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On the strong pre-compactness property for entropy solutions of an
ultra-parabolic equation with discontinuous flux

E.Yu. Panov

Abstract

Under some non-degeneracy condition we show that sequences of entropy solutions of a nonlinear
ultra-parabolic equation are strongly pre-compact in the general case of a Caratheodory flux vector. The
proofs are based on localization principles for H-measures corresponding to sequences of measure-valued
functions.

1. Introduction

We consider the equation

divx(ϕ(x, u)−A(x)∇g(u)) + ψ(x, u) = 0. (1)

Here ϕ(x, u) = (ϕ1(x, u), . . . , ϕn(x, u)), u = u(x), x = (x1, . . . , xn) ∈ Ω, where Ω is an open subset of
Rn; the flux vector ϕ(x, u) is assumed to be a Caratheodory vector (i.e. it is continuous with respect to
u and measurable with respect to x) such that the functions

αM (x) = max
|u|≤M

|ϕ(x, u)| ∈ L2
loc(Ω) ∀M > 0 (2)

(here and below | · | stands for the Euclidean norm of a finite-dimensional vector). We also assume that
for any fixed p ∈ R the distribution

divxϕ(x, p) = γp ∈ Mloc(Ω), (3)

where Mloc(Ω) is the space of locally finite Borel measures on Ω with the standard locally convex
topology generated by semi-norms pΦ(µ) = Var (Φµ), Φ = Φ(x) ∈ C0(Ω). In the parabolic term
A(x) = {aij(x)}n

i,j=1 is a non-negative matrix with coefficients aij(x) ∈ C1(Ω), g(u) is a continuous
non-decreasing function on R. The function ψ(x, u) is assumed to be a Caratheodory function on Ω ×R
such that

βM (x) = max
|u|≤M

|ψ(x, u)| ∈ L1
loc(Ω) ∀M > 0. (4)

Let γp = γr
p + γs

p be the decomposition of the measure γp into the sum of the regular and the singular
measures, so that γr

p = ωp(x)dx, ωp(x) ∈ L1
loc(Ω), and γs

p is a singular measure (supported on a set
of zero Lebesgue measure). We denote by |γs

p| the variation of the measure γs
p, which is a non-negative

locally finite Borel measure on Ω. Denote, as usual, sign u =





1 , u > 0,
−1 , u < 0,
0 , u = 0.

Now, we introduce the notion of entropy solution of (1).

Definition 1. A measurable function u(x) on Ω is called an entropy solution of equation (1) if
ϕ(x, u(x)) ∈ L1

loc(Ω,Rn), g(u(x)), ψ(x, u(x)) ∈ L1
loc(Ω), and for all p ∈ R the Kruzhkov-type entropy

inequality (see [8]) holds

divx [sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))−A(x)∇|g(u(x))− g(p)|] +
sign(u(x)− p)[ωp(x) + ψ(x, u(x))]− |γs

p| ≤ 0 (5)

in the sense of distributions on Ω (in the space D′(Ω)); that is, for all non-negative functions f(x) ∈
C∞0 (Ω)

∫

Ω

[sign(u(x)− p) (ϕ(x, u(x))− ϕ(x, p)) · ∇f(x) + |g(u(x))− g(p)|div(A(x)∇f(x))−

sign(u(x)− p)(ωp(x) + ψ(x, u(x)))f(x)] dx +
∫

Ω

f(x)d|γs
p|(x) ≥ 0

( here u · v denotes the scalar product of vectors u, v ∈ Rn ).
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In the case when the second-order term is absent ( A(x) ≡ 0 ) our definition extends the notion of
an entropy solution for a first-order balance laws introduced for the case of one space variable in [6,7].
In general case our definition is a weaker form of the definition of entropy solution for ultra-parabolic
equations used in [15].

Notice also that we do not require that u(x) is a weak solution of (1). If u(x) ∈ L∞(Ω) and γs
p = 0 for

all p ∈ R then any entropy solution u(x) satisfies (1) in D′(Ω), i.e. u(x) is a weak solution of (1). Indeed,
this follows from (5) with p = ±‖u‖∞. But, generally, entropy solutions are not weak ones, even in the
case when the singular measures γs

p are absent. For instance, as is easily verified, u(x) = sign x|x|−1/2 is
an entropy solution of the first-order equation (xu2)x = 0 on the line Ω = R, but it does not satisfy this
equation in D′(R).

We assume that equation (1) is non-degenerate in the sense of the following definition.

Definition 2. Equation (1) is said to be non-degenerate if for almost all x ∈ Ω for all ξ ∈ Rn, ξ 6= 0 the
functions λ → ξ ·ϕ(x, λ), λ → g(λ)A(x)ξ · ξ are not constant simultaneously on non-degenerate intervals.

In this paper we shall establish the strong pre-compactness property for sequences of entropy solutions.
This result generalizes the previous results of [9–12,14] to the case of ultra-parabolic equations. It also
generalizes and improves results of S. Sazhenkov [15].

Theorem 1. Suppose that uk, k ∈ N is a sequence of entropy solutions of non-degenerate equation (1)
such that |ϕ(x, uk(x))| + |ψ(x, uk(x))| + |g(uk(x))| + ρ(uk(x)) is bounded in L1

loc(Ω), where ρ(u) is a
nonnegative super-linear function (i.e. ρ(u)/u → ∞ as u → ∞). Then there exists a subsequence of uk,
which converges in L1

loc(Ω) to some entropy solution u(x).

Remark that the non-degeneracy condition is essential for the statement of Theorem 1. In the case
of the equation div(ϕ(u) − A∇g(u)) = 0 with constant matrix A this condition is necessary for strong
pre-compactness property. For instance, if ξ · ϕ(u) = const, g(u)Aξ · ξ = const on the segment [a, b] with
ξ ∈ Rn, ξ 6= 0 then the sequence uk(x) = [a + b + (b − a) sin(kξ · x)]/2 of entropy solutions does not
contain strongly convergent subsequences.

We also underline that for sequences of weak solutions ( without additional entropy constraints )
the statement of Theorem 1 does not hold. For example, the sequence uk = sign sin kx consists of weak
solution for the Burgers equation ut + (u2)x = 0 ( as well as for the corresponding stationary equation
(u2)x = 0 ) and converges only weakly, while the non-degeneracy condition is evidently satisfied.

In paper [15] another non-degeneracy condition was proposed for the evolutionary equation

ut + divx(ϕ(t, x, u)−A(t, x)∇g(u)) = 0, (t, x) ∈ Π = (0, T )× Rn,

namely the following condition

G) for a.e. (t, x) ∈ Π ∀(τ, ξ) ∈ Rn+1 such that (τ, ξ) 6= 0 and A(t, x)ξ · ξ = 0, the set

{
λ | τ + ϕ′λ(t, x, λ) · ξ + (1/2)g′(λ)

n∑

i,j=1

(aij)xj (t, x)ξi = 0
}

has zero Lebesgue measure.

Here aij = aij(t, x), ξi are components of the matrix A and the vector ξ, respectively, and it is assumed
that ϕ(t, x, u), g(u) are C1 with respect to the variable u, g′(u) > 0. In addition to condition G) it is
required in [15] that the matrix A is either diagonal or has constant rank in Π.

Condition G) appeared in [15] due to some mistakes in calculations. Let us demonstrate that condi-
tion G) is wrong, i.e. the strong pre-compactness property may fail under this condition.

In the half-space (t, x, y) ∈ R+ × R2 we consider the equation

ut +
∂

∂x
(g(u)x + yg(u)y) +

∂

∂y
(yg(u)x + y2g(u)y) = 0

where g(u) ∈ C2(R), g′, g′′ > 0. This equation has the form

ut + divA∇g(u) = 0



3

with diffusion matrix A = A(y) =
(

1 y
y y2

)
. We see that the matrix A ≥ 0 and has constant rank 1. We

introduce the sequence uk = uk(x, y) = sin(kye−x). Since g(uk)x + yg(uk)y = 0 this sequence consists of
stationary solutions of our equation while it does not contain strongly convergent subsequences.

Nevertheless, condition G) is satisfied. Indeed, let y 6= 0 and (τ, ξ) = (τ, ξ1, ξ2) 6= 0. Then the equalities

Aξ · ξ = 0, τ +
1
2
g′(λ)

∑

i=1,2

((ai1)x + (ai2)y)ξi = 0

reduce to the relations

ξ1 + yξ2 = 0, τ +
1
2
g′(λ)(ξ1 + 2yξ2) = 0.

One can satisfy them simultaneously only for one value of λ. Otherwise, ξ1 + yξ2 = ξ1 + 2yξ2 = 0
and, therefore, ξ = 0. This in turn implies that also τ = 0. Thus, (τ, ξ) = 0, which contradicts to our
assumptions. We see that for y 6= 0 and all (τ, ξ) ∈ R3 \ {0} such that Aξ · ξ = 0 the set indicated in G)
consists at most of one point and therefore has zero Lebesgue measure. We conclude that condition G)
is satisfied. As is easy to see, the non-degeneracy condition in the sense of Definition 2 is violated here.
Indeed, taking τ = 0, ξ = (−y, 1), we find that τλ = g(λ)A(y)ξ · ξ = 0.

Theorem 1 will be proved in the last section. The proof is based on general localization properties for
H-measures corresponding to bounded sequences of measure-valued functions. From these properties it
follows also the strong convergence of various approximate solutions for equation (1). For example, in [14]
we use approximations and the strong pre-compactness property in order to prove existence of entropy
solution to the Cauchy problem for an evolutionary hyperbolic equation with discontinuous flux.

Now we consider approximations of ultra-parabolic equation (1). We assume for simplicity that
ψ(x, u) ≡ 0, g(u) ∈ C1(R). As was shown in [14], there exists a sequence ϕm(x, u) ∈ C∞(Ω×R) such that
ϕm(x, u) →

m→∞
ϕ(x, u) in L2

loc(Ω, C(R,Rn)) while divxϕm(x, p) = γm
pr(x)+γm

ps(x), where γm
pr(x) →

m→∞
ωp(x)

in L1
loc(Ω), |γm

ps(x)| →
m→∞

|γs
p| weakly in Mloc(Ω).

We can choose also the sequences of smooth symmetric matrices Am(x) = {am
ij (x)}n

i,j=1 such that
Am ≥ εmE, εm > 0 ( here E is the unite matrix ), and a sequence gm(u) ∈ C1(R) of strictly increasing
functions such that g′m(u) ≥ εm am

ij (x) →
m→∞

aij(x) in C1(Ω), gm(u) →
m→∞

g(u) in C1(R). We can always
assume that

ε−1/2
m max

x∈K
‖Am(x)−A(x)‖ →

m→∞
0, ε−1/2

m max
|u|≤M

|g′m(u)− g′(u)| →
m→∞

0,

where K ⊂ Ω is an arbitrary compact, M > 0. Then we have the limit relations

(g′m(u)− g′(u))/
√

g′m(u) → 0 in C(R), ‖(Am(x)−A(x))(Am(x))−1/2‖ → 0 in C(Ω).

Moreover, passing to subsequences of gm, Am if necessary, we may achieve that for each M > 0 and every
compact K ⊂ Ω

max
|u|≤M

|g′m(u)−g′(u)|/
√

g′m(u)+max
x∈K

‖(Am(x)−A(x))(Am(x))−1/2‖

=
m→∞

o
(
Im(K, M + 1)−1/2

)
, (6)

where

Im(K,M) = 1 +
∫

K

∫ M

−M

|divxϕm(x, p)|dpdx.

Generally, the sequence Im(K, M) may tends to infinity as m →∞. We consider the approximate equation

divx(ϕm(x, u)−Am(x)∇gm(u)) = 0 (7)

and suppose that u = um(x) is a bounded weak solution of (7) ( for instance, we can take u = um(x)
being a weak solution to the Dirichlet problem with a bounded data at ∂Ω ). This means that u ∈
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L∞(Ω) ∩ W 1
2,loc(Ω), where W 1

2,loc(Ω) is the Sobolev space consisting of functions whose generalized
derivatives lay in L2

loc(Ω), and the following standard integral identity is satisfied: ∀f = f(x) ∈ C1
0 (Ω).

∫

Ω

[ϕm(x, u(x))−Am(x)∇gm(u(x))] · ∇f(x)dx = 0. (8)

We assume also that the sequence um is bounded in L∞(Ω).

Theorem 2. Suppose that equation (1) is non-degenerate. Then the sequence um(x) →
m→∞

u(x) in

L1
loc(Ω), where u = u(x) is an entropy solution of (1).

Remark that Theorem 2 allows to establish existence of entropy solutions of boundary value problems
for equation (1) ( as well as initial or initial boundary value problems for evolutionary equations of the
kind (1) ).

In next section 2 we describe the main concepts, in particular the concept of measure-valued functions.
In sections 3,4 we introduce the notion of H-measure and prove the localization property. Finally, in the
last section 5 these results are applied to prove Theorems 1, 2.

2. Main concepts

Recall ( see [1,2,17] ) that a measure-valued function on Ω is a weakly measurable map x → νx of the
set Ω into the space of probability Borel measures with compact support in R. The weak measurability of
νx means that for each continuous function f(λ) the function x → ∫

f(λ)dνx(λ) is Lebesgue-measurable
on Ω.

Remark 1. If νx is a measure-valued function then, as was shown in [10], the functions
∫

g(λ)dνx(λ)
are measurable in Ω for all bounded Borel functions g(λ). More generally, if f(x, λ) is a Caratheodory
function and g(λ) is a bounded Borel function then the function

∫
f(x, λ)g(λ)dνx(λ) is measurable. This

follows from the fact that any Caratheodory function is strongly measurable as a map x → f(x, ·) ∈ C(R)
(see [5], Chapter 2) and, therefore, is a pointwise limit of step functions fm(x, λ) =

∑
i

gmi(x)hmi(λ) with

measurable functions gmi(x) and continuous hmi(λ) so that for x ∈ Ω fm(x, ·) →
m→∞

f(x, ·) in C(R).

A measure-valued function νx is said to be bounded if there exists M > 0 such that supp νx ⊂ [−M, M ]
for almost all x ∈ Ω. We denote the smallest value of M with this property by ‖νx‖∞.

Finally, measure-valued functions of the form νx(λ) = δ(λ−u(x)), where δ(λ−u) is the Dirac measure
concentrated at u are said to be regular; we identify them with the corresponding functions u(x). Thus,
the set MV (Ω) of bounded measure-valued functions on Ω contains the space L∞(Ω). Note that for a
regular measure-valued function νx(λ) = δ(λ−u(x)) the value ‖νx‖∞ = ‖u‖∞. Extending the concept of
boundedness in L∞(Ω) to measure-valued functions we shall say that a subset A of MV (Ω) is bounded
if supνx∈A ‖νx‖∞ < ∞.

We define below the weak and the strong convergence of sequences of measure-valued functions.

Definition 3. Let νk
x ∈ MV (Ω), k ∈ N, and let νx ∈ MV (Ω). Then

1) the sequence νk
x converges weakly to νx if for each f(λ) ∈ C(R),

∫
f(λ)dνk

x(λ) →
k→∞

∫
f(λ)dνx(λ) in the weak-∗ topology of L∞(Ω);

2) the sequence νk
x converges to νx strongly if for each f(λ) ∈ C(R),

∫
f(λ)dνk

x(λ) →
k→∞

∫
f(λ)dνx(λ) in L1

loc(Ω).

The next result was proved in [17] for regular functions νk
x . The proof can easily be extended to the

general case, as was done in [10].
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Theorem 3. Let νk
x , k ∈ N be a bounded sequence of measure-valued functions. Then there exist a

subsequence νr
x = νk

x , k = kr, and a measure-valued function νx ∈ MV (Ω) such that νr
x → νx weakly as

r →∞.

Theorem 3 shows that bounded sets of measure-valued functions are weak1y precompact. If uk(x) ∈
L∞(Ω) is a bounded sequence, treated as a sequence of regular measure valued functions, and uk(x)
weakly converges to a measure valued function νx then νx is regular, νx(λ) = δ(λ− u(x)), if and only if
uk(x) → u(x) in L1

loc(Ω) ( see [17] ). Obviously, if uk(x) converges to νx strongly then uk(x) → u(x) =∫
λdνx(λ) in L1

loc(Ω) and then νx(λ) = δ(λ− u(x)).
We shall study the strong pre-compactness property using Tartar’s techniques of H-measures.
Let F (u)(ξ), ξ ∈ Rn, be the Fourier transform of a function u(x) ∈ L2(Rn), S = Sn−1 = { ξ ∈ R |

|ξ| = 1 } be the unit sphere in Rn. Denote by u → u, u ∈ C the complex conjugation.
The concept of an H-measure corresponding to some sequence of vector-valued functions bounded in

L2(Ω) was introduced by Tartar [18] and Gerárd [4] on the basis of the following result. For l ∈ N let
Uk(x) =

(
U1

k (x), . . . , U l
k(x)

) ∈ L2(Ω,Rl) be a sequence weakly convergent to the zero vector.

Proposition 1 (see [18], Theorem 1.1). There exists a family of complex Borel measures µ ={
µij

}l

i,j=1
in Ω × S and a subsequence Ur(x) = Uk(x), k = kr, such that

〈µij , Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (U i
rΦ1)(ξ)F (U j

r Φ2)(ξ)ψ
(

ξ

|ξ|
)

dξ (9)

for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family µ =
{
µij

}l

i,j=1
is called the H-measure corresponding to Ur(x).

The concept of H-measure has been extended in [10] ( see also [11,12] ) to sequences of measure-valued
functions. We study the properties of such H-measures in the next section.

3. H-measures corresponding to bounded sequences of measure-valued functions

Let νk
x ∈ MV (Ω) be a bounded sequence of measure-valued functions weakly convergent to a measure-

valued function ν0
x ∈ MV (Ω). For x ∈ Ω and p ∈ R we introduce the distribution functions

uk(x, p) = νk
x((p, +∞)), u0(x, p) = ν0

x((p,+∞)).

Then, as mentioned in Remark 1, for k ∈ N ∪ {0} and p ∈ R the functions uk(x, p) are measurable in
x ∈ Ω; thus, uk(x, p) ∈ L∞(Ω) and 0 ≤ uk(x, p) ≤ 1. Let

E = E(ν0
x) =

{
p0 ∈ R | u0(x, p) →

p→p0
u0(x, p0) in L1

loc(Ω)
}

.

We have the following result, the proof of which can be found in [10].

Lemma 1. The complement Ē = R \ E is at most countable and if p ∈ E then uk(x, p) →
k→∞

u0(x, p)

weakly-∗ in L∞(Ω).

Let Up
k (x) = uk(x, p) − u0(x, p). Then, by Lemma 1, Up

k (x) → 0 as k → ∞ weakly-∗ in L∞(Ω) for
p ∈ E. The next result, similar to Proposition 1, has also been established in [10].

Proposition 2. 1) There exists a family of locally finite complex Borel measures {µpq}p,q∈E in Ω × S

and a subsequence Ur(x) = {Up
r (x)}p∈E, Up

r (x) = Up
k (x), k = kr such that for all Φ1(x), Φ2(x) ∈ C0(Ω)

and ψ(ξ) ∈ C(S)

〈µpq, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ

(
ξ

|ξ|
)

dξ. (10)

2) The correspondence (p, q) → µpq is a continuous map from E × E into the space Mloc(Ω × S).
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Definition 4. We call the family of measures {µpq}p,q∈E the H-measure corresponding to the subse-
quence νr

x = νk
x , k = kr.

We point out the following important properties of an H-measure.

Lemma 2. 1) µpp ≥ 0 for each p ∈ E; 2) µpq = µqp for all p, q ∈ E; 3) for p1, . . . , pl ∈ E and
g1, . . . , gl ∈ C0(Ω × S) the matrix A = aij = 〈µpipj , gigj〉, i, j = 1, . . . , l is Hermitian and positive-
definite.

Proof. We prove 3). First let the functions gi = gi(x, ξ) be finite sums of functions of the form Φ(x)ψ(ξ),
where Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S). Then it follows from (10) that

aij = lim
r→∞

∫

Rn

Hi
r(ξ)H

j
r (ξ)dξ, (11)

where Hi
r(ξ) = F (gi(·, ξ/|ξ|)Upi

r )(ξ). Hence setting gi(x, ξ) = g(x, ξ) =
m∑

k=1

Φk(x)ψk(ξ) we obtain

Hi
r(ξ) =

m∑

k=1

F (ΦkUpi
r )(ξ)ψk

(
ξ

|ξ|
)

.

It immediately follows from (11) that aji = aij , i, j = 1, . . . , l, which shows that A is a Hermitian matrix.
Further, for α1, . . . , αl ∈ C we have

l∑

i,j=1

aijαiαj = lim
r→∞

∫

Rn

|Hr(ξ)|2dξ ≥ 0, Hr(ξ) =
l∑

i=1

Hi
r(ξ)αi,

which means that A is positive-definite.
In the general case of gi ∈ C0(Ω × S) one carries out the proof of 3) by approximating the functions

gi, i = 1, . . . , l in the uniform norm by finite sums of functions of the form Φ(x)ψ(ξ).
Assertions 1) and 2) are easy consequences of 3). For setting l = 1, p1 = p and g1 = g we obtain the

relation 〈µpp, |g|2〉 ≥ 0, which holds for all g ∈ C0(Ω×S), thus showing that µpp is real and non-negative.
To prove 2) we represent an arbitrary function g = g(x, ξ) with compact support in the form g = g1g2.
Let l = 2, p1 = p and p2 = q. In view of 3),

〈µpq, g〉 = 〈µpq, g1g2〉 = 〈µqp, g2g1〉 = 〈µqp, g〉 = 〈µqp, g〉

and µpq = µqp. The proof is complete. ut

We consider now a countable dense index subset D ⊂ E.

Proposition 3 (see [12]). There exists a family of complex finite Borel measures µpq
x in the sphere S

with p, q ∈ D, x ∈ Ω′, where Ω′ is a subset of Ω of full measure, such that µpq = µpq
x dx that is, for all

Φ(x, ξ) ∈ C0(Ω × S) the function

x → 〈µpq
x (ξ), Φ(x, ξ)〉 =

∫

S

Φ(x, ξ)dµpq
x (ξ)

is Lebesgue-measurable on Ω, bounded, and

〈µpq, Φ(x, ξ)〉 =
∫

Ω

〈µpq
x (ξ), Φ(x, ξ)〉dx.

Moreover, for p, p′, q ∈ D, p′ > p

Varµpq
x ≤ 1 and Var (µp′q

x − µpq
x ) ≤ 2

(
ν0

x((p, p′))
)1/2

. (12)
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Proof. We claim that prΩVarµpq ≤ meas for p, q ∈ E, where meas is the Lebesgue measure on Ω.
Assume first that p = q. By Lemma 2, the measure µpp is non-negative. Next, in view of relation (10)
with Φ1(x) = Φ2(x) = Φ(x) ∈ C0(Ω) and ψ(ξ) ≡ 1,

〈µpp, |Φ(x)|2〉 = lim
r→∞

∫

Rn

F (ΦUp
r )(ξ)F (ΦUp

r )(ξ)dξ =

lim
r→∞

∫

Ω

|Up
r (x)|2|Φ(x)|2dx ≤

∫

Ω

|Φ(x)|2dx

( we use here Plancherel’s equality and the estimate |Up
r (x)| ≤ 1 ). Thus, we see that that prΩµpp ≤ meas.

Let p, q ∈ E, A be a bounded open subset of Ω, and g = g(x, ξ) ∈ C0(A× S), |g| ≤ 1. We introduce
functions g1 = g/

√
|g| ( we set g1 = 0 for g = 0 ) and g2 =

√
|g|. Then g1, g2 ∈ C0(A × S), g = g1g2,

|g1|2 = |g2|2 = |g| and the matrix ( 〈µpp, |g|〉 〈µpq, g〉
〈µpq, g〉 〈µqq, |g|〉

)

is positive-definite by Lemma 2; in particular,

|〈µpq, g〉| ≤ (〈µpp, |g|〉〈µqq, |g|〉)1/2 ≤ (µpp(A× S)µqq(A× S))1/2 ≤ meas(A).

We take account of the inequalities prΩµpp ≤ meas and prΩµqq ≤ meas to obtain the last estimate. Since
g can be an arbitrary function in C0(A×S), |g| ≤ 1, we obtain the inequality Varµpq(A×S) ≤ meas(A),
The measure µpq is regular, therefore this estimate holds for all Borel subsets A of Ω and

prΩVarµpq ≤ meas . (13)

It follows from (13) that for all ψ(ξ) ∈ C(S) we have

Var prΩ (ψ(ξ)µpq(x, ξ)) ≤ ‖ψ‖∞ · prΩVarµpq ≤ ‖ψ‖∞ ·meas . (14)

In view of (14) the measures prΩ(ψ(ξ)µpq(x, ξ)) are absolutely continuous with respect to Lebesgue
measure, and the Radon-Nikodym theorem shows that

prΩ (ψ(ξ)µpq(x, ξ)) = hpq
ψ (x) ·meas,

where the densities hpq
ψ (x) are measurable on Ω and, as seen from (14),

‖hpq
ψ (x)‖∞ ≤ ‖ψ‖∞. (15)

We now choose a non-negative function K(x) ∈ C∞0 (Rn) with support in the unit ball such that∫
K(x)dx = 1 and set Km(x) = mnK(mx) for m ∈ N. Clearly, the sequence of Km converges in D′(Rn)

to the Dirac δ-function ( that is, this sequence is an approximate unity ).
Let B lim

m→∞
cm be a generalized Banach limit on the space l∞ of bounded sequences c = {cm}m∈N, i.e.

L(c) = B lim
m→∞

cm is a linear functional on l∞ with the property:

lim
m→∞

cm ≤ L(c) ≤ lim
m→∞

cm

( in particular for convergent sequences c = {cm} L(c) = lim
m→∞

cm ). For complex sequences cm = am+ibm

the Banach limits is defined by complexification: B lim
m→∞

cm = L(a) + iL(b), where a = {am}, b = {bm}
are real and imaginary parts of the sequence c = {cm}, respectively. Modifying the densities hpq

ψ (x) on
subsets of measure zero, for instance, replacing them by the functions

B lim
m→∞

∫

Ω

hpq
ψ (y)Km(x− y)dy

( obviously, the value hpq
ψ (x) does not change for any Lebesgue point x of the function hpq

ψ ), we shall
assume that for all x ∈ Ω we have

hpq
ψ (x) = B lim

m→∞

∫

Ω

hpq
ψ (y)Km(x− y)dy. (16)
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Let Ω′ be the set of common Lebesgue points of the functions hpq
ψ (x), u0(x, p) = ν0

x((p, +∞)), and
u−0 (x, p) = ν0

x([p, +∞)) = lim
q→p−

u0(x, q), where p, q ∈ D and ψ belongs to F , some countable dense subset

of C(S). The family of (p, q, ψ) is countable, therefore Ω′ is of full measure.
The dependence of the hpq

ψ on ψ, regarded as a map from C(S) into L∞(Ω), is clearly linear and
continuous (in view of (15)), therefore it follows from the density of F in C(S) that x ∈ Ω′ is a Lebesgue
point of the functions hpq

ψ (x) for all ψ(ξ) ∈ C(S) and p, q ∈ D. Here we also take account of (16), which
implies that the functional ψ → hpq

ψ (x) is continuous on C(S) for all x ∈ Ω.
For p, q ∈ D and x ∈ Ω′ ( actually even for x ∈ Ω ) the equality l(ψ) = hpq

ψ (x) defines a continuous
linear functional in C(S); moreover, ‖l‖ ≤ 1 in view of (15). By the Riesz-Markov theorem this functional
can be defined by integration with respect to some complex Borel measure µpq

x (ξ) in S and Varµpq
x =

‖l‖ ≤ 1. Hence

hpq
ψ (x) = 〈µpq

x (ξ), ψ〉 =
∫

S

ψ(ξ)dµpq
x (ξ) (17)

for all ψ(ξ) ∈ C(S).

Equality (17) shows that the functions x →
∫

S

ψ(ξ)dµpq
x (ξ) are bounded and measurable for all

ψ(ξ) ∈ C(S). Next, for Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S) we have
∫

Ω

(∫

S

Φ(x)ψ(ξ)dµpq
x (ξ)

)
dx =

∫

Ω

Φ(x)hpq
ψ (x)dx =

∫

Ω

Φ(x)dprΩ (ψ(ξ)µpq) =
∫

Ω×S

Φ(x)ψ(ξ)dµpq(x, ξ). (18)

Approximating an arbitrary function Φ(x, ξ) ∈ C0(Ω × S) in the uniform norm by linear combinations

of functions of the form Φ(x)ψ(ξ) we derive from (18) that the integral
∫

S

Φ(x, ξ)dµpq
x (ξ) is Lebesgue-

measurable with respect to x ∈ Ω, bounded, and
∫

Ω

(∫

S

Φ(x, ξ)dµpq
x (ξ)

)
dx =

∫

Ω×S

Φ(x, ξ)dµpq(x, ξ)

that is, µpq = µpq
x dx. Recall that Varµpq

x ≤ 1.
It remains to prove the last estimate in (12). Let p, p′, q ∈ D, p′ > p and x ∈ Ω′. We set Φm =

√
Km ∈

C0(Rn), m ∈ N, where the sequence of kernels Km is as defined above. Starting from some index m the
function Φm(x−y) (of the y-variable) belongs to C0(Ω) and, in view of Proposition 2, for all ψ(ξ) ∈ C(S)
we have ∣∣∣∣

∫

Ω

Km(x− y)
(
hp′q

ψ (y)− hpq
ψ (y)

)
dy

∣∣∣∣ =
∣∣∣〈(µp′q − µpq)(y, ξ),Km(x− y)ψ(ξ)〉

∣∣∣ =

lim
r→∞

∣∣∣∣
∫

Rn

F (Φm(Up′
r − Up

r ))(ξ)F (ΦmUq
r )(ξ)ψ

(
ξ

|ξ|
)

dξ

∣∣∣∣ ≤

‖ψ‖∞ lim
r→∞

[(∫

Rn

|F (Φm(Up′
r − Up

r ))(ξ)|2dξ

)1/2 (∫

Rn

|F (ΦmUq
r )(ξ)|2dξ

)1/2
]

=

‖ψ‖∞ lim
r→∞

[(∫

Ω

Km(x− y)(Up′
r (y)− Up

r (y))2dy

)1/2 (∫

Ω

Km(x− y)(Uq
r (y))2dy

)1/2
]

. (19)

Note that |Uq
r | ≤ 1,

∫
Ω

Km(x− y)dy = 1 and, therefore,
∫

Ω

Km(x− y)(Uq
r (y))2dy ≤ 1. (20)

Further, ∫

Ω

Km(x− y)(Up′
r (y)− Up

r (y))2dy ≤ 2
∫

Ω

Km(x− y)|Up′
r (y)− Up

r (y)|dy ≤

2
∫

Ω

Km(x− y)(ur(y, p)− ur(y, p′))dy + 2
∫

Ω

Km(x− y)(u0(y, p)− u0(y, p′))dy (21)
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(note that ur(y, p) − ur(y, p′) ≥ 0 for r ∈ N ∪ {0}). Since p, p′ ⊂ E, it follows from Lemma 1 that
ur(y, p)− ur(y, p′) →

r→∞
u0(y, p)− u0(y, p′) in the weak-∗ topology in L∞(Ω), therefore

lim
r→∞

∫

Ω

Km(x− y)(ur(y, p)− ur(y, p′))dy =
∫

Ω

Km(x− y)(u0(y, p)− u0(y, p′))dy,

and by (21),

lim
r→∞

(∫

Ω

Km(x− y)(Up′
r (y)− Up

r (y))2dy

)1/2

≤

2
(∫

Ω

Km(x− y)(u0(y, p)− u0(y, p′))dy

)1/2

. (22)

From (19), in view of (20), (22), we obtain the estimate
∣∣∣∣
∫

Ω

Km(x− y)(hp′q
ψ (y)− hpq

ψ (y))dy

∣∣∣∣ ≤ 2‖ψ‖∞
(∫

Ω

Km(x− y)(u0(y, p)− u0(y, p′))dy

)1/2

and passing to the limit as m → ∞, since x ∈ Ω′ is a Lebesgue point of the functions hp′q
ψ , hpq

ψ and
u0(· , p), u0(· , p′), we obtain the inequality

∣∣∣hp′q
ψ (x)− hpq

ψ (x)
∣∣∣ ≤ 2‖ψ‖∞ (u0(x, p)− u0(x, p′))1/2

,

that is, for all ψ(ξ) ∈ C(S) we have
∣∣∣〈µp′q

x − µpq
x , ψ〉

∣∣∣ ≤ 2‖ψ‖∞ (u0(x, p)− u0(x, p′))1/2
,

and therefore
Var (µp′q

x − µpq
x ) ≤ 2 (u0(x, p)− u0(x, p′))1/2 = 2

(
ν0

x((p, p′])
)1/2

. (23)

Now we demonstrate that for x ∈ Ω′ ν0
x({p}) = 0 for each p ∈ D. Indeed, ν0

x({p}) = u−0 (x, p)− u0(x, p)
and since p ∈ D ⊂ E is a continuity point of the map p → u0(x, p) in L1

loc(Ω) we conclude that
u−0 (x, p)−u0(x, p) = 0 a.e. in Ω. By the construction x ∈ Ω′ is a common Lebesgue point of the functions
u0(x, p), u−0 (x, p), therefore ν0

x({p}) = u−0 (x, p)−u0(x, p) = 0, as required. In particular ν0
x({p′}) = 0 and

we can replace the segment (p, p′] in estimate (23) by the interval (p, p′). The proof is complete. ut
Corollary 1. The correspondence (p, q) → µpq

x is a continuous map of the set D×D into the space M(S)
of finite complex Borel measures in S (with norm Var ).

Proof. Suppose that p, q, p′q′ ∈ D, and p < p′, q < q′ ( the remaining cases are treated analogously ).
Using estimate (12) and the identity µpq

x = µqp
x , which is an easy consequence of Lemma 2(2), we derive

that
Var (µp′q′

x − µpq
x ) ≤ Var (µp′q′

x − µpq′
x ) + Var (µpq′

x − µpq
x ) ≤ ν0

x((p, p′)) + ν0
x((q, q′)).

This estimate directly implies the continuity of the map (p, q) → µpq
x . ut

Remark 2. a) Since the H-measure is absolutely continuous with respect to x-variables identity (10)
is satisfied for Φ1(x), Φ2(x) ∈ L2(Ω). Indeed, by Proposition 3 we can rewrite this identity in the form:
∀Φ1(x), Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(S)

∫

Ω

Φ1(x)Φ2(x)〈ψ(ξ), µpq
x (ξ)〉dx = lim

r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ

(
ξ

|ξ|
)

dξ. (24)

Both sides of this identity are continuous with respect to (Φ1(x), Φ2(x)) in L2(Ω) × L2(Ω) and since
C0(Ω) is dense in L2(Ω) we conclude that (24) is satisfied for each Φ1(x), Φ2(x) ∈ L2(Ω);

b) if x ∈ Ω′ is a Lebesgue point of a function Φ(x) ∈ L2(Ω) then

Φ(x)〈µpq
x , ψ(ξ)〉 = lim

m→∞
lim

r→∞

∫

Rn

F (ΦΦmUp
r )(ξ)F (ΦmUq

r )(ξ)ψ
(

ξ

|ξ|
)

dξ (25)
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for all ψ(ξ) ∈ C(S), where (ΦΦmUp
r )(y) = Φ(y)Φm(x− y)Up

r (y) and (ΦmUq
r )(y) = Φm(x− y)Uq

r (y).
Indeed, it follows from (24) that

lim
r→∞

∫

Rn

F (ΦΦmUp
r )(ξ)F (ΦmUq

r )(ξ)ψ
(

ξ

|ξ|
)

dξ =
∫

Ω

hpq
ψ (y)Φ(y)Km(x− y)dy. (26)

Now, since x ∈ Ω′ is a Lebesgue point of the functions hpq
ψ (y) and Φ(y), and the function hpq

ψ (y) is
bounded, x is also a Lebesgue point for the product of these functions. Therefore,

lim
m→∞

∫

Ω

hpq
ψ (y)Φ(y)Km(x− y)dy = Φ(x)hpq

ψ (x) = Φ(x)〈µpq
x , ψ(ξ)〉,

and (25) follows from (26) in the limit as m →∞;
c) for x ∈ Ω′ and each families pi ∈ D, ψi(ξ) ∈ C(S), i = 1, . . . , l the matrix 〈µpipj

x , ψiψj〉, i, j = 1, . . . , l
is positive definite. Indeed, as follows from Lemma 2(3), for α1, . . . , αl ∈ C

l∑

i,j=1

〈µpipj
x , ψiψj〉αiαj = lim

m→∞

l∑

i,j=1

〈µpipj (y, ξ), Φm(x− y)ψi(ξ)Φm(x− y)ψj(ξ)〉αiαj ≥ 0.

Taking in the above property l = 2, p1 = p , p2 = q, ψ1(ξ) = ψ(ξ)/
√
|ψ(ξ)| ( ψ1 = 0 for ψ = 0 )

and ψ2(ξ) =
√
|ψ(ξ)|, ψ(ξ) ∈ C(S), we obtain, as in the proof of Proposition 3, that the matrix( 〈µpp

x , |ψ|〉 〈µpq
x , ψ〉

〈µpq
x , ψ〉 〈µqq

x , |ψ|〉
)

is positive definite. In particular,

|〈µpq
x , ψ〉| ≤ (〈µpp

x , |ψ|〉 · 〈µqq
x , |ψ|〉)1/2

and this easily implies that for any Borel set A ⊂ S

Varµpq
x (A) ≤ (µpp

x (A)µqq
x (A))1/2

. (27)

d) In view of c) µpp
x ≥ 0 for x ∈ Ω′, p ∈ D. Then, by (25) with Φ(x) ≡ 1 and the identity F (u)(−ξ) =

F (u)(ξ) for real functions u ∈ L2, we find

〈µpp
x , ψ(−ξ)〉 = lim

m→∞
lim

r→∞

∫

Rn

F (ΦmUp
r )(ξ)F (ΦmUp

r )(ξ)ψ
(
− ξ

|ξ|
)

dξ =

lim
m→∞

lim
r→∞

∫

Rn

F (ΦmUp
r )(−ξ)F (ΦmUp

r )(−ξ)ψ
(

ξ

|ξ|
)

dξ =

lim
m→∞

lim
r→∞

∫

Rn

F (ΦmUp
r )(ξ)F (ΦmUp

r )(ξ)ψ
(

ξ

|ξ|
)

dξ = 〈µpp
x , ψ(ξ)〉.

This means that the measure µpp
x is even, i.e. it is invariant under the map ξ → −ξ.

Denote by θ(λ) the Heaviside function:

θ(λ) =
{

1, λ > 0,
0, λ ≤ 0.

Below we shall frequently use the following simple estimate

Lemma 3. Let p0, p ∈ D, χ(λ) = θ(λ− p0)− θ(λ− p), Vr(y) =
∫
|χ(λ)|d(νr

y(λ) + ν0
y(λ)), Φ(y) ∈ L2(Ω),

x ∈ Ω′ is a Lebesgue point of (Φ(y))2. Then

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2 ≤ |Φ(x)||u0(x, p0)− u0(x, p)|1/2 →
p→p0

0.
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Proof. It is clear that

Vr(y) = |ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)| =
sign(p− p0)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)) ≤ 2

and in particular (Vr(y))2 ≤ 2Vr(y). Therefore,

‖Φm(x− y)Φ(y)Vr(y)‖22 ≤
2 sign(p− p0)

∫
(Φ(y))2Km(x− y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p))dy.

Since p0, p ∈ D ⊂ E, ur(y, p0) − ur(y, p) → u0(y, p0) − u0(y, p) as r → ∞ weakly-∗ in L∞(Ω) and we
derive from the above inequality that

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖22 ≤ 4 sign(p− p0)
∫

(Φ(y))2Km(x− y)(u0(y, p0)− u0(y, p))dy.

Now, passing to the limit as m → ∞ and taking into account that x ∈ Ω′ is a Lebesgue point of the
bounded function u0(y, p0)− u0(y, p) as well as the function (Φ(y))2 ( therefore, x is a Lebesgue point of
the product of these functions), we find

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖22 ≤ 4(Φ(x))2|u0(x, p0)− u0(x, p)|.

This implies the required relation

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2 ≤ 2|Φ(x)||u0(x, p0)− u0(x, p)|1/2.

To complete the proof it only remains to observe that, as was demonstrated in the proof of Proposition 3,
ν0

x({p0}) = 0 and therefore u0(x, p) → u0(x, p0) as p → p0.

We now fix x ∈ Ω′, p0, p ∈ D. Let L̃(p), L(p) ⊂ Rn be the smallest linear subspaces containing
supp µpp0

x , supp µpp
x , respectively, and L = L(p0).

Lemma 4. There exists positive δ such that L̃(p) = L for each p ∈ [p0 − δ, p0 + δ] ∩D. If the space
L = L(p0), p0 ∈ D has maximal dimension l = dim L among the spaces L(p) then also L(p) = L for each
p ∈ [p0 − δ, p0 + δ] ∩D.

Proof. First remark that, as it directly follows from (27), suppµpp0
x ⊂ supp µp0p0

x ⊂ L and, therefore
L̃(p) ⊂ L. Similarly, supp µpp0

x ⊂ suppµpp
x ⊂ L(p), which implies the inclusion L̃(p) ⊂ L(p). For positive

r we denote Vr = [p0 − r, p0 + r] ∩ D, Lr =
⋂

p∈Vr
L̃(p). Clearly, Lr ⊂ L is a decreasing (with respect

to inclusion) family of linear subspaces of the finite-dimensional space L, therefore starting from some
r = δ > 0 for all r ∈ (0, δ] we have Lr = L0 ⊂ L. To prove the lemma it suffices to show that L0 = L.
For in that case L = L0 ⊂ L̃(p) ⊂ L and the equality L̃(p) = L, p ∈ Vδ follows. Hence, L = L̃(p) ⊂ L(p)
and, in the case when L = L(p0) has maximal dimension, we conclude that L(p) = L.

We carry out the proof of the equality L0 = L by contradiction. Thus, we assume that L0 6= L. Then
m = dim L0 < l = dim L. We fix ε > 0. By Corollary 1 there exists r ∈ (0, δ] such that for p ∈ Vr we have

Var (µpp0
x − µp0p0

x ) < ε. (28)

By the definition of the space Lr we can choose a strictly decreasing finite sequence of subspaces L′i,
i = 0, . . . , k, such that L′0 = L, L′k = Lr = L0, and L′i = L′i−1 ∩ L̃(pi), where pi ∈ Vr, i = 1, . . . , k.
Clearly, k ≤ dim L − dim L̃ = l − m. By the definition of the L̃(p) we have suppµpip0

x ⊂ L̃(pi). Hence
Var (µpip0

x (CL̃(pi)) = 0, where CA for A ⊂ Rn is the difference S \A. It now follows from (28) that

µp0p0
x (CL̃(pi)) < ε, i = 1, . . . , k.

Since L0 =
⋂k

i=1 L̃(pi), it follows that CL0 =
⋃k

i=1 CL̃(pi) and

µp0p0
x (CL0) ≤

k∑

i=1

µp0p0
x (CL̃(pi)) ≤ kε.
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Since ε is an arbitrary positive number, it follows that µp0p0
x (CL0) = 0 and supp µp0p0

x ⊂ L0. Further,
L is the smallest subspace such that supp µp0p0

x ⊂ L, therefore L ⊂ L0, which is a contradiction. This
completes the proof. ut

We consider now the complex linear subspace

R(p) =
{∫

ψ(ξ)ξdµpp
x (ξ) : ψ(ξ) ∈ C(S)

}
⊂ Cn.

Lemma 5. We have the equality R(p) = L̄(p), where L̄(p) = L(p) + iL(p) ⊂ Cn is the complex linear
subspace spanned by L(p).

Proof. The relation

v ·
∫

ψ(ξ)ξdµpp
x (ξ) =

∫
ψ(ξ)v · ξdµpp

x (ξ), v ∈ Cn, ψ(ξ) ∈ C(S)

(here and below we consider the scalar products of vectors in Cn) shows us that the orthogonal comple-
ments (R(p))⊥ = (L(p))⊥ are the same (in Cn), which means that R(p) = L̄(p). The proof is complete.
ut

Suppose that f(y, λ) is a Caratheodory vector-function on Ω × R. Assume also that the following
estimate holds

∀M > 0 ‖f(x, ·)‖M,∞ = max
|λ|≤M

|f(x, λ)| ≤ αM (x) ∈ L2
loc(Ω). (29)

Since the space C(R,Rn) is separable with respect to the standard locally convex topology generated by
seminorms ‖ · ‖M,∞, then, by the Pettis theorem (see [5], Chapter 3), the map x → F (x) = f(x, ·) ∈
C(R,Rn) is strongly measurable and in view of estimate (29) we see that F (x) ∈ L2

loc(Ω, C(R,Rn)),
|F (x)|2 ∈ L1

loc(Ω,C(R)). In particular (see [5], Chapter 3), the set Ωf of common Lebesgue points of the
maps F (x), |F (x)|2 has full measure. For x ∈ Ωf we have

∀M > 0 lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖M,∞dy = 0,

lim
m→∞

∫
Km(x− y)‖|F (x)|2 − |F (y)|2‖M,∞dy = 0.

Since, evidently,

‖F (x)− F (y)‖2M,∞ ≤ 2‖F (x)− F (y)‖M,∞‖F (x)‖M,∞ + ‖|F (x)|2 − |F (y)|2‖M,∞,

from the above limit relations it follows that for x ∈ Ωf

lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖2M,∞dy = 0 ∀M > 0. (30)

Clearly, each x ∈ Ωf is a Lebesgue point of all functions x → f(x, λ), λ ∈ R. Let Ω′′ = Ω′ ∩ Ωf ,
γr

x = νr
x − ν0

x. Suppose that x ∈ Ω′′, p0 ∈ D, and the subspace L and the segment V = Vδ = [p0 −
δ, p0 + δ] ∩D are determined as in Lemma 4. We suppose that L = L(p0) has maximal dimension. Let
χ(λ) = θ(λ− p1)− θ(λ− p2), where p1, p2 ∈ V , p1 < p2. Assume also that f(y, λ) takes its values in L⊥.
For a vector-function h(y, λ) on Ω × R, which is Borel and locally bounded with respect to the second
variable, we denote Ir(h)(y) =

∫
h(y, λ)dγr

y(λ). In view of the strong measurability of F (x) and (29) we
see that Ir(f · χ)(y) ∈ L2

loc(Ω) ( cf. Remark 1 ).

Proposition 4. Under the above assumptions,

lim
m→∞

lim
r→∞

∫

Rn

|ξ · F (ΦmIr(f · χ))(ξ)|2 |ξ|−2dξ = 0.

Here Φm = Φm(x− y) =
√

Km(x− y) and Ir(f · χ) are functions of the variable y ∈ Ω.
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Proof. Note that starting from some index m the supports of the Φm(x− y) lay in some compact subset
B of Ω. Without loss of generality we can assume that suppΦm ⊂ B for all m ∈ N. Let f̃(y, λ) = f(x, λ),
M = sup ‖νr

y‖∞. Then

|Ir((f − f̃) · χ)(y)| ≤
∫
|f(y, λ)− f(x, λ)|dVar γr

y(λ) ≤ 2‖F (y)− F (x)‖M,∞.

Next, observe that
∫

Rn

|ξ · F (ΦmIr(f · χ))(ξ)|2 |ξ|−2dξ = ‖ξ · F (ΦmIr(f · χ))(ξ)|ξ|−1‖22,

where ‖ · ‖ is the norm in L2(Rn), and with the help of Plancherel’s identity we obtain that
∣∣∣‖ξ · F (ΦmIr(f · χ))(ξ)|ξ|−1‖2 − ‖ξ · F (ΦmIr(f̃ · χ))(ξ)|ξ|−1‖2

∣∣∣ ≤
‖ξ · F (ΦmIr((f − f̃) · χ))(ξ)|ξ|−1‖2 ≤ ‖F (ΦmIr((f − f̃) · χ))(ξ)‖2 =

‖ΦmIr((f − f̃) · χ)‖2 ≤ 2
(∫

Km(x− y)‖F (y)− F (x)‖2M,∞dy

)1/2

.

From the above estimate and (30) it follows that

lim
m→∞

lim
r→∞

∣∣∣‖ξ · F (ΦmIr(f · χ))(ξ)|ξ|−1‖2 − ‖ξ · F (ΦmIr(f̃ · χ))(ξ)|ξ|−1‖2
∣∣∣ = 0 (31)

and it is sufficient to prove the proposition with f replaced by f̃ . This function is continuous and does
not depend on y. Therefore for any ε > 0 there exists a vector-valued function g(λ) of the form g(λ) =
k∑

i=1

viθ(λ− pi), where vi ∈ L⊥ and pi ∈ V such that ‖f̃ · χ− g‖∞ ≤ ε on R.

Using again Plancherel’s identity and the fact that
∣∣∣∣
∫

(f̃ · χ− g)(λ)dγr
y(λ)

∣∣∣∣ ≤
∫
|(f̃ · χ− g)(λ)|dVar (γr

y)(λ) ≤ 2ε,

we obtain
∣∣∣‖ξ · F (ΦmIr(f̃ · χ))(ξ)|ξ|−1‖2 − ‖ξ · F (ΦmIr(g))(ξ)|ξ|−1‖2

∣∣∣ ≤
‖ξ · F (ΦmIr(f̃ · χ− g))(ξ)|ξ|−1‖2 ≤ ‖ΦmIr(f̃ · χ− g)‖2 ≤ 2ε‖Φm‖2 = 2ε. (32)

Since

Ir(g)(y) =
∫ (

k∑

i=1

viθ(λ− pi)

)
dγr

y(λ) =
k∑

i=1

viU
pi
r (y),

from (25) it follows the limit relation

lim
m→∞

lim
r→∞

‖ξ · F (ΦmIr(g))(ξ)|ξ|−1‖22 =

lim
m→∞

lim
r→∞

∫

Rn

|ξ · F (ΦmIr(g))(ξ)|2 |ξ|−2dξ =
k∑

i,j=1

〈µpipj
x , (vi · ξ)(vj · ξ)〉 = 0. (33)

The last equality is a consequence of the inclusion supp µ
pipj
x ⊂ L(pi) = L, which holds by Lemma 4 for

all i = 1, . . . , k (because pi ∈ V ), combined with the relation vi⊥L. By (32) and (33),

lim
m→∞

lim
r→∞

∫

Rn

|ξ · F (ΦmIr(f · χ))(ξ)|2 |ξ|−2dξ ≤ 4ε2,

and it suffices to observe that ε > 0 can be arbitrary to complete the proof. ut
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4. Localization principle and strong pre-compactness of bounded sequences of
measure-valued functions

In this section we need some results concerning pseudo-differential operators (briefly p.d.o.) in L2(Rn).
Recall that a p.d.o. operator A with symbol a(x, ξ), x, ξ ∈ Rn is defined as follows

F (Au)(ξ) =
∫

e−iξ·xa(x, ξ)u(x)dx.

In particular, if b(x) ∈ C0(Rn), a(z) ∈ C(S) then the operators B,A with symbols b(x), a(ξ/|ξ|) are the
multiplication operators Bu(x) = b(x)u(x), F (Au)(ξ) = a(ξ/|ξ|)F (u)(ξ). Obviously, these operators are
well-defined and bounded in L2. Moreover, the operator B is bounded in Lp, 1 ≤ p ≤ ∞. We shall use also
the following statement known as the Hörmander-Mikhlin theorem on multipliers ( see [16][Chapter 4] ):

Lemma 6. Let a(z) ∈ Cl(S) for some l > n/2. Then the operator A with symbol a(ξ/|ξ|) is a bounded
operator A : Lp(Rn) → Lp(Rn) for each 1 < p < ∞.

We shall use operators represented, up to a compact operator, as finite sums A =
∑

AkBk, where Ak, Bk

are operators of the indicated above kind with symbols ak(ξ/|ξ|), bk(x) and call them admissible zero-order
p.d.o. with symbols

∑
bk(x)ak(ξ/|ξ|). As was shown in [18], the commutator [A1, A2] = A1A2 −A2A1 of

admissible zero-order p.d.o. is a compact operator on L2. Observe also that relation (9) in the definition
of the Tartar H-measure can be written as follows

〈µij , p(x, ξ)q(x, ξ)〉 = lim
r→∞

(PU i
r, QU j

r )2 (34)

for each admissible zero-order p.d.o. P, Q with symbols p(x, ξ), q(x, ξ). Here (·, ·)2 is the scalar product
in L2. Indeed, suppose that p(x, ξ) =

∑
k∈I1

Φk(x)ψk(ξ/|ξ|), q(x, ξ) =
∑

l∈I2

Φl(x)ψl(ξ/|ξ|), where I1, I2 are

finite sets, Φk(x), Φl(x) ∈ C0(Ω), ψk(ξ), ψl(ξ) ∈ C(S), k ∈ I1, l ∈ I2. Then

F (PU i
r)(ξ) =

∑

k∈I1

F (ΦkU i
r)(ξ)ψk(ξ/|ξ|) + F (E1U

i
r)(ξ),

F (QU j
r )(ξ) =

∑

l∈I2

F (ΦlU
j
r )(ξ)ψl(ξ/|ξ|) + F (E2U

j
r )(ξ),

E1, E2 being compact operators in L2. By compactness of E1, E2, we see that E1U
i
r → 0, E2U

j
r → 0 as

r →∞ strongly in L2. Therefore, with account of the Plancherel’s identity and (9), we find

lim
r→∞

(PU i
r, QU j

r )2 = lim
r→∞

(F (PU i
r), F (QU j

r ))2 =

lim
r→∞

∑

k∈I1,l∈I2

∫

Rn

F (ΦkU i
r)(ξ)F (ΦlU

j
r )(ξ)ψk(ξ/|ξ|)ψl(ξ/|ξ|)dξ =

∑

k∈I1,l∈I2

〈µij , Φk(x)ψk(ξ)Φl(x)ψl(ξ)〉 = 〈µij , p(x, ξ)q(x, ξ)〉

and (34) follows. Conversely, relation (9) follows from (34) with p = Φ1(x)ψ(ξ/|ξ|), q = Φ2(x).
The following lemma was also proved in [18][Lemma 3.2].

Lemma 7. Let b(x) ∈ C1
0 (Rn), a(z) ∈ Cl(S) with l > (n + 1)n/2, A,B be operators in L2(Rn) with

symbols a(ξ/|ξ|), b(x). Then the commutator [A,B] = AB −BA is a bounded operator from L2(Rn) into
W 1

2 (Rn) and for i = 1, . . . , n ∂xi [A,B] = Ci + Ei, where Ci is an operator with symbol

ξi

n∑

k=1

∂a(ξ)
∂ξk

∂b(x)
∂xk

while Ei is a compact operator in L2(Rn).
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Remark that the functions ψik(ξ) = ξi
∂a(ξ)
∂ξk

are homogeneous of zero order, i.e. ψik(ξ) = ψik(ξ/|ξ|) with

ψik(z) = ziaξk
(z), z ∈ S. In particular, ∂xi

[A,B] is an admissible zero-order pseudo-differential operator
in L2.

We define also operators (the Riesz potentials) Jα, 0 < α < n by the formula

F (Jαu)(ξ) = |ξ|−αFu(ξ).

It is known ( see [16][Chapter 5] ) that the operator Jα is a well-defined bounded operator from Lp(Rn),
p > 1 to the Sobolev space Wα

p (Rn).
We denote by Rj = ∂xj

J1 = J1∂xj
the Riesz transform, j = 1, . . . , n. This is a zero-order p.d.o. with

symbol iξj/|ξ|. It is clear that the Riesz transforms commute with all admissible p.d.o. with symbols
ψ(ξ). Remark also that if ψ(z) = ψ(−z) = −ψ(z) then the p.d.o. A with symbols ψ(ξ/|ξ|) acts in the
space L2 of real functions and A is an anti-selfadjoint operator:

∫

Rn

u ·Avdx = −
∫

Rn

Au · vdx ∀u, v ∈ L2.

Let k(x) ∈ C∞0 (Rn) be an even function with support in the unit ball such that k(x) ≥ 0,
∫

k(x)dx = 1.
We define mollifiers kh(x) = h−nk(x/h), h > 0 and the corresponding averaging operators

u → uh = u ∗ kh(x) =
∫

Rn

u(x− y)kh(y)dy.

Here u(x) ∈ X where X = Lp
loc(Rn) or X = Lp(Rn), 1 ≤ p < ∞. By the known properties of averaged

functions uh(x) ∈ C∞(Rn) and uh → u as h → 0+ in X. The averaging operator has symbol F (kh)(ξ) and
therefore commutes with p.d.o. with symbols ψ(ξ). Besides, since the kernel k(x) is even, this operator
is selfadjoint: ∫

Rn

uhvdx =
∫

Rn

uvhdx ∀u, v ∈ L2. (35)

We need in the sequel the following lemma

Lemma 8. Suppose that a(x) ∈ C1(Rn), u(x) ∈ Lp
loc(Rn), 1 ≤ p < ∞. Then (au)h − auh →

h→0+
0 in the

Sobolev space W 1
p,loc(Rn).

The statement of this lemma follows from general result by R.J. DiPerna & P.L. Lions [3][Lemma II.1].

4.1. The first localization principle

We consider the bounded sequence of measure valued functions νk
x ∈ MV(Ω) and suppose that for

some p > 1 and each a, b ∈ R, a < b the sequence of distributions

divx

(
A(x)∇

∫
g(sa,b(λ))dνk

x(λ)
)

is pre-compact in W−2
p,loc(Ω). (36)

Here sa,b(u) = max(a,min(u, b)) is the cut-off function and W−s
p,loc(Ω) with s > 0 denotes the locally

convex space of distributions u(x) such that uf(x) belongs to the Sobolev space W−s
p for all f(x) ∈

C∞0 (Ω). The topology in W−s
p,loc(Ω) is generated by the family of semi-norms u → ‖uf‖W−s

p
, f(x) ∈

C∞0 (Ω).
We choose the subsequence νr

x = νk
x , k = kr weakly convergent to a bounded measure-valued function

ν0
x such that the H-measure µpq = µpq

x dx, p, q ∈ D is well defined. Define the measures γr
x = νr

x − ν0
x and

set of full measure Ω′ as in the previous section.
The following Theorem shows that supp µpp

x consists of ξ ∈ S such that the function λ → A(x)ξ ·ξg(λ)
is constant in a vicinity of p.

Theorem 4. Suppose that x ∈ Ω′, p0 ∈ D and ξ ∈ L, where L is a linear span of supp µp0p0
x . If

A(x)ξ · ξ 6= 0 then there exists δ > 0 such that g(λ) = const on the segment λ ∈ [p0, p0 + δ].
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Proof. Throughout the proof we use the notation of section 3. Let V = Vδ = [p0, p0 + δ] ∩ D be an
interval, where δ > 0 is chosen in accordance with Lemma 4, L be a linear span of supp µp0p0

x , p ∈ V . As
follows from (36) and the weak convergence νr

y → ν0
y ,

Lr
p(y) = divy

(
A(y)∇

∫
g(sp0,p(λ))dγr

y(λ)
)
→

r→∞
0 in W−2

p,loc(Ω). (37)

As is easy to compute,

g(sp0,p(λ)) = g(p0) + (g(p)− g(p0))θ(λ− p0)− (g(p)− g(λ))χ(λ),

where χ(λ) = θ(λ − p0) − θ(λ − p) is the indicator function of the interval (p0, p]. Therefore, Lr
p =

divy(A(y)∇Qp
r(y)) where the functions Qp

r(y) are as follows:

Qp
r(y) =

∫
(g(p)− g(p0))θ(λ− p0)dγr

y(λ)−
∫

(g(p)− g(λ))χ(λ)dγr
y(λ) =

(g(p)− g(p0))Up0
r (y)−

∫
(g(p)− g(λ))χ(λ)dγr

y(λ). (38)

For Φ(y) ∈ C∞0 (Ω) we consider the sequence

Lr =
n∑

i,j=1

∂2

∂yi∂yj
aij(y)Φ(y)Qp

r(y) =
n∑

i,j=1

∂

∂yi

(
Φ(y)aij(y)

∂Qp
r(y)

∂yj

)
+

n∑

i,j=1

∂

∂yi

(
∂aij(y)Φ(y)

∂yj
Qp

r(y)
)

= Φ(y)div(A(y)∇Qp
r(y)) +

n∑

i,j=1

(
∂aij(y)Φ(y)

∂yj
Qp

r(y)
)

+
n∑

i,j=1

aij(y)
∂Φ(y)
∂yi

∂Qp
r(y)

∂yj
.

Since the matrix A(y) is symmetric we can transform the last term as follows

n∑

i,j=1

aij(y)
∂Φ(y)
∂yi

∂Qp
r(y)

∂yj
=

n∑

i,j=1

∂

∂yj

(
Qp

r(y)aij(y)
∂Φ(y)
∂yi

)
−

Qp
r(y)

n∑

i,j=1

∂

∂yj

(
aij(y)

∂Φ(y)
∂yi

)
= div[Qp

r(y)A(y)∇Φ(y)]−Qp
r(y)div(A(y)∇Φ(y)).

Therefore,

Lr =
n∑

i,j=1

∂2

∂yi∂yj
aij(y)Φ(y)Qp

r(y) = Φ(y)div(A(y)∇Qp
r(y)) +

n∑

i,j=1

∂

∂yi

(
∂aij(y)Φ(y)

∂yj
Qp

r(y)
)

+ div[Qp
r(y)A(y)∇Φ(y)]−Qp

r(y)div(A(y)∇Φ(y)) (39)

and, as follows from (37), the sequence Lr is pre-compact in W−2
p since the term

n∑

i,j=1

∂

∂yi

(
∂aij(y)Φ(y)

∂yj
Qp

r(y)
)

+ div[Qp
r(y)A(y)∇Φ(y)]−Qp

r(y)div(A(y)∇Φ(y))

lays in W−1
p for all p ≥ 1 and therefore is pre-compact in W−2

p . Using the Fourier transformation and
then applying the Riesz operator J2, we obtain from (39) that

|ξ|−2
n∑

i,j=1

ξiξj · F (aijQ
p
rΦ)(ξ) = F (lr), lr = J2(Lr) →

r→∞
0 in Lp(Rn). (40)
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Let ψ(ξ) ∈ C∞(S). By (40), using the boundedness of the sequence Up0
r Φ(y) in Lq, q−1 + p−1 = 1 and

boundedness of the p.d.o. A with symbol ψ(ξ/|ξ|) ( due to Lemma 6 ), we obtain
∫

Rn

|ξ|−2
n∑

i,j=1

ξiξj · F (aijQ
p
rΦ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ =
∫

Rn

lr(y)A(Up0
r Φ(y))dy →

r→∞
0

( he we also use the fact that lr, A(Up0
r Φ(y)) ∈ L2(Rn), which allows to apply the Plancherel’s identity )

or in view of (38),

(g(p)− g(p0)) lim
r→∞





∫

Rn

|ξ|−2
n∑

i,j=1

ξiξj · F (aijU
p0
r Φ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ−

∫

Rn

|ξ|−2
n∑

i,j=1

ξiξj · F (aijG
p
rΦ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ



 = 0, (41)

where
Gp

r(y) =
∫

(g(p)− g(λ))χ(λ)dγr
y(λ).

We set in (41) Φ(y) = Φm(x − y) , where the functions Φm were defined in section 3 in the proof of
Proposition 3, and pass to the limit as m →∞. By Remark 2 (see equality (25)) we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−2
n∑

i,j=1

ξiξj · F (aijU
p0
r Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ =

〈µp0p0
x , A(x)ξ · ξψ(ξ)〉,

therefore

(g(p)− g(p0)) · 〈µp0p0
x , A(x)ξ · ξψ(ξ)〉 =

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−2
n∑

i,j=1

ξiξj · F (aijG
p
rΦm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ. (42)

This, by Bunyakovskii inequality and Plancherel’s equality, gives us the estimate

|(g(p)− g(p0))〈µp0p0
x , A(x)ξ · ξψ(ξ)〉| ≤

lim
m→∞

lim
r→∞

n∑

i,j=1

‖aijG
p
rΦm‖2 · ‖Up0

r Φm‖2 · ‖ψ‖∞. (43)

Since g(λ) is a non-decreasing function (g(p)− g(λ))χ(λ) ≤ (g(p)− g(p0))χ(λ) and

|Gp
r(y)| ≤ (g(p)− g(p0))

∫
χ(λ)d

(
νr

y(λ) + ν0
y(λ)

)

and by Lemma 3 we obtain

lim
m→∞

lim
r→∞

‖aij(y)Gp
rΦm‖2 ≤ 2(g(p)− g(p0)) · |aij(x)| · (u0(x, p0)− u0(x, p))1/2. (44)

Further, we have |Up0
r | ≤ 1, therefore ‖Up0

r Φm‖2 ≤ ‖Φm‖2 = 1 and, in view of (43) and (44),

(g(p)− g(p0))|〈µp0p0
x , A(x)ξ · ξψ(ξ)〉| ≤ 2n2(g(p)− g(p0))max |aij(x)| · ‖ψ‖∞ω(p), (45)

ω(p) = (u0(x, p0)− u0(x, p))1/2 →
p→p0

0.

Assume that A(x)ξ · ξ 6= 0 for some ξ ∈ L. Then we can choose a function ψ(ξ) ∈ C∞(S) such that
|〈µp0p0

x , A(x)ξ ·ξψ(ξ)〉| > 0 ( otherwise, supp µp0p0
x lays in the kernel kerA(x) and therefore L ⊂ kerA(x) ).

Then, from (45) it follows that for all p ∈ V

(g(p)− g(p0)) ≤ cω(p)(g(p)− g(p0)), c = const. (46)
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Taking a smaller δ if necessary we can assume that cω(p) < 1 for all p ∈ V . Now, in view of (46),
g(p) = g(p0) ∀p ∈ [p0, p0 + δ]∩D. Taking into account that D is dense in R and that g(λ) is continuous,
we obtain the required identity g(p) = g(p0) ∀p ∈ [p0, p0 + δ]. The proof is complete. ut

Corollary 2. Assume that p0 ∈ E and g(p) is not constant in each segment of [p0, p0 + δ], δ > 0. Then
A(x)ξ · ξµp0p0 = 0.

Proof. Since D is arbitrary dense countable subset of E we may assume that p0 ∈ D. Then, as readily
follows from Theorem 4, A(x)ξ · ξµp0p0

x = 0 for a.e. x ∈ Ω and since µp0p0 = µp0p0
x dx we conclude that

A(x)ξ · ξµp0p0 = 0. ut

Denote for p0, p ∈ E, p > p0

h(λ) = g(sp0,p(λ))− g(p0), Qr(y) =
∫

h(λ)dγr
y(λ)

( remark that in the notations of Theorem 3 the sequence Qr coincides with Qp
r ). Clearly, the sequence

Qr(y) is bounded in L∞(Ω) and converges weakly-∗ to zero as r →∞. After extraction of a subsequence
( we keep the notation Qr for it ) we can assume that the Tartar H-measure µ̄ = µ̄00 is well-defined for
this scalar sequence, i.e.

〈µ̄, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (QrΦ1)(ξ)F (QrΦ2)(ξ)ψ
(

ξ

|ξ|
)

dξ

for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

Proposition 5. Under condition (36) we have A(x)ξ · ξµ̄ = 0.

Proof. If g(p) = g(p0) then Qr ≡ 0 and there is nothing to prove. So we assume that g(p) > g(p0).
Consider the set B consisting of values v = g(u), u ∈ [p0, p] such that g(λ) = const in some segment
[u, u + δ], δ > 0. For v ∈ B the level set g−1(v) = { u ∈ [p0, p] | g(u) = v } has positive Lebesgue
measure: meas g−1(v) > 0. Since

∑

v∈B

meas g−1(v) ≤ p − p0 we see that B is at most countable. The set

[p0, p] \ E is at most countable as well. Therefore the union B1 = B ∪ g([p0, p] \ E) is at most countable
and its complement U = [g(p0), g(p)] \B1 is dense in [g(p0), g(p)]. This allows us to find for every ε > 0
points vi ∈ U , i = 1, . . . , k such that g(p0)

.= v0 < v1 < · · · < vk < vk+1
.= g(p) and vi − vi−1 < ε,

i = 1, . . . , k + 1. We choose pi ∈ [p0, p] such that g(pi) = vi, i = 1, . . . , k and introduce the step function

s(λ) =
k∑

i=1

ciθ(λ − pi) with ci = vi − vi−1. Then, as is easy to see, ‖h − s‖∞ < ε. From the assumption

vi ∈ U it follows that pi ∈ E and g(λ) is not constant in each segment [pi, pi + δ], δ > 0. Let

Q̃r(y) =
∫

s(λ)dγr
y(λ) =

k∑

i=1

ciU
pi
r (y), (47)

A be the admissible zero-order p.d.e. with symbols a(x, ξ) = Φ(x)A(x)z · z, z = ξ/|ξ|, Φ(x) ∈ C0(Ω). It
is clear that ‖Qr − Q̃r‖∞ ≤ 2‖h− s‖∞ ≤ 2ε. Then, by the Bunyakovskii inequality

∣∣∣(AQr, AQr)2 − (AQ̃r, AQ̃r)2
∣∣∣ ≤ |(A(Qr − Q̃r), AQr)2|+ |(AQ̃r, A(Qr − Q̃r))2| ≤

const · ‖(Qr − Q̃r)Φ‖2 ≤ Cε, C = const. (48)

In view of representation (47) and relation (34) we find

lim
r→∞

(AQ̃r, AQ̃r)2 = lim
r→∞

k∑

i,j=1

cicj(AUpi
r , AUpj

r )2 =
k∑

i,j=1

cicj〈µpipj , |a(x, ξ)|2〉 = 0. (49)
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Indeed, pi ∈ E for i = 1, . . . , k and g(λ) is not constant in each segment [pi, pi + δ], δ > 0. Then by
Corollary 2 〈µpipi , |a(x, ξ)|2〉 = 〈µpipi , |Φ(x)|2|A(x)ξ ·ξ|2〉 = 0 for all i = 1, . . . , k. By Lemma 2 the matrix
〈µpipj , |a(x, ξ)|2〉 is positive definite and in particular

|〈µpipj , |a(x, ξ)|2〉|2 ≤ 〈µpipi , |a(x, ξ)|2〉 · 〈µpjpj , |a(x, ξ)|2〉 = 0,

which evidently yields (49). From (48), (49) it follows that lim
r→∞

(AQr, AQr)2 ≤ Cε and since ε > 0 is

arbitrary we obtain that lim
r→∞

(AQr, AQr)2 = 0. Therefore,

〈µ̄00, |Φ(x)|2|A(x)ξ · ξ|2〉 = 〈µ̄00, |a(x, ξ)|2〉 = lim
r→∞

(AQr, AQr)2 = 0

for all Φ(x) ∈ C0(Ω). Taking into account non-negativity of the measure µ̄ = µ̄00 ≥ 0, we conclude that
A(x)ξ · ξµ̄ = 0. ut

Corollary 3. For each c(x, ξ) ∈ C1
0 (Ω × S) the vector 〈µ̄, c(x, ξ)A(x)ξ〉 = 0.

Proof. As follows from Proposition 5 and symmetricity of matrix A(x)

supp µ̄ ⊂ { (x, ξ) | A(x)ξ = 0 }.

Hence, c(x, ξ)A(x)ξ = 0 on supp µ̄ and 〈µ̄, c(x, ξ)A(x)ξ〉 = 0. ut

Corollary 4. For each j = 1, . . . , n Axj (x)ξ · ξµ̄ =
n∑

k,l=1

(akl(x))xj ξkξlµ̄ = 0.

Proof. Let c(x, ξ) ∈ C1
0 (Ω × S), c(x, ξ) ≥ 0. We introduce the function

F (y) = 〈µ̄, c(x, ξ)A(x + y)ξ · ξ〉.

This function is defined in a sufficiently small neighborhood V of zero, F (y) ∈ C1(V ). By Proposition 5
F (0) = 0. Since µ̄ ≥ 0, c(x, ξ)A(x + y)ξ · ξ ≥ 0 we see that F (y) ≥ 0. Hence F (y) takes its minimal value
at the point y = 0. Therefore ∇F (0) = 0 and we claim that 〈µ̄, c(x, ξ)Axj (x)ξ · ξ〉 = Fyj (0) = 0 for every
j = 1, . . . , n. This relations hold for all c(x, ξ) ∈ C1

0 (Ω×S) ( because this function can be represented as
a difference of two nonnegative function from C1

0 (Ω × S) ) and we conclude that Axj (x)ξ · ξµ̄ = 0. The
proof is complete. ut

4.2. The second localization principle.

Now we assume that a sequence of measure valued functions νk
x converges as k → ∞ weakly to ν0

x

and for each a, b ∈ R, a < b the sequence of distributions

divx

(∫
ϕ(x, sa,b(λ))dνk

x(λ)−A(x)∇
∫

g(sa,b(λ))dνk
x(λ)

)

is pre-compact in W−1
p,loc(Ω) (50)

with some p > 1. We choose the subsequence νr
x = νk

x such that the H-measure µpq = µpq
x dx, p, q ∈ D is

well defined. Define the measures γr
x = νr

x−ν0
x and set of full measure Ω′′ = Ω′∩Ωϕ as in section 3. Recall

that Ωϕ consists of common Lebesgue points of the maps x → ϕ(x, ·) ∈ C(R,Rn) and x → |ϕ(x, ·)|2 ∈
C(R). We also use notations of Lemma 4. In particular, L(p) denotes a linear span of supp µpp

x . The main
theorem of this paragraph is the following

Theorem 5. Suppose that x ∈ Ω′′, p0 ∈ D and the space L = L(p0) has maximal dimension. Then there
exists δ > 0 such that ϕ(x, λ) · ξ = const, g(λ)A(x)ξ · ξ = const on the segment λ ∈ [p0, p0 + δ] for all
ξ ∈ L.
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To prove Theorem 5 we need some auxiliary results. Remark firstly that the sequence

divx

∫
ϕ(x, sa,b(λ))dνk

x(λ) is bounded in W−1
2,loc(Ω) and therefore it is pre-compact in W−2

2,loc(Ω). By

assumption (50) we see that relation (36) holds. This implies that the H-measure µp0p0 satisfies the first
localization principle and, in particular, g(λ)A(x)ξ · ξ = const on some segment λ ∈ [p0, p0 + δ] for all
ξ ∈ L.

As follows from (50) and the weak convergence νr
y → ν0

y ,

Lr = divy(Pr(y)−A(y)∇Qr(y)) →
r→∞

0 in W−1
p,loc(Ω), (51)

where we denote

Pr(y) =
∫

ϕ(y, sp0,p(λ))dγr
y(λ) =

∫
(ϕ(y, p)− ϕ(y, p0))θ(λ− p0)dγr

y(λ)−
∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr
y(λ) =

(ϕ(y, p)− ϕ(y, p0))Up0
r (y)−

∫
(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr

y(λ); (52)

Qr(y) =
∫

g(sp0,p(λ))dγr
y(λ) =

(g(p)− g(p0))Up0
r (y)−

∫
(g(p)− g(λ))χ(λ)dγr

y(λ), (53)

χ(λ) = θ(λ − p0) − θ(λ − p), p > p0. Clearly, the sequences Pr(y), Qr(y) are bounded in L2
loc(Ω,Rn),

L∞(Ω) respectively, and converge weakly to zero as r →∞. Consider firstly the case
A) g(λ) ≡ g(p0) on some interval [p0, p0 + δ], δ > 0.
In this case the statement of Theorem 5 follows from the following theorem.

Theorem 6. Assume that condition A) is satisfied. Then there exists δ > 0 such that ξ · ϕ(x, λ) =
ξ · ϕ(x, p0) on [p0, p0 + δ] for all ξ ∈ L.

Proof. Let V = Vδ = [p0, p0 + δ] ∩D, where δ > 0 is chosen from Lemma 4, L = L(p0) be a linear span
of supp µp0p0

x . Taking a smaller δ if necessary we can suppose that g(λ) = const on [p0, p0 +δ]. Let p ∈ Vδ.
Since Qr ≡ 0 we derive from (51) that

divyPr(y) →
r→∞

0 in W−1
p,loc(Ω)

and if Φ(y) ∈ C∞0 (Ω) then
divy(PrΦ(y)) →

r→∞
0 in W−1

p . (54)

Using the Fourier transformation and the Riesz operator J1, we obtain from (54) that

|ξ|−1ξ · F (PrΦ)(ξ) = F (lr), lr → 0 in Lp(Rn) (55)

as r → ∞. Let ψ(ξ) ∈ C∞(S). By (55), using the boundedness of the sequence Up0
r Φ(y) in Lq,

q−1 + p−1 = 1 and Lemma 6, we obtain
∫

Rn

|ξ|−1ξ · F (PrΦ)(ξ)F (Up0
r Φ)(ξ)ψ

(
ξ

|ξ|
)

dξ =
∫

Rn

lr(y)A(Up0
r Φ)(y)dy → 0

as r →∞. Here A is a p.d.o. with symbols ψ(ξ/|ξ|). Thus, in view of (52),

lim
r→∞

{∫

Rn

|ξ|−1ξ · F (Up0
r fΦ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ−
∫

Rn

|ξ|−1ξ · F (V p
r Φ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ

}
= 0, (56)
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where
f(y) = ϕ(y, p)− ϕ(y, p0) and V p

r (y) =
∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr
y(λ).

Obviously, (56) holds for all ψ(ξ) ∈ C(S). We set in (56) Φ(y) = Φm(x − y), where the functions Φm

were defined in section 3 in the proof of Proposition 3, and pass to the limit as m → ∞. Observe that
x ∈ Ω′′ ⊂ Ωϕ is a Lebesgue point of ϕ(x, p) for every p. By Remark 2 (see equality (25)) we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (Up0
r fΦm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ =

(ϕ(x, p)− ϕ(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉,

therefore

(ϕ(x, p)− ϕ(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉 =

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (V p
r Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ. (57)

Let π1 and π2 be the orthogonal projections of Rn onto the subspaces L and L⊥ respectively; ϕ̃(x, λ) =
π1(ϕ(x, λ)), ϕ̄(x, λ) = π2(ϕ(x, λ)). Recall that L is the smallest subspace containing supp µp0p0

x . Hence

(ϕ(x, p)− ϕ(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉 = (ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0

x , ξψ(ξ)〉. (58)

Further, V p
r (y) = π1(V p

r (y)) + π2(V p
r (y)) and

π1(V p
r (y)) =

∫
(ϕ̃(y, p)− ϕ̃(y, λ)) χ(λ)dγr

y(λ),

π2(V p
r (y)) =

∫
(ϕ̄(y, p)− ϕ̄(y, λ)) χ(λ)dγr

y(λ).

In the notation of Proposition 4,
π2(V p

r (y)) = Ir(h · χ),

where h(y, λ) = ϕ̄(y, p)− ϕ̄(y, λ) is a Caratheodory vector taking its values in L⊥. Now, by Proposition 4
we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (π2(V p
r )Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ = 0. (59)

Let Ṽ p
r (y) = π1(V p

r (y)). From (57), in view of (58) and (59), we see that

(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉 =

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (Ṽ p
r Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ,

which in turn, by Bunyakovskii inequality and Plancherel’s equality, gives us the estimate

|(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉| ≤ lim

m→∞
lim

r→∞
‖Ṽ p

r Φm‖2 · ‖Up0
r Φm‖2 · ‖ψ‖∞. (60)

Next, for Mp(y) = max
λ∈[p0,p0+δ]

|ϕ̃(y, p)− ϕ̃(y, λ)|

|Ṽ p
r (y)| ≤ Mp(y)

∫
χ(λ)d

(
νr

y(λ) + ν0
y(λ)

)
=

Mp(y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p))

and by Lemma 3
lim

m→∞
lim

r→∞
‖Ṽ p

r Φm‖2 ≤ 2Mp(x)(u0(x, p0)− u0(x, p)). (61)

Here we bear in mind that x is a Lebesgue point of the function (Mp(y))2 ( the latter easily follows from
the fact that x ∈ Ωϕ is a Lebesgue point of the maps y → ϕ(y, ·), y → |ϕ(y, ·)|2 into the spaces C(R,Rn),
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C(R), respectively ). Further, we have |Up0
r | ≤ 1, therefore ‖Up0

r Φm‖2 ≤ ‖Φm‖2 = 1 and, in view of (59)
and (61),

|(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉| ≤ 2‖ψ‖∞Mp(x)ω(p), (62)

ω(p) = (u0(x, p0)− u0(x, p))1/2 →
p→p0

0

( remind that p0 ∈ D is a continuity point of the function p → u0(x, p) for x ∈ Ω′ ). Next, by Lemma 5,
the set of vectors of the form 〈µp0p0

x , ξψ(ξ)〉, ψ(ξ) ∈ C(S) spans the subspace L = L + iL. Hence we
can choose functions ψi(ξ) ∈ C(S), i = 1, . . . , l such that the vectors vi = 〈µp0p0

x , ξψi(ξ)〉 make up an
algebraic basis in L. By (62), for ψ(ξ) = ψi(ξ), i = 1, . . . , l, we obtain

|(ϕ̃(x, p)− ϕ̃(x, p0)) · vi| ≤ ciω(p)Mp(x), ci = const,

and since vi, i = 1, . . . , l is a basis in L, these estimates show that for all p ∈ V

|ϕ̃(x, p)− ϕ̃(x, p0)| ≤ cω(p)Mp(x) =
cω(p) max

λ∈[p0,p0+δ]
|ϕ̃(x, p)− ϕ̃(x, λ)|, c = const. (63)

Taking a smaller δ if necessary we can assume that 2cω(p) ≤ ε < 1 for all p ∈ V . Now, in view of (63),

|ϕ̃(x, p)− ϕ̃(x, p0)| ≤ ε

2
max

λ∈[p0,p0+δ]
|ϕ̃(x, p)− ϕ̃(x, λ)|, (64)

and since ϕ(x, p) is continuous with respect to p and the set D is dense, the estimate (64) holds for all
p ∈ [p0, p0 + δ].

We claim that now ϕ̃(x, p) = ϕ̃(x, p0) for p ∈ [p0, p0 + δ]. Indeed, assume that for p′ ∈ [p0, p0 + δ]

|ϕ̃(x, p′)− ϕ̃(x, p0)| = max
λ∈[p0,p0+δ]

|ϕ̃(x, λ)− ϕ̃(x, p0)|.

Then for λ ∈ [p0, p
′] we have

|ϕ̃(x, p′)− ϕ̃(x, λ)| ≤ |ϕ̃(x, λ)− ϕ̃(x, p0)|+
|ϕ̃(x, p′)− ϕ̃(x, p0)| ≤ 2|ϕ̃(x, p′)− ϕ̃(x, p0)|

and
max

λ∈[p0,p′]
|ϕ̃(x, p′)− ϕ̃(x, λ)| ≤ 2|ϕ̃(x, p′)− ϕ̃(x, p0)|.

We now derive from (64) with p = p′ that

|ϕ̃(x, p′)− ϕ̃(x, p0)| ≤ ε|ϕ̃(x, p′)− ϕ̃(x, p0)|,

and since ε < 1, this implies that

|ϕ̃(x, p′)− ϕ̃(x, p0)| = max
λ∈[p0,p0+δ]

|ϕ̃(x, λ)− ϕ̃(x, p0)| = 0.

We conclude that ϕ(x, λ)− ϕ(x, p0) ∈ L⊥ for all λ ∈ [p0, p0 + δ], i.e. ϕ(x, λ) · ξ = ϕ(x, p0) · ξ = const on
the segment λ ∈ [p0, p0 + δ] for all ξ ∈ L. The proof is complete. ut

Now we consider the remaining case

B) g(λ) is not constant on segments [p0, p0 + δ] or, in other words, g(p) > g(p0) ∀p > p0.

To treat this case we shall mainly follow the ideas of S. Sazhenkov [15].
As was mentioned above, the sequence νk

x satisfies (36). So the first localization principle is satisfied.
By Corollary 2 we find that A(x)ξ · ξµp0p0 = 0.
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Let Φ1(y), Φ2(y) ∈ C∞0 (Ω), ψ(z) ∈ C∞(S), ψ(z) = ψ(−z) = −ψ(z). Let A be the zero-
order p.d.o. with symbol ψ(ξ/|ξ|), h > 0. We apply relation (51) to the test function frh(y) =
Φ1(y)(J1A[Φ2(Qr)h](y))h ∈ C∞0 (Ω). As a result, we arrive at the equality

∫

Rn

Pr(y) · ∇Φ1(y)(J1A[Φ2(Qr)h])h(y)dy +
∫

Rn

Qr(y)divA(y)∇ (
Φ1(y)(J1A[Φ2(Qr)h])h(y)

)
dy = −〈lr, frh〉, (65)

where lr = γ(y)Lr and γ(y) ∈ C∞0 (Ω) is a function, which equals 1 in a vicinity of supp Φ1. By our
assumption lr → 0 in W−1

p (Rn). We are going to pass to the limit in (65) firstly as h → 0+ and then as
r →∞. By the properties of the Riesz potential J1 and Lemma 6 we see that

Φ1(y)(J1A[Φ2(Qr)h](y))h →
h→0+

Φ1(y)J1A[Φ2Qr](y) in W 1
q , q−1 + p−1 = 1.

Therefore,

lim
h→0+

〈lr, frh〉 = 〈lr, Φ1(y)J1A[Φ2Qr](y)〉; (66)

lim
h→0+

∫

Rn

Pr(y) · ∇ (
Φ1(y)(J1A[Φ2(Qr)h])h(y)

)
dy =

∫

Rn

Pr(y) · ∇ (Φ1(y)J1A[Φ2Qr](y)) dy =
∫

Rn

(Pr(y) · ∇Φ1(y))J1A[Φ2Qr](y)dy +
∫

Rn

Φ1(y)Prj(y)RjA[Φ2Qr](y)dy. (67)

Here Rj , j = 1, . . . , n are the Riesz operators and Prj are the coordinates of Pr. In (67) and everywhere
below we use the conventional rule of summation over repeated indices i, j, k, l in products. The passage
to the limit in the second integral in (65) is more delicate and given in the following proposition.

Proposition 6. In the limit as h → 0+ ∫

Rn

Qr(y)divA(y)∇ (
Φ1(y)(J1A[Φ2(Qr)h])h(y)

)
dy →

∫

Rn

Qr(y){(divA(y)∇Φ1(y))J1A[Φ2Qr](y) + ajk(y)(Φ1(y))yk
RjA[Φ2Qr](y)}dy +

1
2

{∫

Rn

γ(y)Qr(y)(Djk + Ejk)[ajkΦ1Qr](y)dy −
∫

Rn

γ(y)Qr(y)(C + E)[Φ2Qr](y)dy+
∫

Rn

Qr(y)(Φ2)yj (y)RkA[ajkΦ1Qr](y)dy +
∫

Rn

RkA[Φ2Qr](y)(ajk(y)Φ1(y))yj Qr(y)dy

}
, (68)

where C, Djk are admissible zero-order p.d.o. with symbols c(y, ξ), djk(y, ξ) given by the expressions

c(y, ξ) = izj(ajk(y)Φ1(y))yl
(ψ(z)(δkl − zkzl) + zkψξl

(z)) ,

djk(y, ξ) = izj(Φ2)yl
(y) (ψ(z)(δkl − zkzl) + zkψξl

(z)) , z = ξ/|ξ| ∈ S,

E, Ejk are compact operators on L2, and γ(y) ∈ C∞0 (Ω) is an arbitrary function, which equals 1 in a
vicinity of supp Φ1 ∪ suppΦ2.

Proof. We have, with account of Lemma 8 and relation (35),

I(h) =
∫

Rn

Qr(y)divA(y)∇ (
Φ1(y)(J1A[Φ2(Qr)h])h(y)

)
dy =

∫

Rn

Qr(y){divA(y)∇Φ1(y)
(
J1A[Φ2(Qr)h]

)h
(y) +

divA(y)Φ1(y)
(∇J1A[Φ2(Qr)h]

)h
(y)}dy =∫

Rn

(Qr)h(y){divA(y)∇Φ1(y)J1A[Φ2(Qr)h](y) +

divA(y)Φ1(y)∇J1A[Φ2(Qr)h](y)}dy + εh,
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where εh → 0 as h → 0+. Hence, up to a term vanishing as h → 0+,

I(h) =
∫

Rn

(Qr)h(y){(divA(y)∇Φ1(y))J1A[Φ2(Qr)h](y) +

ajk(y)(Φ1(y))yk
RjA[Φ2(Qr)h](y)}dy +∫

Rn

(Qr)h(y)∂yj
{ajk(y)Φ1(y)RkA[(Φ2(Qr)h)](y)}dy. (69)

The passage to the limit as h → 0+ in the first integral on the right-hand side of (69) is plain since
(Qr)h → Qr in L2

loc. The corresponding limit expression has the form

I =
∫

Rn

Qr(y){(divA(y)∇Φ1(y))J1A[Φ2Qr](y) +

ajk(y)(Φ1(y))yk
RjA[Φ2Qr](y)}dy. (70)

Concerning the second integral in (69), we transform it with the help of Lemma 7

I1(h) =
∫

Rn

(Qr)h(y)∂yj
{ajk(y)Φ1(y)RkA[Φ2(Qr)h](y)}dy =

∫

Rn

γ(y)(Qr)h(y)∂yj{RkA[Φ2ajkΦ1(Qr)h](y)}dy − I2(h), (71)

where γ(y) ∈ C∞0 (Ω) equals 1 in a vicinity of suppΦ1 ∪ suppΦ2,

I2(h) =
∫

Rn

γ(y)(Qr)h(y)(C + E)[Φ2(Qr)h](y)dy,

C is a zero order p.d.o. with symbol c(y, ξ),

c(y, ξ) = izj
∂ajk(y)Φ1(y)

∂yl

∂zkψ(z)
∂ξl

=

izj(ajk(y)Φ1(y))yl
(ψ(z)(δkl − zkzl) + zkψξl

(z)) , z = ξ/|ξ| (72)

and E is a compact operator in L2. By Lemma 7 again
∫

Rn

γ(y)(Qr)h(y)∂yj{RkA[Φ2ajkΦ1(Qr)h](y)}dy =
∫

Rn

(Qr)h(y)∂yj{Φ2(y)RkA[ajkΦ1(Qr)h](y)}dy + I3(h), (73)

where

I3(h) =
∫

Rn

γ(y)(Qr)h(y)(Djk + Ejk)[ajkΦ1(Qr)h](y)dy,

and Djk is a zero order p.d.o. with symbol djk(y, ξ),

djk(y, ξ) = izj(Φ2)yl
(y) (ψ(z)(δkl − zkzl) + zkψξl

(z)) , z = ξ/|ξ|, (74)

Ejk is a compact operator in L2. Now, we continue our transforms.
∫

Rn

(Qr)h(y)∂yj{Φ2(y)RkA[ajkΦ1(Qr)h](y)}dy =

I4(h) +
∫

Rn

Φ2(y)(Qr)h(y)∂yj{RkA[ajkΦ1(Qr)h](y)}dy, (75)

I4(h) =
∫

Rn

(Qr)h(y)(Φ2)yj (y)RkA[ajkΦ1(Qr)h](y)dy.
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Taking into account that ∂yj
RkA = RkA∂yj

and the operators RkA are self-adjoint, we obtain that
∫

Rn

Φ2(y)(Qr)h(y)∂yj
{RkA[ajkΦ1(Qr)h](y)}dy =

∫

Rn

RkA[Φ2(Qr)h](y)∂yj{ajk(y)Φ1(y)(Qr)h(y)}dy =
∫

Rn

RkA[Φ2(Qr)h](y)(ajk(y)Φ1(y))yj (Qr)h(y)dy +
∫

Rn

ajk(y)Φ1(y)RkA[Φ2(Qr)h](y)((Qr)h)yj
(y)dy =

∫

Rn

RkA[Φ2(Qr)h](y)(ajk(y)Φ1(y))yj
(Qr)h(y)dy −

∫

Rn

∂yj
{ajk(y)Φ1(y)RkA[Φ2(Qr)h](y)}(Qr)h(y)dy = I5(h)− I1(h), (76)

where
I5(h) =

∫

Rn

RkA[Φ2(Qr)h](y)(ajk(y)Φ1(y))yj
(Qr)h(y)dy.

Hence, from (71), (73), (75), (76) it follows that

I1(h) = (I3(h)− I2(h) + I4(h) + I5(h))/2.

Since expressions in the integrals Ik(h), k = 2, . . . , 5 contain only bounded operators and (Qr)h → Qr in
L2

loc as h → 0 then in the limit as h → 0+ these integrals converges respectively to

I2 =
∫

Rn

γ(y)Qr(y)(C + E)[Φ2Qr](y)}dy,

I3 =
∫

Rn

γ(y)Qr(y)(Djk + Ejk)[ajkΦ1Qr](y)dy,

I4 =
∫

Rn

Qr(y)(Φ2)yj (y)RkA[ajkΦ1Qr](y)dy,

I5 =
∫

Rn

RkA[Φ2Qr](y)(ajk(y)Φ1(y))yj Qr(y)dy.

Taking into account also (69), (70), we conclude that

lim
h→0+

I(h) = I + (I3 − I2 + I4 + I5)/2,

as was to be proved. ut
Now we are ready to prove Theorem 5 in the case B).

Theorem 7. Assume that condition B) is satisfied. Then there exists δ > 0 such that ξ · ϕ(x, λ) =
ξ · ϕ(x, p0) on [p0, p0 + δ] for all ξ ∈ L.

Proof. In view of (66), (67), (68), from (65) it follows that

−〈lr, Φ1(y)J1A[Φ2Qr](y)〉 =∫

Rn

(Pr(y) · ∇Φ1(y))J1A[Φ2Qr](y)dy +
∫

Rn

Φ1(y)Prj(y)RjA[Φ2Qr](y)dy +
∫

Rn

Qr(y){(divA(y)∇Φ1(y))J1A[Φ2Qr](y) + ajk(y)(Φ1(y))yk
RjA[Φ2Qr](y)}dy +

1
2

{∫

Rn

γ(y)Qr(y)(Djk + Ejk)[ajkΦ1Qr](y)dy −
∫

Rn

γ(y)Qr(y)(C + E)[Φ2Qr](y)dy+
∫

Rn

Qr(y)(Φ2)yj (y)RkA[ajkΦ1Qr](y)dy +
∫

Rn

RkA[Φ2Qr](y)(ajk(y)Φ1(y))yj Qr(y)dy

}
. (77)
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Now we pass to the limit in (77) as r → ∞. Firstly, observe that in view of Lemma 6 the sequence
Φ1(y)J1A[Φ2Qr](y) is bounded in W 1

q while lr → 0 as r → ∞ in W−1
p , which is the dual space to W 1

q .
Therefore,

lim
r→∞

〈lr, Φ1(y)J1A[Φ2Qr](y)〉 = 0. (78)

Since Q → J1A[Φ2Q] is a compact operator, the sequence J1A[Φ2Qr] → 0 as r → ∞ strongly in L2.
Therefore,

lim
r→∞

∫

Rn

(Pr(y) · ∇Φ1(y))J1A[Φ2Qr](y)dy =

lim
r→∞

∫

Rn

Qr(y)(divA(y)∇Φ1(y))J1A[Φ2Qr](y)dy = 0. (79)

By compactness of operators E, Ejk we have also

lim
r→∞

∫

Rn

γ(y)Qr(y)Ejk[ajkΦ1Qr](y)dy = lim
r→∞

∫

Rn

γ(y)Qr(y)E[Φ2Qr](y)dy = 0. (80)

Extracting a subsequence if necessary we can suppose that the Tartar H-measure µ̄ = {µ̄ij}n
i,j=0 cor-

responding to the sequence (Qr, Pr) ∈ Rn+1 is well-defined ( here the zero index correspond to the
component Qr ). By relation (9) we find

lim
r→∞

{∫

Rn

Φ1(y)Prj(y)RjA[Φ2Qr](y)dy +
∫

Rn

Qr(y)ajk(y)(Φ1(y))yk
RjA[Φ2Qr](y)dy+

1
2

∫

Rn

γ(y)Qr(y)Djk[ajkΦ1Qr](y)dy − 1
2

∫

Rn

γ(y)Qr(y)C[Φ2Qr](y)dy +

1
2

∫

Rn

Qr(y)(Φ2)yj (y)RkA[ajkΦ1Qr](y)dy +

1
2

∫

Rn

RkA[Φ2Qr](y)(ajk(y)Φ1(y))yj Qr(y)dy

}
=

〈µ̄j0(y, ξ), iΦ1(y)Φ2(y)ξjψ(ξ)〉+ 〈µ̄00(y, ξ),H(y, ξ)〉, (81)

where

H(y, ξ) = Φ2(y)ajk(y)(Φ1)yk
(y)iξjψ(ξ) +

1
2
Φ1(y)ajk(y)djk(y, ξ)−

1
2
Φ2(y)c(y, ξ) +

1
2
Φ1(y)ajk(y)(Φ2)yj (y)iξkψ(ξ) +

1
2
Φ2(y)(ajk(y)Φ1(y))yj iξkψ(ξ). (82)

In view of (78)-(81) we derive from (77) that

〈µ̄j0(y, ξ), iΦ1(y)Φ2(y)ξjψ(ξ)〉+ 〈µ̄00(y, ξ), H(y, ξ)〉 = 0 (83)

for all real Φ1(y), Φ2(y) ∈ C1
0 (Ω), and all odd ψ(ξ) = ψ(z) ∈ C(S), z = ξ/|ξ| such that iψ(z) ∈ R. Here

H(y, ξ) depends on these test functions. Putting in (82) expressions for the symbols c(y, ξ), djk(y, ξ), we
find after simple transforms that

H(y, ξ) = Φ2(y)ajk(y)(Φ1)yk
(y)iξjψ(ξ) +

1
2
Φ1(y)ajk(y)iξj(Φ2)yl

(y) (ψ(ξ)(δkl − ξkξl) + ξkψξl
(ξ))−

1
2
Φ2(y)iξj(ajk(y)Φ1(y))yl

(ψ(ξ)(δkl − ξkξl) + ξkψξl
(ξ)) +

1
2
Φ1(y)ajk(y)(Φ2)yj (y)iξkψ(ξ) +

1
2
Φ2(y)(ajk(y)Φ1(y))yj iξkψ(ξ).
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To simplify the expression we set Φ2 = Φ ∈ C1
0 (Ω) and suppose that Φ1 = 1 in a neighborhood of suppΦ.

Then Φ1 disappears in the above expression and we obtain that

H(y, ξ) =
1
2
ajk(y)iξjΦyl

(y) (ψ(ξ)(δkl − ξkξl) + ξkψξl
(ξ))−

1
2
Φ(y)iξj(ajk(y))yl

(ψ(ξ)(δkl − ξkξl) + ξkψξl
(ξ)) +

1
2
ajk(y)Φyj (y)iξkψ(ξ) +

1
2
Φ(y)(ajk(y))yj iξkψ(ξ) =

i

2
(
ajk(y)ξjΦyk

(y) + ajk(y)Φyj
(y)ξk

)
ψ(ξ) +

i

2
(
(ajk(y))yj

ξk − (ajk(y))yk
ξj

)
Φ(y)ψ(ξ) +

i

2
ajk(y)ξjξk(ψξl

(ξ)− ξlψ(ξ))Φyl
(y)− i

2
(ajk(y))yl

ξjξk(ψξl
(ξ)− ξlψ(ξ))Φ(y) =

iajk(y)Φyj
(y)ξkψ(ξ) +

i

2
ajk(y)ξjξk(ψξl

(ξ)− ξlψ(ξ))Φyl
(y)−

i

2
(ajk(y))yl

ξjξk(ψξl
(ξ)− ξlψ(ξ))Φ(y). (84)

Let us demonstrate that 〈µ̄00(y, ξ),H(y, ξ)〉 = 0. Indeed, in view of (84), H(y, ξ) is a sum of functions of the
kinds bj(y, ξ)ajk(y)ξk and cl(y, ξ)(ajk(y))yl

ξjξk with bj(y, ξ), cl(y, ξ) ∈ C0(Ω×S), and by Corollaries 3, 4
we have 〈µ̄00(y, ξ),H(y, ξ)〉 = 0 as required. In view of (83) we obtain that

n∑

j=1

〈µ̄j0(y, ξ), Φ(y)ξjψ(ξ)〉 = 0.

It is clear that this equality is satisfied for each Φ(y) ∈ C0(Ω) and odd ψ(ξ) ∈ C(S). Replacing Φ(y) by
|Φ(y)|2 and using the definition of H-measure, we derive that

∫

Rn

|ξ|−1ξ · F (PrΦ)(ξ)F (QrΦ)(ξ)ψ
(

ξ

|ξ|
)

dξ → 0

as r →∞. In view of (52), (53) we can rewrite this relation as follows

lim
r→∞

{
(g(p)− g(p0))

∫

Rn

|ξ|−1ξ · F (Up0
r fΦ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ−
∫

Rn

|ξ|−1ξ · F (Up0
r fΦ)(ξ)F (Gp

rΦ)(ξ)ψ
(

ξ

|ξ|
)

dξ −

(g(p)− g(p0))
∫

Rn

|ξ|−1ξ · F (V p
r Φ)(ξ)F (Up0

r Φ)(ξ)ψ
(

ξ

|ξ|
)

dξ +
∫

Rn

|ξ|−1ξ · F (V p
r Φ)(ξ)F (Gp

rΦ)(ξ)ψ
(

ξ

|ξ|
)

dξ

}
= 0, (85)

where

f(y) = ϕ(y, p)− ϕ(y, p0), V p
r (y) =

∫
(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr

y(λ) and

Gp
r(y) =

∫
(g(p)− g(λ))χ(λ)dγr

y(λ).

We set in (85) Φ(y) = Φm(x − y) , where the functions Φm were defined in section 3 in the proof of
Proposition 3, and pass to the limit as m →∞. By Remark 2 (see equality (25)) we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (Up0
r fΦm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ =

(ϕ(x, p)− ϕ(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉,
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therefore

(g(p)− g(p0))(ϕ(x, p)− ϕ(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉 =

lim
m→∞

lim
r→∞

{∫

Rn

|ξ|−1ξ · F (Up0
r fΦm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ+

(g(p)− g(p0))
∫

Rn

|ξ|−1ξ · F (V p
r Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ −
∫

Rn

|ξ|−1ξ · F (V p
r Φm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ

}
. (86)

Let π1 and π2 be the orthogonal projections of Rn onto the subspaces L and L⊥ respectively; let ϕ̃(y, λ) =
π1(ϕ(y, λ)), ϕ̄(y, λ) = π2(ϕ(y, λ)), f̄(y) = ϕ̄(y, p) − ϕ̄(y, p0), f̃(y) = ϕ̃(y, p) − ϕ̃(y, p0). Recall that L is
the smallest subspace containing supp µp0p0

x . Hence (ϕ̄(x, p)− ϕ̄(x, p0)) · ξ = 0 on supp µp0p0
x and

(ϕ(x, p)− ϕ(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉 = (ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0

x , ξψ(ξ)〉; (87)

lim
m→∞

lim
r→∞

∫

Rn

||ξ|−1ξ · F (Up0
r f̄Φm)(ξ)|2dξ = 〈µp0p0

x , ((ϕ̄(x, p)− ϕ̄(x, p0)) · ξ)2〉 = 0. (88)

From (88) it follows that

lim
m→∞

lim
r→∞

‖|ξ|−1ξ · F (Up0
r fΦm)− |ξ|−1ξ · F (Up0

r f̃Φm)‖2 = 0

and therefore

lim
m→∞

lim
r→∞

{∫

Rn

|ξ|−1ξ · F (Up0
r fΦm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ−
∫

Rn

|ξ|−1ξ · F (Up0
r f̃Φm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ

}
= 0. (89)

Further, V p
r (y) = π1(V p

r (y)) + π2(V p
r (y)) and

π1(V p
r (y)) =

∫
(ϕ̃(y, p)− ϕ̃(y, λ)) χ(λ)dγr

y(λ),

π2(V p
r (y)) =

∫
(ϕ̄(y, p)− ϕ̄(y, λ)) χ(λ)dγr

y(λ).

In the notation of Proposition 4,
π2(V p

r (y)) = Ir(h · χ),

where h(y, λ) = ϕ̄(y, p)− ϕ̄(y, λ) is a Caratheodory vector taking its values in L⊥. Now, by Proposition 4
we obtain

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (π2(V p
r )Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ =

lim
m→∞

lim
r→∞

∫

Rn

|ξ|−1ξ · F (π2(V p
r )Φm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ = 0. (90)

Let Ṽ p
r (y) = π1(V p

r (y)). From (86), in view of (87), (89) and (90), we see that

(g(p)− g(p0))(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉 =

lim
m→∞

lim
r→∞

{∫

Rn

|ξ|−1ξ · F (Up0
r f̃Φm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ+

(g(p)− g(p0))
∫

Rn

|ξ|−1ξ · F (Ṽ p
r Φm)(ξ)F (Up0

r Φm)(ξ)ψ
(

ξ

|ξ|
)

dξ −
∫

Rn

|ξ|−1ξ · F (Ṽ p
r Φm)(ξ)F (Gp

rΦm)(ξ)ψ
(

ξ

|ξ|
)

dξ

}
,
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which in turn, by Bunyakovskii inequality and Plancherel’s equality, gives us the estimate

(g(p)− g(p0)) |(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉| ≤

lim
m→∞

lim
r→∞

[‖Up0
r f̃Φm‖2 · ‖Gp

rΦm‖2 + ‖Ṽ p
r Φm‖2 ×

((g(p)− g(p0))‖Up0
r Φm‖2 + ‖Gp

rΦm‖2)] · ‖ψ‖∞. (91)

Next, for Mp(y) = max
λ∈[p0,p]

|ϕ̃(y, p)− ϕ̃(y, λ)|

|Ṽ p
r (y)| ≤ Mp(y)

∫
χ(λ)d

(
νr

y(λ) + ν0
y(λ)

)
=

Mp(y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p))

so that, in view of Lemma 3
lim

m→∞
lim

r→∞
‖Ṽ p

r Φm‖2 ≤ 2Mp(x)ω(p), (92)

where ω(p) = (u0(x, p0)− u0(x, p))1/2. Here we bear in mind that x is a Lebesgue point of the function
(Mp(y))2 ( the latter easily follows from the fact that x ∈ Ωϕ is a Lebesgue point of the maps y → ϕ(y, ·),
y → |ϕ(y, ·)|2 into the spaces C(R,Rn), C(R), respectively ).

Similarly, using the inequality |g(p)− g(λ)| ≤ g(p)− g(p0) for λ ∈ [p0, p], we derive the estimate

lim
m→∞

lim
r→∞

‖Gp
rΦm‖2 ≤ 2(g(p)− g(p0))ω(p). (93)

Further, we have |Up0
r | ≤ 1 and therefore

‖Up0
r f̃Φm‖2 ≤ ‖f̃Φm‖2 =

(∫
(f̃(y))2Km(x− y)dy

)1/2

→
m→∞

|f̃(x)| = |ϕ̃(x, p)− ϕ̃(x, p0)|,

so that
lim

m→∞
lim

r→∞
‖Up0

r f̃Φm‖2 ≤ |ϕ̃(x, p)− ϕ̃(x, p0)| ≤ Mp(x). (94)

Taking into account (92), (93), (94) and the obvious estimate ‖Up0
r Φm‖2 ≤ 1, we derive from (91) that

for some constant C

(g(p)− g(p0))|(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉| ≤ C(g(p)− g(p0))Mp(x)ω(p)‖ψ‖∞,

By the condition B) g(p)− g(p0) > 0 and the above estimate implies that

|(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉| ≤ CMp(x)ω(p)‖ψ‖∞. (95)

Now observe that the measure µp0p0
x is even, i.e. it is invariant under the map ξ → −ξ, see Remark 2.

Therefore, 〈µp0p0
x , a(ξ)〉 = 0 for odd functions a(ξ). Any continuous function ψ(ξ) = ψe(ξ) + ψo(ξ), where

ψe(ξ) = (ψ(ξ) + ψ(−ξ))/2, ψo(ξ) = (ψ(ξ) − ψ(−ξ))/2 are even and odd functions, respectively. By (95)
we obtain that for each ψ(ξ) ∈ C(S)

|(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0
x , ξψ(ξ)〉| = |(ϕ̃(x, p)− ϕ̃(x, p0)) · 〈µp0p0

x , ξψo(ξ)〉| ≤
CMp(x)ω(p)‖ψo‖∞ = CMp(x)ω(p)‖ψ‖∞.

This relation coincides with (62), and it remains only to repeat the corresponding part in the proof of
Theorem 6 to conclude that ϕ(x, λ) · ξ = ϕ(x, p0) · ξ = const on the segment λ ∈ [p0, p0 + δ] for all ξ ∈ L.
The proof is complete. ut

From statements of Theorem 3, 5, 6 it readily follows the assertion of Theorem 4. Under the non-
degeneracy condition indicated in Definition 2 Theorem 4 yields the following result.

Theorem 8. Suppose that the non-degeneracy condition is satisfied. Then any sequence νk
x weakly con-

verging as k →∞ to ν0
x and satisfying (50) converges to ν0

x strongly.
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Proof. Let νr
x = νk

x , k = kr, be a subsequence such that the H-measure {µpq}p,q∈E is well defined. As
directly follows from the assertion of Theorem 4 and non-degeneracy condition in Definition 2, µpp

x = 0
for a.e. x ∈ Ω and p ∈ D. Indeed, in the notations of this Theorem L = L(p0) = {0} and since dimension
of L is maximal we find that L(p) = {0} for all p ∈ D. This means that µpp

x = 0 for all x ∈ Ω′′, p ∈ D.
Therefore, µpp = µpp

x dx ≡ 0 for p ∈ D. By Lemma 2,3) we see that µpq = 0 for p, q ∈ D and since D
is dense and µpq is continuous in p, q (see Proposition 2) it follows that µpq ≡ 0 for all p, q ∈ E. This
implies that

ur(x, p) → u0(x, p) in L2
loc(Ω)

as r →∞. Indeed, it follows from the definition of an H-measure and Plancherel’s equality that

lim
r→∞

‖Up
r Φ‖22 = 〈µpp, |Φ(x)|2〉 = 0

for all Φ(x) ∈ C0(Ω) and p ∈ E. Thus, for p ∈ E we have
∫

θ(λ− p)dνr
x(λ) →

r→∞

∫
θ(λ− p)dν0

x(λ) in L2
loc(Ω). (96)

Any continuous function can be uniformly approximated on any compact subset by finite linear com-
binations of functions λ → θ(λ − p), p ∈ E. Hence, it follows from (96) that for all f(λ) ∈ C(R) we
have ∫

f(λ)dνr
x(λ) →

r→∞

∫
f(λ)dν0

x(λ) in L2
loc(Ω),

and therefore also in L1
loc(Ω), that is, the subsequence νr

x converges to ν0
x strongly. Finally, for each

admissible choice of the subsequence νr
x the limit measure-valued function is uniquely defined, therefore

the original sequence νk
x is also strongly convergent to ν0

x. The proof is now complete. ut
Taking account of Theorem 3 one can also give another formulation of Theorem 5: each bounded

sequence of measure-valued functions satisfying (50) is pre-compact in the sense of strong convergence.
Observe that in the regular case νk

x(λ) = δ(λ− uk(x)) condition (50) has the form: ∀a, b ∈ R, a < b

divx

{
ϕ(x, sa,b(uk(x)))−A(x)∇g(sa,b(uk(x)))}

is pre-compact in W−1
p,loc(Ω). (97)

In this case Theorem 8 yields the following

Corollary 5. Under the non-degeneracy condition, each bounded sequence uk(x) ∈ L∞(Ω) satisfying (97)
contains a subsequence convergent in L1

loc(Ω).

Proof. It only need to note that if the sequence uk(x) converges to a measure-valued function ν0
x strongly

in MV (Ω), then by the definition of strong convergence

uk(x) →
k→∞

u0(x) =
∫

λdν0
x(λ) in L1

loc(Ω)

( which also shows that ν0
x(λ) = δ(λ− u0(x)) is regular in Ω ). ut

The statements of Theorems 4 and 8 remains true also for sequences of unbounded measure-valued
(or usual) functions. For the proof we should apply cut-off functions sa,b(u) = max(a,min(u, b)), a, b ∈ R
and derive that bounded sequences of measure-valued functions s∗a,bν

k
x ( this is the image of νk

x under
the map sa,b ) satisfy (50). Then, under the non-degeneracy condition, we obtain strong pre-compactness
property for these sequences.

For instance, consider the sequence uk(x), k ∈ N of measurable functions on Ω. Suppose that condition
(97) and the non-degeneracy condition hold. Let α, β ∈ R, α < β, vk = sα,β(uk) = max(α, min(uk, β)).
Then vk = vk(x) is a bounded sequence in L∞(Ω) and for each a, b ∈ R, a < b

divx

{
ϕ(x, sa,b(vk(x)))−A(x)∇g(sa,b(vk(x)))} =

divx

{
ϕ(x, sa′,b′(uk(x)))−A(x)∇g(sa′,b′(uk(x)))}
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where a′ = sa,b(α), b′ = sa,b(β). From this identity and (97) it follows that the sequence
divx

{
ϕ(x, sa,b(vk(x)))−A(x)∇g(sa,b(vk(x)))} is pre-compact in W−1

p,loc(Ω). By Corollary 5 the sequences
vk(x) = sα,β(uk) are pre-compact in L1

loc(Ω) for every α, β ∈ R, α < β. Using the standard diagonal
extraction we can choose a subsequence ur(x) = ukr (x) such that for each m ∈ N the sequence s−m,m(ur)
converges as r →∞ to some function wm(x) in L1

loc(Ω). Obviously, a.e. in Ω

|wm(x)| ≤ m, and wm(x) = s−m,m(wl(x)) ∀l > m.

This allows to define a unique (up to equality a.e.) measurable function u(x) ∈ R ∪ {±∞} such that
wm(x) = s−m,m(u(x)) a.e. on Ω. If a, b ∈ R, a < b then for m > max(|a|, |b|)

sa,b(ur) = sa,b(s−m,m(ur)) →
r→∞

sa,b(wm) =

sa,b(s−m,m(u)) = sa,b(u) in L1
loc(Ω).

In fact, we proved the following general statement.

Theorem 9. Suppose that the sequence of measurable functions uk(x) satisfies (97) and the nondegener-
acy condition holds. Then

a) there exists a measurable function u(x) ∈ R ∪ {±∞} such that, after extraction of a subsequence
ur, r ∈ N, sa,b(ur) → sa,b(u) as r →∞ in L1

loc(Ω) ∀a, b ∈ R, a < b.
b) If in addition the following estimates are satisfied

∫

K

ρ(uk(x))dx ≤ CK , (98)

for each compact set K ⊂ Ω, where ρ(u) is a positive Borel function, such that ρ(u)/u →
u→∞

∞, then

u(x) ∈ L1
loc(Ω) and ur → u in L1

loc(Ω) as r →∞.

Proof. We only need to prove b). Observe that, extracting a subsequence, if necessary, we can assume
that s−m,m(ur) → s−m,m(u) as m → ∞ a.e. in Ω for every m ∈ N. This implies that ur → u a.e. in Ω
and by Fatou lemma from (98) it follows that

∫

K

ρ(u(x))dx ≤ CK .

In particular, u(x) ∈ L1
loc(Ω). Now, fix a compact K ⊂ Ω and ε > 0. By the assumption ρ(u)/u →

u→∞
∞

we can choose m ∈ N such that |u|/ρ(u) ≤ ε/(2CK) for |u| > m. Then
∫

K

|ur(x)− u(x)|dx ≤
∫

K

|s−m,m(ur(x))− s−m,m(u(x))|dx +
∫

K

|ur(x)|θ(|ur(x)| −m)dx +
∫

K

|u(x)|θ(|u(x)| −m)dx

≤
∫

K

|s−m,m(ur(x))− s−m,m(u(x))|dx +

ε

2CK

(∫

K

ρ(ur(x))dx +
∫

K

ρ(u(x))dx

)
≤

∫

K

|s−m,m(ur(x))− s−m,m(u(x))|dx + ε.

This implies that lim
r→∞

∫

K

|ur(x) − u(x)|dx ≤ ε and since ε > 0 is arbitrary we conclude that

lim
r→∞

∫

K

|ur(x)− u(x)|dx = 0 for any compact K ⊂ Ω, i.e. ur → u in L1
loc(Ω). The proof is complete. ut
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5. Proofs of Theorems 1,2

We need the following simple

Lemma 9. Suppose u = u(x) is an entropy solution of (1). Then for all a, b ∈ R, a < b

divx

{
ϕ(x, sa,b(u))−A(x)∇g(sa,b(u))} = ζa,b in D′(Ω), (99)

where ζa,b ∈ Mloc(Ω). Moreover, for each compact set K ⊂ Ω we have Var ζa,b(K) ≤ C(K, a, b, I), where
I = I(x) = |ϕ(x, u(x))|+ |ψ(x, u(x))|+ |g(u(x))| ∈ L1

loc(Ω) and the map I → C(K, a, b, I) is bounded on
bounded sets in L1

loc(Ω).

Proof. By known representation property for non-negative distributions we derive from (5) that

divx [sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))−A(x)∇|g(u(x))− g(p)|] +
sign(u(x)− p)[ωp(x) + ψ(x, u(x))]− |γs

p| = −κp in D′(Ω),

where κp ∈ Mloc(Ω), κp ≥ 0. Further, for a compact set K ⊂ Ω we choose a non-negative function
fK(x) ∈ C∞0 (Ω), which equals 1 on K. Then we have the estimate

κp(K) ≤
∫

fK(x)dκp(x) =
∫

Ω

[sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p)) · ∇fK(x) + |g(u(x))− g(p)|div(A(x)∇fK(x))−

sign(u(x)− p)(ωp(x) + ψ(x, u(x)))fK(x)] dx +
∫

Ω

fK(x)d|γs
p|(x) ≤

A(K, p, I) =
∫

Ω

[
I(x)max(|fK(x)|, |∇fK(x)|, |divA(x)∇fK(x)|) + |ϕ(x, p)| · |∇fK(x)|+

|g(p)| · |divA(x)∇fK(x)|+ |ωp(x)|fK(x)
]
dx +

∫

Ω

fK(x)d|γs
p|(x).

Hence,
divx [sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))−A(x)∇|g(u(x))− g(p)|] = ζp, (100)

where
ζp = |γs

p| − κp − sign(u(x)− p)[ωp(x) + ψ(x, u(x))] ∈ Mloc(Π).

In particular, taking into account the equality |γs
p|+|ωp(x)|dx = |γp| we obtain the estimates for measures

ζp: |ζp| ≤ κp + |γp|+ |ψ(x, u(x))|dx.
Further, notice that

ϕ(x, sa,b(u)) = (ϕ(x, a) + ϕ(x, b))/2 +(
sign(u− a)(ϕ(x, u)− ϕ(x, a))− sign(u− b)(ϕ(x, u)− ϕ(x, b))

)
/2;

g(sa,b(u)) = (g(a) + g(b))/2 +
(|g(u)− g(a)| − |g(u)− g(b)|)/2,

and it follows from (100) that relation (99) holds with ζa,b = (ζa − ζb + γa + γb)/2. Moreover, we have

Var ζa,b(K) ≤ C(K, a, b, I) = (A(K, a, I) + A(K, b, I))/2 +

|γa|(K) + |γb|(K) +
∫

K

|ψ(x, u(x))|dx.

To complete the proof, it remains to note that for fixed K, a, b the constant C(K, a, b, I) is bounded on
bounded sets of I(x) ∈ L1

loc(Ω). ut
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5.1. Proof of Theorem 1

Taking into account that the sequence Ik(x) = |ϕ(x, uk(x))|+ |ψ(x, uk(x))|+ |g(uk(x))| is bounded in
L1

loc(Ω), we derive from Lemma 9 that for all a, b ∈ R

div
{
ϕ(x, sa,b(uk))−A(x)∇g(sa,b(uk))} = ζk

a,b in D′(Ω),

where ζk
a,b is a bounded sequence in Mloc(Ω). Since Mloc(Ω) is compactly embedded in W−1

p,loc(Ω) for
each p ∈ [1, n/(n − 1)) we see that condition (97) is satisfied. By our assumption condition (98) is also
satisfied. By Theorem 9 we conclude that some subsequence ur converges as r → ∞ to a limit function
u in L1

loc(Ω). Extracting a subsequence if necessary we can assume that ur →
r→∞

u a.e. in Ω. Passing to

the limit as r → ∞ in relation (5) with u = ur we claim that the limit function u = u(x) satisfies this
relation for all p such that the level set u−1(p) has zero measure ( then sign(ur − p) → sign(u − p) as
r → ∞ a.e. in Ω ). Since the set P of such p has full measure and, therefore, is dense, for an arbitrary
p ∈ R we can choose sequences p−r < p < p+

r , p±r ∈ P , r ∈ N convergent to p. Taking a sum of relations
(5) with p = p−r and p = p+

r and passing to the limit as r → ∞, with account of the point-wise relation
sign(u−p−r )+sign(u−p+

r ) →
r→∞

2 sign(u−p), we obtain that (5) holds for all p ∈ R, i.e. u(x) is an entropy

solution of (1). ut

Remark 3. Based on relation (99), we can introduce the class of quasi-solutions, including, by Lemma 9,
entropy solutions of (1) ( as well as entropy sub- and super-solutions of this equation ). As is seen from
the proof of Theorem 1, the statement of this Theorem remains true for more general case when uk(x)
are quasi-solutions of equation (1).

5.2. Proof of Theorem 2.

To simplify the notations, we temporarily drop the index m in equation (7), and underline that the
flux ϕ(x, u) in this equation is smooth.

First we show that a weak solution u = u(x) of equation (7) is an entropy solution in the sense of
Definition 1. For this observe that in relation (8) we can choose test functions f(x) ∈ W 1

2 (Ω), which have
compact support in Ω. In particular, for η(u) ∈ C2(R), f = f(x) ∈ C∞0 (Ω) the function η′(u)f , u = u(x)
is an admissible test function, and we derive from (8) that

0 = −
∫

Ω

[ϕ(x, u)∇η′(u)f −A(x)∇g(u) · ∇η′(u)f ] dx =
∫

Ω

[(divϕ(x, u))η′(u)f + g′(u)η′′(u)fA(x)∇u · ∇u +

A(x)η′(u)g′(u)∇u · ∇f ]dx. (101)

Introduce the function q(u) defined, up to an additive constant, by the identity q′(u) = η′(u)g′(u). We
also define the vector ψ(x, u) such that ψ′u(x, u) = η′(u)ϕ′u(x, u). This vector is determine by the above
equality up to an additive constant c = c(x). Now we transform the terms divϕ(x, u)η′(u)f , η′(u)g′(u)∇u
as follows

divϕ(x, u)η′(u)f = (divxϕ(x, u) + ϕ′u(x, u) · ∇u)η′(u)f =
(η′(u)divxϕ(x, u))f + (ψ′u(x, u) · ∇u)f =

fdivψ(x, u) + (η′(u)divxϕ(x, u)− divxψ(x, u))f ;
η′(u)g′(u)∇u = ∇q(u).

Putting these equalities into (101) and integrating by parts, we obtain that
∫

Ω

[ψ(x, u) · ∇f + (divxψ(x, u)− η′(u)divxϕ(x, u))f+

q(u)div(A(x)∇f)− g′(u)η′′(u)fA(x)∇u · ∇u] dx = 0. (102)
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We shall assume that η′′(u) ≥ 0 and has compact support in R. Let R > 0 be such that supp η′′(u) ⊂
(−R, R) and L = (η′(−R) + η′(R))/2 ( evidently, L does not depend on R ). Then we can choose ψ(x, u)
in the following way

ψ(x, u) =
1
2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u). (103)

Indeed, taking R > |u| and integrating by parts, we obtain the equality
∫

sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) =
∫ R

−R

sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) =

∫ u

−R

(ϕ(x, u)− ϕ(x, p))dη′(p)−
∫ R

u

(ϕ(x, u)− ϕ(x, p))dη′(p) =

∫ u

−R

ϕ′u(x, p)η′(p)dp−
∫ R

u

ϕ′u(x, p)η′(p)dp−

2Lϕ(x, u) + ϕ(x,−R)η′(−R) + ϕ(x,R)η′(R)

We see that, up to a function which does not depend on u,

1
2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u) =

1
2

(∫ u

−R

ϕ′u(x, p)η′(p)dp−
∫ R

u

ϕ′u(x, p)η′(p)dp

)

and therefore

∂

∂u

(
1
2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u)

)
= η′(u)ϕ′u(x, u),

as required. In the similar way we find that, up to an additive constant,

q(u) =
1
2

∫
|g(u)− g(p)|dη′(p) + Lg(u). (104)

Concerning the function η′(u)divxϕ(x, u)− divxψ(x, u), it admits the representation

η′(u)divxϕ(x, u)− divxψ(x, u) =
1
2

∫
sign(u− p)divxϕ(x, p)dη′(p). (105)

Indeed, in view of (103), we see that for sufficiently large R

2ψ(x, u) =
∫ u

−R

(ϕ(x, u)− ϕ(x, p))dη′(p)−
∫ R

u

(ϕ(x, u)− ϕ(x, p))dη′(p) + 2Lϕ(x, u) =

ϕ(x, u)(η′(u)− η′(−R))−
∫ u

−R

ϕ(x, p)dη′(p)− ϕ(x, u)(η′(R)− η′(u)) +

∫ R

u

ϕ(x, p)dη′(p) + 2Lϕ(x, u) = 2η′(u)ϕ(x, u)−
∫

sign(u− p)ϕ(x, p)dη′(p),

where we use the equality 2L = η′(R) + η′(−R). Applying the operator divx to the above equality, we
arrive at (105).

Now, we transform (102), using equalities (103), (104), (105) and the identity

L

∫

Ω

{ϕ(x, u) · ∇f + q(u)div(A(x)∇f)}dx = 0.
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We find that for each f = f(x) ∈ C∞0 (Ω), f ≥ 0
∫ ∫

Ω

{sign(u− p)[(ϕ(x, u)− ϕ(x, p)) · ∇f − fdivxϕ(x, p)] +

|g(u)− g(p)|div(A(x)∇f)}η′′(p)dxdp =
∫

Ω

g′(u)η′′(u)fA(x)∇u · ∇u ≥ 0

and since η′′(p) is arbitrary finite continuous function on R we arrive at

I(p) .=
∫

Ω

{sign(u− p)[(ϕ(x, u)− ϕ(x, p)) · ∇f − fdivxϕ(x, p)] +

|g(u)− g(p)|div(A(x)∇f)}dx ≥ 0 (106)

for all p ∈ P , where the set P consists of points p such that the level set u−1(p) has null Lebesgue
measure. We use that the function I(p) is continuous at any point of P . In view of (106) for all p ∈ P

div[sign(u− p)(ϕ(x, u)− ϕ(x, p))] + sign(u− p)divxϕ(x, p)− divA(x)∇|g(u)− g(p)| ≤ 0 (107)

in D′(Ω). Since the set P has full measure and, therefore, is dense, for an arbitrary p ∈ R we can
choose sequences p−r < p < p+

r , p±r ∈ P , r ∈ N convergent to p. Taking a sum of relations (107)
with p = p−r and p = p+

r and passing to the limit as r → ∞, with account of the point-wise relation
sign(u − p−r ) + sign(u − p+

r ) →
r→∞

2 sign(u − p), we obtain that (107) holds for all p ∈ R, i.e. u(x) is an

entropy solution of (7).
We need also a-priori estimate of ∇u. Choose M ≥ ‖u‖∞ and a function η(u) ∈ C2

0 (R) such that
η(u) = u2/2 on the segment [−M,M ] and supp η(u) ∈ [−M − 1,M + 1]. Then for u = u(x) η′′(u) = 1
a.e. in Ω and we derive from (102) that for each f = f(x) ∈ C∞0 (Ω), f ≥ 0

∫

Ω

fg′(u)A(x)∇u · ∇udx ≤
∣∣∣∣
∫

Ω

[ψ(x, u) · ∇f + (divxψ(x, u)− η′(u)divxϕ(x, u))f + q(u)div(A(x)∇f)] dx

∣∣∣∣ . (108)

From (103), (104), (105) it follows that

|ψ(x, u)| ≤ C max
|u|≤M+1

|ϕ(x, u)|, |q(u)| ≤ C max
|u|≤M+1

|g(u)|,

|divxψ(x, u)− η′(u)divxϕ(x, u)| ≤ C

∫ M+1

−M−1

|divxϕ(x, p)|dp,

where C is the constant depending only on the fixed function η. Putting these estimates into (108), we
get

∫

Ω

fg′(u)A(x)∇u · ∇udx ≤ C

∫

Ω

{ max
|u|≤M+1

|ϕ(x, u)||∇f |+

max
|u|≤M+1

|g(u)||divA(x)∇f |}dx + C

∫

Ω

∫ M+1

−M−1

|divxϕ(x, p)|f(x)dpdx. (109)

By our assumptions the sequences ϕm(x, u), gm(u) converge as m →∞ in L2
loc(Ω, C(R)) and in C1(R),

respectively while Am(x) → A(x) in C1. Therefore, the sequence
∫

Ω

{ max
|u|≤M+1

|ϕm(x, u)||∇f |+ max
|u|≤M+1

|gm(u)||divAm(x)∇f |}dx

is bounded by a constant depending only on f . Here we take M ≥ supm ‖um‖∞. From estimate (109) it
follows that ∫

Ω

fg′m(um)Am(x)∇um · ∇umdx ≤ CfIm(K, M + 1),
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with K = supp f , where the sequence

Im(K, M) = 1 +
∫

K

∫ M

−M

|divxϕm(x, p)|dpdx

was indicated in Introduction. The obtained estimate can be written as follows
∫

Ω

|
√

g′m(um)(Am(x))1/2∇um|2f(x)dx ≤ CfIm(K, M + 1). (110)

Now we take a, b ∈ R, a < b. Let us demonstrate that the sequence

Lm = div (ϕ(x, sa,b(um))−A(x)∇g(sa,b(um)))

is pre-compact in W−1
p,loc with some p > 1. For that, recall that um(x) is an e.s. of (7) and by Lemma 9

div (ϕm(x, sa,b(um))−Am(x)∇gm(sa,b(um))) = ξm

where ξm is a bounded sequence in the space Mloc(Ω), which is compactly embedded in W−1
p,loc(Ω) for

each p ∈ [1, n/(n− 1)). Further, we have Lm = L1m + L2m + ξm, where

L1m = div(ϕ(x, sa,b(um))− ϕm(x, sa,b(um))),
L2m = div (Am(x)∇gm(sa,b(um))−A(x)∇g(sa,b(um))) .

In view of the estimate

|ϕ(x, sa,b(um))− ϕm(x, sa,b(um))| ≤ max
|u|≤M

|ϕm(x, u)− ϕ(x, u)|

and the condition ϕm(x, u) →
m→∞

ϕ(x, u) in L2
loc(Ω,C(R)) we have ϕ(x, sa,b(um))−ϕm(x, sa,b(um)) →

m→∞
0

in L2
loc(Ω). Hence L1m → 0 in W−1

2,loc(Ω). Concerning the sequence L2m, we first remark that by the chain
rule a.e. in Ω

Am(x)∇gm(sa,b(um)) = (gm)′(um)χ(um)Am(x)∇um,

A(x)∇g(sa,b(um)) = g′(um)χ(um)A(x)∇um,

where χ(u) is the indicator function of the segment [a, b]. Therefore,

|Am(x)∇gm(sa,b(um))−A(x)∇g(sa,b(um))| ≤
|(gm)′(um)Am(x)∇um − g′(um)A(x)∇um| ≤

|(gm)′(um)(Am(x)−A(x))∇um|+ |((gm)′(um)− g′(um))A(x)∇um| ≤
C‖(Am(x)−A(x))(Am(x))−1/2‖ · |

√
(gm)′(um)(Am(x))1/2∇um|+

C|(gm)′(um)− g′(um)|/
√

(gm)′(um) · ‖(A(x))1/2‖ · |
√

(gm)′(um)(Am(x))1/2∇um|, (111)

C = const. Here we use the condition Am ≥ A, which implies that for any vector v ∈ Rn

|Av| ≤ ‖A1/2‖|A1/2v| = ‖A1/2‖(Av · v) ≤ ‖A1/2‖(Amv · v) = ‖A1/2‖ · |A1/2
m v|.

From (111) it follows that for every f = f(x) ∈ C∞0 (Ω), f ≥ 0

(∫

Ω

(Am(x)∇gm(sa,b(um))−A(x)∇g(sa,b(um)))2fdx

)1/2

≤

C1

(
max
x∈K

‖(Am(x)−A(x))(Am(x))−1/2‖+ max
|u|≤M

|(gm)′(u)− g′(u)|/
√

(gm)′(u)
)
×

(∫

Ω

|
√

g′m(u)(Am(x))1/2∇um|2f(x)dx

)1/2

. (112)
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where K = supp f . Taking into account relation (6) and estimate (110) we derive that
∫

Ω

(Am(x)∇gm(sa,b(um))−A(x)∇g(sa,b(um)))2fdx →
m→∞

0,

i.e. (Am(x)∇gm(sa,b(um))−A(x)∇g(sa,b(um))) → 0 in L2
loc(Ω). This implies that L2m → 0 in W−1

2,loc(Ω).
We conclude that Lm = L1m+L2m+ξm is pre-compact in W−1

p,loc(Ω) with some p > 1. Hence, assumption
(97) is satisfied. By Corollary 5 we see that the sequence um converges in L1

loc(Ω) to some function
u = u(x) ∈ L∞(Ω). Obviously, ‖u‖∞ ≤ M . It only remains to demonstrate that u is an e.s. of (1). By
relation (106) for each p ∈ R, f = f(x) ∈ C∞0 (Ω), f ≥ 0

∫

Ω

{sign(um − p)[(ϕm(x, um)− ϕm(x, p)) · ∇f − fdivxϕm(x, p)] +

|gm(um)− gm(p)|div(Am(x)∇f)}dx ≥ 0.

Since divxϕm(x, p) = γm
pr(x) + γm

ps(x) the above relation implies that
∫

Ω

{sign(um − p)[(ϕm(x, um)− ϕm(x, p)) · ∇f − fγm
pr(x)] +

f |γm
ps(x)|+ |gm(um)− gm(p)|div(Am(x)∇f)}dx ≥ 0 (113)

Passing to a subsequence, we may assume that um(x) → u(x) as m →∞ a.e. in Ω. Then

sign(um − p)(ϕm(x, um)− ϕm(x, p)) →
m→∞

sign(u− p)(ϕ(x, u)− ϕ(x, p)),

|gm(um)− gm(p)| →
m→∞

|g(um)− g(p)|,
sign(um − p) →

m→∞
sign(u− p)

a.e. in Ω and, as a consequence, in L1
loc(Ω). The latter relation holds for such p ∈ R that the level

set u−1(p) has zero Lebesgue measure. Besides, by our assumptions γm
pr(x) →

m→∞
ωp(x) in L1

loc(Ω),

|γm
ps(x)| →

m→∞
|γs

p| weakly in Mloc(Ω). Taking into account the indicated limit relations we can pass to the

limit in (113) and obtain that
∫

Ω

{sign(u− p)[(ϕ(x, um)− ϕ(x, p)) · ∇f − fωp(x)] +

|g(u)− g(p)|div(A(x)∇f)}dx +
∫

Ω

f(x)d|γs
p|(x) ≥ 0 (114)

for all p ∈ R such that the level set u−1(p) has zero Lebesgue measure. Repeating the arguments con-
cluding the proof of Theorem 1, we obtain that (114) holds for all p ∈ R, i.e. u(x) is an entropy solution
of (1). This completes the proof of Theorem 2.
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