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Abstract

In this paper, we introduce a new Glimm functional for general systems

of hyperbolic conservation laws. This new functional is consistent with

the classical Glimm functional for the case when each characteristic field is

either genuinely nonlinear or linearly degenerate so that it can be viewed

as “optimal” in some sense. With this new functional, the consistency of

the Glimm scheme is proved clearly for general systems. Moreover, the

convergence rate of the Glimm scheme is shown to be the same as the one

obtained in [6] for systems with each characteristic field being genuinely

nonlinear or linearly degenerate.

1 Introduction

There have been extensive studies on the mathematical theory for the systems of

hyperbolic conservation laws. One of the typical examples of these systems is the

compressible Euler equations for fluid dynamics. As for the Cauchy problem,
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the celebrated paper [13] by Glimm in 1965 established the global existence

of weak solutions with small total variation under the assumption that each

characteristic field is either genuinely nonlinear or linearly degenerate. Even

though the system of compressible Euler equations for gas dynamics satisfies

this assumption, there are many other physical systems such as those arising

from elasticity and magneto-hydrodynamics whose characteristic fields do not

all satisfy this assumption. To generalize the Glimm theory to the general

systems, the key component is the re-definition of the Glimm functional for

wave interactions in the same characteristic family. For this, a cubic functional

was introduced by Liu in [22] and was later elaborated by Liu-Yang in [24]

through the introduction of an effective angle between two waves in the same

family. This improvement is successful in establishing the existence, but it is less

satisfactory for the consistency and the convergence rate analysis. Therefore,

the main purpose of this paper is to introduce a new Glimm functional for wave

interactions in the same family for the general system so that the Glimm theory

can now be presented in an elegant way.

Consider the Cauchy problem for a system of hyperbolic conservation lawsut + f(u)x = 0, t ≥ 0, −∞ < x < ∞,

u(x, 0) = u0(x), −∞ < x < ∞,
(1.1)

where u ∈ Rn, f : Ω 7→ Rn is a smooth vector field with Ω ⊂ Rn being an open

set. Denote A(u) = Df(u) the n × n Jacobian matrix of the flux function f .

One of the main features of this type of systems is that discontinuities will form

in finite time no matter how smooth the initial data is except for some special

cases. This leads to the development of the shock wave study in which many

fundamental theories have been established, cf. [1, 4, 7, 11, 12, 13, 14, 19, 17,

26, 27] and references therein. In the framework of solutions with small total

variation, the global existence of solutions was proved in the fundamental work

of Glimm by introducing the Glimm scheme and by using the solutions to the

Riemann problems solved by Lax as building blocks, while the stability in L1

norm was obtained much later, cf. [1, 5, 7, 20, 24] and the references therein.

As related, we mention the recent breakthrough made by Bianchini-Bressan on

the vanishing viscosity for solutions in this class for hyperbolic systems with

artificial viscosity.

For the later presentation, we now introduce some notations. As usual, the
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system (1.1) is called strictly hyperbolic, if for every u ∈ Ω, the matrix A(u)

has n real distinct eigenvalues denoted by

λ1(u) < λ2(u) < . . . < λn(u).

Corresponding to these eigenvalues, there are n linearly independent right eigen-

vectors

r1(u), r2(u), . . . , rn(u).

To capture the nonlinearity of these characteristic fields, the following definition

is from [19].

Definition 1.1. For each i ∈ {1, 2, . . . , n}, the i-th characteristic field is called

genuinely nonlinear, if

∇λi · ri 6= 0, for all u ∈ Ω. (1.2)

While the i-th characteristic field is called linearly degenerate, if

∇λi · ri ≡ 0, for all u ∈ Ω. (1.3)

As mentioned earlier, in general, the solution to the Cauchy problem (1.1)

develops singularity in the form of discontinuity, called shock, because of the

nonlinearity of the flux function f(u). Thus, solution to (1.1) is defined in the

weak sense as follows.

Definition 1.2. A function u : [0, T ] × R 7−→ Rn is a weak solution of the

problem (1.1), if u is a bounded measurable function and

∫∫
t≥0

[uφt + f(u)φx] dxdt +
∫

t=0

u0(x)φ(x, 0)dx = 0, (1.4)

holds for any smooth function φ with compact support in {(x, t)|(x, t) ∈ R2}.

To solve the Cauchy problem (1.1), Glimm introduces a scheme to construct

the solution to systems with the following assumption [13]:

(A)
Each characteristic field is either genuinely nonlinear or lin-

early degenerate.

There are two main ingredients in the Glimm scheme. One is the Glimm

functional which we will discuss in the next section. The other one is to approx-

imate the initial data by piecewise constant functions and solve the Riemann
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problems locally in space and time. Here, the Riemann problem is the problem

(1.1) when the initial data is given by:

u0(x) =

u− if x < 0,

u+ if x > 0,
(1.5)

where u± are constants.

The Glimm functional is used to guarantee that the total variation of the

solution is of the same order of the one for the initial data so that the solu-

tions to the Riemann problems solved locally in space and time can be used

as building blocks for the construction of the weak solution. In addition, the

uniform boundedness in the total variation of the approximate solutions in the

Glimm scheme leads to the convergence of the approximate solutions to the

global entropy solution as the grid size tends to zero.

In the Glimm scheme, the convergence is in the sense of almost everywhere

with respect to the measure in the space of the random sequences. To make

this kind of convergence deterministic, a wave tracing argument was introduced

in [21] and it was shown that the approximate solution converges as long as the

random sequence is chosen to be equidistributed. In the deterministic version of

the Glimm scheme with the wave tracing argument, physical waves are divided

into virtual waves in the scheme which can be either traced back, or cancelled or

created in a short time interval. The wave pattern is greatly simplified if we keep

only those waves that can be traced back and replace them by the ones with

the same strengths and fixed propagation speeds in some small time interval. If

the random sequence is equidistributed, the error due to this simplification can

be controlled by the Glimm functional times a small factor related to the grid

size, and this factor converges to zero in L1 norm when the grid size tends to

zero. Here the equidistributed sequence is defined as follows.

Definition 1.3. A sequence {θi}∞i=0 in [0, 1] is called equidistributed if

A(N, I) ≡ |B(N,I)
N − |I|| → 0, as N →∞,

for any subinterval I of [0, 1]. Here B(N, I) denotes the number of i, 1 ≤ i ≤ N,

such that θi ∈ I and |I| is the length of I.

In fact, the complement of the set of equidistributed sequences has mea-

sure zero. And the equidistributed sequence leads to a clear description of the
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structure of the weak solution through the wave tracing argument. As one step

further, to study the convergence rate of the Glimm scheme as the grid size

tends to zero for general entropy solutions, the following sequence is used, cf.

[6].

Lemma 1.1. Let

Dm,n = sup
λ∈[0,1]

∣∣∣∣∣∣λ− 1
n−m

∑
m≤l<n

χ[0,λ](θl)

∣∣∣∣∣∣ , (1.6)

then there exists a sequence {θl}l≥0 ⊂ [0, 1] such that

Dm,n ≤ O(1)
1 + ln(n−m)

n−m
∀ n > m ≥ 1. (1.7)

By applying the new Glimm functional to the study of the convergence rate,

we need to use the L1 stability of the standard Riemann semigroup generated

by (1.1), denoted by {St; t ≥ 0}. The breakthrough on the L1 stability of

the weak solutions to (1.1) was first made in [3] for 2 × 2 systems and was

settled satisfactorily in [5, 7, 24] for systems satisfying the condition (A). The L1

stability of entropy solutions for general hyperbolic conservation laws was later

proved in [1] through the vanishing viscosity argument. In fact, [1] considers

the Cauchy problem for the hyperbolic system with artificial viscosity

ut + A(u)ux = εuxx, u(0, x) = u0(x). (1.8)

Assume that the matrix A(u) is strictly hyperbolic, smoothly depending on u

in a neighborhood of a compact set K ⊂ Ω ⊂ Rn. Then there exist constants c,

L, L′ and δ > 0 such that the following holds. If

T.V.u0 < δ, lim
x→−∞

u0(x) ∈ K,

where T.V. means the total variation in x variable, then for each ε > 0 the

Cauchy problem (1.8) has a unique solution uε, defined for all t ≥ 0, denoted

by uε = uε(t, x) = Sε
t (u0). In addition,

T.V.Sε
tu0 ≤ CT.V.u0,

‖Sε
tu0 − Sε

tv0‖L1 ≤ L‖u0 − v0‖L1 ,

‖Sε
tu0 − Sε

su0‖L1 ≤ L′(|t− s|+ |
√

εt−
√

εs|).
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Moreover, when ε → 0+, the solution uε converge to the trajectory of a semi-

group St such that

‖Stu0 − Ssv0‖L1 ≤ L‖u0 − v0‖L1 + L′|t− s|.

These vanishing viscosity limits can be regarded as the unique vanishing viscos-

ity solutions of the hyperbolic Cauchy problem

ut + A(u)ux = 0, u(0, x) = u0(x). (1.9)

In the conservative case when A(u) = Df(u), every vanishing viscosity solution

is a weak solution of (1.1) satisfying the entropy condition.

Furthermore, under the condition (A), the vanishing viscosity solutions coin-

cide with the unique limits of the Glimm and front-tracking approximations. In

this paper, we will not touch the L1 stability or the uniqueness of the weak so-

lutions to the general hyperbolic conservation laws through the Glimm scheme.

Instead, we assume that for any two nearby initial data, the unique semigroup

generated by the Glimm scheme St satisfies

‖Stū− Stv̄‖L1 ≤ L‖ū− v̄‖L1 , ∀ū, v̄ ∈ D, t ≥ 0, (1.10)

for some uniform constant L.

Based on the L1 stability (1.10), under the condition (A), the convergence

rate is shown to be o(1)
√

s| ln(s)|, cf. [6]. Here s is the grid size in the Glimm

scheme. And this convergence rate will be shown to be the same for general

hyperbolic conservation laws by using the new functional introduced in this

paper.

For general systems, the solution to Riemann problem has different structure

so that the Cauchy problem has richer nonlinear phenomena. To capture the

wave interactions, the Glimm functional for waves in different families is the

same while the one for waves in the same family is different. For this purpose,

one cubic functional was introduced in [22] which was elaborated in [25] to take

care of the wave interactions globally. The functional used in [25] is defined by

the product of the strengths of two involved waves and their effective “inter-

action” angle. Based on this improvement, the complete existence theory with

the wave tracing argument for general systems was obtained in [25] under the

assumption:
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(B)

For each characteristic field, the linear degeneracy manifold

LDi ≡ {u : ∇λi(u) · ri(u) = 0} either is the whole space or

consists of a finite number of smooth manifolds of codimen-

sion one, which are transversal to the characteristic vector

ri(u).

Even though the improved Glimm functional used in [25] is effective in the

study of the existence of entropy solutions, it is not satisfactory in proving

the consistency and the convergence rate of the Glimm scheme. In fact, the

consistency of the Glimm scheme was proved in [25] by carefully and artificially

dividing the waves into groups according to their wave strengths compared with

the grid size to some power, and the convergence rate of the Glimm scheme

was shown to be o(1)s
1
4 |ln s| in [29], and then o(1)s

1
3 |ln s| in [15] which are less

compared to the one given in [6] under the condition (A).

The new Glimm functional for the wave interactions in the same family is

optimal in the following sense. First, it yields a clear and complete proof of

the consistency of the Glimm scheme. Then it leads to the proof of the same

order convergence rate for the general systems as the one under the condition

(A). Finally, it will be shown to have the same decrease effect as the classical

one introduced by Glimm when the assumption of genuine nonlinearity is im-

posed. Therefore, the Glimm scheme for the general systems can be analyzed

satisfactorily without any artificial adjustment.

The convergence rate of the Glimm scheme can be stated as follows.

Theorem 1.1. Let {θm}∞m=1 be a sequence of numbers in [0, 1] satisfying (1.7).

Given any initial condition ū with small total variation, let u(·, t) = Stū be the

unique solution of (1.1), and let us be the corresponding Glimm approximation

solution with grid size s in time direction, generated by the sampling sequence

{θm}∞m=1. Then for every T ≥ 0,

lim
s→0

‖us(·, T )− u(·, T )‖L1

s
1
2 |ln s|

= 0. (1.11)

The limit is uniform with respect to ū, as long as T.V.ū remains uniformly small.

Finally in the introduction, we mention the corresponding results on the

convergence rates for the vanishing viscosity. Let the system (1.1) be strictly

hyperbolic and the condition (A) hold. Then, given any initial data u(0, x) =

u0(x) with small total variation, for every τ > 0 the corresponding solutions
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u, uε of (1.1) and (1.8) were shown to satisfy the following estimate in [9]∥∥uε(τ, ·)− u(τ, ·)
∥∥

L1 = O(1) · (1 + τ)
√

ε| ln ε|T.V.u0(x) . (1.12)

This convergence rate is “optimal” in the sense that even for a scalar conser-

vation law, the method of Kuznetsov in [18] shows that the convergence rate is

O(1) · ε1/2 which is sharp, cf. [28]. The factor | ln ε| comes from the interac-

tion of waves in different families in the system which does not exist for scalar

equation.

The rest of the paper will be organized as follows. In the next section, the

new functional is introduced together with some preliminaries of the wave inter-

action estimates in the wave tracing argument. The non-increasing property of

the new Glimm functional and its application to the consistency of the Glimm

scheme will be proved in Section 3. And the convergence rate of the Glimm

scheme stated in Theorem 1.1 will be proved in the last section.

2 Glimm Scheme and New Functional

The Riemann problem under the general condition (B) is much more compli-

cated than the case under the condition (A). The Lax entropy condition used

under the condition (A) should be replaced by the following Liu’s entropy con-

dition under the condition (B).

Definition 2.1. [23] A discontinuity (u−, u+) is admissible if

σ(u−, u+) ≤ σ(u−, u), (2.1)

for any state u on the Hugoniot curve H(u−) between u− and u+, where H(u−) ≡
{u : σ(u− − u) = f(u−)− f(u)}.

Corresponding to the n characteristic fields of the system, there are n Hugo-

niot curves. Any state u on the i-th Hugoniot curve Hi(u0) is connected to u0

by an i-th shock wave, if the above entropy condition is satisfied. We denote

Hi(α)(u0) the state which can be connected to u0 by an i-th shock wave with

strength α. Note that the shock wave described here include the case of contact

discontinuity.

Another basic wave pattern used to solve Riemann problem is called the rar-

efaction wave. For each characteristic field, the state Ri(α)(u0)(i = 1, 2. · · · , n)
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is connected to u0 by an i-th rarefaction wave with strength α, if d
dαRi(α)(u0) = ri(Ri(α)(u0)), for λi(Ri(α)(u0)) > λi(u0),

Ri(0)(u0) = u0.

Here the wave strength α is used as a parameter along the rarefaction wave

curve.

By implicit function theorem, the Riemann problem for general systems is

solved by piecing together waves in different families. And with the Liu’s entropy

condition, each wave in the i-th family, called i-wave may be the composition of

several i-th admissible shocks and rarefaction waves.

Suppose in the k-wave (ul, ur), the k-th elementary waves (uh−1
k , uh

k), h =

1, 2, · · · , nk, are defined as

u0
k = ul, unk

k = ur,

uh
k =

Rk(αh
k)(uh−1

k ), h is odd,

Hk(αh
k)(uh−1

k ) h is even,
(h = 1, 2, · · · , nk). (2.2)

Notice that the strength of αh
k can be zero in the following discussion. Then

due to Definition 2.1, these elementary waves satisfy the following monotonicity

property:

λk(u2p
k ) < λk(u2p+1

k ) = σk(u2p+1
k , u2p+2

k ), if α2p+1
k 6= 0,

σk(u2p+1
k , u2p+2

k ) = λk(u2p+2
k ) < λk(u2p+3

k ), if α2p+3
k 6= 0,

(2.3)

2p + 1, 2p + 3 ∈ {1, 2, · · · , nk}.

We can construct the wave curve Wi(s, u0) as the curve consisting of all the

end states that can be connected to u0 by admissible shocks, rarefaction waves

or their combination of the i-th family. Here s is a non-degenerate parameter

along the curve. Up to a linear transformation, this parameter can be chosen as

the i-th component of u, i.e. ui. Then we have the following regularity result.

Lemma 2.1. [2] With the assumption (B), the admissible i-th curve Wi(s, u0)

has Lipschitz continuous first order derivatives.

To define the approximate solutions, we use the deterministic version of

Glimm scheme[13, 21]. As in the classical Glimm scheme, we divide the (x, t)
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plane with grid sizes r and s satisfying the CFL condition, that is, r
s > supi |λi(u)|

for all u under consideration. And pick the pre-chosen random number sequence

{θm}∞m=1. Then we construct the approximate solution uθ,r(x, t) inductively:

• At t = 0, let uθ,r(x, 0) = u0(ir), for (i− 1)r < x < (i + 1)r, i odd.

• Suppose uθ,r(x, t) is defined for t < js, then

uθ,r(x, js) = uθ,r((i + (2θj − 1))r, js− 0), (i− 1)r < x < (i + 1)r, i + j odd.

Note that uθ,r(x, js) is a piecewise constant function with possible jumps

at x = ir, where i + j even.

• Now for i + j even, in js ≤ t < (j + 1)s, (i − 1)r < x < (i + 1)r, define

uθ,r(x, t) as the solution to the Riemann problemut + f(u)x = 0, (i− 1)r < x < (i + 1)r, js ≤ t,

u(x, js) = uθ,r(x, js) (i− 1)r < x < (i + 1)r, i + j even.

Then the approximate solution can be defined up to t < (j + 1)s.

The approximate solution can be well defined if the uniform bound of the

total variation is obtained. For this purpose, one has to investigate the wave

interaction. In [22, 25], the following Glimm type functional is defined.

Fo(J) ≡ L(J) + MQo(J),

where the subscript “o” refers to the old one, compared with the new one we

shall define later. In the above definition,

L(J) =
∑

{|α| : α any wave crossing J}, Qo(J) = Qd(J) + Qos(J),

Qd(J) =
∑

{|α| |β| : interacting waves α and β of distinct

characteristic field crossing J},

Qos(J) =
n∑

i=1

Qi
os,

Qi
os =

∑
{|α| |β|max{−Θ(α, β), 0} : α and β i-waves crossing J,

α to the left of β}.

(2.4)

Here M is a sufficiently large constant, J is any space-like curve. An i-wave αi

on the left and a j-wave βj on the right are said to be approaching, if i > j.
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And Θ(α, β), called the effective angle between waves α and β of the same i-th

family, is defined as follows:

Θ(α, β) ≡ θ+
α + θ−β +

∑
θγ . (2.5)

θ+
α represents the value of λi at the right state of α minus its wave speed if α is

a shock and is set to be zero if it is a rarefaction wave. Similarly the term θ−β

denotes the difference between the speed of β and the value of λi at its left end

state. θγ is the value of λi at the right state of the wave γ minus that of the

left state. The sum
∑

θγ is over the i-waves γ between α and β. When Θ(α, β)

is positive, the two waves will not likely to meet; when Θ(α, β) is negative, the

two waves may eventually meet and interact.

In the deterministic version of Glimm scheme, all the waves in the solution

are partitioned into small subwaves as follows.

Definition 2.2. [25] Let ur ∈ Wi(ul) so that ul is connected to ur by i-

discontinuities (uj−1, uj), and i-rarefaction waves (uj , uj+1), j odd, 1 ≤ j ≤
m − 1, u0 = ul and um = ur. A set of vectors {v0, v1, · · · , vp} is a partition of

(ul, ur) if

(i) v0 = ul, vp = ur, v
i
k−1 ≤ vi

k, k = 1, 2, · · · , p,

(ii) {u0, u1, · · · , um} ⊂ {v0, v1, · · · , vp},

(iii) vk ∈ Ri(uj), j odd, if ui
j < vi

k < ui
j+1,

(iv) vk ∈ Di(uj−1, uj), j odd, if ui
j−1 < vi

k < ui
j. Here

Di(ul, ur) ≡ {u : (u− ul)σ(ul, ur)− (f(u)− f(ul)) = c(u)ri(u)

for some scalar c(u)}.

Then set

(1) yk ≡ vk − vk−1,

(2) λi,k ≡ λi(vk−1) and

[λi]k ≡ [λi](vk−1, vk) ≡ λi(vk)− λi(vk−1) > 0 if (iii) holds,

(3) λi,k ≡ σ(uj−1, uj) and [λi]k ≡ [λi](vk−1, vk) ≡ 0 if (iv) holds.
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In the following, we always assume that a rarefaction wave is divided into

several small rarefaction shocks with strength less than the grid size of Glimm

scheme. Then the shock waves and rarefaction waves can be treated similarly

after the wave partition. Due to the regularity of composite wave curve, i.e.

Lemma 2.1, such partition is stable under the perturbation in the following

sense.

Lemma 2.2. [25] Suppose that ur ∈ Wi(ul), ūr ∈ Wi(ūl), with ui
r − ui

l =

ūi
r − ūi

l ≡ α > 0, and |ul − ūl| ≡ β. Then there exist partitions {v0, v1, · · · , vp}
and {v̄0, v̄1, · · · , v̄p} for the i-waves (ul, ur) and (ūl, ūr) respectively such that

v̄i
k − v̄i

0 = vi
k − vi

0, k = 1, 2, · · · , p, and the following holds:

(i)
∑p

k=1 |yk − ȳk| = 0(1)αβ,

(ii) |λi,k − λ̄i,k| = 0(1)β, k = 1, 2, · · · , p,

(iii) Let Θ+(ul, ur) represents the value of λi at the right state ur minus the

wave speed of the right-most i-wave in (ul, ur). Similar definition holds

for Θ−(ul, ur). Then

|Θ−(ul, ur)−Θ−(ūl, ūr)|+ |Θ+(ul, ur)−Θ+(ūl, ūr)| = 0(1)αβ.

Moreover, the index set {1, 2, · · · , p} can be written as a disjoint union of subsets

I, II and III such that

(iv) for k ∈ I corresponding to rarefaction waves, both vk and v̄k are of type

(iii) of Definition 2.2 and∑
k∈I

|[λi]k − [λ̄i]k| = 0(1)αβ,

(v) for k ∈ II corresponding to discontinuities, both vk and v̄k are of the type

(iv) of Definition 2.2.

(vi) for k ∈ III corresponding to mixed types, vk and v̄k are of different types

and ∑
k∈III

|[λi]k + [λ̄i]k| = 0(1)αβ.

Here Θ+(ul, ur) represents the value of λi at the right state ur minus the wave

speed of the rightest i-wave in (ul, ur). Similar definition holds for Θ−(ul, ur).
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This lemma describes the C2 like dependency of the Riemann problem on

the end states. Then the effect of wave interaction can be estimated by the

Glimm functional and the cancellation as in [25].

Lemma 2.3. [25] Let ul, um and ur be three nearby states and (ui−1, ui) (vi−1, vi),

i = 1, 2, · · · , n, be i-waves in the Riemann problem (ul, um) and (um, ur) respec-

tively with the partition defined in Definition 2.2. Here, rarefaction waves are

divided into small rarefaction shocks with strength less than the grid size s in t di-

rection. Then the wave partition of the i-wave (wi−1, wi), i = 1, 2, · · · , n, in the

Riemann problem (ul, ur) is the linear superposition of the above two solutions

modulo the nonlinear effect of the order s, Q(ul, um, ur) and δC(ul, um, ur),

where δ = |um − ul|+ |ur − um|. In other words,

γi = αi + βi + O(1)(δC(ul, um, ur) + Qo(ul, um, ur) + s), (2.6)

η(γi) = η(αi) + η(βi) + O(1)(δC(ul, um, ur) + Qo(ul, um, ur) + s), (2.7)

with

αi =
nαi∑
k=1

αi,k = ui
i − ui

i−1 βi =
nβi∑
k=1

βi,k = vi
i − vi

i−1, and γi = wi
i − wi

i−1,

η(αi) =
nαi∑
k=1

η(αi,k), with η(αi,k) = αi,kλi,k,

similar definition for η(βi) and η(γi),

C(ul, um, ur) ≡
n∑

i=1

Ci(ul, um, ur) =
1
2
||γi| − |αi| − |βi||,

for some constants nαi
and nβi

,i = 1, 2 · · · , n. Each αi,k = (ui,k−1, ui,k) and

βi,k = (vi,k−1, vi,k) is a shock or a rarefaction shock. C(ul, um, ur) measures

the amount of cancellation.

The above wave interaction estimate is crucial in the study of conservation

laws under general assumption (B). Compared with the parallel estimate under

condition (A), the error is bounded by at least of cubic order terms instead of

quadratic ones. This seems better when the total variation of the approximate

solutions is small. On the other hand, it implies that the decrease of Qo after

the wave interaction in the same family is much less than the decrease in the

classical Glimm functional under the condition (A). This fact causes difficulty

in the proof of consistency and wave tracing argument. For example, one has to
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divide waves into two groups by checking whether the total strength of the in-

volving waves is greater than a pre-chosen small constant or not. We include the

following estimate from [25] by using the old Glimm functional for comparison

with Theorem 2.2 given later.

Lemma 2.4. [25] Let ε be a constant with 1
2 < ε < 1. The waves in an

approximate solution in a given a time zone Λ = {(x, t) : −∞ < x < ∞,Ms ≤
t < (M +N)s}, can be partitioned into subwaves of categories I, II or III with

the following properties:

(i). The subwaves in I are surviving. Given a subwave α(t), Ms ≤ t <

(M + N)s, in I, write α ≡ α(Ms) and denote by |α(t)| its strength at time t,

by [σ(α)] the variation of its speed and by [α] the variation of the jump of the

states across it over the time interval Ms ≤ t < (M + N)s. Then∑
α∈I

([α] + |α(Ms)|[σ(α)]) = O(1)(Do(Λ)(Ns)−ε + T.V.N1+εsε + s).

(ii). A subwave α(t) in II has positive initial strength |α(Ms)| > 0, but is

cancelled in the zone Λ, |α((M + N)s)| = 0. Moreover, the total strength and

variation of the wave speed satisfy∑
α∈II

([α] + |α(t)|) = O(1)(Do(Λ) + s), Ms ≤ t < (M + N)s,

∑
α∈II

([α] + |α(Ms)|[σ(α)]) ≤ 0(1)(Do(Λ)(Ns)−ε + T.V.N1+εsε + s).

(iii). A subwave in III has zero initial strength |α(Ms)| = 0, and is created

in the zone Λ, |α((M + N)s)| 6= 0. Moreover, the total strength and variation

of the wave speed satisfy∑
α∈III

([α] + |α(t)|) = O(1)(Do(Λ) + s), Ms ≤ t < (M + N)s,

∑
α∈III

([α] + |α((M + N)s)|[σ(α)]) ≤ 0(1)(Do(Λ)(Ns)−ε + T.V.N1+εsε + s).

Here Do(Λ) = Fo(Ms) − Fo((M + N)s), and T.V. = Tot.V ar.{u0(x)}. And

F (t) is the Glimm functional on the space-like curve at time t.

Moreover, the functional defined in (2.4) can not be reduced to the one

defined in [13] even if each characteristic field is genuinely nonlinear or linearly

degenerate because they are not of the same order.

14



To overcome these difficulties, we define a new Glimm functional as follows.

F (J) ≡ L(J) + MQn(J), (2.8)

where

Qn(J) = Qd(J) + Qns(J), Qns(J) =
n∑

i=1

Qi
ns,

Qi
ns =

∑
{|α| |β|max{−Θ(α, β), 0}

t.v.(α, β)i
: α and β i-waves crossing J,

α to the left of β},
(2.9)

where t.v.(α, β)i =
∑

{|γ| : γ any i-wave crossing J

and between α and β including α and β}.

Qd, L(J) and M are defined as before.

For this new functional, we shall first prove that F is non-increasing so that

the uniform bound on the total variation of the approximate solution follows.

Theorem 2.1. J1 and J2 are two spaced-like curves and J2 is the immediate

successor of J1. Suppose that F (J1) is sufficiently small, then the following

estimate holds.

F (J2)− F (J1) ≤ 0. (2.10)

The proof of this theorem will be given in the next section.

By the Lipschitz dependency of the wave speed on the left and right states,

it is easy to see that the new functional is equivalent to the classical Glimm

functional in the sense of the decreasing order when the characteristic field is

genuinely nonlinear. Thus, it gives a better way to control the error of wave

tracing argument than the old Glimm functional in the general setting. Fur-

thermore, we have the following clear estimate of wave tracing argument.

Theorem 2.2. The waves in an approximate solution in a given a time zone

Λ = {(x, t) : −∞ < x < ∞,Ms ≤ t < (M + N)s}, can be partitioned into

subwaves of categories I, II or III with the following properties:

(i). The subwaves in I are surviving. Given a subwave α(t), Ms ≤ t <

(M + N)s, in I, write α ≡ α(Ms) and denote by |α(t)| its strength at time t,

15



by [σ(α)] the variation of its speed and by [α] the variation of the jump of the

states across it over the time interval Ms ≤ t < (M + N)s. Then∑
α∈I

([α] + |α(Ms)|[σ(α)]) = O(1)(D(Λ) + s).

(ii). A subwave α(t) in II has positive initial strength |α(Ms)| > 0, but is

cancelled in the zone Λ, |α((M + N)s)| = 0. Moreover, the total strength and

variation of the wave speed satisfy∑
α∈II

([α] + |α(t)|) = O(1)(D(Λ) + s), Ms ≤ t < (M + N)s,

∑
α∈II

([α] + |α(Ms)|[σ(α)]) ≤ 0(1)(D(Λ) + s).

(iii). A subwave in III has zero initial strength |α(Ms)| = 0, and is created

in the zone Λ, |α((M + N)s)| 6= 0. Moreover, the total strength and variation

of the wave speed satisfy∑
α∈III

([α] + |α(t)|) = O(1)(D(Λ) + s), Ms ≤ t < (M + N)s,

∑
α∈III

([α] + |α((M + N)s)|[σ(α)]) ≤ 0(1)(D(Λ) + s).

Here D(Λ) = F (Ms)− F ((M + N)s), and T.V. = Tot.V ar.{u0(x)}. And F (t)

is the Glimm functional on the space-like curve at time t.

The proof of Theorem 2.2 will be given in the last section.

3 Wave Interaction Estimates

In this section we show that the new Glimm functional is decreasing due to the

wave interaction. To do so, we check two typical cases first. All the other cases

can be dealt with similar argument.

Proof of Theorem 2.1. Case (I)(cf. Fig.1): Suppose that there are three waves

α, β, ε are i-shocks or rarefaction shocks. β interacts with ε at time t without

any cancellation:

β + ε → γ +
∑
k 6=i

δk.
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α β ε

γ

δk

Figure 1: Case I

From the definition of effective angle, Θ(β, ε) ≤ 0. Since there is no cancellation,

for simplicity, we assume α, β, ε ≥ 0, that is, they are in the same direction.

By the monotonicity property (2.3), we also assume, without loss of gener-

ality that the generated i-wave γ is a single shock and

Θ(α, ε) ≤ 0.

From the standard wave interaction estimate, we know the difference of the

functional L crossing the time t is

∆L ≡ L(t+)− L(t−) = O(1)βε(−Θ(β, ε)). (3.1)

We only need to estimate the change of Qns because the estimation on other

parts are the same as those for the classical Glimm functional.

Before the wave interaction at time t, the potential wave interaction Qns is

Qns(t−) =
αε(−Θ(α, ε))

t.v.(α, ε)i
+

βε(−Θ(β, ε))
t.v.(β, ε)i

+
αβ(max{−Θ(α, β), 0})

t.v.(α, β)i
.

After the wave interaction, it becomes

Qns(t+) =
αγ(max{−Θ(α, γ), 0})

t.v.(α, γ)i
.
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Then

∆Qns ≡ Qns(t+)−Qns(t−)

=− βε(−Θ(β, ε))
t.v.(β, ε)i

+
[
αγ(max{−Θ(α, γ), 0})

t.v.(α, γ)i
− αε(−Θ(α, ε))

t.v.(α, ε)i
− αβ(max{−Θ(α, β), 0})

t.v.(α, β)i

]
=I + II.

We may assume Θ(α, γ) ≤ 0. Otherwise it is easy to see that

∆Qns ≤ −βε(−Θ(β, ε))
t.v.(β, ε)i

.

By Lemma 2.3, we have

γ = β + ε + O(1)βε(−Θ(β, ε)),

σ(γ)γ = σ(β)β + σ(ε)ε + O(1)βε(−Θ(β, ε)).

Thus,

t.v.(α, ε)i = t.v.(α, β)i + ε,

t.v.(α, γ)i = t.v.(α, β)i + ε + O(1)βε(−Θ(β, ε)),

−Θ(α, γ) = −Θ(α, β) + σ(β)− σ(γ),

−Θ(α, ε) = −Θ(α, β) + σ(β)− σ(ε).

It implies that

II ≤αγ(−Θ(α, γ))
t.v.(α, ε)i

[
1 + O(1)

βε(−Θ(β, ε))
t.v.(α, ε)i

]
− αε(−Θ(α, ε))

t.v.(α, ε)i
− αβ(max{−Θ(α, β), 0})

t.v.(α, β)i

=
α[γ(−Θ(α, γ))− ε(−Θ(α, ε))]

t.v.(α, ε)i
+ O(1)

α[βε(−Θ(β, ε))]
t.v.(α, ε)i

− αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

=
α [γ(−Θ(α, β) + σ(β)− σ(γ))− ε(−Θ(α, β) + σ(β)− σ(ε))]

t.v.(α, ε)i

− αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

+ O(1)
α[βε(−Θ(β, ε))]

t.v.(α, ε)i

=
α [β(−Θ(α, β)) + O(1)βε(−Θ(β, ε))]

t.v.(α, ε)i

− αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

+ O(1)
α[βε(−Θ(β, ε))]

t.v.(α, ε)i

≤O(1)
α[βε(−Θ(β, ε))]

t.v.(β, ε)i
.

In the last inequality, we have used the fact that t.v.(α, ε)i ≥ t.v.(α, β)i and

t.v.(α, ε)i ≥ t.v.(β, ε)i.
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Therefore, when the total variation of the approximate solution is sufficiently

small, we deduce that

∆Qns ≤−
[βε(−Θ(β, ε))]

t.v.(β, ε)i
+ O(1)

α[βε(−Θ(β, ε))]
t.v.(β, ε)i

≤− 1
2

[βε(−Θ(β, ε))]
t.v.(β, ε)i

.

(3.2)

Combined with (3.1), this implies that F is decreasing for suitably chosen con-

stant M

∆F ≤ 0.

Case (II)(cf. Fig.2): Assume that α, β are i-waves and γ is j-waves (i > j).

Without loss of generality, we assume that they are shocks or rarefaction shocks.

Furthermore, we assume that α, β do not interact with each other before the

time t, but after the interaction at time t

β + γ −→ β + γ +
∑

k 6=i,j

δk,

β interacts with α. Again we may assume that no cancellation happens and

α, β, γ ≥ 0.

β γα

β̄

urul

γ̄

δk

ūl ūr

Figure 2: Case II

In this case, the standard wave interaction estimates yield

∆L ≡ L(t+)− L(t−) = O(1)|β||γ|.
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Again we need to estimate the change of Qn.

Before the wave interaction at time t, the potential wave interaction Qn is

Qn(t−) = βγ + αγ.

After the wave interaction, the i-wave β̄ may be a composite wave. We partition

it into β̄1, · · · , β̄m as in Lemma 2.3 with intermediate states ūl = ū0, ū1, · · · , ūm =

ūr. The wave interaction potential Qn now becomes

Qn(t+) = αγ +
m∑

k=1

βkα(max{−Θ(α, βk), 0})
t.v.(α, βk)i

+
∑

k<i,k 6=j

αδk.

Then the change of Qn is

∆Qn = Qn(t+)−Qn(t−) = −βγ + O(1)αβγ +
m∑

k=1

βkα(max{−Θ(α, βk), 0})
t.v.(α, βk)i

.

It seems that from the Lipschitz continuity of wave speed on the end states,

the third term on the right hand side can only be bounded by γ. But in fact,

with the regularity of composite wave curves, i.e. Lemma 2.1, we can have

better estimate. By Lemma 2.2, we partition β into small sub-waves β1, · · · , βm

corresponding to β̄1, · · · , β̄m. Then we can write Θ(α, βk) in terms of Θ(α, βk):

−Θ(α, βk) =−Θ(α, βk) + Θ−(ul, ur) +
k−1∑
l=1

[λi]l + [λi,k − λi(uk−1)]

−Θ−(ūl, ūr)−
k−1∑
l=1

[λ̄i]l − [λ̄i,k − λi(ūk−1)].

As α, β do not interact with each other, by definition, we have

−Θ(α, β) ≤ 0.

Moreover, since we assume that β is an i-th simple wave, from the Definition

2.2, it implies that −Θ(α, βk) = −Θ(α, β) ≤ 0. Then by applying the Lemma

2.2 and observing that |ul − ūl| = O(1)γ, the effective angle can be estimated

as follows.

max{−Θ(α, βk), 0} ≤ O(1)βγ.

Therefore,

∆Qn ≤− βγ + O(1)αβγ ≤ −1
2
βγ. (3.3)
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Similar to case (I), this implies that F is decreasing for suitably chosen constant

M , that is

∆F ≤ 0.

When cancellation happens, we can prove the non-increasing of F in a

straightforward way because the amount of cancellation is of first order. So

for the general case, we can regard the problem as the superposition of case

(I) and (II). By using (3.2) and (3.3) repeatedly, we can show that F is non-

increasing after the wave interaction under the condition that the total variation

of the approximate solution is sufficiently small. Thus Theorem 2.1 follows.

4 Consistency and Convergence Rate

With the above wave interaction estimates, we can prove Theorem 2.2 on the

wave tracing argument.

Proof of Theorem 2.2. It is obvious that |α(Ms)|[σ(α)] at time t can be con-

trolled by O(1)(Qn(Λ) + C(Λ)) if the wave interaction is between waves of dif-

ferent families or cancellation occurs. We only need to consider the interaction

of waves of the same family and with the same sign.

Consider the interaction of two Riemann problems:

(ul, um) + (um, ur) −→ (ul, ur).

We can assume that (ul, um) and (um, ur) are connected by several k simple

waves α = (α1
k, ..., αn1

k ) and β = (β1
k, ..., βn2

k ) respectively. Furthermore, from

the monotonicity property (2.3), we may assume that after interaction (ul, ur)

is resolved by a single k-shock γ without loss of generality.

We have the following estimates from the Lemma 2.3.

γ =
n1∑
i=1

αi
k +

n2∑
i=1

βi
k + O(1)Qos(α, β),

σ(γ)γ =
n1∑
i=1

σ(αi
k)αi

k +
n2∑
i=1

σ(βi
k)βi

k + O(1)Qos(α, β),

σ(α1
k) ≤ σ(α2

k) ≤ ... ≤ σ(αn1
k ) ≤ σ(γ) ≤ σ(β1

k) ≤ σ(β2
k) ≤ ... ≤ σ(βn2

k ).
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Then we can estimate the variation of the speeds [σ(αi
k)] and [σ(βi

k)] as

follows.
n1∑
i=1

αi
k[σ(αi

k)] +
n2∑
i=1

βi
k[σ(βi

k)]

=
n1∑
i=1

αi
k(σ(αi

k)− σ(γ)) +
n2∑
i=1

βi
k(σ(βi

k)− σ(γ))

≡I + II.

And

I =
n1∑
i=1

αi
k{σ(αi

k)− 1
γ

[
n1∑
i=1

σ(αi
k)αi

k +
n2∑
i=1

σ(βi
k)βi

k + O(1)Qos(α, β)]}

=
n1∑
i=1

αi
k

t.v.(α, β)i

[ n1∑
j=1

αj
k(σ(αi

k)− σ(αj
k)) +

n2∑
l=1

βl
k(σ(αi

k)− σ(βl
k)) + O(1)Qos(α, β)

]
=

[
∑n1

i,j=1 αi
kαj

k(σ(αi
k)− σ(αj

k)) +
∑n1

i=1

∑n2
l=1 αi

kβl
k(σ(αi

k)− σ(βl
k))]

t.v.(α, β)i

+
∑n1

i=1 αi
kO(1)Qos(α, β)

t.v.(α, β)i

=
[
∑n1

i=1

∑n2
l=1 αi

kβl
k(σ(αi

k)− σ(βl
k))]

t.v.(α, β)i
+

∑n1
i=1 αi

kO(1)Qos(α, β)
t.v.(α, β)i

,

since the summation
∑n1

i,j=1 αi
kαj

k(σ(αi
k)− σ(αj

k)) = 0.

Similarly

II =
[
∑n1

i=1

∑n2
l=1 αi

kβl
k(σ(αi

k)− σ(βl
k))]

t.v.(α, β)i
+

∑n1
i=1 αi

kO(1)Qos(α, β)
t.v.(α, β)i

Therefore, we have

I + II =
(
2 +

n1∑
i=1

αi
k

) Qos(α, β)
t.v.(α, β)i

= O(1)Qns(α, β) (4.1)

Then Theorem 2.2 follows.

With Theorem 2.2, we can prove the consitency of Glimm scheme clearly,

i.e. we want to show that the following term∫ ∞

−∞

∫ ∞

0

(uφt + f(u)φx)(x, t)dxdt +
∫ ∞

−∞
(uφ)(x, 0)dx

22



=
MN∑
k=0

∫ ∞

−∞
(u(x, ks + 0)− u(x, ks− 0))φ(x, ks)dx, (4.2)

vanishes as the grid size r tends to zero. Here φ(x, t) is the test function with

compact support, φ(x, t) = 0, t > T = MNs.

As in [24] we may start with the simple example of one shock. Denote by

x = x(k)r the location of the shock at time t = ks. We have∫ ∞

−∞
(u(x, ks + 0)− u(x, ks− 0))φ(x, ks)dx

=

{ ∫ x(k)r+σs

x(k)r
(u+ − u−)φ(x, ks)dx, if θkr > σs,∫ (x(k)+1)r

x(k)r+σs
(u− − u+)φ(x, ks)dx, if θkr < σs.

If the test function is a constant φ0 then the error becomes, for the interval

I = (0, σs/r),∑MN
k=0

∫∞
−∞(u(x, ks + 0)− u(x, ks− 0))φ(x, ks)dx

= φ0(u+ − u−)(B(MN, I)(r − σs)−B(MN, Ic)σs)

= φ0(u+ − u−)T (B(MN, I)( r
s − σ)− (MN −B(MN, I))σ) 1

MN

= φ0(u+ − u−)T (B(MN,I)
MN − σ s

r ) r
s ,

which tends to zero as MN →∞ when the random sequence is equidistributed

as (1.6).

The non-constancy of the test function φ(x, t) gives the error of the order

O(1)LNs = O(1)LT/M , if we divide the time zone 0 ≤ t < T = MNs into M

small time zones N(l− 1)s ≤ t < Nls, l = 1, 2, · · · ,M . Here L is the Lipschitz

constant of φ(x, t). Then it tends to zero as M →∞.

For a general solution, the speed of the shocks or rarefaction shocks is chang-

ing. The variation of the speed has been discussed in Theorem 2.2, which says

that for a surviving wave α, its strength |α| times the variation of its speed

in a time zone Λl is of the order of D(Λl) + s. Thus the error contributed by

surviving subwaves in a given time zone Λl is O(1)(D(Λl) + s)Ns. The total

error of this kind over 0 ≤ t < T is then E1 = O(1)(D(t ≥ 0) T
M +sT ). Similarly,

the error contributed by the cancelled subwaves in 0 ≤ t ≤ T is

E2 = O(1)(D(t ≥ 0) + sT ).

Thus the total error is of the form

E = O(1)[(B(N, I)/N − |I|)T + sT + D(t ≥ 0)
T

M
],
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which tends to zero as M,N →∞. This means that the approximate solutions

constructed by the deterministic version of Glimm scheme converges to a weak

solution to the Cauchy problem as the grid size tends to zero.

Finally, we prove Theorem 1.1 on the convergence rate of Glimm scheme. In

fact, after the preparation in above sections, the proof can follow the argument

in [6] for systems satisfying condition (A). For completeness, we outline the

proof as follows by using the new Glimm functional.

Proof of Theorem 1.1. Consider the approximate solution up to time T = m̄s+

s′, where s′ ∈ [0, ε), s is the grid size in x and t. Pick a constant δ � s. Divide

[0, T ] into finitely many intervals Ji ≡ [mis,mi+1s], i = 0, 1, · · · . Let m0 = 0.

Construct Ji and a subset E of N inductively as follows.

1. If F (mis) − F ((mi + 1)s) ≤ δ, then let mi+1 be the largest integer such

that F (mis)− F ((mi+1s)) ≤ δ and mi+1s−mis ≤ δ. And denote i ∈ E.

2. If F (mis)−F ((mi +1)s) > δ, then let mi+1 = mi +1. And denote i ∈ Ec.

Then there exists some finite number µ ≤ m̄ such that mµ = m̄. Since T is

fixed and F (t) is uniformly bounded,

#E ≤ O(1)
1
δ
, #Ec ≤ O(1)

1
δ
. (4.3)

For each interval Ji, i ∈ E, i ≤ µ, define an auxiliary piecewise constant

function w(x, t) with the following property:

• Every subwave α(t) in u corresponds a wave front in w with the same

initial and final position.

• The wave front in w has constant wave strength and speed.

Applying the wave tracing result Theorem 2.2,

‖w(·,mi+1s)− Smi+1s−misw(·,mis)‖L1

=O(1)(mi+1s−mis){(F (mis)− F (mi+1s))}

+ O(1)(mi+1s−mis)
{

s +
1 + ln(mi+1 −mi)

mi+1 −mi

}
.

(4.4)

From the structure of w, we also obtain

‖u(·,mi+1s)− w(·,mi+1s)‖L1 = 0(1)(F (mis)− F (mi+1s))(mi+1s−mis),

(4.5)

(4.6)
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Thus, by combining (4.4) and (4.5), for each i ∈ E, we have

‖u(·,mi+1s)− Smi+1s−misu(·,mis)‖L1

≤O(1)(mi+1s−mis)
{

(F (mis)− F (mi+1s))

+
[
s +

1 + ln(mi+1 −mi)
mi+1 −mi

]}
.

(4.7)

And for each i ∈ Ec, by the Lipschitz continuity of approximate solution con-

structed by the Glimm scheme, we have

‖u(·,mi+1s)− Smi+1s−misu(·,mis)‖L1 ≤ O(1)s (4.8)

By applying these two estimates, (4.3), the construction of Ji and the property

of standard Riemann semigroup, the L1 distance between u(x, T ) and ST u(x, 0)

can be controlled by

‖u(·, T )− ST u(·, 0)‖L1

≤
µ−1∑
i=0

‖ST−mi+1su(·,mi+1s)− ST−misu(·,mis)‖L1

+ ‖u(·, T )− ST−m̄su(·, m̄s)‖L1

≤L

µ−1∑
i=0

‖u(·,mi+1s)− Smi+1s−misu(·,mis)‖L1 + O(1)s′

≤O(1)
∑
i∈E

{
(mi+1s−mis)

{
(F (mis)− F (mi+1s))

+
[
s +

1 + ln(mi+1 −mi)
mi+1 −mi

]}
+ O(1)

∑
i∈Ec

s

≤O(1)
{

δ + s +
s

δ

(
2 + |ln δ

s
|
) }

.

(4.9)

Let δ = sk ln(|ln s|), k ∈ (0, 1). Then simple computation yields that when

k = 1
2 , the convergence rate is o(1)s

1
2 |ln s|. This completes the proof.
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