G)

≤ C(M)(
∥

∥U − Ū
∥

∥

L∞

T
L2

R

+
∥

∥Z − Z̄
∥

∥

L∞

T
L2

R

+
∥

∥d(X0, X̄0)
∥

∥

L2(G)
).

Since h0 and h̄0 are bounded on G by a constant that depends only on M , we have
∥

∥d(X0, X̄0)
∥

∥

L2(G)
≤ C(M)dR(X0, X̄0).



36 HOLDEN AND RAYNAUD

Hence, after using (3.28) and (3.26), (3.36) implies

(3.37)
∥

∥g(X) − g(X̄)
∥

∥

L∞

T
L2(G)

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

).

We integrate (3.35) over Gc and get

(3.38)
∥

∥g(X) − g(X̄)
∥

∥

L∞

T
L1(Gc)

≤ C(M)(
∥

∥U − Ū
∥

∥

L∞

T L1(Gc)
+
∥

∥Z − Z̄
∥

∥

L∞

T L1(Gc)
+
∥

∥d(X0, X̄0)
∥

∥

L1(Gc)
).

Since meas(Gc) ≤ 1, we get, after using (3.34) and (3.26), that

(3.39)
∥

∥g(X)− g(X̄)
∥

∥

L∞

T
L1(Gc)

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

).

We have that ‖g(X) − 1‖L∞

T
L∞(R) and

∥

∥g(X̄) − 1
∥

∥

L∞

T L∞(R)
are bounded by a con-

stant depending only on C(M) and therefore
∥

∥g(X) − g(X̄)
∥

∥

L∞

T
L2(Gc)

≤ C(M)
∥

∥g(X) − g(X̄)
∥

∥

L∞

T
L1(Gc)

.

Hence, (3.39) implies
∥

∥g(X)− g(X̄)
∥

∥

L∞

T
L2(Gc)

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

),

which, combined with (3.37), gives

(3.40)
∥

∥g(X) − g(X̄)
∥

∥

L∞

T
L2(R)

≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

).

Step 4: Conclusion.
Gathering (3.26), (3.34) and (3.40), we get

sup
t∈[0,T ]

dR(X(t, · ), X(t, · )) ≤ C(M)(dR(X0, X̄0) + T
∥

∥X − X̄
∥

∥

L∞

T
V

)

≤ C(M)(dR(X0, X̄0) + T sup
t∈[0,T ]

dR(X(t, · ), X(t, · )))

which, after choosing T small enough, implies (3.3). �

4. Global stability

From the short time stability result, Theorem 3.1, we obtain global stability.

Theorem 4.1. For any time T > 0, there exists a constant K only depending on
M and T such that

(4.1) sup
t∈[0,T ]

dR(X(t), X̄(t)) ≤ KdR(X0, X̄0)

for any solutions X(t) and X̄(t) with initial data in X0 and X̄0 in BM .

We first prove the following result about the continuity in time of the solutions
with respect to the distance dR.

Lemma 4.2. (i) The solutions of (2.13) are continuous in time with respect to the
distance dR, that is,

lim
t→t̄

dR(X(t), X(t̄)) = 0.

(ii) Given M , there exists T̄ depending only on M such that, for any solution X(t)
with initial data X0 in BM and t ≤ T̄ , we have

dR(X(t), X0) ≤ C(M)t

where C(M) is a constant that only depends on M .
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Proof. We proceed as we have done several times now and consider a domain where
h0 is bounded and another where h0 may be unbounded but which has finite mea-
sure. Let B = Kc1, applying Lemma 2.10, we have ‖Z‖L∞

T
E(B) ≤ C(M) for some

constant depending only on M and T . We denote generically by C(M) such con-
stant. We have

(4.2) ‖U(t, · ) − U(t̄, · )‖L2(R) ≤
∫ t̄

t

∥

∥Q(t̃, · )
∥

∥

L2(R)
dt̃ ≤ C(M) |t− t̄| ,

(4.3) ‖ζ(t, · ) − ζ(t̄, · )‖L∞(R) ≤
∫ t̄

t

∥

∥U(t̃, · )
∥

∥

L∞(R)
dt̃ ≤ C(M) |t− t̄| .

Since ‖Z‖L∞

T
E(B) ≤ C(M), we have

(4.4) ‖Z(t, · ) − Z(t̄, · )‖L2(B) ≤
∫ t̄

t

∥

∥F (X(t̃, · ))Z(t̃, · )
∥

∥

L2(R)
dt̃ ≤ C(M) |t− t̄| .

After using (2.23f), we obtain
∥

∥h(t, · ) − h̄(t̄, · )
∥

∥

L1(B)

=
∥

∥(U2(1 + ζξ) + U2
ξ − hζξ)(t, · ) − (U2(1 + ζξ) + U2

ξ − hζξ)(t̄, · )
∥

∥

L1(B)

≤ C(M)(
∥

∥U(t, · ) − Ū(t̄, · )
∥

∥

L2(B)
+
∥

∥Z(t, · ) − Z̄(t̄, · )
∥

∥

L2(B)
),

and (4.4) yields

(4.5) ‖Z(t, · ) − Z(t̄, · )‖W (B) ≤ C(M) |t− t̄| .
By Chebyshev’s inequality, we have meas(Bc) ≤ C(M) and therefore ‖F (X)‖L∞

T
L1(Bc) ≤

meas(Bc) ‖F (X)‖L∞

T
L∞(Bc) ≤ C(M) and, after using Cauchy–Schwarz, ‖Z‖L∞

T
L1(Bc) ≤

(meas(Bc)1/2 + 1) ‖Z‖L∞

T W ≤ C(M). Then

‖Z(t, · ) − Z(t̄, · )‖L1(B) ≤
∫ t̄

t

∥

∥F (X(t̃, · ))Z(t̃, · )
∥

∥

L1(R)
dt̃

≤ C(M) |t− t̄| ,
which implies, as ‖ζξ‖L∞(R) + ‖Uξ‖L∞(R) ≤ C(M) that

(4.6) ‖Z(t, · ) − Z(t̄, · )‖W (Bc) ≤ C(M) |t− t̄| .
Combining (4.5) and (4.6), we get

‖Z(t, · ) − Z(t̄, · )‖W ≤ C(M) |t− t̄| ,
which together with (4.2) and (4.3) implies

(4.7)
∥

∥X(t, · ) − X̄(t̄, · )
∥

∥

V
≤ C(M) |t− t̄| .

For a given ξ ∈ R, we have established in the proof of Lemma 3.3 that if X(t̄, ξ) ∈
Ω0, then X(t, ξ) remains in Ω− for a short time interval, while, if X(t̄, ξ) ∈ Ωc0,
X(t, ξ) remains in Ωc also for a short time interval. The length of this short time
interval (given by T in the proof of Lemma 3.3) is controlled by M . Hence, there
exists T̄ > 0 depending only on M such that, for a given ξ ∈ R, either X(t, ξ) ∈ Ω−

for t ∈ [t̄ − T̄ , t̄ + T̄ ] or X(t, ξ) ∈ Ω+ for t ∈ [t̄ − T̄ , t̄ + T̄ ]. Then, it follows from
Lemma 3.2 that

(4.8) |g(X(t, ξ)) − g(X(t̄, ξ))| ≤ κ(|U(t, ξ) − U(t̄, ξ)| + |Z(t, ξ) − Z(t̄, ξ)|)
for a constant κ that depends only on M . From (4.4) and (4.2) we get

‖g(X(t, · )) − g(X(t̄, · ))‖L2(B) ≤ κ(‖U(t, · ) − U(t̄, · )‖L2(B)

+ ‖Z(t, · ) − Z(t̄, · )‖L2(B))
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≤ C(M) |t− t̄| .(4.9)

On Bc, (4.8) gives

‖g(X(t, · )) − g(X(t̄, · ))‖L1(B) ≤ κ(‖U(t, · ) − U(t̄, · )‖L1(B) + ‖Z(t, · ) − Z(t̄, · )‖L1(B))

≤ C(M) ‖X(t, · ) −X(t̄, · )‖V .(4.10)

Since g is bounded (4.10) implies

‖g(X(t, · )) − g(X(t̄, · ))‖L2(B) ≤ C(M) ‖X(t, · ) −X(t̄, · )‖V
and therefore, by (4.9) and (4.7),

‖g(X(t, · )) − g(X(t̄, · ))‖L2(R) ≤ C(M) |t− t̄| .
Hence,

(4.11) dR(X(t, · ), X(t̄, · )) ≤ C(M) |t− t̄| .
By letting t tends to t̄ we prove (i) and by taking t̄ = 0 we prove (ii). �

Proof of Theorem 4.1. From Lemma 2.10 there exists M̄ depending only on M and
T such that X(t) and X̄(t) belong to BM̄ for all t ∈ [0, T ]. From Theorem 3.1,
there exist constants T̄ , ε and K̄ depending only on M̄ such that

(4.12) dR(X(t), X̄(t)) ≤ KdR(X(t̄), X̄(t̄))

for any t such that t̄ ≤ t ≤ t̄T̄ and meas({ξ ∈ R | t̄ < τ(ξ) < t}) + meas({ξ ∈ R |
t̄ < τ̄(ξ) < t}) ≤ ε. To obtain global stability, we have to split the interval [0, T ] in
small time intervals where (4.12) can be used. We define the increasing sequence
of times ti as follows: Let t0 = 0 and

ti+1 = sup
{

t ∈ [ti, ti + T̄ ] | meas({ξ ∈ R | ti < τ(ξ) < t})
+ meas({ξ ∈ R | ti < τ̄ (ξ) < t}) ≤ ε

}

.

Introduce subsets Ii of N, with i = 1, 2, 3, that characterize how ti+1 are chosen:
(i) i ∈ I1 if ti+1 = ti + T̄ ;
(ii) i ∈ I2 if i /∈ I1 and meas({ξ ∈ R | ti < τ(ξ) ≤ ti+1}) ≥ ε

3 ;
(iii) i ∈ I3 if i /∈ I1 ∪ I2 and meas({ξ ∈ R | ti < τ̄ (ξ) ≤ ti+1}) ≥ ε

3 .
Let us prove that we cover all the cases, that is, I1 ∪ I2 ∪ I3 = N. Assume that

there exists i /∈ I1 ∪ I2 ∪ I3. Then, we have ti < ti+1 < ti + T̄ and

(4.13) meas({ξ ∈ R | ti < τ(ξ) ≤ ti+1}) + meas({ξ ∈ R | ti < τ̄ (ξ) ≤ ti+1}) ≤
2

3
ε.

Since ∩n∈N

{

ξ ∈ R | ti+1 < τ(ξ) < ti+1 + 1
n

}

= ∩n∈N

{

ξ ∈ R | ti+1 < τ̄(ξ) <

ti+1 + 1
n

}

= ∅, there exists t̃ ∈ (ti+1, ti + T̄ ) such that

meas({ξ ∈ R | ti+1 < τ(ξ) < t̃}) < ε

6
and meas({ξ ∈ R | ti+1 < τ̄ (ξ) < t̃}) < ε

6
.

Hence,

meas({ξ ∈ R | ti < τ(ξ) < t̃}) + meas({ξ ∈ R | ti < τ̄(ξ) < t̃}) < ε

which contradicts the definition of ti+1, and we have proved that I1 ∪ I2 ∪ I3 = N.
We have to prove that the partition we have obtained reaches T , that is, that

there exists N0 such that tN0 ≥ T . Let us consider any N such that tN ≤ T .
Introduce

A =
{

ξ ∈ R | 0 < τ(ξ) ≤ T
}

and Ā =
{

ξ ∈ R | 0 < τ̄(ξ) ≤ T
}

.

We have, as ζξ(T, ξ) = −1 for ξ ∈ A, that

meas(A) =

∫

A
ζξ(T, ξ)

2 dξ ≤ ‖ζξ(T, · )‖2
L2(R) ≤ M̄2.
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We have
⋃

i∈I2∩[1,N ]

{ξ ∈ R | ti < τ(ξ) ≤ ti+1} ⊂ A and
⋃

i∈I3∩[1,N ]

{ξ ∈ R | ti <

τ̄ (ξ) ≤ ti+1} ⊂ Ā, and the sets in each of these unions are disjoint. Hence, from
the definition of I2, we obtain
ε

3
]
(

I2 ∩ [1, N ]
)

≤ meas
(

⋃

i∈I2∩[1,N ]

{ξ ∈ R | ti < τ(ξ) ≤ ti+1}
)

≤ meas(A) ≤ M̄2

and

(4.14) ]
(

I2 ∩ [1, N ]
)

≤ 3M̄2

ε
.

Similarly, we have

(4.15) ]
(

I3 ∩ [1, N ]
)

≤ 3M̄2

ε
.

The number of elements in I1 is also bounded,

(4.16) ]
(

I1 ∩ [1, N ]
)

≤ T

T̄
.

Hence, from (4.14), (4.15) and (4.16), as I1 ∪ I2 ∪ I3 = N, we obtain

(4.17) N ≤ 6M̄2

ε
+
T

T̄
.

Let N0 be the smallest integer which does not satisfy (4.17). We have tN0 ≥ T , and
N0 is bounded by a constant which depends on M and T but which is independent
of the particular solution X and X̄ we have considered. From the definition of ti+1

and (4.12) we get

(4.18) dR(X(t), X̄(t)) ≤ K̄dR(X(ti), X(ti))

for all t ∈ [ti, ti+1), where the constant K̄ only depends on M and T̄ . Due to
Lemma 4.2, the inequality (4.18) holds for t ∈ [ti, ti+1]. We can combine those
inequalities to obtain

dR(X(t), X̄(t)) ≤ K̄N0dR(X0, X0)

for all t ∈ [0, tN0 ]. Since tN0 ≥ T and N0 only depends on M and T , we obtain
(4.1) for K = K̄N0 . �

In order to take into account the fact that energy disappears at collisions, we
introduce yet another metric. For Ω a subset of R, we define the mapping d̃Ω : G ×
G → R+ as

d̃Ω(X, X̄) =
∥

∥ζ − ζ̄
∥

∥

L∞

Ω

+
∥

∥U − Ū
∥

∥

L2
Ω

+
∥

∥ζξ − ζ̄ξ
∥

∥

L2
Ω

+
∥

∥Uξ − Ūξ
∥

∥

L2
Ω

+
∥

∥g(X)− g(X̄)
∥

∥

L2
Ω

for X , X̄ in G. However, d̃R does not define a distance on G: It satisfies all the
axioms of a distance but the Hausdorff condition, as d̃R(X, X̄) = 0 does not imply
X = X̄. Indeed, consider X ∈ G such that yξ = 0 on some interval I of strictly
positive and finite measure. Then, let us define X̄ as ȳ = y, Ū = U on R and
h̄ = h on R \ I and h̄ = h + 1 on I . We have g(X̄) = g(X) for all x ∈ R because

g(X̄) = g(X) = 0 on I and otherwise X and X̄ coincide. Hence, d̃R(X, X̄) = 0 but
X 6= X̄. However, it is not a problem and even a necessary condition: Changing
the energy density, h, in a region which is not going to interact anymore (because
yξ = 0) should not have any consequence on the evolution of the system. Theorem
4.1 gives us that the semigroup St : X0 → X(t) is continuous with respect to the
distance dR on bounded sets of G. In the next theorem, we see that St is also
continuous with respect to the weaker metric d̃R.
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Theorem 4.3. The semigroup St : X0 → X(t) of solutions of (2.18) and (2.19)

is continuous with respect to the distance d̃R on bounded sets of G, that is, given
M ≥ 0, for any sequence Xn

0 and X0 in BM , we have

lim
n→∞

d̃R(Xn
0 , X0) = 0 implies lim

n→∞
d̃R(St(X

n
0 ), St(X0)) = 0

for all t.

Proof. Let X(t) and X̄(t) be two solutions with initial data X0 and X̄0 in BM . We
denote by CT the set of particles which have collided before a given time T , that is,

CT = {ξ ∈ R | 0 < τ(ξ) < T and 0 < τ̄(ξ) < T}.
From Lemma 2.9, there exists an ε depending on T and M such that

(4.19) K 1
ε
∪ K̄ 1

ε
∪ Aε ∪ Āε ⊂ CT .

Let Gε denote the complement of the set K 1
ε
∪ K̄ 1

ε
∪ Aε ∪ Āε. The mapping

x = (x2, x3, x4) 7→ x5 = x2
2x3 +

x2
4

x3
is Lipschitz on the set {x = (x2, x3, x4) ∈ R

3 |
|x| ≤M and |x3| ≥ ε}, that is, there exists a constant C(ε,M) depending only on
ε and M such that |x5 − x̄5| ≤ C(ε,M) |x − x̄|. We denote generically by C(ε,M)

such constants. Since h0 = U2
0 y0ξ+

U2
0ξ

y0ξ
and h̄0 = Ū2

0 ȳ0ξ+
Ū2

0ξ

ȳ0ξ
, by (2.23f), it follows

that
∥

∥h0 − h̄0

∥

∥

L2(Gε)
≤ C(ε,M)(

∥

∥U0 − Ū0

∥

∥

L2(Gε)

+
∥

∥ζ0ξ − ζ̄0ξ
∥

∥

L2(Gε)
+
∥

∥U0ξ − Ū0ξ

∥

∥

L2(Gε)
)

≤ C(ε,M)d̃R(X0, X̄0).(4.20)

After using (2.23f) again, we obtain
∥

∥h0 − h̄0

∥

∥

L1(Gε)
=
∥

∥U2
0 (1 + ζ0ξ) + U2

0ξ − h0ζ0ξ − U2
0 (1 + ζ0ξ) + U2

0ξ − h0ζ0ξ
∥

∥

L1(Gε)

≤ C(ε,M)(
∥

∥U0 − Ū0

∥

∥

L2(Gε)
+
∥

∥Z0 − Z̄0

∥

∥

L2(Gε)
)

≤ C(ε,M)d̃R(X0, X̄0)

by (4.20). Hence, we have

(4.21) dGε
(X0, X̄0) ≤ C(ε,M)d̃R(X0, X̄0).

From X and X̄ , we define Xa(t, ξ) and X̄a(t, ξ) for t ≥ T by resetting the energy
to 1 for ξ ∈ Gcε, that is,

Za(t, ξ) =

{

Z(t, ξ), if ξ ∈ Gε,

(0, 0, 1), if ξ ∈ Gcε,
Z̄a(t, ξ) =

{

Z̄(t, ξ), if ξ ∈ Gε,

(0, 0, 1), if ξ ∈ Gcε,

and ζa = ζ, Ua = U , ζ̄a = ζ̄ , Ūa = Ū . Note that for ξ ∈ Gcε, we could set h(ξ) to
any other constant α > 0. We claim that Xa and X̄a are solutions to (2.18) and
(2.19) for t ≥ T . For t ≥ T , if τ(ξ) > t ≥ T , then ξ ∈ Gε because Gcε ⊂ CT and
then τa(ξ) = τ(ξ). Hence, we have that, for t ≥ T ,

{ξ ∈ R | τ(ξ) > t} = {ξ ∈ Gε | τ(ξ) > t}
= {ξ ∈ Gε | τa(ξ) > t} = {ξ ∈ R | τa(ξ) > t}

because τa(ξ) = T for ξ ∈ Gcε. It follows that, for t ≥ T ,

P a(t, ξ) =
1

4

∫

τa(η)>t

exp
(

− sgn(ξ − η)(ya(ξ) − ya(η))
)(

(Ua)2yaξ + ha
)

(η) dη

=
1

4

∫

{τa(η)>t}∩Gε

exp
(

− sgn(ξ − η)(ya(ξ) − ya(η))
)(

(Ua)2yaξ + ha
)

(η) dη
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=
1

4

∫

{τ(η)>t}∩Gε

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + h
)

(η) dη

= P (t, ξ).

Similarly we get that, for t ≥ T , Qa = Q, so that F (Xa) = F (X). For ξ ∈ Gcε
and t ≥ T , we have Za(t, ξ) = (0, 0, 1) and therefore Zat (t, ξ) = 0. For ξ ∈ Gε,
Za(t, ξ) and Z(t, ξ) coincide. Hence, Zat (t, ξ) = Zt(t, ξ) = χ{τ(ξ)>t}F (X)Z =
χ{τa(ξ)>t}F (Xa)Za, and we have proved our claim that Xa satisfies (2.18) and

(2.19). By a similar argument we obtain the same result for X̄a. We have introduced
Xa and X̄a because, first, they coincide on Gcε so that

(4.22) dGε
(Xa(t), X̄a(t)) = dR(Xa(t), X̄a(t))

and, second, because they are at distance zero from X and X̄, respectively, as we
have

(4.23) d̃R(X(t), Xa(t)) ≤ d̃Gε
(X(t), Xa(t)) + d̃Gc

ε
(X̄(t), X̄a(t)) = 0

and d̃R(X̄(t), X̄a(t)) = 0, for t ≥ T . We can apply Theorem 4.1 and get that there
exists a constant K depending on M on T̄ such that, for any t ≤ T̄ ,

dR(Xa(t), X̄a(t)) ≤ KdR(Xa(T ), X̄a(T )) ≤ KdGε
(Xa(T ), X̄a(T )),

by (4.22). Hence, after using (4.23),

d̃R(X(t), X̄(t)) = d̃R(Xa(t), X̄a(t))

≤ dR(Xa(t), X̄a(t))

≤ KdGε
(Xa(T ), X̄a(T ))

= KdGε
(X(T ), X̄(T ))

≤ K(dGε
(X0, X̄0) + dR(X(T ), X0) + dR(X̄(T ), X̄0))

and therefore

(4.24) d̃R(X(t), X̄(t)) ≤ C(ε,M)d̃R(X0, X̄0) +K(dR(X(T ), X0) + dR(X̄(T ), X̄0))

by (4.21). Given any ε̄ > 0, by Lemma 4.2, we can choose T small enough so that

K(dR(X(T ), X0) + dR(X̄(T ), X̄0)) ≤ C(M)T ≤ ε̄

2
.

Then, we can fix ε = ε0 so that (4.19) holds and for δ = ε̄(2C(ε0,M))−1 we have

by (4.24) that d̃R(X0, X̄0) ≤ δ implies

d̃R(X(t), X̄(t)) ≤ ε̄.

Hence, we have proved that d̃R(X0, X̄0) → 0 implies d̃R(X(t), X̄(t)) → 0, as claimed
in the theorem. �

5. Invariance of the system with respect to relabeling

We define the set G0 as

G0 = {X ∈ G | g(X) = 1}
and the projection Π from G to G0 as follows. For any X ∈ G, we introduce

(5.1) ϕ(ξ) =

∫ ξ

−∞
(g(X(η)) − yξ(η)) dη + y(ξ)

so that ϕξ = g(X). We define

ȳ(ξ) = y(η) and Ū(ξ) = U(η)
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for any η such that ξ = ϕ(η). We consider the pushforward of h dξ by ϕ and denote
it by ν, that is, ν = ϕ#(h dξ). From the Radon–Nikodým theorem, there exists a
unique function h̄ in L1 such that

(5.2) ϕ#(h dξ) = ν = h̄ dξ + νs

where νs is the singular part of the decomposition of ν and h̄ dξ the absolutely
continuous part.

Proposition 5.1. We have X̄ = (ζ̄ , Ū , h̄) ∈ G0. We define the mapping Π: G → G0

as X̄ = Π(X).

Note that Π ◦ Π = Π so that Π is indeed a projection.

Proof. We have to check that this definition is well-defined. First, let us look at
the definition of ϕ. Let

(5.3) S = {ξ ∈ R | X(ξ) ∈ Ω}.
From the definition of S and Ω, we get that, for any ξ ∈ S,

1 ≤ |ζξ | + h.

We use a kind of Chebyshev inequality to prove that meas(S) is finite. We have
a ≤ 1

2 (a2 + 1) for all a and therefore

(5.4)
1

2
≤ 1

2
|ζξ |2 + h.

After integrating (5.4) on S, we get that

(5.5) meas(S) ≤ ‖ζξ‖2
L2 + 2 ‖h‖L1 <∞.

On S we have that g(X)−yξ = |Uξ|+(1+2U2)yξ is bounded while on Sc, we have
g(X) − yξ = h, which belongs to L1. Hence, since meas(S) <∞,

(5.6) g(X) − yξ ∈ L1

so that the integral in (5.1) is well-defined. Let η1 and η2 such that ξ = ϕ(η1) =
ϕ(η2). Since g is positive, ϕ is increasing and therefore ϕξ(η) = g(X(η)) = 0 for
almost all η ∈ [η1, η2]. From the definition of g, we can see that g(X(η)) vanishes
if and only if yξ(η) = Uξ(η) = 0. Hence, y(η1) = y(η2) and U(η1) = U(η2), and the
definitions of ȳ and Ū are wellposed. Let us denote A = {ξ ∈ R | ϕξ(ξ) = 0}. We
have meas(ϕ(A)) =

∫

A
ϕξ dξ = 0. By differentating ȳ ◦ϕ = y and Ū ◦ϕ = U on Ac

where the functions ϕ, y and U are differentiable, we obtain

(5.7) ȳξ ◦ ϕϕξ = yξ and Ūξ ◦ ϕϕξ = Uξ

almost everywhere on Ac. The identities (5.7) also hold for ξ ∈ A because, as we
alreasy saw, ϕξ = 0 implies yξ = Uξ = 0. Let us prove that X̄ ∈ G. From the
definition of ζ̄, we obtain directly that ζ ∈ L∞ and ‖ζ̄‖L∞

R
≤ ‖ζ‖L∞

R

. From the

defintion of g, we get that 0 ≤ yξ ≤ g(X) = ϕξ . Hence,

|ȳ(ξ2) − ȳ(ξ1)| =

∣

∣

∣

∣

∫ η2

η1

yξ(η) dη

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ η2

η1

ϕξ(η) dη

∣

∣

∣

∣

= |ξ2 − ξ1| ,

and ȳ is Lipschitz and therefore differentiable almost everywhere. Let B =
{

ξ ∈ R | ϕξ ≤ 1
2

}

.

We have meas(S ∩ B) < ∞ and on B ∩ Sc, we have ϕξ = yξ + h ≤ 1
2 , that is

h + ζξ ≤ − 1
2 . By a Chebyshev type of inequality, since ζξ ∈ L2 and h ∈ L1, we

infer that meas(B ∩ Sc) <∞, and therefore meas(B) <∞. Then,
∫

R

ζ̄2
ξ (ξ) dξ =

∫

ϕ(B)

ζ̄2
ξ (ξ) dξ +

∫

ϕ(Bc)

ζ̄2
ξ (ξ) dξ
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≤ ‖ζξ‖2
L∞

∫

ϕ(B)

dξ +

∫

Bc

ζ̄2
ξ ◦ ϕ(ξ)ϕξ(ξ) dξ

≤ ‖ζξ‖2
L∞

∫

B

ϕξ(ξ)dξ + 2

∫

Bc

ζ̄2
ξ ◦ ϕ(ξ)ϕξ(ξ)

2 dξ

≤ ‖ζξ‖2
L∞ ‖ϕξ‖L∞ meas(B) + 2 ‖ζξ‖2

L2 ,

and ζξ ∈ L2. Let us prove that U ∈ L2. We have
∫

R

Ū2 dξ =

∫

R

Ū2 ◦ ϕϕξ dξ ≤ ‖ϕξ‖L∞

R

‖U‖2
L2

R

.

Next we prove that Uξ ∈ L2. We have
∫

R

Ūψξ dξ =

∫

R

Ū ◦ ϕψξ ◦ ϕϕξ dξ =

∫

R

U(ψ ◦ ϕ)ξ dξ = −
∫

R

Uξ(ψ ◦ ϕ) dξ.

Since Uξ(ξ) = 0 whenever ξ is such that yξ(ξ) = 0 and therefore ϕξ(ξ) = 0, the
domain of integration in the last integral can be restricted to {ξ ∈ R | ϕξ(ξ) > 0}
and we get, by the Cauchy–Schwarz inequality,

∣

∣

∣

∣

∫

R

Ūψ dξ

∣

∣

∣

∣

=

∫

ϕξ(ξ)>0

Uξ√
ϕξ

(ψ ◦ ϕ)
√
ϕξ dξ ≤

(

∫

ϕξ(ξ)>0

U2
ξ

ϕξ
dξ
)1/2

‖ψ‖L2 .

On the other hand, we have
∫

R

U2
ξ

ϕξ
dξ =

∫

S

U2
ξ

ϕξ
dξ +

∫

Sc

U2
ξ

ϕξ
dξ ≤ meas(S) ‖Uξ‖L∞ +

∥

∥

∥

∥

1

yξ + h

∥

∥

∥

∥

L∞

‖Uξ‖2
L2 <∞

because |Uξ| ≤ ϕξ on S and 1
ϕξ

= 1
yξ+h on Sc. Hence, for some constant C,

∣

∣

∫

R
Ūψξ dξ

∣

∣ ≤ C ‖ψ‖L2 for all ψ ∈ L2, which proves that Uξ ∈ L2. We have

(5.8)

∫

R

h̄ dξ = νac(R) ≤ ν(R) =

∫

R

h dξ.

Here we clearly see that the L1 norm of h is not preserved by the projection: We
may lose some energy. We claim that

(5.9) h̄ ◦ ϕϕξ = h

for almost every ξ ∈ Ac. First we prove that, for almost every ξ ∈ Ac, ϕ is injective.
Indeed, assume that it is not the case, and that there exists ξ ∈ Ac and ξ′ 6= ξ such
that ϕ(ξ) = ϕ(ξ′). Since ϕ is monotone increasing, it implies that ϕ(η) = ϕ(ξ) for
all η ∈ [ξ, ξ′]. Hence, ϕξ(ξ) = 0, which contradicts the fact that ξ ∈ Ac. Let us
prove that νac = ν|ϕ(Ac) and νs = ν|ϕ(A). For any given Borel set B of Lebesgue
measure zero, we have

ν(B ∩ ϕ(Ac)) =

∫

ϕ−1(B∩ϕ(Ac))

h dξ =

∫

ϕ−1(B)∩Ac

h

ϕξ
ϕξ dξ

because ϕ−1(ϕ(Ac)) = Ac as ϕ is injective on Ac. The generalized area formula
yields

(5.10)

∫

ϕ−1(B)∩Ac

h

ϕξ
ϕξ dξ =

∫

R

(

∑

η∈ϕ−1(B)∩Ac∩ϕ−1({ξ})

h

ϕξ
(η)

)

dξ

where H0 is the multiplicity function, see [1] for more details on this formula and the
precise definition of H0. Since ϕ is injective on Ac, the set ϕ−1(B)∩Ac ∩ϕ−1({ξ})
reduces to one point, ϕ−1(ξ), and we have

ν(B ∩ ϕ(Ac)) =

∫

B∩ϕ(Ac)

h

ϕξ
(ϕ−1(ξ)) dξ = 0
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because meas(B) = 0. Hence, ν|ϕ(Ac) is absolutely continuous. On the other hand,
since meas(ϕ(A)) = 0, ν|ϕ(A) is nonzero only on a set of measure zero and, as
ν = ν|ϕ(Ac) + ν|ϕ(A), it follows that νac = ν|ϕ(Ac) and νs = ν|ϕ(A). For any subset
B of Ac, we have

∫

ϕ(B)

h̄ dξ = νac(ϕ(B)) = ν(ϕ(B)) =

∫

B

h dξ

which implies, after a change of variables, that
∫

B

h dξ =

∫

B

h̄ ◦ ϕϕξ dξ.

Since B is an arbitrary subset of Ac, this concludes the proof of the claim (5.9).
Since ϕ(Ac) has full measure, from (5.7) and (5.9), we infer that X̄ fulfills (2.23c).
Since meas(ϕ(A)) = 0, for almost every ξ there exists η ∈ Ac such that ξ = ϕ(η).
We have, after using (5.7) and (5.9) that

ȳξ(ξ)h̄(ξ) = ȳξ ◦ ϕ(η)h̄ ◦ ϕ(η) =
1

ϕ2
ξ(η)

yξ(η)h(η) =
1

ϕ2
ξ(η)

(U2y2
ξ + U2

ξ )(η)

as X ∈ G and satisfies (2.23c). Hence, again using (5.7), we get (ȳξh̄)(ξ) = (Ū2ȳ2
ξ +

Ū2
ξ )(ξ) and X̄ satisfies (2.23c). In the same way, one obtains

1

ȳξ(ξ) + h̄(ξ)
=

1

ȳξ ◦ ϕ(η) + h̄ ◦ ϕ(η)
=

ϕξ(η)

yξ(η) + h(η)
≤ ‖ϕξ‖L∞

∥

∥

∥

∥

1

yξ + h

∥

∥

∥

∥

L∞

,

and X̄ fulfills (2.23e). The function g is positive homogenous in the three last
variables, that is, g(x1, x2, λx3, λx4, λx5) = λg(x1, x2, x3, x4, x5) for all λ ≥ 0 and
x ∈ R

5. Hence, we have, for any η ∈ Ac,

g(X̄ ◦ ϕ)(η) =
1

ϕξ(η)
g(ȳ ◦ ϕ, Ū ◦ ϕ, ȳξ ◦ ϕϕξ , Ūξ ◦ ϕϕξ , h̄ ◦ ϕϕξ)(η)

=
1

ϕξ(η)
g(X(η)) = 1.

Hence, g(X̄) = 1 almost everywhere and X̄ belongs to G0. �

Proposition 5.2. The projection Π is a continuous mapping with respect to the
distance d̃R on bounded set of G, that is, for any sequence Xn and X in BM , we
have

lim
n→∞

d̃R(Xn, X) = 0 implies lim
n→∞

d̃R(Π(Xn),Π(X)) = 0.

Proof. First we prove that

(5.11) ϕn → ϕ in L∞.

To simplify the notation, we denote g(Xn) and g(X) by gn and g, respectively. We
have

(5.12) ‖ϕn − ϕ‖L∞ ≤
∥

∥gn − ynξ − g + yξ
∥

∥

L1 + ‖yn − y‖L∞ .

We define the set An and A as
(5.13)

An = {ξ ∈ R | Xn(ξ) ∈ Ω or ynξ (ξ) ≤ 1

2
} and A = {ξ ∈ R | X(ξ) ∈ Ω or yξ(ξ) ≤

1

2
}.

We have meas({ξ ∈ R | ynξ (ξ) ≤ 1
2}) ≤ 1

4

∫

R
ζnξ

2 dξ ≤ 1
4M

2 and meas({ξ ∈
R | X(ξ) ∈ Ω}) ≤ C(M), for some constant C(M) depending only on M , see (5.5).
Hence, meas(An) ≤ C(M) and meas(A) ≤ C(M) for another constant C(M). We
denote generically by C(M) constants which depend only on M . Note that on Acn,
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we have gn−ynξ = hn. We split the integration domain in two, An∪A and Acn∩Ac.
On An ∪ A, we have
∫

An∪A

∣

∣gn − ynξ − gξ + yξ
∣

∣ dξ ≤ (meas(An ∪ A))1/2(‖gn − g‖L2 +
∥

∥ynξ − yξ
∥

∥

L2)

≤ C(M)(‖gn − g‖L2 +
∥

∥ynξ − yξ
∥

∥

L2)(5.14)

while, on Acn ∩ Ac, we have

|hn − h| =

∣

∣

∣

∣

∣

(Un)2ynξ −
(Unξ )2

ynξ
+ U2yξ −

U2
ξ

yξ

∣

∣

∣

∣

∣

≤ 4
∣

∣(Un)22(ynξ )22yξ − (Unξ )2yξ − U2y2
ξy
n
ξ − U2

ξ y
n
ξ

∣

∣

so that
∫

Ac
n∩Ac

∣

∣gn − ynξ − gξ + yξ
∣

∣ dξ =

∫

Ac
n∩Ac

|hn − h| dξ

≤ C(M)(‖Un − U‖2
L2 +

∥

∥Unξ − Uξ
∥

∥

2

L2(5.15)

+ ‖yξ − yξ‖2
L2)

for some constant C(M) depending only onM . Combining (5.12), (5.14) and (5.15),
we obtain (5.11). We denote Π(Xn) and Π(X) by X̄n and X̄, respectively. We have
ȳn(ξ)− ȳ(ξ) = yn(ηn)−y(η) where η and ηn are chosen so that ξ = ϕn(ηn) = ϕ(η).
We have

|y(ηn) − y(η)| =

∣

∣

∣

∣

∫ ηn

η

yξ(η̄) dη̄

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ηn

η

ϕξ(η̄) dη̄

∣

∣

∣

∣

(because yξ ≤ ϕξ)

≤ |ϕ(ηn) − ϕ(η)| = |ϕ(ηn) − ϕn(ηn)|
≤ ‖ϕ− ϕn‖L∞ .

Hence, as ȳn(ξ) − ȳ(ξ) = yn(ηn) − y(ηn) + y(ηn) − y(η),

‖ȳn − ȳ‖L∞ ≤ ‖yn − y‖L∞ + ‖ϕn − ϕ‖L∞

which implies, by (5.11), that ȳn → ȳ in L∞. Let us prove that ζ̄nξ → ζ̄ξ , Ū
n → Ū

and Ūnξ → Ūξ in L2. We will only treat the first limit, i.e., that ζ̄nξ → ζ̄ξ, as the

others can be treated in exactly the same way. Note that g(X̄n) = g(X̄) = 1 so
that it is clear that g(X̄n) → g(X̄). Let us introduce

Anδ = {ξ ∈ R | g(Xn(ξ)) = ϕnξ (ξ) ≤ δ} and Aδ = {ξ ∈ R | g(X(ξ)) = ϕξ(ξ) ≤ δ}.

Without loss of generality, we may assume that δ ≤ (2M)−1. If ξ ∈ Aδ , then
g(X(ξ)) ≤ δ ≤ (2M)−1 < (yξ + h)(ξ) and therefore ξ ∈ S. Hence, Aδ ⊂ S and
meas(Aδ) ≤ C(M) from (5.5). Similarly, one gets meas(Anδ ) ≤ C(M). We consider
the decomposition R = ϕn(Acδ ∩ (Anδ )c) ∪ ϕn(Aδ) ∪ ϕn(Anδ ). Since ȳnξ ≤ ḡn = 1, we

have
∥

∥ζ̄ξ
∥

∥

L∞
≤ 1 and

(5.16)
∫

ϕn(An
δ
)

∣

∣ζ̄nξ − ζ̄ξ
∣

∣

2
dξ ≤ 4

∫

ϕn(An
δ
)

dξ ≤ 4

∫

An
δ

ϕnξ dξ ≤ 4δmeas(Anδ ) ≤ C(M)δ.

We have
∫

ϕn(Aδ)

∣

∣ζ̄nξ − ζ̄ξ
∣

∣

2
dξ ≤ 4

∫

ϕn(Aδ)

dξ = 4

∫

Aδ

ϕnξ dξ

≤ 8δmeas(Aδ ∩An2δ) + C(M) meas(Aδ ∩ (An2δ)
c).
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Since meas(Aδ∩(An2δ)
c) ≤ 1

δ

∫

Aδ∩(An
2δ

)c

∣

∣

∣
ϕξ − ϕnξ

∣

∣

∣
dξ ≤ meas(Aδ)

1/2δ−1
∥

∥

∥
ϕξ − ϕnξ

∥

∥

∥

L2
,

the last inequality gives us

(5.17)

∫

ϕn(Aδ)

∣

∣ζ̄nξ − ζ̄ξ
∣

∣

2
dξ ≤ C(M)(δ +

1

δ

∥

∥ϕξ − ϕnξ
∥

∥

L2).

It remains to evaluate
∫

ϕn(Ac
δ
∩(An

δ
)c)

∣

∣

∣
ζ̄nξ − ζ̄ξ

∣

∣

∣

2

dξ. We have
∫

ϕn(Ac
δ
∩(An

δ
)c)

∣

∣ζ̄nξ − ζ̄ξ
∣

∣

2
dξ =

∫

Ac
δ
∩(An

δ
)c

∣

∣ζ̄nξ ◦ ϕn − ζ̄ξ ◦ ϕn
∣

∣

2
ϕnξ dξ

≤ 2

∫

Ac
δ
∩(An

δ
)c

∣

∣ζ̄nξ ◦ ϕn − ζ̄ξ ◦ ϕ
∣

∣

2
ϕnξ dξ

+ 2

∫

Ac
δ
∩(An

δ
)c

∣

∣ζ̄ξ ◦ ϕ− ζ̄ξ ◦ ϕn
∣

∣

2
ϕnξ dξ.(5.18)

We denote by In1 and In2 , the integrals on the right-hand side of (5.18). We have

In1 =

∫

Ac
δ
∩(An

δ
)c

∣

∣

∣

∣

∣

ζnξ
ϕnξ

− ζξ
ϕξ

∣

∣

∣

∣

∣

2

ϕnξ dξ ≤
C(M)

δ3

∫

Ac
δ
∩(An

δ
)c

∣

∣ζnξ ϕξ − ζξϕ
n
ξ

∣

∣

2
dξ

≤ C(M)

δ3
(
∥

∥ζnξ − ζξ
∥

∥

2

L2 + ‖gn − g‖2
L2).(5.19)

Given a continuous function with compact support f , we have

In2 ≤ 3

∫

Ac
δ
∩(An

δ
)c

∣

∣ζ̄ξ ◦ ϕ− f ◦ ϕ
∣

∣

2
ϕnξ dξ + 3

∫

Ac
δ
∩(An

δ
)c

|f ◦ ϕ− f ◦ ϕn|2 ϕnξ dξ

+ 3

∫

Ac
δ
∩(An

δ
)c

∣

∣ζ̄ξ ◦ ϕn − f ◦ ϕn
∣

∣

2
ϕnξ dξ.(5.20)

We denote by In21 I
n
22 and In23 the three integrals in the inequality above. We have,

after a change of variables,

(5.21) In23 =

∫

ϕn(Ac
δ
∩(An

δ
)c)

∣

∣ζ̄ξ − f
∣

∣

2
dξ ≤

∥

∥ζ̄ξ − f
∥

∥

2

L2

and

(5.22) In21 ≤ C(M)

δ

∫

Ac
δ
∩(An

δ
)c

∣

∣ζ̄ξ ◦ ϕ− f ◦ ϕ
∣

∣

2
ϕξ dξ ≤

C(M)

δ

∥

∥ζ̄ξ − f
∥

∥

2

L2 .

Since f is continuous with compact support and ϕn → ϕ in L∞, it follows from the
Lebesgue dominated convergence theorem that

lim
n→∞

∫

R

|f ◦ ϕ− f ◦ ϕn|2 ϕnξ dξ = 0

so that limn→∞ In22 = 0, independently of δ. Gathering (5.16), (5.17), (5.19), (5.20),
(5.21) and (5.22), we finally obtain

(5.23)
∥

∥ζ̄nξ − ζ̄ξ
∥

∥

2

L2 ≤ C(M)
(

δ+
1

δ3
(‖g − gn‖2

L2+
∥

∥ζξ − ζnξ
∥

∥

2

L2+
∥

∥ζ̄ξ − f
∥

∥

2

L2)+I
n
22

)

where we have assumed without loss of generality that δ ≤ 1. For any ε > 0,
we take δ ≤ ε2(3C(M))−1. Since the space of continuous functions with compact
support is dense in L2, there exists f , continuous with compact support, such that

C(M)δ−3
∥

∥ζ̄ξ − f
∥

∥

2

L2 ≤ ε2/3. Since ζnξ → ζξ , g
n → g in L2 and In22 → 0, there

exists N such that for all n ≥ N , C(M)δ−3(‖g − gn‖2
L2 +

∥

∥

∥
ζξ − ζnξ

∥

∥

∥

2

L2
+In22) ≤ ε2/3

and then it follows that ‖ζ̄nξ − ζ̄ξ‖ ≤ ε. Hence, we have proved that ζ̄nξ → ζ̄ξ in

L2. �
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The system is invariant with respect to relabeling. Let us explain what we mean
by relabeling.

Definition 5.3. We say that X̄ ∈ G is a relabeling of X ∈ G if there exists a ψ
which satisfies

(5.24a) ψ(ξ)−ξ ∈ L∞(R), ψξ−1 ∈ L∞(R)∩L2(R), ψξ ≥ 0, lim
ξ→−∞

(ψ(ξ)−ξ) = 0

and such that

(5.24b) ȳ = y ◦ ψ, Ū = U ◦ ψ.
Note that in the definition above, we do not require any relationship between

h̄ and h. However, we have yξ(ψ(ξ))h(ψ(ξ)) = U2(ψ(ξ))y2
ξ (ψ(ξ)) + U2

ξ (ψ(ξ)) and

ȳ(ξ)h̄(ξ) = Ū2(ξ)ȳ2
ξ (ξ)+Ū

2
ξ (ξ). Since ȳ(ξ) = yξ(ψ(ξ))◦ψξ(ξ) and Ū(ξ) = Uξ(ψ(ξ))◦

ψξ(ξ), it implies that for almost all ξ ∈ R such that ȳξ(ξ) 6= 0,

(5.25) h̄(ξ) = h(ψ(ξ))ψξ(ξ).

Proposition 5.4. If X̄0 is a relabeling of X0, then, for any t ≥ 0, St(X̄0) is a
relabeling of St(X0). More precisely, if ȳ0 = y0 ◦ ψ, Ū0 = U0 ◦ ψ for a ψ satisfying
(5.24a), then

ȳ(t, ξ) = y(t, ψ(ξ)) and Ū(t, ξ) = U(t, ψ(ξ))

where X(t) = St(X0) and X̄(t) = St(X̄0).

Proof. Let ψ be the function such that ȳ0 = y0 ◦ ψ and Ū0 = U0 ◦ ψ which is
defined in Definition 5.3. Let us introduce X̃(t, ξ) as follows: ỹ(t, ξ) = y(t, ψ(ξ)),

Ũ(t, ξ) = U(t, ψ(ξ)),

h̃(t, ξ) =

{

h(t, ψ(ξ))ψξ(ξ) if ψξ(ξ) 6= 0,

h̄0(ξ) otherwise.

We have X̃(0, ξ) = X̄0, see (5.25), and we claim that X̃ satisfies (2.18) and (2.19)

and therefore, by uniqueness of the solution, we have X̃(t) = X̄(t) for all t and,

since X̃ is a relabeling of X , the lemma is proved. For any ξ such that ψξ(ξ) 6= 0,
we have that ỹξ(t, ξ) = 0 if and only of yξ(t, ψ(ξ)) = 0 and therefore, for such ξ,
τ̃ (ξ) = τ(ψ(ξ)). We have, after a change of variables,

P (t, ψ(ξ)) =
1

4

∫

τ(η)>t

exp
(

− sgn(ψ(ξ) − η)(y(ψ(ξ)) − y(η))
)(

U2yξ + h
)

(η) dη

=
1

4

∫

τ(ψ(η))>t

exp
(

− sgn(ψ(ξ) − ψ(η))(y(ψ(ξ)) − y(ψ(η)))
)

×
(

U2yξ + h
)

(ψ(η))ψξ(η) dη.

Let us denote B = {ξ ∈ R | ψξ(ξ) = 0}. The integrand vanishes for η ∈ B. For

η ∈ Bc, we have τ(ψ(η)) = τ̃ (η) and h(ψ(η))ψξ(η) = h̃(η). Let us consider ξ
and η such that ξ > η (the case ξ < η would be handled in the same way) and
η ∈ B. Since ψ is increasing, we have ψ(ξ) ≥ ψ(η). We cannot have ψ(ξ) = ψ(η)
as it would imply that ψξ(η) = 0. Hence, ψ(ξ) > ψ(η) and we have proved that
sgn(ψ(ξ) − ψ(η)) = sgn(ξ − η) on Bc. Hence,

P (t, ψ(ξ)) =
1

4

∫

τ̃(η)>t

exp
(

− sgn(ξ − η)(ỹ(ξ) − ỹ(η))
)(

Ũ2ỹξ + h̃
)

(η) dη = P̃ (t, ξ).

(5.26)

In the same way, one proves Q(t, ψ(ξ)) = Q̃(t, ξ). Since X is a solution to (2.18)
and (2.19), we have

yt(t, ψ(ξ)) = U(t, ψ(ξ)), Ut(t, ψ(ξ)) = −Q(t, ψ(ξ))
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and

(5.27)



















yξt(t, ψ(ξ)) = χ{τ(ψ(ξ))>t}Uξ(t, ψ(ξ)),

Uξt(t, ψ(ξ)) = χ{τ(ψ(ξ))>t}
(1

2
h+

(

1

2
U2 − P

)

yξ
)

(t, ψ(ξ)),

ht(t, ψ(ξ)) = χ{τ(ψ(ξ))>t}
(

− 2QUyξ +
(

3U2 − 2P
)

Uξ
)

(t, ψ(ξ)).

Hence, X̃ satisfies (2.18). For ξ ∈ Bc, we have τ(ψ(ξ)) = τ̃ (ξ), h(ψ(ξ))ψξ(ξ) = h̃(ξ),

P (t, ψ(ξ)) = P̃ (t, ξ), Q(t, ψ(ξ)) = Q̃(t, ξ) and therefore, after multiplying (5.27) by

ϕξ(ξ) we get that X̃ fulfills (2.19) on Bc. For ξ ∈ B, we have ỹξ(t, ξ) = Ũξ(t, ξ) = 0,

τ̃ (ξ) = 0 and h̃(t, ξ) = h0(ξ) so that X̃ satisfies (2.19) also on B. Hence, we have

proved our claim that X̃ satisfies (2.18) and (2.19) and therefore it coincides with
X̄. �

In [22] for the conservative case, we define an equivalence relation between ele-
ments that are equal up to a relabeling. In the dissipative case, we cannot formulate
this in the same way. We can check from Definition 5.3 that if X̄ is a relabeling of
X , then X is not necessary a relabeling of X̄ , basically because ψ−1 is either not
well-defined or not sufficiently regular. However, we have the following result.

Lemma 5.5. If X2 is a relabeling of X1, then Π(X2) = Π(X1).

Proof. There exists ψ which satisfies (5.24a) and such that y2 = y1 ◦ψ, U2 = U1 ◦ψ
and, for almost all ξ ∈ Bc, where B = {ξ ∈ R | ψξ(ξ) = 0}, h2(ξ) = h1(ψ(ξ))ψξ(ξ).
We claim that

(5.28) g(X1 ◦ ψ)ψξ = g(X2)

almost everywhere. Let us prove this claim. We have

(5.29) g(X1(ψ(ξ)))ψξ(ξ) = |U1ξ(ψ(ξ))|ψξ(ξ) + 2(1 + U2
1 (ψ(ξ)))y1ξ(ψ(ξ))ψξ(ξ)

if

(5.30) U1ξ(ψ(ξ)) + 2(1 + U2
1 (ψ(ξ)))y1ξ(ψ(ξ)) ≤ y1ξ(ψ(ξ)) + h1(ψ(ξ))

and

(5.31) g(X1(ψ(ξ)))ψξ(ξ) = yξ(ψ(ξ))ψξ(ξ) + h(ψ(ξ))ψξ(ξ)

otherwise. For ξ ∈ Bc, after multiplying both sides of the inequality by ϕξ(ξ), we
obtain that (5.30) is equivalent to

(5.32) U2ξ(ξ) + 2(2 + U2
2 (ξ))y2ξ(ξ) ≤ y2ξ(ξ) + h2(ξ)

and if ξ satisfies (5.32), we have, from (5.29), that

(5.33) g(X1(ψ(ξ)))ψξ(ξ) = |U2ξ(ξ)| + 2(1 + U2
2 (ξ))y2ξ(ξ) = g(X2(ξ)).

Similarly, if ξ does not satisfy (5.30), then (5.31) yields

g(X1(ψ(ξ)))ψξ(ξ) = y2ξ(ξ) + h2(ξ) = g(X2(ξ)).

Hence, (5.28) holds on Bc. For ξ ∈ B, y2ξ(ξ) = 0 which implies g(X2(ξ)) = g(X1 ◦
ψ)ψξ = 0 and therefore (5.28) also holds on Bc. Hence, we have proved our claim
that (5.28) holds almost everywhere. Let us denote X̄1 = Π(X1), X̄2 = Π(X2). We
have

(5.34) ȳ1 ◦ ϕ1 = y1, Ū1 ◦ ϕ1 = U1 and ȳ2 ◦ ϕ2 = y2, Ū2 ◦ ϕ2 = U2,

where ϕ1 and ϕ2 are defined as in (5.1). Since ϕ1ξ = g(X1) and ϕ2ξ = g(X2),
equation (5.28) yields ϕ1ξ ◦ψψξ = ϕ2ξ and, after integration, we obtain ϕ1 ◦ψ(ξ) =
ϕ2(ξ) + ϕ1 ◦ ψ(η) − ϕ2(η) for any ξ and η. We have

ϕ1 ◦ ψ(η) − ϕ2(η) = ϕ1 ◦ ψ(η) − ψ(η) + ψ(η) − η + ϕ2(η) − η
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and therefore limη→∞(ϕ1 ◦ ψ(η) − ϕ2(η)) = 0 because

lim
η→∞

(ϕ1(η) − η) = lim
η→∞

(ϕ2(η) − η) = lim
η→∞

(ψ(η) − η) = 0.

Hence, ϕ1 ◦ψ = ϕ2 and, from (5.34), it follows that ȳ1 ◦ϕ2 = ȳ2 ◦ϕ2 and Ū1 ◦ϕ2 =
Ū2 ◦ ϕ2 which implies ȳ1 = ȳ2 and ȳ1 = Ū2 because ϕ2 is surjective. Since X̄1 and
X̄2 belong to G0, we have g(X1) = g(X2) = 1 and therefore, for almost all ξ, we
have y1ξ(ξ) 6= 0 and y2ξ(ξ) 6= 0 as y1ξ(ξ) = 0 implies g(X1(ξ)) = 0. Hence, for
almost all ξ, we have

h1(ξ) = U2
1 (ξ)y1ξ(ξ) +

U2
1ξ(ξ)

y1ξ(ξ)
= U2

2 (ξ)y2ξ(ξ) +
U2

2ξ(ξ)

y2ξ(ξ)
= h2(ξ),

and we have proved that X̄1 = X̄2. �

We can define an equivalence relation in G as follows: X1 and X2 are equivalent
if Π(X1) = Π(X2). The preceding lemma tells us that this equivalence relation
is related to relabeling in the sense that if X2 is a relabeling of X1, then X1 and
X2 are equivalent. By considering equivalence classes, we suppress somehow the
arbitrariness of the choice of relabeling we introduced by setting the equivalent
system of the first section and which is inherent to any lagrangian formalism. This
is a condition to obtain a bijection with the Eulerian coordinates. The set of
equivalent classes is in bijection with G0 and that is why we now define a semigroup
on this set.

Theorem 5.6. The mapping S̃t defined as S̃t = Π ◦ St is a continuous semigroup
on bounded sets of G0.

Proof. From Theorem 4.3 and Proposition 5.2, we get that S̃t is continuous. It
remains to check the semigroup property. We claim that

(5.35) Π ◦ St ◦ Π = Π ◦ St.
Consider a given X ∈ G. We have that X is a relabeling of Π(X). Hence, from
Lemma 5.4, it follows that St(X) is a relabeling of St(Π(X)). Then Lemma 5.5
implies Π(St(X)) = Π(St(Π(X))) and we have proved the claim (5.35). By using
(5.35), we prove the semigroup property

S̃t+t′ = Π ◦ St+t′ = Π ◦ St ◦ St′ = Π ◦ St ◦ Π ◦ St′ = S̃t ◦ S̃t′ .
�

6. From Lagrangian to Eulerian coordinates

In this section we define the mappings between the Eulerian variable u ∈ H1

and the Lagrangian variable X ∈ G0 and vice versa. We use the fact the Eulerian
variable u formally is just a particular relabeling of X , a relabeling X̄ for which we
have ȳ(ξ) = ξ.

Definition 6.1. Given u ∈ H1, let us denote X̄(x) = (x, u, 1, ux, u
2 + u2

x). We
define y as

(6.1)

∫ y(ξ)

−∞
(g(X̄(x)) − 1) dx+ y(ξ) = ξ

and set
U = u◦y and h = (u2 + u2

x)◦y yξ.
Then, X = (y, U, h) belongs to G0 and we denote by L the mapping u 7→ X from
H1 to G0.

Note the similarity between (6.1) and (5.1).
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Proposition 6.2. The mapping L sends bounded set of H1 into bounded sets of
G0, that is, for any M > 0 and u ∈ H1, ‖u‖H1 ≤ M implies L(u) ∈ BM̄ for some
constant M̄ depending only on M .

Proof. We prove the well-posedness of the definition of L and Proposition 6.2 at
the same time. We consider u ∈ H1 such that ‖u‖H1 ≤M . Let

(6.2) A = {x ∈ R | |ux(x)| + 2(1 + u2)(x) ≤ 1 + u2(x) + u2
x(x) and ux(x) ≤ 0},

that is, A = {x ∈ R | X̄(x) ∈ Ω}. Since A ⊂ {x ∈ R | 1 ≤ (u2 + u2
x)(x)} and

u ∈ H1, the set A has finite measure and meas(A) ≤ C(M) for some constant
depending only on M . We will denote generically by C(M) such constant. The
function

(6.3) z 7→
∫ z

−∞
l(x) dx + z,

where l(x) = g(X̄(x)) − 1 = (|ux| + (2u2 + 1))(x)χA(x) + (u2 + u2
x)(x)χAc(x), is

continuous and strictly increasing. Therefore it is bijective and its inverse, y(ξ), is
well-defined. Let ξ ≤ ξ′, since y is increasing and l positive, we get

(6.4) y(ξ′) − y(ξ) ≤ ξ′ − ξ.

Hence, y is Lipschitz with a Lipschitz constant smaller than one. Assuming again
without loss of generality that ξ ≤ ξ′, we have

|U(ξ′) − U(ξ)| = |u ◦ y(ξ′) − u ◦ y(ξ)|

≤
∫ y(ξ′)

y(ξ)

|ux(x)| dx

≤
∫ y(ξ′)

y(ξ)

|ux(x)|χA(x) dx +

∫ y(ξ′)

y(ξ)

|ux(x)|χAc(x) dx.

From (6.1), we obtain
∫ y(ξ′)

y(ξ) |ux(x)|χA(x) dx ≤ |ξ′ − ξ| and
∫ y(ξ′)

y(ξ) u2
x(x)χAc (x) dx ≤

|ξ′ − ξ|. Therefore, after using Cauchy–Schwarz, we get

|U(ξ′) − U(ξ)| ≤ |ξ′ − ξ| + |y(ξ′) − y(ξ)|1/2
(

∫ y(ξ′)

y(ξ)

u2
x(x)χAc(x) dx

)1/2

≤ 2(ξ′ − ξ)

and U is Lipschitz. Let B1 be the set where y and U are differentiable. Since
y and U are Lipschitz, we have meas(Bc1) = 0. Let B2 be the set where u and
z 7→

∫ z

−∞ l(x) dx are differentiable. We have meas(Bc2) = 0. We denote

(6.5) B = y−1(B2) ∩ B1.

By (6.3), for any interval I , we have

(6.6)

∫

y(I)

(l(x) + 1) dx = meas(I).

Using the Lebesgue monotone convergence theorem, as y is one-to-one, one can
prove that B 7→

∫

y(B)
(l(x)+1) dx is a measure. Since it coincides with the Lebesgue

measure on any interval, it must coincide for any Borel set. Hence, (6.6) holds for
any Borel set and we get meas(y−1(Bc2)) =

∫

Bc
2
(l(x)+1) dx = 0 because meas(Bc2) =

0. Hence, meas(Bc) = 0. For any ξ ∈ B, by differentiating (6.1), we obtain

(6.7) yξ(ξ) =
1

1 + |ux| + (2u2 + 1)χA + (u2 + u2
x)χAc

◦ y(ξ).
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For any ξ ∈ B, we have

(6.8) Uξ(ξ) = ux ◦ y(ξ)yξ(ξ)

and, since yξ > 0 on B, we get that h = U2yξ +
U2

ξ

yξ
and X satisfies (2.23f) almost

everywhere. From (2.23f), we get
∫

R

U2
ξ (ξ) dξ ≤

∫

R

hyξ dξ ≤
∫

R

h dξ =

∫

R

(u2 + u2
x) ◦ yyξ dξ =

∫

R

(u2 + u2
x) dx ≤M2.

Hence, Uξ ∈ L2 and ‖Uξ‖L2 ≤ C(M). We have y(ξ) ≤ ξ and therefore limξ→−∞ y(ξ) =

−∞. Since ζ(ξ) =
∫ y(ξ)

−∞ l(x) dx and l ∈ L1, we have limζ→−∞ ζ(ξ) = 0 and ζ ∈ L∞.

We define, as in (5.3), the set S = {ξ ∈ R | X(ξ) ∈ Ω}. For any ξ ∈ y−1(A) ∩B,

(6.9) |ux| ◦ y(ξ) + 2(1 + U2(ξ)) ≤ 1 + (u2 + u2
x) ◦ y(ξ) and ux ◦ y(ξ) ≤ 0

which after multiplying each side of the inequalities by yξ gives

(6.10) |Uξ(ξ)| + 2(1 + U2(ξ))yξ(ξ) ≤ yξ(ξ) + h(ξ) and Uξ(ξ) ≤ 0,

that is, ξ ∈ S and we have proved that y−1(A) ∩ B ⊂ S. For any ξ ∈ S ∩ B,
(6.10) holds and implies (6.9) and therefore y(ξ) ∈ A. Hence, y−1(A) ∩ B ⊂ S ⊂
y−1(A) ∪ Bc and

(6.11) χy−1(A)(ξ) = χS(ξ)

for almost every ξ because meas(Bc) = 0. After differentiating (6.1) and using
(6.8), we obtain

(6.12) (|Uξ| + 2(U2 + 1)yξ)(ξ)χA(y(ξ)) + (yξ + h)(ξ)χAc(y(ξ)) = 1

for any ξ ∈ B. Since χA(y(ξ)) = χS(ξ) almost everywhere from (6.11), (6.12)
implies

g(X(ξ)) = (|Uξ| + 2(U2 + 1)yξ)(ξ)χS(ξ) + (yξ + h)(ξ)χSc(ξ) = 1

almost everywhere. We have

meas(S) =

∫

S

g(X(ξ)) dξ =

∫

S

(|Uξ| + 2(U2 + 1)yξ) dξ

=

∫

y(S)

(|ux| + 2(u2 + 1)) dx =

∫

A

(|ux| + 2(u2 + 1)) dx(6.13)

≤ meas(A)1/2 ‖ux‖L2 + meas(A)(2 ‖u‖2
L∞ + 1) ≤ C(M).

Using the fact that h+ ζξ = 0 on Sc and |ζξ| ≤ 1, we have
∫

R

|ζξ |2 dξ =

∫

S

|ζξ |2 dξ +

∫

Sc

|ζξ |2 dξ

≤ ‖ζξ‖L∞ meas(S) +

∫

Sc

h dξ

≤ ‖ζξ‖L∞ meas(S) + ‖h‖L1 ≤ C(M).

Hence, ζξ ∈ L2 and ‖ζξ‖L2 ≤ C(M). Since U = u ◦ y, U ∈ L∞. Let B3 = {ξ ∈
R | yξ ≤ 1

2}. Since ζξ ∈ L2, using the Chebyshev inequality, one can prove that
meas(B3) < C(M). Then,

∫

R

U2 dξ =

∫

B3

U2 dξ +

∫

Bc
3

U2 dξ

≤ ‖U‖2
L∞ meas(B3) + 2

∫

Bc
3

(u2 ◦ yyξ) dξ

≤ ‖u‖2
L∞ meas(B3) + 2 ‖u‖2

L2 ≤ C(M).
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Hence, U ∈ L2 and ‖U‖L2 ≤ C(M). We have g(X) ≤ yξ +h. Thus,
∥

∥

∥

1
yξ+h

∥

∥

∥

L∞

≤ 1

and (2.23e) is fulfilled. This concludes the proof that X belongs to G0. �

We define the mapping M from Lagrangian coordinates to Eulerian coordinates
as follows.

Definition 6.3. Given X ∈ G, the function

u(x) = U(ξ) if x = y(ξ)

is well-defined and belongs to H1. We denote M the mapping X 7→ u from G0 to
H1.

Proposition 6.4. We have

M ◦ Π = M .

From this proposition we recover the fact that if two elements are equivalent
in Lagrangian coordinates up to a relabeling, then they have the same Eulerian
representantive, that is, with our terminology, Π(X) = Π(X̄) implies M(X) =
M(X̄).

Proof. We prove the well-posedness of the definition of M and Proposition 6.4.
Given x ∈ R, assume there are ξ < ξ′ such that y(ξ) = y(ξ′) = x. Then, yξ = 0
on [ξ, ξ′]. By (2.23f), it implies that Uξ = 0 on [ξ, ξ′] and therefore U(ξ) = U(ξ′).
Let us prove that u ∈ L2. For any smooth function ψ, we get, after a change of
variables and using Cauchy–Schwarz,

∫

R

uψ dx =

∫

Uψ ◦ yyξ dξ

≤
(

∫

R

U2yξ dξ
)1/2(

∫

R

ψ2 ◦ yyξ
)1/2

≤ ‖h‖1/2
L1 ‖ψ‖L2

as U2yξ ≤ h by (2.23f). Hence, u ∈ L2. We have
∫

R

uψx dx =

∫

R

U(ξ)ψx◦y(ξ)yξ(ξ) dξ = −
∫

R

Uξψ◦y dξ = −
∫

{ξ∈R|yξ(ξ)>0}
Uξψ◦y dξ.

We can reduce the domain of integration because Uξ = 0 on {ξ ∈ R | yξ(ξ) = 0},
by (2.23f). Then,

∫

R

uψx dx ≤
(

∫

{ξ∈R|yξ(ξ)>0}

U2
ξ

yξ
dξ
)1/2(

∫

R

ψ2 ◦ yyξ dξ
)1/2

≤ ‖h‖1/2
L1 ‖ψ‖L2

as
U2

ξ

yξ
≤ h by (2.23f). Hence, ux ∈ L2 and we have proved that u ∈ H1. Let

us prove Proposition 6.4. Given X ∈ G, we denote u = M(X), X̄ = Π(X) and
ū = M(X̄). We have u◦y = U , ū◦ ȳ = Ū and ȳ ◦ϕ = y, Ū ◦ϕ = U for ϕ as defined
in (5.1). Hence,

u ◦ y = U = Ū ◦ ϕ = ū ◦ ȳ ◦ ϕ = ū ◦ y
and u = ū. �

We prove that H1 is in bijection with G0. More precisely we have the following
theorem.

Theorem 6.5.

M ◦ L = Id and L ◦ M = Π.
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Proof. Given u ∈ H1, we denote X = L(u) and ū = M(X). We have U = u ◦ y.
Since X ∈ G0, y is invertible and therefore ū = U ◦ y−1. Hence, ū = u and
M ◦ L = Id.

Given X ∈ G0, we denote u = M(X) and X̄ = L(u). Let S be defined as
earlier, S = {ξ ∈ R | X(ξ) ∈ Ω}. We know that meas(S) < ∞, see (5.5). We have
g(X) − yξ ∈ L1, see (5.6). Since g(X) = 1, we have g(X) − yξ = 1 − yξ = ζξ and

∫ ξ

ξ′
(g(X) − yξ) dξ = −ζ(ξ) + ζ(ξ′).

Letting ξ′ tend to −∞, as limξ→−∞ ζ(ξ) = 0, we get
∫ ξ

−∞
(g(X) − yξ) dη + y(ξ) = ξ

which can be rewritten as
∫ ξ

−∞

(

(|Uξ| + (2U2 + 1)yξ)(ξ)χS(ξ) + h(ξ)χSc(ξ)
)

dξ + y(ξ) = ξ

or

(6.14)

∫ ξ

−∞

(

(|Uξ| + (2U2 + 1)yξ)(ξ)χy−1(A)(ξ) + h(ξ)χy−1(Ac)(ξ)
)

dξ + y(ξ) = ξ

by (6.11). Since, Uξ = u ◦ yyξ and h = (u2 ◦ y + u2
x ◦ y)yξ almost everywhere, after

a change of variables in (6.14), we get

(6.15)

∫ y(ξ)

−∞

(

(|ux| + (2u2 + 1))χA + (u2 + u2
x)χy(Ac)

)

dx+ y(ξ) = ξ.

Hence, y and, by definition, ȳ satisfy (6.1) and therefore they coincide, i.e., ȳ = y.

We have Ū = u ◦ ȳ = u ◦ y = U and h̄ = Ū2ȳξ +
Ū2

ξ

yξ
= U2yξ +

U2
ξ

yξ
= h almost

everywhere. �

Earlier we noted that d̃R does not satisfy the Hausdorff property on G. However,
for X, X̄ ∈ G0, we have that d̃R(X, X̄) = 0 implies X = X̄, and therefore d̃R is a
metric on G0. Let us prove that. We have

∥

∥ζ − ζ̄
∥

∥

L∞
+
∥

∥U − Ū
∥

∥

L2 ≤ d̃R(X, X̄) = 0.

Hence, ζ = ζ̄ and U = Ū . Since for X ∈ G0, we have yξ > 0 almost everywhere

(and similarly for X̄), we get h̄ = Ū2ȳξ +
Ū2

ξ

yξ
= U2yξ +

U2
ξ

yξ
= h. Hence, X = X̄ .

The bijective mapping L allows us to transport the metric d̃R and the semigroup
S̃t from G0 to H1. We define the metric dH1 on H1 as follows

dH1 (u, ū) = d̃R(L(u),L(ū))

and the semigroup Tt on H1 as follows

Tt = M ◦ S̃ ◦ L.

The main result of this paper is the following theorem.

Theorem 6.6. The semigroup Tt constitutes a semigroup of weak solutions of the
Camassa–Holm equation, that is, for any initial data u0 in H1, u(t, x) = Tt(u0) is
a weak solution of (2.1).

The semigroup Tt is continuous with respect to the metric dH1 on bounded sets
of H1, that is, for any M > 0 and any sequence un ∈ H1 such that ‖un‖H1 ≤ M ,
we have limn→∞ dH1(un, u) = 0 implies limn→∞ dH1(Tt(un), Tt(u)) = 0.
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Proof. Let us start by proving that u(t, x) is a weak solution of (2.1). By definition,
we have u(t, x) = M ◦ Π ◦ St ◦ L(u0). From Proposition 6.4, we get that u(t, x) =
M ◦ St ◦ L(u0). Let us denote X0 = L(u0) and X(t) = St(X0). We want to prove
that, for all ϕ ∈ C∞(R+ × R) with compact support,
(6.16)
∫

R+×R

[−u(t, x)ϕt(t, x) + u(t, x)ux(t, x)ϕ(t, x)] dxdt =

∫

R+×R

−Px(t, x)ϕ(t, x) dxdt

where P is given by (2.1b) or equivalently (2.2). We use the change of variables
x = y(t, ξ) and, since Uξ = ux ◦ y yξ, we get

(6.17)

∫

R+×R

[−u(t, x)ϕt(t, x) + u(t, x)ux(t, x)ϕ(t, x)] dxdt

=

∫

R+×R

[−U(t, ξ)yξ(t, ξ)ϕt(t, y(t, ξ)) + U(t, ξ)Uξ(t, ξ)ϕ(t, y(t, ξ))] dξdt.

We have yξt(t, ξ) = χ{τ(ξ)>t}(ξ)Uξ(t, ξ), from (2.19). Since Uξ(t, ξ) = 0 for t ≥ τ(ξ),
we get yξt(t, ξ) = Uξ(t, ξ). Then, using the fact that yt = U , one easily check that

(6.18) (Uyξϕ ◦ y)t − (U2ϕ)ξ = Uyξϕt ◦ y − UUξϕ ◦ y + Utyξϕ ◦ y.
After integrating (6.18) over R+ × R, the left-hand side of (6.18) vanishes and we
obtain

(6.19)

∫

R+×R

[−Uyξ ϕt ◦ y + UUξ ϕ ◦ y] dξdt

=
1

4

∫

R+×R×{τ(η)>t}
sgn(ξ − η) exp

(

− sgn(ξ − η)(y(ξ) − y(η)
)

×
(

U2yξ + h
)

(η)yξ(ξ)ϕ ◦ y(ξ) dηdξdt
by (2.18). Since yξ(t, ξ) = 0 for t ≥ τ(ξ), we can change the integration domain to
R+ × {τ(ξ) > t} × {τ(η) > t}, and we have
∫

R+×R

[−Uyξ ϕt ◦ y + UUξ ϕ ◦ y] dξdt

=
1

4

∫

R+×{τ(ξ)>t}×{τ(η)>t}
sgn(ξ − η) exp

(

− sgn(ξ − η)(y(ξ) − y(η)
)

×
(

U2yξ + h
)

(η)yξ(ξ)ϕ ◦ y(ξ) dηdξdt.
To simplify the notation, we deliberately omitted the t variable. On the other hand,
by using the change of variables x = y(t, ξ) and z = y(t, η), we have

(6.20) −
∫

R+×R

Px(t, x)ϕ(t, x) dxdt

=
1

2

∫

R+×R2

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

u2(t, y(η)) +
1

2
u2
x(t, y(η))

)

ϕ(t, y(ξ))yξ(η)yξ(ξ) dηdξdt.

Again, we can restrict the integration domain to R+ × {τ(ξ) > t} × {τ(η) > t}
because yξ(t, ξ) = 0 for t ≥ τ(ξ) and yξ(t, η) = 0 for t ≥ τ(η). Moreover when

yξ(t, η) > 0, we have ux(t, y(t, η)) =
Uξ

yξ
(t, η). Hence, as y is an increasing function

and after using (2.23f), we get

(6.21) −
∫

R+×R

Px(t, x)ϕ(t, x) dxdt
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Π

{X0 ◦ ψ | ψ relabeling function}

(x, u, u2 + u2

x)

Tt(u0)

(x, u0, u
2

0 + u2

0x)

S̃t(X0) St(X0)

X = (y, U, h)

X0 = (y0, U0, h0)G

{X ◦ ψ | ψ relabeling function}

G0 = {X = (y,U, h) | g(X) = 1} Eulerian coordinates:
{X = (y,U, h) | yξ = 1}

bijections L and M

Figure 4. Summary of the method in a picture. In section 2-4, we
establish the existence of the continuous semigroup of solution St
in G. Then, in section 5, by using the projection Π we construct the
continuous semigroup S̃t in G0. Finally, in section 6, by using the
bijection L between Eulerian coordinates and G0, we construct the
continuous semigroup Tt of dissipative solutions of the Camassa-
Holm equation in H1 for the metric dH1 .

=
1

4

∫

R+×{τ(ξ)>t}×{τ(η)>t}
sgn(ξ − η) exp

(

− sgn(ξ − η)(y(ξ) − y(η)
)

×
(

U2yξ + h
)

(η)yξ(ξ)ϕ(t, y(ξ)) dηdξdt.

Thus, comparing (6.20) and (6.21), we get
∫

R+×R

[−Uyξ ϕt(t, y) + UUξ ϕ] dξdt = −
∫

R+×R

Px(t, x)ϕ(t, x) dxdt

and (6.16) follows from (6.17). The continuity of the semigroup follows from Propo-
sition 6.2 and Theorem 5.6. Given a converging sequence un in dH1 such that
‖un‖H1 ≤ M , we have Xn = L(un) → X = L(u) in d̃R and L(un) ∈ BM̄ for some

M̄ , by Proposition 6.2. From Theorem 5.6, we get S̃t(Xn) → S̃t(X) in d̃R and
therefore Tt(un) → Tt(u) in dH1 . �

Proposition 6.7. Given any initial data u0 ∈ H1 and the corresponding dissipative
solution u, we have the following one-sided estimate on the derivative: For almost
every x and all t ≥ 0,

(6.22) ux(t, x) ≤
2

t
+
√

2 ‖u0‖H1 .

Proof. Given t̄ ≥ 0, let us denote

B = {ξ ∈ R | y(t̄, ξ), U(t̄, ξ) are differentiable and yξ(t̄, ξ) > 0} .
The set y(B) has full measure (we drop t̄ in the notation). Indeed, we have, after
a change of variables

meas(y(B)c) =

∫

y(B)c

dx =

∫

Bc

yξ dξ = 0.

Hence, for all t̄ and for almost every x, there exists ξ such that y(t̄, ξ) > 0. From
the definition of τ(ξ), it follows that t̄ < τ(ξ) and yξ(t, ξ) > 0 for all t ∈ [0, t̄]. The
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variable α =
Uξ

yξ
is thus well-defined on [0, t̄] and, since Uξ = ux ◦ yyξ, we have

(6.23) ux(t̄, x) = ux(t̄, y(t̄, ξ)) =
Uξ(t̄, ξ)

yξ(t̄, ξ)
= α(t̄, ξ).

From (2.19), we get

αt =
Uξ,tyξ − yξ,tUξ

y2
ξ

=
1
2hyξ + ( 1

2U
2 − P )yξ − U2

ξ

y2
ξ

which yields

(6.24) αt +
1

2
α = (U2 − P )

after using (2.23f).1 Using (2.106), we get that ‖U‖L∞

T
L∞

R

≤ 1√
2
‖h0‖1/2

L1 = 1√
2
‖u0‖H1

and, from (2.108), we have

Q(t, ξ) ≤ 1

2
‖U‖2

L∞

T
L∞

R

+
1

4
‖h0‖L1 ≤ 1

2
‖u0‖2

H1 .

The same estimate holds for P , and therefore we have

(6.25) U2 − P ≤ ‖u0‖2
H1

for all t and ξ. We claim that

(6.26) α(t, ξ) ≤ 2

t
+
√

2 ‖u0‖H1

Let us assume the opposite. We denote β(t) = 2
t +

√
2 ‖u0‖H1 and t0 the first

time when α(t0) = β(t0). For t ≤ t0 we have α(t) < β(t) which implies that
βt(t0) ≤ αt(t0). On the other hand,

αt(t0) = −1

2
α2(t0) + (U2 − P ) = −1

2
β2(t0) + (U2 − P )

= βt(t0) −
2
√

2

t
‖u0‖H1 + U2 − P − ‖u0‖2

H1 ,

which implies, after using (6.25), that αt(t0) < βt(t0), and we get a contradiction.
We conclude the proof of the proposition by comparing (6.26) and (6.23). �

7. The metric dH1

The metric dH1 is defined implicitly through the mapping from Eulerian to
Lagrangian coordinates. In this section we give more explicit characterizations.
We prove that convergence with respect to the H1-norm implies convergence with
respect to dH1 which itself implies convergence with respect to the L∞-norm.

Proposition 7.1. Given a sequence un ∈ H1 and u ∈ H1, we have

lim
n→∞

‖un − u‖H1 = 0 implies lim
n→∞

dH1(un, u) = 0.

Proof. Let X̄n = (x, un, 1, un,x, u
2 + u2

n,x) and X̄ = (x, u, 1, ux, u
2 + u2

x). We write
ln = g(Xn)− 1 and l = g(X)− 1. We denote Xn = L(un) and X = L(u). We have

(7.1)

∫ y(ξ)

−∞
l(x) dx+ y(ξ) = ξ ,

∫ yn(ξ)

−∞
ln(x) dx + yn(ξ) = ξ.

Step 1: ln → l in L1(R).
We define the set A as in (6.2)

A = {x ∈ R | |ux| (x) + 2(1 + u2)(x) ≤ 1 + u2(x) + u2
x(x) and ux(x) ≤ 0}

1Equation (6.24) also appears in [25] and [8] in the proof of the same estimate.
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and An as

An = {x ∈ R | |un,x| (x) + 2(1 + u2
n)(x) ≤ 1 + u2

n(x) + u2
n,x(x) and un,x(x) ≤ 0}.

We have A ⊂ {x ∈ R | 1 ≤ (u2 + u2
x)(x)} so that meas(A) ≤ ‖u‖H1 and, similarly,

meas(An) ≤ ‖un‖H1 . On A∩An, we have (ln−l)(x) = |ux|+2u2(x)−(|ux|+2u2(x))
and therefore

(7.2) ‖ln − l‖L1(An∩A) ≤ Cmeas(An ∩ A)1/2 ‖u− un‖H1

for a constant C that depends only on ‖u‖H1 . We denote generically by C such
constants. On Ac ∩ Acn, we have (ln − l)(x) = (u2 + u2

x)(x) − (u2
n + u2

n,x)(x) and
therefore

(7.3) ‖ln − l‖L1(Ac
n∩Ac) ≤ C ‖u− un‖H1 .

We want to estimate ‖ln − l‖L1(Ac∩An). Let introduce the sets

B1 = {x ∈ R | |ux| (x) + 2(1 + u2)(x) > 1 + u2(x) + u2
x(x)}

and

B2 = {x ∈ R | |ux| (x) + 2(1 + u2)(x) ≤ 1 + u2(x) + u2
x(x) and ux(x) > 0}.

We have Ac ⊂ B1 ∪ B2. For x ∈ B1 ∩ An, we have

l(x) − ln(x) = (1 + u2 + u2
x)(x) − |un,x| (x) − 2(1 + u2

n)(x)

≤ |ux| (x) + 2(1 + u2)(x) − |un,x| (x) − 2(1 + u2
n)(x)

≤ |ux − un,x| (x) + 2
∣

∣u2 − u2
n

∣

∣ (x)

and

ln(x) − l(x) = |un,x| (x) − 2(1 + u2
n)(x) − (1 + u2 + u2

x)(x)

≤ (1 + u2
n + u2

n,x)(x) − (1 + u2 + u2
x)(x).

Hence, |l − ln| (x) ≤ |u− ux| (x)+2
∣

∣u2 − u2
n

∣

∣ (x)+
∣

∣u2
x − u2

n,x

∣

∣ (x) and, since meas(B1∩
An) ≤ C for n large enough,

(7.4) ‖l − ln‖L1(B1∩An) ≤ C ‖u− un‖H1 .

For x ∈ B2∩An, we have that |ux| (x)+(1+u2)(x) ≤ u2
x(x) implies |ux| (x) ≤ u2

x(x)
so that |ux| (x) ≤ 1. Since ux(x) > 0, it yields ux(x) ≥ 1. Similarly we get |un,x| ≥ 1
but, as un,x ≤ 0, it gives un,x ≤ −1. Then, (ux − un,x)(x) ≥ 2 for all x ∈ B2 ∩ An
and therefore

meas(B2 ∩ An) ≤ 1

4
‖ux − un,x‖2

L2(R)

and limn→∞ meas(B2 ∩ An) = 0 as n tends to ∞. Hence,

‖l − ln‖L1(B2∩An) =
∥

∥1 + u2 + u2
x − (|un,x| + 2(1 + u2

n))
∥

∥

L1(B2∩An)

≤
∥

∥1 + u2 + u2
x − (|ux| + 2(1 + u2))

∥

∥

L1(B2∩An)

+
∥

∥(|ux| + 2(1 + u2)) − (|un,x| + 2(1 + u2
n))
∥

∥

L1(B2∩An)

≤
∥

∥−u2 + u2
x

∥

∥

L1(B2∩An)
+ meas(B2 ∩ An)

+ meas(B2 ∩ An)1/2 ‖ux‖L2(R) + C ‖u− un‖H1

and limn→∞ ‖l − ln‖L1(B2∩An) = 0. From (7.4), it follows that limn→∞ ‖ln − l‖L1(Ac∩An) =

0. Similarly, one proves that limn→∞ ‖ln − l‖L1(A∩Ac
n) = 0. By (7.2) and (7.3), we

conclude that limn→∞ ‖ln − l‖L1
R

= 0.



58 HOLDEN AND RAYNAUD

Step 2: ζn → ζ in L∞(R) and ζn,ξ → ζξ in L2(R).
After taking the difference between the two equations in (7.1), we obtain

(7.5)

∫ y(ξ)

−∞
(l − ln)(x) dx +

∫ y(ξ)

yn(ξ)

ln(x) dx + y(ξ) − yn(ξ) = 0.

Since ln is positive,
∣

∣

∣
y − yn +

∫ y

yn
ln(x) dξ)

∣

∣

∣
= |y − yn| +

∣

∣

∣

∫ y

yn
ln(x) dξ)

∣

∣

∣
and (7.5)

implies

|y(ξ) − yn(ξ)| ≤
∫ y(ξ)

−∞
|l − ln| dx ≤ ‖l− ln‖L1(R) ,

and it follows that ζn → ζ in L∞(R). We have

(7.6) yξ =
1

l ◦ y + 1
and yn,ξ =

1

ln ◦ yn + 1

almost everywhere, see (6.7). Hence,

ζn,ξ − ζξ = (l ◦ y − ln ◦ yn)yn,ξyξ
= (l ◦ y − l ◦ yn)yn,ξyξ + (l ◦ yn − ln ◦ yn)yn,ξyξ.(7.7)

Since 0 ≤ yξ ≤ 1, see (6.4), we have

(7.8)

∫

R

|l ◦ yn − ln ◦ yn| yn,ξyξ dξ ≤
∫

R

|l ◦ yn − ln ◦ yn| yn,ξ dξ = ‖l − ln‖L1(R) .

For any ε > 0, there exists a continuous function l̃ with compact support such that
‖l− l̃‖L1(R) ≤ ε/3. We can decompose the first term in the right-hand side of (7.7)
into

(7.9) (l ◦ y − l ◦ yn)yn,ξyξ = (l ◦ y − l̃ ◦ y)yn,ξyξ
+ (l̃ ◦ y − l̃ ◦ yn)yn,ξyξ + (l̃ ◦ yn − l ◦ yn)yn,ξyξ.

Then, we have
∫

R

∣

∣

∣
l ◦ y − l̃ ◦ y

∣

∣

∣
yn,ξyξ dξ ≤

∫

∣

∣

∣
l ◦ y − l̃ ◦ y

∣

∣

∣
yξ dξ = ‖l − l̃‖L1(R) ≤ ε/3

and, similarly, we obtain
∫

R
|l ◦ yn − l̃ ◦ yn|yn,ξyξ dξ ≤ ε/3. Since yn → y in L∞(R)

and l̃ is continuous with compact support, by applying the Lebesgue dominated
convergence theorem, we obtain l̃ ◦ yn → l̃ ◦ y in L1(R), and we can choose n big
enough so that

∫

R

∣

∣

∣
l̃ ◦ y − l̃ ◦ yn

∣

∣

∣
yn,ξyξ dξ ≤ ‖l̃ ◦ y − l̃ ◦ yn‖L1(R) ≤ ε/3.

Hence, from (7.9), we get that
∫

R
|l ◦ y − l ◦ yn| yn,ξyξ dξ ≤ ε so that we have proved

that

lim
n→∞

∫

R

|l ◦ y − l ◦ yn| yn,ξyξ dξ = 0,

and, from (7.7) and (7.8), it follows that ζn,ξ → ζξ in L1(R). Since ζn,ξ is bounded
in L∞(R), we finally get that ζn,ξ → ζξ in L2(R).

Step 3: Un → U in H1(R).
Given two functions f1 and f2 in H1(R), we claim that

(7.10) ‖f1 ◦ yn − f2 ◦ yn‖H1(R) ≤ C ‖f1 − f2‖H1(R)

for some constant C which does not depend on n. Let us prove this claim. Let
Cn = {x ∈ R | ln(x) > 1}. Chebychev’s inequality yields meas(Cn) ≤ ‖ln‖L1(R).
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Let Bn = {ξ ∈ R | yn,ξ(ξ) < 1
2}. Since yn,ξ(ln ◦ yn + 1) = 1 almost everywhere,

ln ◦ yn > 1 on Bn and therefore yn(Bn) ⊂ Cn. From (6.6), we get

meas(Bn) =

∫

y(Bn)

(ln(x)+1) dx ≤ meas(yn(Bn))+‖ln‖L1(R) ≤ meas(Cn)+‖ln‖L1(R) ,

and therefore meas(Bn) ≤ 2 ‖ln‖L1(R) ≤ C. We have

(7.11) ‖f1 ◦ yn − f2 ◦ yn‖2
L2(R) =

∫

Bn

(f1◦yn−f2◦yn)2 dξ+
∫

Bc
n

(f1◦yn−f2◦yn)2 dξ,

and, as yn,ξ ≥ 1
2 on Bcn,

∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2 dξ ≤ 2

∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2yn,ξ dξ ≤ 2 ‖f1 − f2‖2
L2(R) .

Hence,

‖f1 ◦ yn − f2 ◦ yn‖2
L2(R) ≤ meas(Bn) ‖f1 − f2‖2

L∞(R) + 2 ‖f1 − f2‖2
L2(R)

and, since meas(Bn) ≤ 2 ‖ln‖L1(R),

‖f1 ◦ yn − f2 ◦ yn‖2
L2(R) ≤ 2 ‖ln‖L1(R) ‖f1 − f2‖2

L∞(R) + 2 ‖f1 − f2‖2
L2(R)

≤ C ‖f1 − f2‖2
H1(R) .(7.12)

We have

‖(f1 ◦ yn)ξ − (f2 ◦ yn)ξ‖2
L2(R) = ‖f1,x ◦ ynyn,ξ − f2,x ◦ ynyn,ξ‖2

L2(R)

≤
∫

R

|f1,x ◦ yn − f2,x ◦ yn|2 yn,ξ dξ (because yn,ξ ≤ 1)

≤ ‖f1,x − f2,x‖2
L2(R) .(7.13)

Combining (7.12) and (7.13), we prove the claim (7.10). We have

‖Un − U‖H1(R) = ‖un ◦ yn − u ◦ y‖H1(R)

≤ ‖un ◦ yn − u ◦ yn‖H1(R) + ‖u ◦ y − u ◦ yn‖H1(R)

≤ C ‖un − u‖H1(R) + ‖u ◦ y − u ◦ yn‖H1(R) ,(7.14)

from (7.10). The class of smooth functions with compact support is dense inH1 and
therefore, by (7.10), for any ε ≥ 0, there exists a smooth function ũ with compact
support such that ‖u ◦ y − ũ ◦ y‖H1(R) ≤ ε

4 and ‖u ◦ yn − ũ ◦ yn‖H1(R) ≤ ε
4 for all

n. Hence,

(7.15) ‖u ◦ y − u ◦ yn‖H1(R) ≤
2ε

4
+ ‖ũ ◦ y − ũ ◦ yn‖H1(R) .

Since the support of ũ is finite and yn → y in L∞(R), we have

(7.16) lim
n→∞

‖ũ ◦ y − ũ ◦ yn‖L2(R) = 0.

We have

‖(ũ ◦ y)ξ − (ũ ◦ yn)ξ‖L2(R) = ‖ũx ◦ yyξ − ũx ◦ ynyn,ξ‖L2(R)

≤ ‖yξ(ũx ◦ y − ũx ◦ yn)‖L2(R)

+ ‖(yξ − yn,ξ) ũx ◦ yn‖L2(R)

≤ ‖yξ‖L∞
‖ũx ◦ y − ũx ◦ yn‖L2(R)

+ ‖ũx‖L∞(R) ‖yξ − yn,ξ‖L2(R) .
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Hence, limn→∞ ‖(ũ ◦ y)ξ − (ũ ◦ yn)ξ‖L2(R) = 0 because we have proved that ζn,ξ →
ζ in L2(R) and limn→∞ ‖ũx ◦ y − ũx ◦ yn‖L2(R) = 0 as yn → y in L∞(R) and ũx is

smooth with compact support. By (7.16), it implies

lim
n→∞

‖ũ ◦ y − ũ ◦ yn‖H1(R) = 0.

Combining (7.14) and (7.15), we obtain that ‖Un − U‖H1(R) ≤ ε for n large enough

and we have proved that Un → U in H1(R). �

Proposition 7.2. Given un and u in H1(R), we have that

lim
n→∞

dH1 (un, u) = 0 implies lim
n→∞

‖un − u‖L∞(R) = 0.

Proof. Let Xn = L(un) and X = L(u). By definition, limn→∞ dH1(R)(un, u) = 0
implies that Xn → X in V . In particular, yn−y and Un−U tend to zero in L∞(R).
Given x ∈ R, let ξn = yn

−1(x), ξ = y−1(x) and xn = y(ξn). We have

(7.17) u(x) − un(x) = u(x) − u(xn) + U(ξn) − Un(ξn)

and

|u(x) − u(xn)| =

∣

∣

∣

∣

∫ x

xn

ux(x̄) dx̄

∣

∣

∣

∣

≤ |x− xn|1/2 ‖ux‖L2(R) = |yn(ξn) − y(ξn)|1/2 ‖ux‖L2(R)

≤ ‖y − yn‖1/2
L∞(R) ‖ux‖L2(R) .(7.18)

Hence,

|un(x) − u(x)| ≤ ‖y − yn‖1/2
L∞(R) ‖ux‖L2(R) + ‖U − Un‖L∞

and un → u in L∞(R).
�
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