A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES ON
2-DIMENSIONAL RIEMANNIAN MANIFOLDS

JAN GIESSELMANN

ABsTRACT. This paper studies a family of finite volume schemes for the hyperbolic scalar
conservation law wu¢ + Vg4 - f(z,u) =0 on a closed Riemannian manifold. For an initial
value in BV(M) and an at most 2 -dimensional manifold we will show that these

schemes converge with a hi convergence rate towards the entropy solution. When
M is 1 -dimensional the schemes are TVD and we will show that this improves the
convergence rate to h® .

1. INTRODUCTION

Hyperbolic partial differential equations on curved manifolds occur in many applica-
tions. These include shallow water models for the atmosphere or ocean [4], [13], [16], the
propagation of sound waves on curved surfaces [21] and passive tracer advection in the
atmosphere. Further examples are the propagation of magneto-gravity waves in the solar
tachocline [20], [5], [10] and relativistic matter flows near compact objects like black holes
9, [14].

For the numerics of these problems finite difference [9], finite volume [14], discontinuous
Galerkin [12] and wave propagation methods [19] have been used. For convergence analysis
of finite volume schemes, we will consider the following scalar model problem for non-linear
hyperbolic conservation laws:

(1) w + V- (flu)v(z)) = 0in M x Ry
(2) u(z,0) = wo(x) on M.

Here (M,g) is a 1- or 2-dimensional closed oriented Riemannian manifold, v is a
smooth vector-field on M and ¢ is a fixed Riemannian metric on M. By Vg, we
denote the divergence operator on M induced by g. The aim of this paper is to prove a
convergence rate for finite volume schemes for this model problem.

For this problem one has the notion of entropy solution, analogous to the Kruzkov
definition in Euclidean space.

Definition 1. A function u € L>®°(M x R}) is called an entropy solution of (1),(2) if
3) [ T st o) (FaTr) = Futr)o(e). Vye)] dogde
MXR+
+ / lup — klp(-,0)dvg >0 Vk € R, Vo € C°(M x Ry, Ry ).
M

The well-posedness of this problem was investigated by Ben-Artzi and LeFloch in [2].
They show that given ug € L®(M)NL' (M) and a geometry compatible flux, i.e. V,-v =
0, the problem (1),(2) has a unique entropy solution u. Furthermore for ug € L®(M)N
BV(M) the total variation of the entropy solution is bounded for every time ¢ > 0 in the
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sense that there exists C7; > 0 depending only on |ug| ze(as) and the geometry of M
such that

TV (u(-,t)) < e“ (1 + TV (ug)) for all ¢ > 0.

In [1] it is shown that for V,-v =0 we have
TVx(u(-t)) < TVx(up)
for every vector-field X with [X,v] =0, where

TVx(u) = sup / uVg - (¢X) dvy(x).
deC®(M):||¢l|Loo / M
This implies that for d = 1 the entropy solution is total variation diminishing, i.e.
TV (u(-,t)) < TVyr(up). Furthermore they prove convergence for a class of finite volume
schemes for the Cauchy-problem (1),(2). In this paper we will prove convergence rates for
these schemes. We will follow the ideas of Eymard et. al. in [8] for the proof of convergence
rates for finite volume schemes in Euclidean space. As in the Euclidean case we are able
to prove convergence of order % in one space dimension and convergence of order % for
two space dimensions. The new problems in the convergence analysis, which are caused by
the differential geometric properties of the problem, mostly occur in the proofs of Lemmas
13 and 15. We refer to [19] and [18] for a treatment of the wave propagation method on
curved manifolds. In [3]| different approaches to construct grids on spheres are treated and
we refer to [11], [17] for geodesic grids on a sphere.

We make the following hypotheses on the data:

up € L(M)NBV(M), Uy, Ups € R : Uy < ug < Ups ace.,
(4) Vg-v=0,
f € CY{R,R).

The hypothesis V,-v = 0 is used to ensure the well-posedness of the problem and to
avoid technical problems. Like in the Fuclidean case it should not be necessary for the
convergence rate.

The outline of this paper is as follows: In section 2 we will recall some helpful definitions
and notations from differential geometry and give some results, which are necessary for
the proof of the main theorem, Theorem 16. In sections 3, 4 we will present the notion
of triangulation and the construction of finite volume schemes on Riemannian manifolds
respectively. In section 5 we will state the main Theorem and prove it.

2. DIFFERENTIAL GEOMETRY

2.1. Notation and definitions. We will consider a connected, closed, oriented d -dimen-
sional Riemannian manifold (M, g), with d =1,2, i.e. M isa compact, smooth, oriented
manifold without boundary and g is a fixed Riemannian metric on M. This means g(z)
is a scalar product on the tangent space 1T, M of M at z. In local coordinates (xj)lgjgd
the partial derivatives 0; = % form a basis of the tangent space T,M and we have
the metric tensor g;j(z) := g(x)(;,0;) with inverse ¢g. This enables us to define the
divergence operator V- by

1 .
g f(@) = ———==0; x)| f (x
Vo f(@)i= =0 (Vis@I @)

where |g(z)| := |det(gi;j(x))|, for every smooth vector-field f on M with local repre-
sentation f = f7/0;. This is only well-defined in the local coordinate system, but in fact
the definition is independent of the choice of the local coordinates and so the divergence
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is well-defined all over M. Similarly for every smooth function w on M the gradient of

u is defined by
; Ou
(Vo w'=g" 027"

The Riemannian metric also defines a volume form dv, on the manifold, a volume form

dvy on every submanifold N and a metric d, on M. Spaces of functions of bounded
variation are defined similar to the definition in Euclidean space

Definition 2.
TV (u) = sup / uVy - X dvy,
XeD(TM):|| X ||oo<1 I M
BV(M) = {ueL'(M):TVy(u) < o},
where T'(TM) denotes the smooth vector-fields on M, i.e. the smooth sections of the
tangent bundle T M.

Definition 3. An open subset U C M s called convex, if for every pair of points
z,y € U there exists a unique minimising geodesic from x to y lying in U.

2.2. Geodesic polar coordinates. We will now define geodesic polar coordinates. They
are helpful for the definition of cut-off functions, which we need in a doubling of variables
argument in Lemma 15. We consider a point x € M and local geodesic polar coordinates
(p,0) around z (cf. [6] for example). The metric tensor has the form

(1 0
YO =\ 0 G(p.0) )
The function G fulfils

lim G =0, lm(VG),=1, (VG),,+KVG=0,

p—0 p—0
where K is the Gaussian curvature of M. Because M is compact K, |V K| and
\V?]K | are bounded on M. We recall that there exists a R > 0 such that for every
y € M the mapping exp, : Br(0) C TyM — M is a diffeomorphism on its image (cf.
[7] for example). Let

R
A= {ww e ol < 7}

then A is compact and there exists some C > 0 such that
[(T'exp,)u|| < CVy € M, v e Br(0) C T,M.
2

Therefore

N 017 4R
Glexn, o) = (o) < ITen,)l? | 5 < 2

So /G is bounded and for fixed 6 the function u(p) := 1/G(p,0) satisfies

u"(p) + K (p,0)u(p) = 0.
Multiplying this equation by u/ and integrating with respect to p yields

/ dp+/Kp, ) (p)dp =0

= o/ (r)* —4/(0)? —|—K(r 0)u(r)* — K(0,0)u(0)?

/Kp, 2dp=0

— W)’ <1 K(r6)u(r)? + /O VoK (9,0 yu(o)* dp
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So for r < £ the function (V/G), is bounded independently of the choice of z. Because
v’ = —Ku the same is true for (\@)pp. We can easily calculate

NG

ST = VG — KT - 2K, (VD)

Thus for r < g the function %*Z? is bounded on M independently of x by a constant
C. So the Taylor formula implies

3

(5) VG(p,0) = p— L K@)+ R

where |R| < Cp?.

2.3. Parallel transport. In the proof of Lemma 15 we will have to use parallel transport
to extend vectors to local vector-fields. For x,y € M with 0 < d,(z,y) < R there exists
a unique minimising geodesic vz, from x to y parametrised by arc-length. So we get a
well defined mapping
Py : T, M — T,M

defined by parallel transport along this geodesic. By definition of geodesic we know that
Pry(Y24(0)) = iy (dg(,y)). Obviously we have for 0 < dy(z,y) < R the identities
Vyadg(r,y) = —74,(0) and Vg ,dg(z,y) = v, (dg(z,y)). Let v be asmooth vector-field

on M then .
9(ay(1) (Por, 0(0(2)), 74y (1) = 0

and therefore

(6) 9(@) (v(2), Vgadg(x,y)) = —g(y) (Poy(v(2)), Vgydg(2,y)) -
Furthermore we have the following lemma whose proof is given in the appendix.

Lemma 4. Let M be a smooth closed Riemannian manifold and R > 0 such that
exp, ! : Br(z) — T,M is a smooth chart for every x € M and for all x,y € M with
dg(x,y) < R there exists a unique minimising geodesic from x to y. Let v € I'(T'M)
and v(z,§) for dy(x,&) small enough given by parallel transport of v(§) along the unique
minimising geodesic from & to x. Then

R
e {(f,x) € M?:dy(¢,x) < 4} —TM
is C? and there exists C >0 such that

R
(7) |vg,$f]($7£)| < Cldg(.fU,f) fO’I" g € Mv dg(a:,ﬁ) < g

2.4. Cut-off functions. These are necessary for a doubling of variables argument in the
proof of Lemma 15. In this paragraph we will assume d = 2. Let 9 : R — R, be a
smooth function with supp C [—1,0] such that

0]
/R@z)(z) do = 1.

Let v (z) := ¢ (f) . Let x : R — R4 be a smooth function with support in [—1,1],

T e
which is even, decreasing on [0, 1] and fulfils

[t =1.

(8) Xe : M x M —R, (z,y)+— E%X (dg(l',y)> .

We define
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By (5) we have for any fixed y € M and € < E

(9) /M Xe(w,y) dvg(z) = / /% ! (p— gK( )+R> dbdp

= 1+R
where |R| < £ |K(y)| + Ce®.

3. TRIANGULATION

Definition 5. A triangulation on (M,g) is a set T of curved polyhedra K on M
such that M = U7K and the interior of each polyhedron is conver. When M is 1 -
dimensional we impose that for distinct “polyhedra” K1, Ko € T the section Ky N Ky is
a common face of Ki, Ko, this means a single point. When M is 2 -dimensional we
impose K1 N Ky is a common face of K1, Ko, a single point or empty. Furthermore we
assume that the faces are geodesic lines. This is not only necessary for the convergence
analysis, but also sensible for numerical calculations. On the sphere it ensures that the
normal vectors are constant along the faces.

The set of the faces e of a polyhedron K is denoted by 0K and the unique polyhedron
sharing the face e with K is denoted by K.. By nge(x) € T, M we denote the unit
outer normal to a polyhedron K in a point x € e. Finally |K|,|e| denote the d- and
(d — 1) -dimensional Hausdorff measures of K,e respectively.

We will need the following assumption on the triangulation: There exist #,h > 0 and
k € N such that for every K € 7 and e € OK the following conditions are fulfilled

(10) pht < K|,
(11) le] < hi!
(12) #OK < k
(13) §(K) < h,

where 0(K) := sup{dy(z,y) : z,y € K} and #0K denotes the number of elements of
0K, i.e. the number of faces of K. Now we can state the following approximation result,
which is proven in the appendix.

Lemma 6. For h small enough and every w € BV(M) there is a constant C > 0
depending on M but not on the triangulation T such that

|lu =l g1y < Ch
where

u(x) == |K|/ x)dvy(x) for x € K

so u is well-defined allmost everywhere on the manifold.
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4. THE SCHEME
We define
(14) flzu) = f(u)o(x).

For every polyhedron K € 7 and face e € 0K we consider a numerical flux function
fre:RxR — R such that the following properties are satisfied:

(15) Conservation:  fre(a,b) = —fr. (b, a),
(16) Counsistency:  fx.(a,a) B ‘/f z,a)nk.e(r) dve(z),
(17) Monotonicity: JK.e is nondecreasing in the first and

nonincreasing in the second variable.

Furthermore we impose that the fx . are uniformly locally Lipschitz continuous. We will
consider the following semi-discrete scheme:

(18) (uf): = Z le| i (whe, ulk.)
| | eCOK

(19) W) = G /K () dv(z)

(20) uP(z,t) = ul(t) for z € K.

5. PROOF OF CONVERGENCE RATES
We first show that a solution of (18)-(20) exists and that it is bounded.

Lemma 7. Assume the local existence of a solution of (18)-(20) and let uo(x) € [Upm, Up]
for almost every x € M, then u?(t) € [Un,Un| for every t >0 and K € 7.

Proof. Tt is obvious that u’(0) € [Uy,,Up] for every K. First observe that for fixed K

and u}}(e <ul forall e € OK we have
(U’I}()t = | Z |€’fKe uK7uKe)
eEdK
monotonicity
< | Z le| i (e, ulf)
eGBK
conststency
< Z flx,ul)ng e dvy(z) = 0.
eeaK ¢

Now we will prove that u}j( < Uy for all ¢, the proof for u}}( > Uy, is analogous. Let

s :=sup{T > 0: ul(t) € [Upn, Un|Vt € [0,T] and K € T}.
We have s > 0. Let E :=max|e|. Assume s < oo. Due to continuity we have u?(s) €
[Um,Un] VK. Because the fg . are locally Lipschitz continuous, it exists 6 > 0 such
that a solution {uft}rer of (1),(2) existsin [0,s+0). Let A:=sup{u’(t):t<s+ 3}
and L the uniform Lipschitz constant of the fx,. on [-A, A]. Because s < oo there
are aij,e >0 and Ky € 7 such that a; < min (g,ﬁ) and

(21) ul (s +a1) = Uwm +e.
Now we will prove by induction that there exist 0 < a, < a; and K, € 7 such that
€

( 1kLE)n_1
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The induction starts with (21). If (22) is fulfilled there has to be an a,4+1 < a,, such that

u}}(n(s + ant1) > Ups and
€ €

> .
an(a1kLEY"1 — aj(a1kLE)"1

Thus due to the monotonicity and Lipschitz property of the fx . there must bea K, i €
7 such that

(“?(n)t(s +any1) >

g
U?(nﬂ(s +any1) 2 Un + (@kLE)"

There are only finitely many K € 7 so there is a subsequence aj, and some K € T
such that

ule (s + ay,) =90 o,
because all ay, are smaller than a; this is a contradiction to the continuity of u}}{ on

[0,5+0). So s=oc. O

As an immediate consequence of Lemma 7 and the local Lipschitz continuity of the
numerical fluxes we have:

Corollary 8. There exists a global solution of the system (18)-(20).

The next step is to prove a TVD estimate in the d =1 and a weak BV -estimate in
the d = 2 case. For brevity we introduce the following notation: for real numbers a,b
we define

C(a,b) :={(c,d) € [aLlb,aTh]?: (b—a)(d—c) >0,}
where aTh and alb denote the maximum and minimum of a and b respectively. For
every t >0 we define
E(t):={(K,e): K € T,e € 0K, ul(t) > ul_(t)}.
Lemma 9 (TVD property). Let M be 1 -dimensional then the scheme (18)-(20) is TVD,
i.e.
TV (u(-,t) < TVar(ug) for all t > 0.

This implies that for every T' > 0 there exists a C' > 0 depending only on f, uo, M, fre,T
such that

/ Yo el max o |freled) = frele,c) dt < C.

KeT ceore  (@DEC(ueul,)

Proof. We will consider times ¢ where %|u’}( - uff(e\ exists for all K € 7 and e € 0K.
These derivatives exist for almost every ¢ > 0 and we have

d
aTVM (-t ZZ |uK ) —ul, ()]

KG’T 668K
Now we fix one K € T and observe that K has exactly two neighbours Ki, Ks.

o If uif(l(t) < ul(t) < u%(t) or u’}Q(t) < ul(t) < u’}(l(t) then (u); occurs
exactly twice with different signs in the sum and therefore vanishes.
o If ul(t) > ulf(l (75),u}}(2 (t) the term

hon() =— 3 12 ‘|fm< e, ) < — 32 1 pi (). (1) = 0

ecOK ecOK ‘ |

occurs twice in the sum.
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o If ul(t) < uif(l (1), uif(z (t) the term

() = 3 e 0. (0) £ X e el e (0) =0
ecOK ecOK
occurs twice in the sum.
So we know TVjs(u”(-,t)) is nonincreasing in time. For every K € 7T there exist
ri,yx € K such that
uo(z ) > ui(0) > uo(yr).
Let Ki, K> be the neighboring elements for some K € 7, then we define

<K:{ TK u}}{>1{}(1,u}}<2
YK G else.
We have
2TV (u"(0)) = D D [uk(0) — uf, (0)]
KeT ecOK
< DY uo(Cr) = uo(Cr.)| < 2TV ar(up).
KeT ecOK

This proves the TVD property. For (c,d) € C(ul, u’}(e) we have

|[fre(e;d) = frele.c)l < Lle —d| < |ufe — |,
where L is the uniform Lipschitz constant for all fx . on [Upy,Up]. Using |e| =1 we
get

/ Z Z le] max |fx.e(c,d) = fre(c,c)| dt

0 KeTecor (eDEC(uful,)
< / LSS -l |dt
KeT ecOK

T
< 2L/ TV (u(-,8) dt < 20T TV pr(ug).
0
O

In the 2-dimensional case there is no TVD estimate, but we can prove a weak BV
estimate which will play a similar role in the convergence proof.

Lemma 10 (weak BV-estimate). Let M be 2 -dimensional. For every T > 0 there
exists a C >0 depending only on f, wo, M, B, {fre}, T,k such that

C
Proof. We have
1 T
K - = K h \2 d
/OI;) e ;| > 181 ((ud?), a
1
) = 5 S IR () - k)
KeT
1
> =5 Y K|(uf)*(0)
KeT
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Now we multiply (18) by |K|ul(t) and sum over all K € T

/ S It =~ [ 3 5 Jel el e

KeT KeT ecOK

/ Z Z le| (fKe ult ul) — fK,e(u}}(,uI}(e)) ule dt

0 KeTecok

(21) - [ E [(Ficelueoule) — ficeul )

(K,e)eE(t

+ (e ) st o)) |

/ Z le] [(fKe uK?“K) fKE(quuKe)> }IL(

(K,e)€E(t)

— (Frcelod ) = frcelu,ull)) ulk, ] .

Now we define Fg.(a) = fKe(a,a) and let @, be a primitive of a — aly (a)

satisfying @ .(0) =0. Let a =ul b= uill( then every single summand has the form

e [a(Fk.e(a) — fi.e(a, b)) = b(Fk e(b) — fi.e(a,b))].
Integration by parts yields

b
P e(b) — Pre(a) = uF}{E(u) du

— B(Fice(d) — Free(a,h)) — a(Fre(a) — free(a,b))
b
_ / (Fic.o(u) — fco(a, b)) du.

Due to the conservation property (15) of the numerical fluxes we have Fg .= —Fk, . and
therefore ®x .= —Pg, .. Because the flux is geometry compatible (4) we have

Y lelfrela,a) =0= ) [e|Fi(a) =0= ) [e|Px.(a)

e€OK e€OK e€OK

for every K € 7 and a € R. Thus we have

S lel (Preluk) — Prelh) = D el (Preluk) + P e(uk,))
(K,e)eE(t) (K,e)eE(t)
= Y el (Prelu) + P, (k)
(K,e)EE(t)

D DR C P S)

{(K,e):u}}(:u}}{e }

= ZZye@Ke ) =0.

KeT ecOK
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Using this in (24) implies

/ S Kl / S ST Jel e el ol di

0 ket KeT ecdK

(25) = / Z Ie!/ Free(u,w) — fice(ule, ul )> dudt
- / Z ’d/hK (fKe(U,u) - fKﬁ(u?ﬁu?{J) du dt.
0 (KeeB@t) YUk

For u};(e <c<d< u’}( we have due to (17)

d

L:}k (fK,e(U}]l(,u]}(e) - fK,e(u,u)) du > / (fK,e(u}}(,u}}{e) — fre(u, u)) du

Ke ¢
>0

d
> [ kel o) = o) du

We will now use the following fact which can be found in [8]:

Lemma 11. Let g: R — R be a monotonic Lipschitz continuous function, with Lipschitz
constant G > 0. Then

d
/C (g(u) — g(c)) du| > %( (d) — g(c))?, Ve,d e R.

Thus (17) and the Lipschitz continuity of the fx . imply

d d
/ (Fields6) — freeluu) du > / (Fre(ds €) — free(ds ) du

C

> o7 Ureelds) = fice(d,))?

and

d
/ (Fice(d,e) = free(uw)) du > / (Frceldse) — freelusc)) du
1

U

> o7 (reld€) = free(e,0))?,

where L is the uniform Lipschitz constant of the fx. on [Un,Up|. Multiplying both
inequalities with 3 and adding them yields with (23) and(25)

Soltsan = [ 3 rer (it ) = fucelonw)) du
(K,e)EE(t) ul
|€| 2

> max eld,c) — freld, d

(26) + max (fK,e(dv C) - fK,e<C7 C)>2> dt
f;( <e<d<ufy

|€’ 2

> 2L ’fKe(C d) — fK,e(CvC)’ dt.

0 KeTeeaK (e,d) EC (wk “K
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Now by Cauchy Schwartz inequality we get
T

Z Z |€| max |fK,e(C>d)_fK,e(C>C)‘dt

0 KeTeeor (@DEC(ufuk,)

T ) 9
< (/O SO bl max  (ficelend) = ficelenc) dt)

[NIES

KeT ecoK (c,d)GC’(u};(,uff(e

1
2
(2]
KeT ecOK
_ 1
< CL3|uoll2anyh T h™ %2 — k2.

02

the last line follows from (26) and the assumptions on the grid (10)-(12).
O

Next we prove a weak discrete entropy inequality for the approximate solution, which is
an auxiliary result to prove a continuous entropy inequality for the approximate solution.
This continuous entropy inequality is important for the main convergence proof and has a
similar importance for the proof like the entropy inequality for the exact solution.

Lemma 12 (Weak discrete entropy inequality). For every k € [Un, Up|, every polyhedron
K €T and every test function ¢ € C§°(Ry,Ry) the following inequality holds

/R Kl (2) — Klipr dt + K] (0) — x]io(0)
.

_/ Z le] (fKe(u}}(Tn,u}}(ET/i) — nye(u?(J_/ﬁ,u?(eJ_n)) pdt > 0.
Rt ceok

Proof. Let B =sup{t > 0:¢(t) # 0}. Consider disjoint intervals {I; = (a;j,b;) :j € T},
where J is some countable index set, such that

A= U I ={tc(0,B):ul(t) > r}.
JET

For all b; we have u?(b;) = k or ¢(b;) = 0. For all but at most one a; we have
ul-(a;) = k. If there is an a. € {a; : j € J} with u(a,) # x we have a. = 0.

To make the proof shorter we nevertheless denote one a; by a. satisfying a, = 0 or

u? (a.) = k. Using this notation we have

K| [ (e TR)pedt = K|S / o dt + K| / o dt
Ry =1 Ry\A

= IK\Z/(u’k—m)sotdtHK\/ Kipr dt
T R+

— 1K1 X [ = 0 )etts) ~ (e~ m)(@)eles) [ (whdupdt] = w0

i b

= —\K!u}k(a*)w(a*)+/€\K!(90(a*)—@(0))—AIK\(U%)twdt

Vv

~k O TR O)K] - [ |Kluk)pdr
A



12 JAN GIESSELMANN

For t € A we have by (17) and (18)

K|(uf)e = = D lelfre(ufTr,ulk,)e
ecOK

< = > el freuk Tr,ule Tr)p
ecOK

while for ¢t € R\A we have by (4),(16) and (17)

0 = ¢ Z |€|fK,e(u}IL(TKV7K‘)
e€cOK

— Z |e]fK,e(u}f<Tf<;, u}f(eT/i)go.
ecOK

IN

Thus we get
K| /R (uly Tr)gedt + (ule (0) TR)(0) K|
+

- / > lelfe(ule Tr,ule Tr)pdt > 0.
R+ ccok

In a similar way we can prove
K| [ (whteygndt + (e 0) L)pl0) K]
+

— / Z ]e\fKe(u]}(J_/{,u]}(eJ_/{)go dt <0.
R+ ecor

The Lemma follows from |u®(¢) — k| = (uf () Tk) — (ul () Lk). O

We observe that because M is compact the norms ||f|lze(an and [V f[ly (which
denotes the operator norm of the covariant derivative Vf € T'(T*M @ TM) ) are bounded
by a constant (9. This means particularly for every unit vector t tangent to M the
following estimate for the covariant derivative in direction t holds: ||V.f]s < C2 on
M X [Up, Uny].

Lemma 13 (Continuous entropy inequality). Provided the assumptions (10)-(13) on the
grid with h small enough and (15)-(17) on the numerical fluxes, there is a constant C > 0
such that for every ¢ € C§°(M xR, Ry) and k € [Uy, Upn] we have

T
/ / (2, t) — Klpr(a ) dvg(x)dt + / o) — Klp(x, 0) dv,y(a)
0 M M
T
+ /0 /M (f(x,uh(m,t)—l—/{) - f(:n,uh(x,t)J_K;)) -Vgp(z,t) dvg(x)dt
> - /M [t (2, 0) — o (2)| oz, 0) dv ()

T e(t) dt

T
N 2/0 Z Z le| [( max )|fK,e(C,d) — fr.e(c,c)| + Co(K)

KeT ecoK c,d)EC’(uf;(,uf{(E

with

dg(a:,y)
@) rrel®) :‘KM / /K /0 IV (g (6), 1), 40 dv(y) vy ().
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Proof. We start by using v (t) := |K| Jr (@, t) dvg(x) as test function in the weak discrete
entropy inequality (Lemma 12) and summing over all K € 7. Using that f is geometry
compatible (4) and the consistency property of the numerical fluxes (16) we get T1+7> < 0

with
T, = /ZyuK —ﬁ|</ (x,t)dvg(a:)>tdt

KeT

— 3 (0 —H|/ (2,0) dv,(z)

KeT

= —/ / [l (z,t) — K|pi(x,t) dvg(z)dt
0 M

- / [t (,0) — (i, 0) vy ()

T2 = /
0 KeTecok

— fr e (W () TR, ule (8 Tr) — free(wh(t) L, ul, () LK)
e (ul () L, ul(t )M)) /Kgo(x,t) dvg(a)dt.

|K| (el (0T ., (T )

Now let
T
Ty = —/ / [u"(x,t) — K|pi(x, t) dvy(x)dt
o Jm
~ [ luota) = gl 0) vy (o)
Ty = / / (z,t)TK)
—f(@u <x,t>m>) V(. t) dvy(z)dt.
We are going to estimate |17 — Thp| and [Th — Th|. Obviously we have
Ty~ Thol < / |14 (2,0) = k] = luo(z) — Al ¢(z,0) dv(a)
M
< [ 1u@,0) = wo(e)p(e,0) dvy ),
M

Due to the geometry compatibility of the numerical fluxes (4) we have
o= [ / e, e () TR) — o, ule() L)) ol 1)] dvy(a)
0 Ker

= /0 (f(x,u?((t)Tfi) — f(z, U}[L((t)J_Ii)) nk.e(x)p(z,t) dve(z)

KeT eeaK €

[ el (kT (07w

KeT ecOK

_fKe(u]}((t)J_/{,u}}(e (t)J_ﬁ)) g /cp(x,t) dve(x)dt
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because the last summand is zero due to the fact that each face e is a face of exactly two
polyhedra and the conservation property (15) of the numerical fluxes. Therefore we get

Ty — Too| < / > X [ (Fde )~ Floalet) 1)

KeT ecOK
(28) nre(y) (so<y7t> - e [t dvg@:)) dv.(y)

el (i (ule () T, e, ()T ) = el (1) Lis, wl (8)16))

([lq/K (z,t) dv,(z Il/ e(y,t) dve( ))‘dt'

To estimate this further we need an estimate for
@ ke () TR) - mice(@) = frce (T, e )|

for every x € e. The fact that f-ng. is continuous with respect to the space variable
implies due to (16)yjgl707

fK7€(u}}(T/1,u}}<Tm) = ]e\ /f Tk)nk.e(z) dve(x)
= f(&uk(O)Tr)nK (&)

for some ¢ € e. Due to Lemma 14 below we have for every unit tangent vector t € Tre

t{f (z, (uf () TK)), nke(@))g

= (Vef(z, (ufc () Tw)), nxe(@)g + (f (2, (ui (1) TK)), Veng,e(z))g
< (Os.

Thus we have

[Fa, (e <t>Tn>>nK,e<x> — il Th,ul Th)

= |f@ kO TR)n @) = F(E Qe TR (©)
< 3(e)Ca < 3(K)Ca.

Using a similar estimate for the L case we get from (28)

Ty — Tl / 3 3 [l |- Frelwle ) T, e () T)

KeT ecOK
+ I e (Wl (8) L, ulie (t) LK)

+fKe Whe(O)Th, e (O)TR) = o (uhe(6) L, e, (6) L)

e|yK| // o(x,t) — o(y, )| dve(y) dvg(x)

; P00) -~ i /K o, 1) dvy(2) dve<y>] .
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For h small enough and z € K and y € e € 0K let ., denote the unique minimising
geodesic from z to y parametrised by arc length. Then we have

|Ky|e|// p(2,t) = ¢y, 1) dve(y) dv,y(z)

dg(ﬂ?,y ,
vg‘P(%«‘y(s)y t)v 7xy<3>>9 ds

dvg(x) dve(y)

IKH

]. dg(xvy)
~ IK]le| //K/O 1V g0 (Yay (6), )|, dO dve(y) dvg(z).
This finally yields

| Ty — T </ Z Z le] H—fKe uK )Tk uK( )Tk)

KeT ecOK
(29) e (i () L, wie () LK) + frce(ufc (t) T, uf, (8) Tr)

— Fice (e (t) L, wle, (0) L) | + CO(K) | rice

with rg e given in (27).
Now we want to estimate the right hand side of the above inequality (29). Due to the
monotonicity (17) of the numerical fluxes we observe for u/ > u’}(e

0 < —fK,e(u}}(T/f,u}}(T/ﬁ) + fK,e(u}}(T/ﬁ, u}}(eTn)
S max (_fK,e(d>d) +fK,e(d)c))

u’;{e chdgu?(

max |f.e(c,d) — fre(c,c)l
(e,d)eC (uhc uly )

and for u};( < u’}{E

0 < frelulc ThulTr) = free(ul Tr,ul Tr)

<
< . max (+fK,e(C, C) - fK,e(ca d))
uKSCSdﬁu]}(e

max |fr.e(c,d) = fre(c,c)|
(¢ d)EC(UK’UK )

There are similar estimates for | instead of T which show that

>3 lel | frce (b (O Twy e (0 Th) = e (e () T, e, (£)Tr)

KeT ecOK
— Sl () L whe (8 L) + Fice(whe(8) L, e, (6) L) | + CO(K)]

< 2 Z Z |€| [ maX |fK,e(Ca d) - fK,E(C7C)| +05(K)

KeT ecoK (c,d)eC(u K’uK )

This implies together with (29)

T — Tho| g/ S S ll| max | lfieled) — frolec)

KeT ccore (€0l k)
+ oK) rie(t
which implies the Lemma. O

To finish the proof of Lemma 13 we have to prove Lemma 14.
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Lemma 14. For every vector t € Tye, i.e. t s tangent to e in a point x € e we have

thK,e =0.

Proof. We assumed that e is a geodesic line segment, so there exists a geodesic ~ :
[a,b] — M parametrised by arc length such that ~([a,b]) = e. Then we have

IVenkel? = (9(2)(Vinge nice))® + (9()(Vink.e, 7))

= %t (9(@) (e ) +t (9(2) (0507)) =9(@) (e Vi)

1 0 0

= 0.

The next Lemma is a very important step in the convergence proof. There will be
different estimates for d = 1,2. This is due to the fact that while we have the TVD
property (Lemma 9) in the d =1 case, we only have the weak BV estimate (Lemma 10)
in the d =2 case. The proof will be done for d =2 only. The proof for d =1 follows
from the same arguments using Lemma 9 instead of Lemma 10.

Lemma 15. Provided the assumptions from Lemma 13 there exists a constant C > 0
depending only on M, g,uo,{fK e}, f,B,k such that for small enough h and every test
function o € C§°(M x Ry, Ry) the following inequality holds

/ i (a, £) — (s Ol 1) dvy () dt

MxR4

+ / |flu(z, ) Tu(x, 1) — flu(z, t) Lu"(z, 1) |v(z) - Vealz,t) dv,(z) dt
MxR4

N { —Ch% cd=1

B —Chzs : d=2

Proof. The proof is based on a doubling of variables argument. We recall the entropy
inequality (3) fulfilled by the entropy solution u of (1),(2)

| uts) = wles(a:
+ [f(y,uly,s)Tk) — f(y,uly, s)Lk)] - Vgp(y,s) dvy(y)ds

" /M [un(y) — Klep(y,0) dvg(y) > 0

for all k € R and ¢ € C(M x Ry, Ry). In (3) we set x = ul(z,t) and ¢(y,s) =
a(z, t)xe(xz,y)ve(t — s), where x. and 1. are cut-off functions as defined in subsection
2.4. Now we integrate this equation with respect to « and t¢. In the continuous entropy
inequality from Lemma 13 we set k= u(y,s) and ¢(x,t) = a(z,t)x:(x,y):(t —s) and
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integrate with respect to y and s. Adding both equations yields

/ () — u(y, )
M2><]R2
(@, ) Xe (@, y)ve(t — 5) dvg(x) dvy(y)dtds

)
+ /M B2 {f( (1)) — f(y,u(y,s)mh(a;,t))}
2, )V yxe(x y)ws( 5) dvy () dvy(y)dtds
" /2sz [ @, u(y, s) Tu'(z, 1)) — f(ffau(y,s)J_uh(z:,t))}
V(@ t)xe (2, y) e (t — 5) dvg () dvy(y)dids
+ /MQXRQ+ (@, uly, ) Tu"(@,6) = (@, uly, ) Lu" (@, 1))
(30) (@, )V g Xe (2, Y (t — 5) v () dvy (y)dtds
+ /MMR+ luo(z) — u(y, s)|a(z, 0)xe(, y)vbe (—s) dvgy(z) dvy(y)ds

v

[ ) ~ unla)lale, O () (~5) dsdy () vy (o)
M2xRy

2/M><R+/O Z Z |€’[ mai{ h ’fK,e(Qd)—fK’e(C,C)’

KeT ecoK cd)EC(uK,uKe)

FON(K )}rKﬁ( )dt ds dv, (y).
Now we estimate term by term and use the decomposition (14) f = fv. We will start
with the most difficult summand. Let FE5 be the sum of the second and fourth summand,
i.e.

B, = / [Fluy, ) Tul (1)) — Fluly, 5) Lu(z,0))] otz )
MQXRﬁ_

ws(t - 3) (U(y> : Vg,yXa(x7 3/) + 1)(33) : Vg,a:Xa(xa Z/)) dVg<x) dvg(y)dtds'
We also define

By - /MW [Pt )Tl (@, 0)) = Flule, ) L (@, 0)] (e, )

Ve(t —5) (v(y) - VgyXe(m,y) +0(2) - Vguxe(z,y)) dvg(x) dvy(y)dtds.

Using integration by parts we get

6
gy 2

/ [F(ule, ) Tl (,8)) = Flulz, ) Lu" (@, 0)] a(z, )

M?2xR3

Vet =) (v(y) - Vayxe(2,y) — Poyv(z) - Vgyxe(z,y)) dvg(z) dVg(y)dtd3’

‘/ u(e, )T (2, 0) — F(u(e, ) Lu"(2.1)] 1) et~ 5)
M?2xR3

~ Vg 0()Xe(.9) + Vg - (Poyp(@))xe (@) dvy () dvy(y)dds

(4),(7)
< Ce.
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Furthermore the Lipschitz continuity of f with respect to w (4) and the L -estimates
for up in (4) and «”" in Lemma 7 imply

|E2 _E2b’ S C ‘U({L‘7t) —U(y,S)‘Oé(I,t)llja(t—S)
MQXRi
[v(y) - VgyXe(z,y) +v(x) - Vgaxe(z,y)| dvg(z)dv,(y)dtds.

Now we cover M with finitely many geodesic balls By, (z1),...,Bry(zn) where r; < %
and R is chosen such that for every x € M the mapping exp,!| Br(z) 18 a chart.
Furthermore we restrict to the ¢ < minr; case. Let B; := B,,(z;) and B; = By, (x;).

B-Bal < OF [ [ [ 10t - ut oot tute =

v gyXa z,y) +v(z) - vga:Xa(l’ y)| dVg( )dVg(y)dtdS

v) -
cy / /B /B P @) = ulexp, ) )

Oé(epri (a), t)ve(t — s) [u(exp,, (D) - Vgyxe(exp,, (a), exp,, (b))
+v(exp,, (a)) - VgaXe(exp,,(a), exp,. (b))| dadbdt ds.

Here we use that the metric tensors are bounded.
Let 7.y be the minimising geodesic from z to y parametrised by arc-length. Then
we have

IN

(31)

U(QZI) : Vg,xXe(xa y) + U(y) : vg,st(xv y)
1y (d(y)) (0(@) -7y (0) — v(y) - iy (do (. ))) .

g3 €

Because v is smooth we have

(32) Véy(<7)77:/cy>g) = <V 4 1) ’}/xy> <U7v7;y7:lpy>g S HVUHQ
Thus

dg(ac,y)
0(2) -7y (0) — 0(y) - ALy (d(z,y) = /0 oy ((0(8), 7y ())) ds

(32)
< IVYllpse (anydg (2, y).
Then we have by definition of y. in (8) for all a,b € Br(0)
[v(exp,, (b)) - Vgyxe(exp,, (a), exp,, (b)) +v(exp,,(a) - Vgaxe(exp,,(a), exp,, ()]
(33) < 05_2H{d9(expzi(a),expzi(b))<s}'
Because the derivative of expgji1 is bounded there exists a constant C; > 0 such that
(34) dg(exp,, (a),exp,, (b)) > Cilla —bl|, Ya € B, (0),b € Ba,(0)
which implies
Hdy(exp,, (@).ex0,, ) <e} = T{o-al<5 -
Hence we have by (31) and (33

)
B-Bal < O3 / , o . 0502, (0):0) = ulex 0),5)

]I{Hb—aH<c%} da dbdtds
Ce

IN
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because each wuoexp,, has bounded variation. Finally we have

’EQ’SCE
Let
B = / [ (2, 1) — uly, ) ae(@, D) xe (2 y)be(t — 5) dvg(x) dvy(y)dids,
M2><]Ri
Ey = / [ul(x,t) — u(w, t)|ou(z, ) dvy () dt.
MXR+

Due to (9) we have

B Bul < [ fulet) - u(.s)laro xs(o.y)
M2><]R%r
Ye(t — 5) dvy(z) dvy(y) dtds + Ce?.

To estimate the first part of the right hand side we again cover M with balls B; like in
the estimate for Fsy. From the definition of y. in (8) we know that x is decreasing for
positive z , this yields the following inequality

B-Bul < [ [ julewn ()6 - ulexp,, 0).5)
. /B3 J B, (0) J B, (0)

v (expy, (a),t)|5i2x (C”bg_a”) Y (t — s) dadbdtds
+Ce?
< Ckg,

Cillb—a]
g

because the L' -norms of the E%X ( ) are uniformly bounded with respect to e.

The constants C; were chosen like in (34).
Let

Es = / |f(uly, ) Tu" (2, 1)) = f(uly, s)Lu"(x,1)]
M2 xR2
0(@) - Vg, D)X (2, gt — 5) vy () dvy (y) de ds
Eg = /MxR |f(ula, ) Tu" (2, 1)) — flulz, ) Lu" (z,1))]
v(x) - Vgya(z,t) dvy(z) dt.

Then we have

|E3 — E| < C lu(y, s) — u(z,t)|v(z) - Vya(z,t)
MQXRi
Xe (2, y)0e(t — s) dvg(z) dvy(y) dt ds + Ce?
< Ce,

like in the estimate for Ej. To estimate the fifth summand on the left hand side of (30),

deonted F4, we consider the entropy inequality (3) fulfilled by w. For fixed z € M we
define

p(z,y,8) = a(z,0)xe(2,y) /Oo Yo (—7) dr.



20 JAN GIESSELMANN

and k = ug(z). Then integration with respect to x yields

- /M2xR+ u(y, s) — uo(z)|az, 0)xe(x, y)ihe(—s) dvy(z) dvy(y) ds

+ /szuh (f(u(y, $) Tuo(z)) — f(u(y,s)J_uo(aj))> o(y) - Vg xe(z, y)
a(z,0) (/oo we(—T)dT> dv,(z) dv,(y) ds

+ /M2 luo(y) — uo(x)|e(x, 0)x=(x,y) </Ooo ws(—T)dT> dvy(z) dvy(y) > 0.

We note that the first summand here is exactly —FEy4, thus we deonte the summands by
—FEy, E5, Eg respectively. To estimate FEs we define Eg, by

= [ (s Tuw) - s L)
M2><1R+

) VayXe(@, y)a(z, 0)pe(—7) dr ds dvgy(x) dvy(y)
= /M% | (9 Tuow) - Futy. ) Lua(w)

(Pyzv(y)) nga(x y)a(x,0)ye(—7) dr ds dvg(x) dvy(y)
- / / $)Tuo(y)) — Fluly, 5) Luo()))
MQXRJr
o P00 el ), 0(7) dr s o) v
" / / $)Tuo(y)) = Fluly, 5) Luo(y)))
M2xRy

Xe(2,9) (Pyzv(y)) - Vgolx,0)¢pe(—7) dr ds dvg(x) dve(y).

From the arguments for the estimate of Ey we know that V.- Py, (v(y)) is well-defined
for x in an ¢ -neighbourhood of y. We use the fact that the Levi-Civita connection is
compatible with the metric, which implies ||Pye(v(y))|lg = lv(y)|ly , and the divergence
of Pyy(v(y)) with respect to z is bounded. So the integrands of the above integrals are
bounded and the supports with respect to s liein [0,¢], so Es, < Ce. Furthermore we
have

B Fal < 0 f [T o) w0l ) - Vel
drdsdvg(y) dvy(x).

Integrating with respect to 7 and s yields

E5—E5b\<c/ o () — (1) 10(y) - Vgxe (@, ) e dvy(y) dvy(2)

because the integral over 7 is bounded by 1 and the support with respect to s lies in
[0,e]. Then we use the fact

elo(y) - Voyxe(@,y)| < Ce*Lig,(ay)<e}-
We cover M with balls like in the estimate for FE5 again and a similar argument yields
|Es — E5p| < Ce.
Another version of this argument implies
|Eg| < Ce.
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So we finally have

O§E4§C€.

Now we have to find an estimate for the right hand side of (30): Keeping in mind the weak
BV-estimate (10), the essential part of this estimate is an estimate for

/ rice(t) ds dvy(y)|
MxRy

where 7. was defined in (27). Because the test function ¢ in the definition of rg
now has the form

o(x,t) = alz, t)xe(z,y)e(t — 5)

we have
‘ /MX]R+ rico(t) dvg(2)ds
- |KH€|//R+///% ¥ (122(0), ),
Xe(2(0), )0 — 3)dB dve(2) vy (o) ds vy (9)
(35) e /N L) [ 100,01,

a(Yz2(0), ) e(t — 8)db dve(z) dvg(z) ds dvy(y).

Now integration over s,y yields that the first summand in (35) can be estimated by

C dg(z,2)
i [ [Tt @011+ Can vz avya)

<[IVgallLoe(arn
< C(1 +e?)§(K).
We know that

/ dvy(z) = / | det((T exp,),)| dv < Ce2.
Be(x) (0)CTe M

bounded for |v|<
To estimate the second summand in (35) we observe

||V1X€('Y:rz(0)’y)”g S Cg_gl{dg(%zw)’y)ﬁﬁ}'

Then integration over s and y yields that the second summand in (35) is smaller than

C dg(xay) 1 6(K)
B < |
\K|e\/K/e/o Ce™ldf dve(z) dvy(z) < C—

So we have due to the weak BV estimate Lemma 10

/ / Z Z max lel| fre(e,d) — fre(c,c)|| Tk, dvg(x)dtds
MxR4 KeT ecoK (c,d)eC (ul )
C (h 9
(36) _7 —+h+h?) =CVh +1+s
We observe that due to (10)-(13) we have

/ > > C(K)le] <3C8 k.

0 KeTecdk
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Now it remains to estimate
[ 0~ o@ale, 0l p)ve(—s) dsdv o) dvg o).
]\/12XR+
Integrating with respect to y,s yields that this term is smaller than
c+ 052)/ [ (2,0) — ()] dvy(x) < C(1+2)h
M
for e,h small enough by Lemma 6. This finally implies

/ [l (z,t) — u(z, )|y (2, t) dv,(z) dt
MxR4

+ / |F(u(a, t) Tu(2,1)) = flu(e,t) Lu"(z,1))[o(z) - Vea(z, t)
MXR+
dvg(x)dt

2, Vh 2 2

> —C(e+ Ch+ he +?+\/E+2\/ﬁa + he?)

1 3 1 1 3
= —C(hi4+h+h2+hi+h2+h+h2)
where we set & = hi for the last equality. O

Now the convergence proof is quite easy and only consists of choosing a sensible test
function a in Lemma 15.

Theorem 16. Provided the assumptions of Lemma 15 hold, then we have for every time
T >0 a constant C >0 depending only on f,uo, M,q,T,{frc},B,k such that

T 1
N Ch : d=1
1) —u(z, )| d dt <
| it = ute v @) {(mi: 0,

Proof. For t > 0 we define

p(t)::{ (1—t)eXp(ﬁ> L ot<1

0 ot >1

and pr(t) == p(55). We have pr(t) € [0,e] and there exists € > 0 such that p/(t) <
—e Vt € [0, 3] and therefore pT( ) < 57 Vt € [0,T]. Now we define a(z,t) = pp(t), then
we have o€ Cg°(M x Ry ,R;) and Vgza =0 which implies

// i (2, 8) — (e, )| dvy () dt

> // ar(z, t)[ul (2, t) — u(z, t)| dv, () dt
ny o 1
> o
—Ch1 d =
which proves the Theorem. O

6. APPENDIX

6.1. Proof of Lemma 4. We cover M with balls Br(z1),...,Br(zy). Then we fix
4 4
one [ €{l,...,N} and identify Br(x;) with Br(0) CR?* by exp,, with the induced
2 2
metric tensor. Let the tangent spaces be trivialised by an orthonormal frame over Bz (0).
2

Because exp,, is an Diffeomorphism on Bg(z;), the g;; and all their derivatives are



FV SCHEMES ON MANIFOLDS 23

bounded on Bgr(0). Especially the Christoffel symbols Ffj are bounded in this domain
2

and +/|gij| > € for some ¢ > 0. Due to the same cause there exists C' > 0 such that
|(Dexp,)u]| < C and |[(Dexpyt)yl| < C forall z,y,v€ Br(0). Let o(x,&) = Pe,0(€),
3

i.e. the vector achieved from o(§) by parallel transport along the unique minimising
geodesic from ¢ to x. We want to define ¢ in this way on B := {(z,§) €¢ R? : £ €
Br(0),dg(expy! (), expy ! (€)) < %}. This means ¢ fulfils the differential equation

4

(37) Dyo(z,€) - w(z, &) + 07 (z,6)[(x) - w(z,§) = 0in B
39 HeE) = 99 in By (o)

where w(z,y) := exp; (y) and D; denotes the Jacobi-matrix with respect to the first
variable. Then we see that (37),(38) is equivalent to

Dlﬁ(xv 5)(D eXp{)w(ﬁ,m)w(gv x)

(39) +07 (2, )T () (D expg)weayw(é ) = 0in B
(10) BEO = 0(¢)in By(0)
because (D expg)y(¢,qz) w(E,7) = —w(x,§). Now we consider the following diffeomorphism

»:B — Br(0) x Bz (0)
(2.6 —  (exp;'(2),)
(eng (a)7 5) — (CL, 6)
We define v =00®! and an easy calculation yields (39),(40) is equivalent to

Dyv(z,§) - x
(41) +UT(x,£)F(exp5(m))(D expg)z -r = 0in B% (0) x B% (0)
(#2) 50, = o) in By (0)

Let us recall that
A(2,) = Dlexpg(x))(Dexp)s : Bu(0) x Bi(0) — Maso(R) © B

is smooth. We will express = in polar coordinates (r,6) such that (41) becomes

(43) 0,0(0.0.6) + o7 (1,0, Alreos(0), sin(0).6) (i) ) = 0
for r < g,@ € [0,27],¢ € B%(O)
(44) v(0,0,&) = v(§) for 0 € [0,27],§ € B% (0).
Because A(rcos(6),rsin(0),£) < Z?I?((z)) > is smooth and bounded as a function of ,6,¢&,

we know by ODE theory that v(r,6,&) € C?((0,%) x [0,27] x Br(0),R?) and hence
4
v(z,y,€) € C*(Br(0)\ {0} x Br(0),R?). We know v|{o}xp, ) = ¢ is smooth. Further-
4 4 aT
more we can show that for f = v, v, vy, Ves, Vay, vyy the lim4it

lim £(r,6,)

exists, is independent of 6, depends smooth on £ and the convergence is uniform w.r.t.
¢ and 6. Given a sequence (ry,0,,&,) with lim, o7, =0 and lim,_ &, = & we



24 JAN GIESSELMANN

have

|f(rna envgn) - f(Oag*)‘
< ‘f(?“n,en,gn) - f(07€n)‘ + ’f(07§n) - f(o,f*)’
—0 because conv. uniform in 6,6 —O0 because the limit depends smooth on &
Hence f is continuous on Br(0) x Br(0) and v € C*(Br(0) x Br(0),R?). The tran-
4 4 4 4

sition from ¥ to v was done by a diffeomorphism and so © € C?(B,R?). Particularly
Vdivyo(z, &) is continuous. The divergence of a vectorfield is the trace of its covariant
derivative so by construction div,?(x,&) vanishes for x = 0. So there exists a constant
C} such that

|div,o(z, &)| < Cidg(z, &) for € € BR(ml) g(x,8) <

OO\?U

The Lemma follows because there are only finitely many .

6.2. Proof of Lemma 6.

Proof. Miranda et. al. showed in [15] that there exists a sequence (f;); € C*°(M) such
that

@) ulpan <5 and Jin [V, dv () = TVa(0) < .

1

J

For every j we have
lu—allpoan < llu—fillpon + 155 = Filleron + 115 — @l

15— allpan = D IF—allpa < D=l = 15 = wlian
K K

= lu—allpany < 20w— filloroan + 15— il

Furthermore we have for every K € T

155 = Bl < / e ‘K| / i) dvy(v)
< & / () — F50)] vy () dv (o).

Because K is convex for every pair of points z,y € K there is a unique minimising
geodesic from = to y. It can be written as

) exp, ((1 — ) exp, ' (x)) for 0<6
v 00— M G { exp, (0 exp, (y)) for % <0

VAN

dvg(z)

IAIA
— ol

This implies

1= Bloeo < o /. / V5 (exp, (1~ 0) expy (2)

(46) (T eXDy) (1_p) exp- (o) (D5 | (:n))’ d6 dv, () dv,(y)

1
|[1(! /KQ /1 | Vg fi(exp, (0 expy’ (1))

(T XD, ) e ) (@505 (1) | 4 vy () v, ().
We have
(47) 1T exD,) (1) e oy (€507 (@) g < CO(E),
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because exp is smooth on the compact set

R
K:= {(x,v) cx e M,veT,M,|v|, < 2} ,
the operator norm is continuous and

lexpy ' (2)lly = | expz (y)llg < 6(K).

Inserting (47) in (46) implies

A

5= Flwao < S | / IV i(exp, (1= 8) exp, @)
df dvy(x)dvy(y)
1
+ S /K IV e, Gespz @)

de dvg vg(y)

_ |K‘ / / /Hexpy 1V f;(expy ()l

W‘ det TeXpy ‘ d9 dw dVg( )

: |K‘ /K/é ~/9expzl(K) IV fi(exps(v))g

1
g | det(T exp,, )| df dv dvy(x)

=

=~ N

where the determinants are computed with respect to orthonormal bases of the respective

tangent spaces. The determinant of (7" exp,), is continuous and positive on K so there
exists C' > 0 such that

(48) é < | det(T exp,)o| < C ¥(z,0) € K.
We have

f5 — fj”Ll(K) <

CH(K)
V., f;
|K‘ /K /expy((lg) equjl(K)) H gfj(Z)Hg
|det((Texp;1) )| dvg(2) dvg(y)

m / /(9 e Vil
| det((T exp; 1)2)] dvg(z) dvy(a).

Because the interior of K 1is convex we have

expy((l—ﬁ)expzjl(K)) C Kfor0<f#<landz,ye K
exp,(fexp, ' (K)) € Kfor0<f#<1landzycK.
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This implies by (48)

- C3(K
I1f5 = Fillvy - < If(f!)/K 1V f5(2)llg dvg(2) dvy(y)

+C\61((I|() /K2 Vo fi(2)|lg dvg(z) dvg(z)

< CS(K)|IVgfillri -

A

Finally we have due to (45)
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