
Global Existence of Large BV Solutions

in a Model of Granular Flow

Debora Amadori∗ and Wen Shen∗∗

(*): Dipartimento di Matematica Pura ed Applicata, University of L’Aquila, Italy.
Email: amadori@univaq.it

(**): Department of Mathematics, Penn State University, U.S.A..
Email: shen w@math.psu.edu

January 5, 2009

Abstract

In this paper we analyze a set of equations proposed by Hadeler and Kuttler [20], de-
scribing the flow of granular matter in terms of the heights of a standing layer and of a
moving layer. By a suitable change of variables, the system can be written as a 2 × 2 hy-
perbolic system of balance laws, which we study in the one-dimensional case. The system
is linearly degenerate along two straight lines in the phase plane, and therefore is weakly
linearly degenerate at the point of the intersection. The source term is quadratic, consisting
of product of two quantities, which are transported with strictly different speeds. Assuming
that the initial height of the moving layer is sufficiently small, we prove the global existence
of entropy-weak solutions to the Cauchy problem, for a class of initial data with bounded
but possibly large total variation.

1 Introduction and main results

We consider a model for the flow of a granular material, such as sand or gravel, which was
proposed in [20]. The material is divided in two parts: a moving layer on top and a standing
layer at the bottom. We denote by h the thickness of the moving layer, and by u the height of
the standing layer. The evolution of these two quantities is described by the system

{
ht = div(h∇u) − (1 − |∇u|)h ,
ut =

(
1 − |∇u|)h .

(1.1)

According to (1.1), the moving layer slides downhill, in the direction of steepest descent, with
speed proportional to the slope of the standing layer. There is a critical slope, which in this
normalized model is |∇u| = 1, with the following property. If |∇u| > 1 then grains initially at
rest are hit by rolling grains of the moving layer and start moving as well. Hence the moving
layer gets bigger. On the other hand, if |∇u| < 1, grains which are rolling can be deposited on
the bed. Hence the moving layer becomes smaller.

Throughout the following, we study the case of one space dimension. We assume ux ≥ 0 and
drop absolute values. Differentiating the second equation in (1.1) in the space variable x and
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setting p = ux, one obtains the system of balance laws

{
ht − (hp)x = (p − 1)h ,

pt +
(
(p − 1)h

)
x

= 0 .
(1.2)

Here h ≥ 0 and p ≥ 0. A direct computation shows that, except at the point (p, h) = (0, 0), this
system is strictly hyperbolic.

For a suitable class of initial data, in [26] one of the authors established the global existence
of smooth solutions. However, with more general initial data, due to the nonlinearity of the
flux, the solution will develop discontinuities (shocks) in finite time. The purpose of the present
paper is to prove the global existence of BV solutions, for a class of initial data with bounded
but possibly large total variation.

More precisely, consider initial data of the form

h(0, x) = h̄(x) , p(0, x) = p̄(x) . (1.3)

We assume that h̄ : R 7→ R
∗
+ and p̄ : R 7→ R

∗
+ are non-negative functions with bounded variation,

such that

Tot.Var.{h̄} ≤ M , Tot.Var.{p̄} ≤ M , (1.4)

‖h̄‖L1 ≤ M , ‖p̄ − 1‖L1 ≤ M , (1.5)

and
p̄(x) ≥ p0 > 0 , (1.6)

for some constants M (possibly large) and p0. Our main result is the following:

Theorem 1 (global existence of large BV solutions for the Cauchy problem). For
any constants M , p0 > 0, there exists δ > 0 small enough such that, if (1.4)–(1.6) hold together
with

‖h̄‖L∞ ≤ δ , (1.7)

then the Cauchy problem (1.2)-(1.3) has an entropy weak solution, defined for all t ≥ 0, with
uniformly bounded total variation.

Compared with previous literature, the main novelty of the present result stems from the
fact that

i. The system (1.2) contains source terms;

ii. We are assuming a small L∞ bound on h(·), but not on the other component p(·);

iii. We have arbitrarily large BV data.

In addition, we observe that the system (1.2) is strictly hyperbolic, but one of the character-
istic fields is neither genuinely nonlinear nor linearly degenerate. This requires additional care
throughout the analysis.

We recall that, for systems without source terms and small BV data, the global existence and
uniqueness of entropy-weak solutions to the Cauchy problem is well known. Even in the general
case of systems which are neither genuinely nonlinear nor linearly degenerate, global solutions
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have been constructed by the Glimm scheme [18, 21, 23, 27], by front tracking approximations
[4, 5], and by vanishing viscosity approximations [7]. In some special cases, existence and
uniqueness of global solutions in the presence of a source term were proved in [16, 22, 12] and
in [2, 15, 1, 13, 14], respectively.

Global existence of solutions to hyperbolic systems with large BV data is a more difficult,
still largely open problem. In addition to the special system [24], two main cases are known in
the literature, where global existence of large BV solutions is achieved. One is the case of Temple
class systems [25]. Here one can measure the wave strengths in terms of Riemann invariants, so
that the total strength of all wave fronts does not increase in time, across each interaction.

A second major result [19] refers to general 2× 2 systems, where again we can measure wave
strengths in terms of Riemann coordinates. To see what happens at an interaction, let σ1 and σ2

be the strengths of the incoming waves of different families, and let σ′
1 and σ′

2 be the strengths
of the outgoing waves. One then has a cubic interaction estimate of the form

|σ′
1 − σ1| + |σ′

2 − σ2| = O(1) · |σ1| · |σ2| · (|σ1| + |σ2|) . (1.8)

Thanks to the last term on the right hand side, if the L∞ norm of the solution is sufficiently
small, the increase of total variation produced by the interaction is very small, and a global
existence result of large BV solutions can again be established.

We remark that the cubic estimate in (1.8) is useless in our case, since the L∞ norm of the
component p in (1.2) can be large, and so is the additional term |σ1| + |σ2| in (1.8).

The validity of Theorem 1 relies heavily on some special properties of the hyperbolic system
(1.2), namely

• It is linearly degenerate along the straight line where h = 0. In the region where h is very
small, the second field of the system is “almost Temple class”: the rarefaction curve and
the shock curve of the 2nd family through the same point are almost straight lines and are
very close to each other, see Lemma 2 in Section 3. This allows us to replace the estimate
(1.8) with

|σ′
1 − σ1| + |σ′

2 − σ2| = O(1) · |σ1| · |σ2| · ‖h‖L∞ .

• The source term involves the quadratic form h(p − 1). Here the quantities h and p − 1
have large, but bounded L1 norms. Moreover, they are transported with strictly different
speeds. The total strength of the source term is thus expected to be O(1)·‖h‖L1 ·‖p−1‖L1 .
In addition, since h itself is a factor in the source term, one can obtain a uniform bound
on the norm ‖h‖L∞ , valid for all times t ≥ 0.

The remainder of the paper is organized as follows. In Section 2 we analyze the geometry
of shock and rarefaction curves of the system. In Section 3 we prove the interaction estimates
for our system for small ‖h‖L∞ . In Section 4, ignoring the effect of wave interactions, we prove
all the a priori estimates needed. Namely, we prove an L1 bound on p− 1 and h, a global lower
bound on p, the L∞ bounds on h and p, and eventually the BV bounds on h and p. In Section 5
we put all the a priori estimates together and prove Theorem 1. Concluding remarks are given
at the end of the paper, in Section 6.

For a derivation of the model (1.1) of granular flow we refer to [20]. Other models can be
found in [6]. A mathematical analysis of steady state solutions for (1.1) was carried out in
[10, 11]. See also the interesting book [17]. Note that, besides [26], the present paper provides
the first analytical study of time dependent solutions to this system.
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2 Analysis of the Riemann problem; Geometry of shock and

rarefaction curves

We begin by analyzing the geometry of wave curves, in particular shock and rarefaction curves
for the Riemann problem. Writing the the system of balance laws (1.2) in quasilinear form, the
corresponding Jacobian matrix is computed as

A(h, p) =

(
−p −h

p − 1 h

)
. (2.1)

The characteristic polynomial is
λ2 − (h − p)λ − h .

If (p − h)2 + 4h > 0 (which holds except at (h, p) = (0, 0)), this polynomial has real distinct
roots λ1 < λ2, namely

λ1,2 =
1

2

[
h − p ±

√
(p − h)2 + 4h

]
. (2.2)

Since we are interested in the case h ≥ 0, p ≥ 0, we consider the domain

Ω = {(h, p) : h ≥ 0, p > 0} ,

on which the system (1.2) is strictly hyperbolic. The corresponding eigenvectors have the form

r1(h, p) =




1

−
λ1 + 1

λ1


 , r2(h, p) =




−
λ2

λ2 + 1

1


 . (2.3)

For p = 1 we have

λ1 = −1 , λ2 = h , r1 =

(
1
0

)
, r2 =




−h

1 + h

1


 ,

and for h = 0 we have

λ1 = −p , λ2 = 0 , r1 =




1

1 − p

p


 , r2 =

(
0
1

)
.

When h is small, i.e., with h ≈ 0, we have

λ1,2 =
1

2

(
h − p ±

[
p − h +

2h

p
+ O(h2)

])
,

therefore the following expansions hold

λ1 = −p +
p − 1

p
h + O(h2) , λ2 =

h

p
+ O(h2) . (2.4)
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Note that for p − h > 0 we have the following estimate for the 1-characteristic speed:

λ1 =
1

2

[
−(p − h) −

√
(p − h)2 + 4h

]
≤ −(p − h) < 0 . (2.5)

By the identities λ1λ2 = −h and λ1 + λ2 = h − p, we get

∂hλ1 = −
1 + λ1

λ2 − λ1
, ∂pλ1 =

λ1

λ2 − λ1
, ∂hλ2 =

1 + λ2

λ2 − λ1
, ∂pλ2 = −

λ2

λ2 − λ1
, (2.6)

and the directional derivatives

r1 • λ1 = −
2(λ1 + 1)

λ2 − λ1
≈

2(p − 1)

p
, r2 • λ2 = −

2λ2

λ2 − λ1
≈ −2

h

p2
. (2.7)

We see that the system is weakly linearly degenerate at the point (h, p) = (0, 1). The first
characteristic field is genuinely nonlinear away from the line p = 1 and the second field is
genuinely nonlinear away from the line h = 0. See Figure 1 for the characteristic curves. A
result on the global existence of smooth solutions of the system (1.2) was recently proved in [26].
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Figure 1: Characteristic curves of the two families in the h-p plane. The arrows point in the
direction of increasing eigenvalues.

To complete the preliminary analysis on the system (1.2), we derive the equations for the
shocks curves. Let (hl, pl) be the left state of a shock. The point (h, p) that can be connected
to (hl, pl) by a shock with shock speed s satisfies the Rankine-Hugoniot conditions

−(hp − hlpl) = s(h − hl), (hp − hlpl) − (h − hl) = s(p − pl) , (2.8)

which gives

(s + 1)(h − hl) + s(p − pl) = 0 , s = −
h − hl

h + p − hl − pl

.

Using the identities

hp − hlpl = h(p − pl) + pl(h − hl) = hl(p − pl) + p(h − hl) ,
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from (2.8) we get

s2 − s(h − pl) − h = 0 and s2 − s(hl − p) − hl = 0 ,

these are both characteristic polynomials.
Hence, the shock curve of the 1st family with left state (hl, pl), parametrized by h, is given

by

p − pl = −
s1 + 1

s1
(h − hl) , s1 = λ1(h, pl) . (2.9)

One can easily verify that the Liu admissibility condition is satisfied if (h−hl)(pl − 1) < 0, that
is, s1(h) ≤ s1(η) ≤ s1(hl) for all η between h and hl.

Similarly, the shock curve of the 2nd family with left state (hl, pl), parametrized by p, is
given by

h − hl = −
s2

s2 + 1
(p − pl) , s2 = λ2(hl, p) , (2.10)

and the admissibility condition is satisfied if p > pl, since s2(p) is non-increasing.
By easy computations, one can check that p − 1 does not change sign across 1–shocks, and

similarly that the 2–shocks do not cross the line h = 0. These lines, p = 1 and h = 0, are contact
discontinuity (shock/rarefaction) curves for the 1st and 2nd family, respectively.

In summary, the set of states that can be connected to (hl, pl) by an entropy satisfying 1-wave
or 2-wave for the homogeneous system is given in Figure 2.
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Figure 2: The set of states that can be connected to (hl, pl) (marked by * in the plots) by an
entropy satisfying 1-wave or 2-wave for the homogeneous system. Here “R” stands for rarefaction
wave, “S” for shock wave and “C” for contact discontinuity (i.e., shock/rarefaction wave).

Remark. We observe that the second characteristic family is genuinely nonlinear for h > 0,
but the first one is neither linearly degenerate, nor genuinely nonlinear in the domain Ω. This
situation may lead, in general, to the appearance of composite waves. However, it is crucial to
observe that, in our case, composite waves never appear: any Riemann problem is solved by
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at most one simple wave of the first family and at most one simple wave of the second family.
Hence, interaction of two waves generates at most two waves, one from each family.

Indeed, observe that the line p = 1 separates the domain into two invariant regions from
the point of view of Riemann problem, because the Hugoniot curve of the first family through a
point (hl, pl) where pl 6= 1 will never cross that line. In each invariant region, since the system
is genuinely nonlinear, there will be no composite waves.

In detail, let (hl, pl) and (hr, pr) be the left and right states of the Riemann problem, re-
spectively. If pl > 1 and pr > 1, so will the solution of the Riemann problem, that is, p > 1 for
the intermediate state. Same is true for pl < 1 and pr < 1. Then, each 1-wave will be a simple
wave. If pl = 1 then the 1-wave will be a contact discontinuity, with pm = 1. Finally, if pl and
pr are on different sides of the line p = 1, then the middle state pm will be on the same side as
pl, since the rarefaction curve or shock curve of the first family won’t cross the line p = 1, so
the 1-wave will be again a simple wave. Since the second family is genuinely nonlinear, in all
cases (hm, pm) will be connected to (hr, pr) by a simple 2-wave.

3 Time step estimates and interaction estimates

Approximate solutions to the Cauchy problem (1.2), (1.3) are defined through a operator split-
ting method. Fix a time step ∆t ≥ 0 and consider the sequence of times tk = k∆t. Let (h∆, p∆)
be an approximate solution, constructed as follows. On each subinterval [tk−1 , tk[ the functions
(h∆, p∆) provide an approximate solution to the system of conservation laws

{
ht − (hp)x = 0 ,

pt +
(
(p − 1)h

)
x

= 0 ,
(3.1)

constructed by a wave-front tracking algorithm [8, 4, 5]. Moreover, in order to account for the
source term, at each time tk the functions are redefined in the following way

{
h∆(tk) = h∆(tk−) + ∆t

[
p∆(tk−) − 1

]
h∆(tk−) ,

p∆(tk) = p∆(tk−) .
(3.2)

In the remainder of this section we study how the strength of waves changes at a time tk
where the source term is inserted, and at a time τ where two wave fronts interact. A key
observation is that, in our particular system, the second characteristic field (called as p-field)
is linearly degenerate along its integral curve {h = 0}, and it is a straight line. The standard
wave interaction estimates valid for 2× 2 systems of conservation laws can thus be considerably
improved, when h ≈ 0.

Since the state space is two-dimensional, it is convenient to use a global system of Riemann
coordinates:

Definition 1 (Riemann coordinates). Given a point (h, p) ∈ R+ × R+ , let (H, 0) be the
point on the h-axis connected with (h, p) by a 2-characteristic curve, and let (0, P ) be the point
on the p-axis connected to (h, p) by a 1-characteristic curve. Then the functions (H,P ) form a
coordinate system of Riemann invariants of the point (h, p).
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The change of variables (h, p) 7→ (H,P ) satisfies the following

∂H

∂h
> 0 ,

∂P

∂p
> 0 , (3.3)

∂H

∂p
=

λ2

λ2 + 1

∂H

∂h
,

∂P

∂h
=

λ1 + 1

λ1

∂P

∂p
,

where the last two identities follow from ∇H · r2 = 0 = ∇P · r1. The inverse transformation
satisfies ∂h

∂H
> 0 , ∂p

∂P
> 0 .

Wave strengths are measured by the jumps between the corresponding Riemann coordinates
of the left and right states, as follows. Given a wave front with left and right states (hl, pl)
and (hr, pr), let (Hl, Pl) and (Hr, Pr) be the corresponding Riemann coordinates; then, if it is a
wave of the 1st family then its strength is measured by σh = Hr − Hl, and if it is a wave of the
2nd family then its strength is measured by σp = Pr − Pl. Note that 2-rarefaction waves have
negative strength, so 2-shock waves have positive strength (jump upward), and 1-rarefaction
waves have positive strength for p > 1 and negative strength for p < 1.

Throughout the paper, the waves of the 1st and 2nd families are called h-waves and p-waves
respectively. In the following estimates, we use O(1) to denote a quantity whose absolute value
is bounded.

Lemma 1 (Time step estimates). Consider a wave front located at a point x, with (hl, pl)
and (hr, pr) as the left and right state, respectively. After the time step (3.2) is accomplished,
the Riemann problem determined by the jump at x will be solved by two waves, say of strengths
σ+

h , σ+
p .

If the initial jump is of the first family, with strength σh, we have

σh =⇒

{
σ+

h = σh + O(1) · ∆t · |pl − 1| · |σh| ,

σ+
p = O(1) · ∆t · |pl − 1| · |σh| .

(3.4)

On the other hand, if the initial jump is of the second family, with strength σp, we have

σp =⇒

{
σ+

h = O(1) · ∆t · hl |σp| ,

σ+
p = σp + O(1) · ∆t · hl |σp| .

(3.5)

Same estimates hold if one replaces pl with pr and hl with hr in (3.4) and (3.5), respectively.

Proof. Let Ul = (hl, pl), Ur = (hr, pr) be the states on the left, right of the wave-front before
the time step (3.2) and let U+

l , U+
r be the corresponding states after (3.2) is applied. To obtain

(3.4), we define the mapping

Φ(σh,∆t, pl) =
(
σ+

h , σ+
p

)
− (σh, 0) .

If pl = 1, the pr = 1 and we trivially have Φ(σh,∆t, 1) = (0, 0).
If pl 6= 1 then pr 6= 1, and we have the identities

Φ(0,∆t, pl) = Φ(σh, 0, pl) = (0, 0) ,
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therefore we get

|Φ(σh,∆t, pl)| =

∣∣∣∣
∫ ∆t

0
∂ξΦ(σh, ξ, pl) − ∂ξΦ(0, ξ, pl) dξ

∣∣∣∣

=

∣∣∣∣
∫ ∆t

0

∫ σh

0
∂2

ξηΦ(η, ξ, pl) − ∂2
ξηΦ(η, ξ, 1) dηdξ

∣∣∣∣
≤ O(1) · |pl − 1||σh|∆t ,

which implies (3.4).
The estimate (3.5) can be obtained in a similar way. Define the map

Φ̃(σp,∆t, hl)
.
=
(
σ+

h , σ+
p

)
− (0, σp) .

We see that if hl = 0, then hr = 0 so the source term vanishes on both sides of the wave. We
have the identities

Φ̃(0,∆t, hl) = Φ̃(σp, 0, hl) = Φ̃(σp,∆t, 0) = (0, 0) .

By a same argument as for Φ, we get (3.5).
The proof for the estimates with pr, hr in (3.4), (3.5) is entirely similar; we omit the details.

Before we establish the wave interaction estimates, we need a technical lemma. The following
lemma estimates how much the Rankine-Hugoniot condition fails to be satisfied along a p-
characteristic curve, and how close the p-characteristic curve and Hugoniot locus are to each
other as h approaches 0. This lemma is essential for the proof of the interaction estimates.

Lemma 2 Given Uo = (ho, po) ∈ Ω, let U∗ be a point on the p-characteristic curve through Uo.
Then

F (U∗) − F (Uo) − λ̄2(U
∗ − Uo) = O(1) · h2

o , (3.6)

where F = (−hp, (p − 1)h)t is the flux function of the balance laws (1.2) and λ̄2 is the average
of the 2nd eigenvalue along the p-characteristic curve between Uo and U∗.

Furthermore, there exists a point U on the p-Hugoniot locus through Uo such that

|U − U∗| = O(1) · h2
o . (3.7)

Proof. Observe that by construction we have, for some a, b

U∗ − Uo =

∫ b

a

r2(U(θ)) dθ ,

F (U∗) − F (Uo) =

∫ b

a

λ2(U(θ)) · r2(U(θ)) dθ ,

where the integrals are computed along the p-characteristic curve through Uo. Consider the
average eigenvalue λ̄2 and the average eigenvector r̄2 along the p-characteristic curve, defined as

λ̄2
.
=

1

b − a

∫ b

a

λ2(U(θ)) dθ ,

r̄2
.
=

1

b − a

∫ b

a

r2(U(θ)) dθ =
1

b − a
(U∗ − Uo) ,
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we have

F (U∗) − F (Uo) − λ̄2(U
∗ − Uo) =

∫ b

a

(
λ2(U(θ)) − λ̄2

)
· r2(U(θ)) dθ .

Since the average of (λ2(U(θ))− λ̄2) over (a, b) along the p-characteristic curve is zero, we have

F (U∗) − F (Uo) − λ̄2(U
∗ − Uo) =

∫ b

a

(
λ2(U(θ)) − λ̄2

)
· (r2(U(θ)) − r̄2) dθ . (3.8)

To get an estimate on the integrand in (3.8), we observe that

λ2(U(θ)) − λ̄2 = O(1) · ho . (3.9)

This is because that the p-field is linearly degenerate at ho = 0, so λ2 approaches a constant
(as a consequence λ2(U(θ)) − λ̄2 vanishes) as ho → 0, and also λ2 depends smoothly on ho.
Furthermore, we also have

r2(U(θ)) − r̄2 = O(1) · ho , (3.10)

since the 2-characteristic curve is a straight line at ho = 0 and it depends continuously on ho.
Then, using (3.9) and (3.10) in (3.8), we get (3.6).

To establish (3.7), we observe that it follows from the global existence of the Hugoniot curves
of the first family. In detail, we consider two cases. First, let p and po be sufficiently far away
from each other. We need to show that the Hugoniot loci are globally well-defined. Indeed,
given (ho, po) and p, one can solve the Rankine-Hugoniot equations for h and shock speed s,

−hp + hopo − s(h − ho) = 0 ,

(p − 1)h − (po − 1)ho − s(p − po) = 0 .

The Jacobian matrix (considering h and s as the unknowns) of this transformation is
(

−p − s −(h − ho)
p − 1 −(p − po)

)
,

whose determinant is uniformly non zero since both h − ho and s(≈ h) are arbitrary small.
Secondly, when p and po are very close to each other, it follows from Glimm-Lax type

argument [19]. Indeed, let Ā(U∗, Uo) be the average Jacobian of F from Uo to U∗ along the p-
characteristic curve, and let l̄i, r̄i, λ̄i be the normalized left and right eigenvectors and eigenvalues
of Ā(U∗, Uo), respectively. We can rewrite (3.6) as

(
Ā(U∗, Uo) − λ̄2I

)
(U∗ − Uo) = O(1) · h2

o .

Taking scalar product with l̄1(U
∗, Uo) on the left, we get

(
λ̄1(U

∗, Uo) − λ̄2

)
< l̄1(U

∗, Uo), U
∗ − Uo > = O(1) · h2

o . (3.11)

First we see that λ2(U
∗, Uo) ≥ 0; furthermore, since p∗ and po are positive, then λ̄1(U

∗, Uo) < 0.
Therefore we have

|λ̄1(U
∗, Uo) − λ̄2(U

∗, Uo)| > 0

and this inequality holds uniformly on domains where p is bounded away from zero. Therefore
(3.11) implies

L(U∗)
.
= 〈l̄1(U

∗, Uo), U
∗ − Uo〉 = O(1) · h2

o . (3.12)
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Observe that for small U∗ − Uo we have

∇L(U∗) = ∇U l̄1(U
∗, Uo)

t(U∗ − Uo) + l̄1(U
∗, Uo) 6= (0, 0) ,

because l̄1 is non-zero. By implicit function theorem, for sufficiently small ho, there exists a U
near U∗, with

|U − U∗| = O(1) · h2
o , (3.13)

such that
〈l̄1(U,U0), U − Uo〉 = 0 .

This means U −Uo is a 2-eigenvector of Ā(U,Uo), so U lies on the 2-Hugoniot locus through Uo,
completing the proof.

In next lemma we establish the wave interaction estimates for our model, which improved
the standard ones.

Lemma 3 (Interaction Estimates). Consider two interacting wave fronts, with left, mid-
dle, and right states (hl, pl), (hm, pm), (hr, pr) before interaction, respectively, and hmax =
max {hl, hm, hr}.
(i) Assume that two p-waves of strength σp and σ̃p interact. Then the strengths σ+

h and σ+
p of

the outgoing waves satisfy

|σ+
h | +

∣∣σ+
p − (σp + σ̃p)

∣∣ = O(1) · hl · |σp σ̃p| . (3.14)

(ii) If two h-waves of size σh and σ̃h interact, then the strengths σ+
h and σ+

p of the outgoing
waves satisfy

∣∣σ+
h − (σh + σ̃h)

∣∣+ |σ+
p | = O(1) · |pl − 1| (|σh| + |σ̃h|) · |σh σ̃h| , (3.15)

or equivalently

∣∣σ+
h − (σh + σ̃h)

∣∣+ |σ+
p | = O(1) · min{|pl − 1|, |pm − 1|} · (|σh| + |σ̃h|) · |σh σ̃h| . (3.16)

(iii) If two waves of different families interact, say with strengths σh, σp , then the strengths σ+
h

and σ+
p of the waves emerging from the interaction satisfy

∣∣σ+
h − σh

∣∣+
∣∣σ+

p − σp

∣∣ = O(1) · hmax · |σh σp| . (3.17)

Proof. (i) First we observe that, if hl = 0, the also hm = hr = 0 since h = 0 is a p-
shock/rarefaction curve. Then σ+

p = σp + σ̃p and σ+
h = 0, and (3.14) is trivially satisfied. In

general, we define the mapping

Φ(hl, σp, σ̃p)
.
= (σ+

h , σ+
p − σp − σ̃p) .

We remark that, throughout the proof, Φ will be used to denote different mappings of similar
type, without causing confusion.

Notice that Φ is smooth w.r.t. hl and twice continuously differentiable w.r.t. σh, σ̃h. The
following identities hold:

Φ(0, σp, σ̃p) = Φ(hl, σp, 0) = Φ(hl, 0, σ̃p) = (0, 0) ;

11



therefore we have

Φ(hl, σp, σ̃p) =

∫ σp

0

∫ σ̃p

0

∂2Φ

∂σp∂σ̃p
(hl, r, s) drds ,

where the integrand vanishes if hl = 0 and is Lipschitz continuous w.r.t. hl. Hence we get (3.14).

(ii) We observe that, if pl = pm = pr = 1, then σ+
h = σh + σ̃h and σ+

p = 0, and the estimate
(3.15) is trivial. In the general case, the three quantities pl, pm, pr are either all > 1, or all < 1.
To fix the ideas, we shall thus assume pl, pm , pr > 1, the other case being similar. Introduce
the mapping

Φ(hl, pl, σh, σ̃h)
.
= (σ+

h − σh − σ̃h , σ+
p ) .

Notice that Φ is smooth w.r.t. hl, pl, and twice continuously differentiable w.r.t. σh, σ̃h. Moreover,
Φ is separately smooth restricted to each of the four quadrants

D1 = {σh ≥ 0 , σ̃h ≥ 0} , D2 = {σh ≤ 0 , σ̃h ≥ 0} ,

D3 = {σh ≤ 0 , σ̃h ≤ 0} , D4 = {σh ≥ 0 , σ̃h ≤ 0} .

Since Φ(hl, pl, σh, σ̃h) = (0, 0) on D1, we have

∂2Φ

∂σh∂σ̃h
(hl, pl, 0, 0) = (0, 0) .

Using the previous identity and the following ones:

Φ(hl, 1, σh, σ̃h) = Φ(hl, pl, 0, σ̃h) = Φ(hl, pl, σh, 0) = (0, 0) ,

we can write

Φ(hl, pl, σh, σ̃h) =

∫ σh

0

∫ σ̃h

0

∂2Φ

∂σh∂σ̃h
(hl, pl, r, r̃) drdr̃

=

∫ σh

0

∫ σ̃h

0

[∫ pl

1

∫ 1

0

∂

∂pl

[
r

∂

∂σh
+ r̃

∂

∂σ̃h

]
∂2Φ

∂σh∂σ̃h
(hl, p, θr, θr̃) dθdp

]
drdr̃ .

Observing that in the above integrand one always has |r| + |r̃| ≤ |σh| + |σ̃h|, we obtain (3.15).
Finally, note that with the same type of arguments one obtains the same estimate as (3.15)

with pm instead of pl. Therefore (3.16) follows.

(iii) We first recall that, by using Riemann coordinates, one has the standard cubic estimate

∣∣σ+
h − σh

∣∣+
∣∣σ+

p − σp

∣∣ = O(1) · |σhσp|
(
|σp| + |σh|

)
. (3.18)

However, this is useless for our problem, because though |σh| = O(1)·‖h‖∞ is small, the strength
of the p-wave can be large. Having a cubic rather than a quadratic estimate thus would not
help. The proof for the estimate in (3.17) heavily relies on Lemma 2, i.e., the p-characteristic
and Hugoniot curves are very close to each other for small h.

We introduce the mapping

Φ(hl, pl, σh, σp)
.
= (σ+

h , σ+
p ) − (σh, σp) .

12



Observe that Φ is smooth w.r.t. hl, pl, and twice continuously differentiable w.r.t. σh, σp, with
Lipschitz-continuous second derivatives. Moreover, the following identities hold trivially

Φ(hl, pl, σh, 0) = Φ(hl, pl, 0, σp) = (0, 0) ,

hence

Φ(hl, pl, σh, σp) =

∫ σp

0

∫ σh

0

∂2Φ

∂σp∂σh
(hl, pl, r, s) dr ds , (3.19)

which leads to the standard cubic estimate (3.18), thank also to

∂2Φ

∂σp∂σh
(hl, pl, 0, 0) = (0, 0) .

Now we claim that
∂2Φ

∂σp∂σh

(0, pl, 0, σp) = (0, 0) . (3.20)

If (3.20) holds, then by (3.19) and the Lipschitz continuity of the second derivatives we get

|Φ(hl, pl, σh, σp)| ≤ O(1)

∫ |σp|

0

∫ |σh|

0
(hl + r) dr ds = O(1)(hl + |σh|) |σh σp| ,

which implies (3.17) since hl + |σh| = O(1)hmax.

To establish (3.20), we consider two cases, depending on the type of p-waves.

a. Consider σp < 0, i.e., the p-wave is a rarefaction. Due to the genuine nonlinearity of the
field, p-waves do not change type after interaction, so σ+

p < 0 is also a rarefaction. We
trivially have

σ+
h − σh = 0 .

We still need an estimate on the term σ+
p − σp, depends on the types of h-waves. If they

are all rarefaction waves, then it’s trivial since σ+
p − σp = 0. If one of them is a shock,

then by the fact that the h-shock and rarefaction curves through the same point share the
2nd order tangency at the point, and by the continuity of the derivatives, we achieve the
desired estimate

σ+
p − σp = O(1) · |σp| · |σh|

2 . (3.21)

b. It remains to consider the case where the p-waves σp > 0 and σ+
p > 0 are shocks. In order

to show (3.20), we see that it suffices to show

∂Φ

∂σh
(0, pl, 0, σp) = (0, 0) . (3.22)

Thanks to Lemma 2, the distance between a p-characteristic curve and Hugoniot curve is
of order O(1) · σ2

h, which implies (3.22), completing the proof.
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We conclude this section with a remark about the change of P along Hugoniot curves of the
first family.

Recalling Definition 1, let (H,P ) be the Riemann coordinates of a point on the Hugoniot
curve of the first family originated from (Hl, Pl), and let σ = H − Hl be the size of the wave.
Then one has the following estimate:

P − Pl = O(1) · |Pl − 1| · σ2 . (3.23)

Here the term σ2 comes from the second order tangency of the shock and rarefaction curves; the
term |Pl − 1| is justified by observing that the function Φ(Hl, Pl;σ)

.
= P −Pl vanishes identically

if Pl = 1.
Moreover, for small σ, one has the following estimate:

P − Pl = O(1) · min{|Pl − 1| , |P − 1|} · σ2 . (3.24)

Indeed, by (3.23) one has

P − 1 = (P − Pl) + (Pl − 1) = (Pl − 1)
(
1 + O(1)σ2

)
.

4 A priori estimates

The goal of the present paper is the global existence of large BV solutions, for all times t ≥ 0.
This will be established by deriving the following global a priori bounds for the approximate
solutions:

• the norms ‖h(t, ·)‖L1 and ‖p(t, ·) − 1‖L1 ;

• the lower bound on p, i.e., the quantity infx p(t, x) ;

• the uniform bounds on h and p, i.e., the quantities ‖h(t, ·)‖L∞ and ‖p(t, ·)‖L∞ ;

• the total variations Tot.Var.{h(t, ·)} and Tot.Var.{p(t, ·)} .

Approximate solutions will be obtained by constructing a front tracking approximation to
the conservation laws (3.1) on each time interval [tk−1, tk), as in [8, Chapter 7] or [9, 4] for the
2 × 2 version, and then updating the solution at time t = tk according to (3.2).

In the remainder of this section, we will give the main ideas of establishing these a priori
estimates. All estimates will be made rigorous later in Section 5 where we complete the proof
of the global existence of large BV solutions.

4.1 The L1 bound on p(t, ·) − 1 and h(t, ·).

We establish this a priori estimate on the weak solutions of (1.2). In terms of the new variable
q = p − 1, the system (1.2) takes the form

{
ht − ((q + 1)h)x = qh ,

qt +
(
hq
)
x

= 0 ,
(4.1)
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with initial data (h̄, q̄) that satisfies h̄ ≥ 0 and q̄ > −1. According to the second equation in
(4.1), the quantity q

.
= p−1 satisfies a transport equation, with speed h. Therefore, its L1 norm

is non-increasing in time; we thus have

‖q(t, ·)‖L1 ≤ ‖q̄‖L1 ⇒ ‖p(t, ·) − 1‖L1 ≤ ‖p̄ − 1‖L1 for all t ≥ 0 . (4.2)

Actually, the L1 norm of p− 1 can decrease in the presence of a shock with left and right states
of q of opposite signs. From Figure 2 we see this can only happen with a shock in the 2nd family,
satisfying pl < 1, pr > 1.

From the first equation in (4.1) we obtain

‖h(t)‖L1 ≤

∫ t

0

∫ (
p(τ, x) − 1

)
h(τ, x) dxdτ =

∫ t

0

∫
q(τ, x)h(τ, x) dxdτ .

Note that when p < 1, the moving layer will deposit and get thinner, so ‖h(t)‖L1 will decrease. It
will however increase where p > 1. To control the increment, we consider the weighted functional

Ih(t)
.
=

∫
W (t, x)h(t, x) dx , (4.3)

where the weight is defined as

W (t, x)
.
= exp

{∫ x

−∞
|p(t, y) − 1| dy

}
= exp

{∫ x

−∞
|q(t, y)| dy

}
≥ 1 . (4.4)

Note that the weight W is uniformly bounded thanks to the bound on ‖q(t, ·)‖L1 . Here the
weight W accounts for the erosion/deposition that the mass h at x may encounter in the future.
From the bound on the L1 norm of p − 1 in (4.2), we see that W is positive and uniformly
bounded for all time. Intuitively, after h crosses some region with p 6= 1, the weighted functional
Ih will decrease.

Indeed, observing that

d

dt

∫ x

−∞
|p(t, y) − 1| dy ≤ −|p(t, x) − 1|h(t, x) , (4.5)

we see that the product Wh satisfies the following inequality

(Wh)t − (Wh(q + 1))x ≤ Wh (q − |q|(h + q + 1)) . (4.6)

Note the right hand side is ≤ 0 for h ≥ 0 and q ≥ −1. Then, the integral of Wh is non-increasing
in time and we immediately have

d

dt
Ih(t) ≤

∫ ∞

−∞
Wh (q − |q|(h + q + 1)) dx ≤ 0 . (4.7)

From (4.7), we obtain the a priori bound

‖h(t, ·)‖L1 ≤ Ih(t) ≤ Ih(0) ≤ exp (‖q̄‖L1) · ‖h̄‖L1 . (4.8)
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4.2 The lower bound on p

The bounds on the total variation, as well as the lower bound on p and the pointwise bounds
on h, p, rely on the following key observation: If all wave strengths are measured in terms of
Riemann coordinates, then all the interaction estimates (3.14)–(3.17) contain the additional
factor ‖h‖L∞ . Therefore, if the norm ‖h‖L∞ remains sufficiently small, we can assume that the
total strength of all new waves produced by interactions is as small as we like. In essence, the
change in the total variation and in the L∞ norms of h, p is thus determined only by the source
term in the first equation (4.1).

We now show how to achieve these a priori bounds, based on the estimates (3.4)-(3.5).
Let’s first establish the lower bound on p. Let H(h, p), P (h, p) be the Riemann coordinates of

a point (h, p) as in Definition 1. We claim that, neglecting small terms due to wave interactions,
the quantity

Pinf(t)
.
= ess- inf

x
P (t, x) (4.9)

is non-decreasing in time.
This a priori estimate is derived for smooth solutions of (1.2). Consider a 2-characteristic,

say t 7→ x2(t), with ẋ2(t) = λ2(t) ≥ 0. Then one has

d

dt
P (t, x2(t)) =

∂P

∂h
· (p − 1)h ≥ 0 . (4.10)

Indeed, the geometry of the wave curves implies ∂P/∂h < 0 when p < 1 and that ∂P/∂h > 0
when p > 1. This shows that the quantity Pinf is non-decreasing in time if the solution is smooth.

4.3 The L∞ bounds on h and p.

Toward the uniform bounds on h and p, we consider the weights

V h(t, x)
.
= exp

(
κ1 ·

∫ x

−∞
|p(t, y) − 1| dy

)
, (4.11)

V p(t, x)
.
= exp

(
κ2 ·

∫ ∞

x

W (t, y)h(t, y) dy

)
, (4.12)

for some suitable constants κ1 and κ2. Recall that W is defined in (4.4). Thanks to the a priori
bounds on the L1 norm of h and p − 1, we see that these two weights are well defined and
bounded for all time. Furthermore, along a given smooth curve x(t), by (4.5) we get

d

dt
V h(t, x(t)) ≤ −κ1V

h · |p − 1| · (h − ẋ) , (4.13)

while from (4.6) we have

d

dt

∫ ∞

x

W (t, y)h(t, y) dy ≤ −W (t, x)p(t, x)h(t, x) ,

and therefore we obtain

d

dt
V p(t, x(t)) ≤ −κ2V

p · Wh · (ẋ + p) . (4.14)
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Again, let H(h, p), P (h, p) be the Riemann coordinates of a point (h, p) as in Definition 1. We
claim that, neglecting small terms due to wave interactions, the quantities

J h(t)
.
= ess- sup

x
V h(t, x)H(t, x) , (4.15)

J p(t)
.
= ess- sup

x
V p(t, x)P (t, x) (4.16)

are non-increasing in time.
First we will establish the bound on the quantity J p(t), for smooth solutions of (1.2). Let’s

consider a 2-characteristic t 7→ x2(t). Observe that the mass of h is transported to the left with
speed −p, while ẋ2 = λ2 ≥ 0, so the relative speed of the mass of h cross the 2-characteristic is
p + λ2. By (4.14), (4.4) and using the apriori bound on p, P from below (let us denote them by
pinf , Pinf respectively, both positive), we get

d

dt

(
V p(t, x2(t))P (t, x2(t))

)
=

(
d

dt
V p(t, x2(t))

)
· P + V p ·

d

dt
(P (t, x2(t))

≤ −κ2V
p · (p + λ2) · W h · P + V p ·

∂P

∂h
(p − 1)h

≤ V ph

(
−κ2 pinf Pinf +

∂P

∂h
(p − 1)

)
≤ 0 (4.17)

where the last inequality holds provided that the constant κ2 is chosen large enough. This shows
that the quantity J p(t) is non-increasing.

Second, we derive the bound on the quantity J h(t), also for the smooth solutions of (1.2).
Let’s consider a 1-characteristic t 7→ x1(t), with ẋ1 = λ1. We observe that the mass of q = p− 1
is transported forward with speed h, while, by (2.5), ẋ1 = λ1 ≤ −p + h, so the relative speed
of the mass q passing the 1-characteristic is bigger than h − (−p + h) = p. Hence, by (4.13) we
have

d

dt

(
V h(t, x1(t))H(t, x1(t))

)
=

(
d

dt
V h(t, x1(t))

)
· H + V h ·

d

dt
(H(t, x1(t))

≤ −κ1V
h · p · |p − 1|H + V h ·

∂H

∂h
(p − 1)h

≤ V h |p − 1| H

(
−κ1 pinf + O(1)

∂H

∂h

)
≤ 0 (4.18)

where the last inequality holds provided that the constant κ1 is chosen large enough. This shows
that the quantity J h(t) is also non-increasing.

Since the weights V h and V p are uniformly bounded, we conclude that ‖H(t, ·)‖L∞ and
‖P (t, ·)‖L∞ are bounded for all time t > 0, and so are ‖h(t, ·)‖L∞ and ‖p(t, ·)‖L∞ .

4.4 Wave front interactions: total wave strength and interaction potential

We now study the effect of wave-front interactions, and derive a-priori bounds on the total
variation. To clarify the main ideas, it is convenient first to consider the case without sources,
as in (3.1), with initial data (1.3). If (1.4), (1.6) and (1.7) hold for some δ > 0 sufficiently small,
we claim that the entropy-weak solution exists globally and satisfies a uniform BV bound.
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As usual, BV bounds are obtained by introducing a suitable wave strenght and wave interac-
tion potential and checking that the sum (or some linear combination of them) is non-increasing
along any solution of (3.1).

Let u = (h, p) : R 7→ R
2 be a piecewise constant mapping, with h ≥ 0, and whose jumps

consist of admissible shocks or rarefactions, for the system (3.1). Assume that at xα the profile
u(·) has a jump in the family iα ∈ {1, 2}, with strength |σα| measured by the change in the
corresponding Riemann coordinates. We then define the total strength of waves V and the wave
interaction potential Q by setting

V =
∑

α

|σα| , Q(u) = Qhh + Qpp + Qph . (4.19)

Here
Qhh =

∑

iα=iβ=1, xα<xβ

wα,β |σα| |σβ |, (4.20)

is the interaction potential of waves of the first family (i.e., h-waves). Since this first charac-
teristic field is not genuinely nonlinear along the line {p = 1}, we insert here the factor wα,β

defined as follows. If σα and σβ are two shocks, on the same side of the line p = 1, then we set

wα,β = δ0 · min
{
|Pα

l − 1| , |P β
l − 1|

}
(4.21)

where Pα
l = P (xα−), P β

l = P (xβ−) are the left limits of P (Riemann coordinate) at xα, xβ

respectively, and δ0 > 0 is a small constant to be determined. In all other cases, we set wα,β = 0.
The other parts of the interaction potential are defined as usual:

Qpp =
∑

(α,β)∈A2

|σα| |σβ| (4.22)

is the interaction potential of waves of the second family. Here A2 denotes the set of couples of
waves of the second family, with xα < xβ, at least one of which is a shock. Finally,

Qph =
∑

iα=2, iβ=1, xα<xβ

|σα| |σβ| (4.23)

is the interaction potential among waves of different families.
Let c > 0 be an arbitrary (small) constant whose precise value will be assumed later. We

claim that, for a suitable choice of δ0 and sufficiently small ‖h‖L∞ , (depending on c), the function

t 7→ S(t)
.
= V (t) + cQ(t) (4.24)

is strictly decreasing at every interaction.
Indeed, assume at a time t two waves with strength σα and σβ interact at the point x̄, and

generate two waves of the sizes σ′
h (h-wave) and σ′

p (p-wave). We consider the following cases,
with different types of incoming waves.

1. Two neighboring h-shocks with strength σα and σβ (xα ≤ xβ) interact. By the interaction
estimate (3.16), the change in V is

∆V = |σ′
h| + |σ′

p| − |σα| − |σβ |

≤ O(1)min{|Pα
l − 1|, |P β

l − 1|} · (|σα| + |σβ |) · |σασβ|

= O(1) ·
wα,β

δ0
· ‖h‖L∞ · |σασβ| . (4.25)
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For the change in Q, we see first that Qhh changes as follows:

∆Qhh = −wα,β · |σασβ| +
∑

γ, iγ=1

{
wh,γ |σ

′
hσγ | − wα,γ |σασγ | − wβ,γ |σβσγ |

}
. (4.26)

The first negative term is due to interaction, and the second term is due to change in the
wave strength after interaction.

Note that the 3 waves σα, σβ and σ′
h are on the same side of p = 1. Hence whenever

the term wh,γ is positive, the other two terms wα,γ , wβ,γ are non-zero. Also, note that
wh,γ = wα,γ , since the left states of σα and σ′

h are the same.

Hence, the positive terms in the sum of (4.26) are estimated by

wh,γ |σ
′
hσγ | − wα,γ |σασγ | − wβ,γ |σβσγ |

= wα,γ · |σγ | ·
[
|σ′

h| − |σα| − |σβ|
]
+ (wα,γ − wβ,γ) |σβσγ | . (4.27)

The first term on the r.h.s. can be estimated using again (3.16). To evaluate the quantity

wα,γ − wβ,γ , let Pα
l , P β

l be the left state of the waves σα, σβ. Then

|wβ,γ − wα,γ | ≤ δ0 ·
∣∣∣|Pα

l − 1| − |P β
l − 1|

∣∣∣ = δ0 · |P
α
l − P β

l | .

Since P β
l = Pα

r , we can use (3.24) and obtain

|wβ,γ − wα,γ | ≤ O(1) · ‖h‖L∞ · wα,β · |σα| .

By substituting into (4.27), we deduce

wh,γ |σ
′
hσγ | − wα,γ |σασγ | − wβ,γ |σβσγ |

≤ wα,γ · |σγ | · O(1) ·
wα,β

δ0
· ‖h‖L∞ · |σασβ| + O(1) · ‖h‖L∞ · wα,β · |σα| · |σβ σγ |

= O(1) · ‖h‖L∞ · wα,β · |σασβ| ·

(
wα,γ

δ0
+ 1

)
|σγ | . (4.28)

Using (4.28), the bound on P and on the total wave strength, then (4.26) is estimated by

∆Qhh ≤ −wα,β|σασβ| + O(1)‖h‖L∞wα,β |σασβ| ·
∑

γ, iγ=1

{
wα,γ

δ0
+ 1

}
|σγ |

= −wα,β · |σασβ| + O(1) · ‖h‖L∞ · wα,β · |σασβ| . (4.29)

Now, the term Qph +Qpp might increase after interaction, and the change can be roughly
estimated as

∆Qph + ∆Qpp ≤
(
|σ′

h| − |σα| − |σβ|
) ∑

iγ=2

|σγ | + |σ′
p| ·
∑

iγ=2

|σγ |

= O(1) ·
wα,β

δ0
· ‖h‖L∞ · |σασβ| . (4.30)
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Notice that all the positive terms are multiplied by the factor ‖h‖L∞ . Putting together
(4.29) and (4.30), we end up with

∆Q ≤ wα,β · |σασβ| ·

(
−1 + O(1) ·

‖h‖L∞

δ0
+ O(1) · ‖h‖L∞

)
≤ −

1

2
wα,β · |σασβ| ,

where the last inequality holds if ‖h‖L∞ and ‖h‖L∞/δ0 are sufficiently small. Then, using
the estimate (4.25), we finally get

∆S = ∆V + c∆Q ≤ wα,β · |σασβ| ·

[
−

c

2
+ O(1) ·

1

δ0
· ‖h‖L∞

]
≤ −

c

4
wα,β · |σασβ | ,

where the last inequality holds by choosing ‖h‖L∞/(cδ0) sufficiently small.

2. Two h-waves of opposite sign with strength σα and σβ (xα ≤ xβ) interact. They must be
one shock and one rarefaction wave. In this case, V is strictly decreasing, because of the
cancellation: assuming |σβ| > |σα|, we have

∆V = |σ′
h| + |σ′

p| − |σα| − |σβ |

≤ {|σα + σβ| − |σα| − |σβ|} + |σ′
h − σα − σβ| + |σ′

p|

= −2|σα| + O(1) · ‖h‖L∞ · |σασβ| .

For the interaction potential, since one of the incoming wave is a rarefaction, we have
wα,β = 0, and the change in Qhh is caused by the change in wave strength at interaction,

∆Qhh =
∑

γ, iγ=1

{
w′

h,γ |σ
′
hσγ | − wα,γ |σασγ | − wβ,γ |σβσγ |

}
.

If the outgoing h-wave σ′
h is a rarefaction, then w′

h,γ = 0 and ∆Qhh ≤ 0. If the outgoing
h-wave is a shock, with strength σ′

h, we discuss two cases. First, if σα is a shock and σβ

is a rarefaction, then wβ,γ = 0 and w′
h,γ = wα,γ since they share the same left state of

P . Due to cancellation, we have |σ′
h| ≤ |σα|, which implies ∆Qhh ≤ 0. Second, if σβ is a

shock and σα is a rarefaction, then wα,γ = 0 and w′
h,γ = wβ,γ because Pα

l = P β
l since σα

is a rarefaction wave. Furthermore, |σ′
h| ≤ |σβ| due to cancellation. Therefore ∆Qhh ≤ 0.

The change in Qph + Qpp is estimated in a same way as for the previous case. We have

∆Qph + ∆Qpp = O(1) · ‖h‖L∞ · |σασβ| .

Adding up, the change in S is

∆S ≤ − 2|σα| + (1 + c) · O(1) · ‖h‖L∞ · |σασβ | ≤ − |σα| ,

where the last inequality holds by choosing ‖h‖L∞ sufficiently small.

3. A p-wave σα interacts with a h-wave σβ. In this case, by (3.17) the change in V is measured
by

O(1) · |σα| · |σβ| · ‖h‖L∞ .
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For the interaction potential Q, we have

∆Qph + ∆Qpp = −|σα| · |σβ | + O(1) · |σασβ | · ‖h‖L∞ ,

where the first negative term is due to interaction, and the last term is due to the change
of wave strength after interaction. For the term Qhh, we have

∆Qhh =
∑

γ, iγ=1

{
w′

h,γ |σ
′
hσγ | − wβ,γ |σβσγ |

}
. (4.31)

To see how Qhh changes, we consider two cases. First, if the p-wave σα crossed p = 1, then
the two waves σβ and σ′

h must be of different type, one shock and one rarefaction. If σ′
h

is a rarefaction, then w′
h,γ = 0 and ∆Qhh ≤ 0. Otherwise, if σ′

h is a shock, then wβ,γ = 0.
Let Pα

l , Pα
r be the left, right state of σα, we have

w′
h,γ = δ0 min{|Pα

l − 1|, |P γ
l − 1|} ≤ δ0|σα| ,

and we have the estimate

∆Qhh ≤
∑

γ, iγ=1

w′
h,γ |σ

′
hσγ | ≤ O(1) δ0 · |σα| · [|σβ | + O(1)‖h‖L∞ |σασβ|] ≤ O(1) δ0 · |σασβ| .

For the second case, when σα does not cross p = 1, then the weights w′
h,γ and wβ,γ 6= 0

will be either both zero or both non-zero, and

w′
h,γ − wβ,γ ≤ δ0 {|P

α
l − 1| − |Pα

r − 1|} ≤ δ0|P
α
l − Pα

r | = δ0|σα| .

Then, we have

∆Qhh =
∑

γ, iγ=1

w′
h,γ (|σ′

h| − |σβ |)|σγ | +
∑

γ, iγ=1

(
w′

h,γ − wβ,γ

)
|σβσγ |

≤ O(1) · δ0|σασβ| .

In conclusion, we have

∆Q ≤ −|σασβ| + O(1) · |σασβ| · (δ0 + ‖h‖L∞) ≤ −
1

2
|σασβ| ,

where the last inequality holds for δ0 > 0 sufficiently small. Therefore

∆S = ∆V + c∆Q ≤ |σασβ|
(
−

c

2
+ O(1) ‖h‖L∞

)
≤ −

c

4
|σασβ| ,

which is negative if we choose ‖h‖L∞/c sufficiently small. We note that it is exactly in
this estimate that it requires to choose the constant δ0 > 0 sufficiently small.

4. Two p-waves interact. Similarly, by (3.14), the change in wave strength V is measured by

O(1) · |σα| · |σβ| · ‖h‖L∞ ,

and the change in the interaction potential Q is measured by

−|σα| · |σβ| + O(1) · |σα| · |σβ| · ‖h‖L∞ .

Add up these two terms, we get the change in S,

∆S = − c |σασβ| + (1 + c)O(1) · |σασβ | · ‖h‖L∞ ≤ −
c

2
|σασβ| ,

if ‖h‖L∞ is sufficiently small.
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4.5 New total wave strength and interaction potential with the source term

The analysis in the previous step was valid in connection with (3.1), without the source term. To
handle the original system (1.2), we need to account for the possible increase in wave strengths,
due to the source terms. By (3.4), the size of an h-jump grows at a rate proportional to
the amount of |p − 1|-mass it crosses. Similarly, by (3.5), the size of a p-jump grows at a rate
proportional to the amount of h-mass it crosses. It is thus natural to consider a weight functional
Z = Z(t, x) measuring how much mass a given front located at x still has to cross. Recalling
(4.4) and (4.11)-(4.12), we thus define

Z(t, x)
.
= V h(t, x) · V p(t, x) (4.32)

where V h and V p are defined in (4.11) and (4.12), for suitable constants κ1 > 0 and κ2 > 0.
We first compute the derivative of the functional Z along a differentiable curve t 7→ x(t):

using (4.13)-(4.14), we have

d

dt
Z(t, x(t)) =

d

dt

(
V h(t, x(t))

)
· V p + V h ·

d

dt
(V p(t, x(t)))

≤ −κ1V
h(h − ẋ)|p − 1|V p − V h · κ2V

p(p + ẋ)Wh

= −Z(t, x(t)) ·
{

κ1(h − ẋ)|p − 1| + κ2(p + ẋ)Wh
}

. (4.33)

Note that the previous quantity is ≤ 0 if −p ≤ ẋ ≤ h.
The presence of source terms can now be accounted by redefining the quantities (4.19)–

(4.23), replacing each wave strength |σα| with the weighted strength Z(xα) |σα|. More precisely
we define, for every time t at which no interactions occur,

S̃ = Ṽ + cQ̃ , (4.34)

where
Ṽ =

∑

α

Z(xα) |σα| , Q̃ = Q̃hh + Q̃pp + Q̃ph , (4.35)

and

Q̃hh =
∑

iα=iβ=1, xα<xβ

wα,β Z(xα)|σα|Z(xβ)|σβ | , (4.36)

Q̃pp =
∑

(α,β)∈A2

Z(xα)|σα|Z(xβ)|σβ | , (4.37)

Q̃ph =
∑

iα=2, iβ=1, xα<xβ

Z(xβ)|σα|Z(xβ)|σβ | . (4.38)

We now observe that, at times where two wave-fronts interact, the same arguments as in
subsection 4.4 show that the quantities S̃ is decreasing. Indeed, the presence of the weights
Z(xα) only increases the sizes of the coefficients O(1) in the various estimates. This can be
counter-balanced by choosing ‖h‖L∞ sufficiently small. We omit the details.

4.6 The bounds on the total variations of h and p.

Next, consider a time tk where the functions h, p are redefined as in (3.2), accounting for the
source terms. We claim that the weighted functional S̃ = Ṽ + cQ̃ is decreasing from t = tk−1+
to t = tk+, for suitable choice of c (apart from small terms due to wave interactions).
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4.6.1 The decrease of Ṽ .

Indeed, consider a wave-front of the first family, located at xα(·) with size σh, and let (hl, pl)
and (hr, pr) be its left and right states, respectively. Assume that this front does not interact
with other fronts during the interval (tk−1, tk). At time tk , this front is replaced by two fronts
of strengths σ+

h , σ+
p , whose strength is estimated by (3.4).

Following (4.33), we have

d

dt
Z(t, xα(t)) ≤ −Z(t, xα(t))

{
κ1(hl − ẋα)|pl − 1| + κ2(pr + ẋα)W (t, xα(t))hr

}
.(4.39)

Note that the first term comes from differentiation of V h, which by definition (4.11) includes the
integral over the interval (−∞, x), therefore h, p is evaluated at the left state. In the meanwhile,
the second term comes from differentiation of V p, which by definition (4.12) includes the integral
over the interval (x,∞), therefore h, p is evaluated at the right state.

According to (2.4), the speed ẋα is estimated by

ẋα = λ1(hl, pl) + O(1) |σh| · |pl − 1| = − pl + O(1) · hl · |pl − 1| + O(1) |σh| · |pl − 1| ,

and hence

hl − ẋα ≥ c0 > 0 (4.40)

for some positive constant c0. On the other hand, the quantity pr + ẋα may not have a specific
sign. We can estimate it as follows:

|pr + ẋα| = |pr + λ1(hr, pr) + O(1)σh (pr − 1)|

≤ O(1) · hr |pr − 1| + O(1) |σh| · |pr − 1|

= O(1) ·
(
hr + |σh|

)
|pl − 1| , (4.41)

since pl − 1 and pr − 1 are of the same order of magnitude. Using (4.40) and (4.41) into (4.39),
and recalling that the weights W can be large but are uniformly bounded, we obtain

d

dt
Z(t, xα(t)) ≤ Z(t, xα(t)) ·

(
− κ1c0|pl − 1| + κ2 · O(1) ·

(
hr + |σh|

)
hr |pl − 1|

)
.

Finally, by choosing κ1 sufficiently large, and the norm ‖h‖L∞ sufficiently small, such that
O(1)κ2(‖h‖L∞)2 ≤ 1

2κ1c0, we conclude that

d

dt
Z(t, xα(t)) ≤ −Z(t, xα(t)) · κ1

c0

2
|pl − 1| .

By integrating the previous inequality on (tk−1, tk), we get the following estimate on Z,

Z(tk, xα(tk)) · (|σ
+
h | + |σ+

p |)

≤ Z(tk−1, xα(tk−1)) · |σh| ·
(
1 − κ1∆t ·

c0

4
|pl − 1|

)(
1 + O(1) · ∆t · |pl − 1|

)
.

Choosing the time step ∆t small enough and κ1 large enough, such that

κ1
c0

4
−O(1) + O(1) · κ1∆t

c0

4
|pl − 1| ≥ c1 > 0
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for some positive constant c1, we get

Z(tk, xα(tk)) · (|σ
+
h | + |σ+

p |) ≤ Z(tk−1, xα(tk−1)) |σh| (1 − c1 |pl − 1|∆t) . (4.42)

Next, consider a wave-front of the second family, located at xβ(·) with size σp . We still
assume no interaction during the time interval (tk−1, tk).

As before, we evaluate the quantities (hl − ẋβ) and (pr + ẋβ). Since here ẋβ ∼ h, the second
quantity will be significant and the first one negligible. Indeed, according to the second equation
in (2.4), we get

pr + ẋβ = pr + λ2(hr, pr) + O(1)|σp|hr

= pr + hr + O(1)
(
|pr − 1| + |σp|

)
hr

≥ c̄0 > 0 (4.43)

for some positive constant c̄0 (by choosing ‖h‖L∞ sufficiently small), and

hl − ẋβ = hl − λ2(hl, pl) + O(1)|σp|hl = O(1)
(
|pl − 1| + |σp|

)
hr , (4.44)

since hr, hl are of the same order of magnitude.
Now, by (4.43)-(4.44), and recalling that W ≥ 1, we have the following estimate on Z:

d

dt
Z(t, xβ(t)) ≤ −Z(t, xβ(t)) ·

{
κ1(hl − ẋβ)|pl − 1| + κ2(pr + ẋβ)Whr

}

≤ Z(t, xβ(t)) · hr ·
(
− κ2 c̄0 + O(1)κ1 |pl − 1|

(
|pl − 1| + |σp|

))
.

Finally, by choosing κ2 sufficiently larger than κ1, such that

κ1O(1) |pl − 1|
(
|pl − 1| + |σp|

)
≤ κ2

c̄0

2
,

we conclude
d

dt
Z(t, xβ(t)) ≤ − Z(t, xβ(t)) · κ2

c̄0

2
hr .

Therefore, neglecting the interaction terms and using (3.5), we have

Z(tk, xβ(tk)) · (|σ
+
h | + |σ+

p |)

≤ Z(tk−1, xβ(tk−1)) · |σp| ·
[
1 − κ2∆t ·

c̄0

4
hr

] (
1 + O(1) · ∆t · hr

)
.

Again, we can choose κ2 sufficiently large, such that

κ2
c̄0

4
−O(1) + O(1)κ2∆t ·

c̄0

4
hr ≥ c2 > 0

for some positive constant c2, we have the following estimate

Z(tk, xβ(tk)) · (|σ
+
h | + |σ+

p |) ≤ Z(tk−1, xβ(tk−1)) · |σp| · (1 − c2hr∆t) . (4.45)

We conclude that, in both cases (4.42) and (4.45), the weighted strength of all jumps decreases
from tk−1 to tk , as follows:

∆Ṽ ≤ − c1∆t
∑

α, iα=1

Z(xα(tk−1))|σα||p
α
l − 1| − c2∆t

∑

β, iβ=2

Z(xβ(tk−1))|σβ |h
β
r . (4.46)
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4.6.2 The change of Q̃.

Now we study the change in the Q̃ term from time tk−1 to tk. Given a pair of waves, we have 4
possible cases, according to the families of the two waves. For each case we evaluate the variation
of the corresponding terms in Q̃ from time tk−1 to tk.

Case 1. Assume at tk−1 we have two waves of the first family, located at xα and x̃α, with
wave strengths σα and σ̃α. At time tk, after the fractional step (3.2), each 1-wave will become
two waves, one from each family, with strengths (σ+

α , σ+
β ) and (σ̃+

α , σ̃+
β ) located at x+

α and x̃+
α ,

respectively. See figure 3 for an illustration.

α
+ xα

~+

σα
∼ +σα

+ σ
β
+

σ
β
+∼

xα xα
~

σα σα
∼

t k

t k−1

x

Figure 3: Case 1, two 1-waves σα and σ̃α from time tk−1 to tk. Here the dotted lines denote
other wave fronts which are not being considered in this case.

To simplify notation we introduce Zα = Z(tk−1, xα), Z+
α = Z(tk, x

+
α ) and similarly for Z̃α,

Z̃+
α . The change in Q̃hh related to this pair of waves can be estimated as

∆Q̃hh = wα+,α̃+Z+
α |σ+

α | · Z̃
+
α |σ̃+

α | − wα,α̃Zα |σα| · Z̃α |σ̃α|
.
= (I) + (II) ,

where
(I)

.
= wα,α̃

{
Z+

α |σ+
α | · Z̃+

α |σ̃+
α | − Zα |σα| · Z̃α |σ̃α|

}

and
(II) =̇

{
wα+,α̃+ − wα,α̃

}
Z+

α |σ+
α | · Z̃+

α |σ̃+
α | .

We first note that, after the fractional step, each 1-wave remains on the same side of p = 1
and does not change type. Then, in the above formula, wα+,α̃+ 6= 0 if and only if wα,α̃ 6= 0.

If wα,α̃ = 0, i.e, σα and σ̃α on the opposite sides of the line p = 1, we trivially have ∆Q̃hh = 0.
We need to consider the case when wα,α̃ 6= 0. The first term (I) is less than 0 thanks to (4.42):

(I) ≤ wα,α̃ZαZ̃α · |σασ̃α| {(1 − c1 |pl − 1|∆t) (1 − c1 |p̃l − 1|∆t) − 1} ≤ 0 .

For the second term (II), we need an estimate on the change of P due to the source term step

(3.2). First we see if Pl < 1, P̃l < 1 then after the time step (3.2) h will decrease. From the
geometry of the integral curves we see that P will increase, and therefore we have P+

l ≥ Pl and

P̃+
l ≥ P̃l. This gives wα+,α̃+ ≤ wα,α̃, and therefore we have (II) ≤ 0.

Otherwise, if Pl > 1, P̃l > 1, after time step (3.2) h will increase and so will P , and we have
P+

l ≥ Pl and P̃+
l ≥ P̃l, and the increments can be bounded by

P+
l − Pl ≤ O(1)∆thl|pl − 1|, P̃+

l − P̃l ≤ O(1)∆th̃l|p̃l − 1| ,
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which is equivalent to

P+
l − 1 ≤ Pl − 1 + O(1)∆thl|pl − 1|, P̃+

l − 1 ≤ P̃l − 1 + O(1)∆th̃l|p̃l − 1| .

Hence we get

min {|P+
l − 1| , |P̃+

l − 1|} − min {|Pl − 1| , |P̃l − 1|} = O(1)∆t · ‖h‖L∞ · |Pl − 1| .

Therefore, we have

∆Q̃hh ≤ (II) ≤ O(1)δ0 · ∆t · ‖h‖L∞ · |Pl − 1| · ZαZ̃α|σασ̃α| .

The terms Q̃pp and Q̃ph may both increase. By (3.4) and (4.42), the increment is small,
estimated as

∆Q̃ph + ∆Q̃pp = Z+
α |σ+

β | · Z̃+
α

(
|σ̃+

α | + |σ̃+
β |
)
≤ O(1) · ZαZ̃α|σασ̃α|∆t |pl − 1| .

Adding together the bounds on ∆Q̃hh, ∆Q̃ph and ∆Q̃pp, we get

∆Q̃ ≤ O(1) · ZαZ̃α|σασ̃α| · ∆t · |Pl − 1| . (4.47)

Case 2. Assume at tk−1 we have two waves from of the second family, located at xβ and x̃β,
with wave strengths σβ and σ̃β. At time tk, after the fractional step (3.2), each 2-wave will
become two waves, one from each family, with strengths (σ+

α , σ+
β ) and (σ̃+

α , σ̃+
β ) located at x+

β

and x̃+
β , respectively. See figure 4 for an illustration. As in Case 1, we introduce the notation

Zβ = Z(tk−1, xβ), Z+
β = Z(tk, x

+
β ) and similarly Z̃β , Z̃+

β .

α
∼ +σα

+ σ
β
+

σ
β
+∼

t k

t k−1 xβ
~xβ

+xβ
+~
βx

∼σβσβ

σ

Figure 4: Case 2, two 2-waves σβ and σ̃β from time tk−1 to tk. Here the dotted lines denote
other wave fronts which are not being considered in this case.

Using (4.45), the changes in Q̃pp, Q̃ph are estimated as

∆Q̃pp + ∆Q̃ph = −Zβ |σβ| · Z̃β |σ̃β | + Z+
β |σ+

β | · Z̃
+
β

(
|σ̃+

α | + |σ̃+
β |
)

≤ ZβZ̃β|σβ σ̃β| ·
{
−c2∆t(hr + h̃r) + c2

2hrh̃r(∆t)2
}

,

while for Q̃hh we use (3.5) to get

∆Q̃hh = wα+,α̃+ · Z+
β |σ+

α | · Z̃+
β |σ̃+

α | ≤ O(1) · Zβ |σβ |hl∆t · Z̃β |σ̃β| h̃l∆t

≤ O(1) · ZβZ̃β |σβ σ̃β| · hrh̃r · (∆t)2 .

Adding them together, we have

∆Q̃ ≤ ZβZ̃β|σβ σ̃β| · ∆t ·
{
−c2(hr + h̃r) + c2

2hrh̃r∆t + O(1) · hrh̃r · ∆t
}

.

By choosing ∆t or ‖h‖L∞ small enough, we conclude that Q̃ decreases.
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Case 3. We now consider the case where we have two approaching waves at tk−1, a 2-wave
of strength σβ at xβ and a 1-wave of strength σ̃α at x̃α, with xβ < x̃α. At time tk, after the
fractional step (3.2), each wave will become two waves, one from each family, with strengths
(σ+

α , σ+
β ) and (σ̃+

α , σ̃+
β ) located at x+

β and x̃+
α , respectively. See figure 5 for an illustration.

α
∼ +σα

+ σ
β
+

σ
β
+∼

t k

t k−1 xβ

+xβ

σβ

~xα

∼σα

+~
αx

σ

Figure 5: Case 3, a 2-wave σβ and a 1-wave σ̃α approaching each other at tk−1. Here the dotted
lines denote other wave fronts which are not being considered in this case.

Using (4.42) and (4.45) we get

∆Q̃pp + ∆Q̃ph = −Zβ |σβ| · Z̃α |σ̃α| + Z+
β |σ+

β | · Z̃+
α

(
|σ̃+

α | + |σ̃+
β |
)

≤ Zβ |σβ | · Z̃α |σ̃α| · {−1 + (1 − c1 |p̃l − 1|∆t) (1 − c2 hr ∆t)}

≤ Zβ |σβ | · Z̃α |σ̃α|
{
−∆t · (c1 |p̃l − 1| + c2hr) + c1c2|p̃l − 1|hr(∆t)2

}
,

and by (3.5) we get

∆Q̃hh = wα+,α̃+ · Z+
β |σ+

α | · Z̃
+
α |σ̃+

α |

≤ O(1) · min {|pl − 1| , |p̃l − 1|} · Zβ |σβ| · Z̃α |σ̃α| · hr · ∆t .

Summing up the previous inequalities, we get

∆Q̃ ≤ Zβ Z̃α |σβσ̃α| · ∆t · {−(c1 |p̃l − 1| + c2hr) + |p̃l − 1|hr (c1c2∆t + O(1))} .

Note that the positive terms are multiplied by hr, while the leading negative term is not. Hence,
by choosing ‖h‖L∞ and ∆t small enough, we conclude that Q̃ decreases.

Case 4. We now consider the case of two non-approaching waves at tk−1, a 1-wave of strength
σα at xα and a 2-wave of strength σ̃β at x̃β, with xα < x̃β . At time tk, after the fractional
step (3.2), each wave will become two waves, one from each family, with strengths (σ+

α , σ+
β ) and

(σ̃+
α , σ̃+

β ) located at x+
α and x̃+

β , respectively. See figure 6 for an illustration.

Since the two waves are not approaching at tk−1, we have Q̃(tk−1) = 0. But at tk, Q̃ will no
longer be zero. Using (3.4) and (3.5), the increments can be estimated as

∆Q̃hh = wα+,α̃+ · Z+
α |σ+

α | · Z̃+
β |σ̃+

α | ≤ O(1) · Zα |σα| · Z̃β |σ̃β | · h̃l · ∆t

and

∆Q̃ph + ∆Q̃pp = Z+
α |σ+

β | · Z̃
+
β

(
|σ̃+

α | + |σ̃+
β |
)

≤ O(1) · Zα |σα| · Z̃β |σ̃β| · |pl − 1| · ∆t .

Adding up these two estimates, we get the estimate for Q̃

∆Q̃ = O(1) · Zα |σα| · Z̃β |σ̃β| ·
(
|pl − 1| + h̃l

)
· ∆t . (4.48)
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Figure 6: Case 4, two non-approaching waves, a 1-wave σα and a 2-wave σ̃β at tk−1. Here the
dotted lines denote other wave fronts which are not being considered in this case.

The general case. In the general case, we sum up all the possible contributions due to each
pair of waves and get

∆Q̃ ≤ O(1)∆t
∑

iα=iγ=1, xα<xγ

ZαZγ |σασγ | · |P
α
l − 1| +

+ O(1)∆t
∑

iα=1,iβ=2, xα<xβ

ZαZβ|σασβ| ·
(
|pα

l − 1| + hβ
l

)

≤ O(1)∆t




∑

iα=1

Zα|σα||p
α
l − 1| +

∑

iβ=2

Zβ|σβ |h
β
l



 · Ṽ (tk−1) . (4.49)

4.6.3 The decrease of S̃

Finally, the change of S̃ = Ṽ + c Q̃ follows from (4.46) and (4.49). We have

∆Ṽ + c∆Q̃ ≤ ∆t ·
∑

iα=1

Zα|σα| · |p
α
l − 1|

(
−c1 + O(1) · cṼ (tk−1)

)

+ ∆t ·
∑

iβ=2

Zβ|σβ|h
β
l

(
−c2 + O(1) · cṼ (tk−1)

)
, (4.50)

hence ∆S̃ ≤ 0 provided that c is small enough comparing to c1 and c2.

In summary, we see that by our choice of the weights Z(t, x), the functional S̃ is non-
increasing from time tk−1+ to tk+, because the possible increase caused by the source term is
counter balanced by the decrease in the weight Z. In addition, from the analysis in Section 4.4
we see that S̃ decreases strictly at every interaction. Since S̃ is bounded and positive, then the
total decrease of S̃ caused by all interactions (through all time t > 0) is bounded. In term, this
gives a bound on the total amount of interaction and cancellation through all time t > 0.

Remark. We remark that one can actually choose c = 1 in the definition of S̃. In fact, the
constants c1 and c2 can be sufficiently large by choosing κ1 and κ2 large, such that one still
achieves ∆S̃ ≤ 0 in (4.50). We kept the constant c since this keeps our argument more straight
forward.
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5 Global existence of BV solutions; Putting things together to

complete the proof of Theorem 1

In this section we fill in some remaining details in the previous analysis in Section 4, and achieve
a rigorous proof of Theorem 1.

As remarked at the beginning of Section 4, the approximate solutions are defined by the
front tracking approximation, as in [8, 9, 4] on each time interval [tk−1, tk), and then updating
the solution at time t = tk according to (3.2). In general, for 2 × 2 systems the presence of
non-physical fronts can be avoided completely [4, 9]. Furthermore, it is important to observe
that error terms of the form

O(1) · [maximum strength of rarefaction fronts] (5.1)

can be neglected. Finally, error terms of the form

O(1) · ∆t · [total amount of interaction + cancellation] (5.2)

can also be neglected, because they become vanishingly small as ∆t = tk− tk−1 approaches zero.
We now review the steps in the previous section, and check that all the estimates are valid,

up to vanishingly small error terms as in (5.1)–(5.2).

1. During the time interval (tk−1, tk), the quantities
∫

hdx and
∫
(p − 1) dx are conserved by

front tracking approximations, except for errors of the order (5.1).
The quantity

∫
|p−1| dx may increase only in the case of the rarefaction waves of the second

family where p − 1 changes sign. However, one can easily check that the possible increase is
bounded by a quantity of the order (5.1).

On the other hand, the difference Ih(tk) − Ih(tk−1) can be bounded as in (4.8), plus error
terms of size

O(1) · ∆t · [ amount of interaction and cancellation during the interval [tk−1, tk) ] . (5.3)

Indeed, for the piecewise constant approximate solution, during [tk−1, tk) we have

(Wh)t − (Wh(q + 1))x ≤ −Wh(h + q + 1) · |q| .

Therefore Ih will decrease on this interval,

Ih(tk−) − Ih(tk−1) ≤ −

∫ tk

tk−1

∫ ∞

−∞
Wh(h + q + 1) · |q| dx dt .

At the time step (3.2) when the source term is added, Ih may increase, as

Ih(tk) − Ih(tk−) = ∆t

∫ ∞

−∞
Wqh(x, tk−) dx .

Adding these two estimates, one gets

Ih(tk) − Ih(tk−1) ≤

∫ tk

tk−1

∫ ∞

−∞
Wh(q − |q|(h + q + 1)) dx dt

+

[
∆t

∫ ∞

−∞
Wqh(x, tk−) dx −

∫ tk

tk−1

∫ ∞

−∞
Wqh(x, t) dx dt

]
.
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Here the first term on the right-hand side is negative, and the second term is bounded by (5.3).
As remarked earlier, these are vanishingly small, as ∆t → 0.

2. Concerning the quantity Pinf for the approximate solution, it might decrease at an interaction
and at where a Riemann problem is solved. We now give a rigorous analysis.

First, at the initial time t = 0+, Riemann problems are solved and Pinf might decrease,
but by a small amount. In fact, let (Hl, Pl), (Hr, Pr) be the left and right states of a Riemann
problem, and (Hm, Pm) be the middle state. Pm may be smaller than Pl if the 1-wave is a shock.
In this case, let σh be the strength of the 1-wave. Recalling (3.23), we have

|Pm − Pl| = O(1)σ2
h|Pl − 1| = O(1)‖h‖2

L∞ .

Then, the possible decrease of Pinf at t = 0+ is very small.
Second, during the time interval (tk−1, tk), Pinf might decrease at some interaction points.

This could happen if the outgoing 1-wave σh is a shock. We claim that the possible total decrease
in Pinf caused by interaction through all time t > 0 is of order

O(1) · ‖h‖L∞ · [total amount of interaction + cancellation] . (5.4)

Indeed, consider an interaction between two waves σα and σβ, and use the notation of
Sect. 4.4. Let (Hl, Pl), (Hm, Pm) and (Hr, Pr) be the left, middle and right state of the outgoing
waves. We consider 4 cases listed in Sect. 4.4.

(1). Two neighboring h-shocks with strength σα and σβ interact. In this case, the change in S̃
caused by the interaction is

|∆S̃| = O(1)wα,β · |σασβ| .

Then we have

|Pm − Pr| = |σ′
p| = O(1) ·

wα,β

δ0
· ‖h‖L∞ · |σασβ| = O(1) ·

‖h‖L∞

δ0
· |∆S̃| .

(2). Two h-waves of opposite sign interact. Here one has |∆S̃| = O(1)min{|σα|, |σβ |} and

|Pm − Pr| = |σ′
p| = O(1) · ‖h‖L∞ · |σασβ| ≤ O(1) · ‖h‖L∞ · |∆S̃| .

(3). A p-wave σα interacts with an h-wave σβ. In this case, |∆S̃| = O(1)|σασβ|. Let P∗ be the
intermediate value before interaction, then

|Pm − Pl| = O(1)|P∗ − Pr| · |σα| = O(1)|P∗ − 1| · |σβ|
2 · |σα| = O(1) · ‖h‖L∞ · |∆S̃| .

(4). Two p-waves interact. Here we have again |∆S̃| = O(1)|σασβ| and

|Pm − Pl| = O(1)(σ′
h)2 = O(1)(‖h‖L∞ |σασβ|)

2 ≤ O(1)‖h‖L∞ |∆S̃| .
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We see in all cases, the possible decrease of P is of the order

O(1)‖h‖L∞

(
1 +

1

δ0

)
|∆S̃| ,

where |∆S̃| is the change in S̃ due to the interaction. Since S̃ is strictly decreasing at ev-
ery interaction, and the total decrease in S̃ caused by all interaction is bounded, we see that
the possible total decrease in Pinf through all time t > 0 caused by interaction is of order
O(1)‖h‖L∞(1 + 1

δ0
)S̃(0), which is as small as we like.

Finally, we analyze the source step (3.2). From the formal argument in Section 4.2, we
see that the source term “helps” keeping P bounded away from 0. Now we check if a similar
situation happens in the discrete approximate solutions.

We note that Pinf ≤ 1, which follows from the bound on ‖P − 1‖L1 . Since we are interested
in a lower bound on P of the form P ≥ P0 > 0, we focus our attention on the case where P < 1,
say P ≤ 0.5 and p ≤ 0.5.

We claim that at each source step (3.2), Pinf will increase. Indeed, if p < 1 (P < 1), we see
h will decrease. From the geometry of the characteristics in Fig. 1, we see that P will increase.

However, when Riemann problems are solved right after (3.2), Pinf might decrease if the
outgoing 1-wave is a shock. We claim that the possible decrease of Pinf caused by the Riemann
problem is counter balanced by the increase of Pinf in the source step (3.2), so Pinf will not
decrease from tk− to tk+.

Let the capital letters (H,P ) denote the Riemann coordinate of (h, p). Let (Hl, Pl) (Hr, Pr)
and (H+

l , P+
l ) , (H+

r , P+
r ) be the left, right states of the incoming and outgoing waves, respec-

tively, and (H+
m, P+

m) be the middle state of the outgoing waves. We first consider the case of a
incoming 1-wave. This must be of the same type as the outgoing 1-wave, which is a shock. Then,
h+

l ≤ hl and pl = p+
l , so the 1-shock curve from (h+

l , p+
l ) will lie above the one from (hl, pl).

Also, h+
r < hr, because the 2-curves have negative slope in (h, p)-plane. From the geometry of

the shock and rarefaction curves, and the uniqueness of the 1-shock and 1-rarefaction curves,
we must have H+

l < H+
m < Hr. By the uniqueness of 1-shock and 1-characteristic curves, P+

m

must lie between Pl and P+
l . Therefore Pinf will not decrease.

Secondly, we consider an incoming 2-wave of strength σp with pl ≤ 0.5 and hl > 0. Then,
P+

l > Pl, and we have the following estimate on the increment

P+
l − Pl ≥ c̄∆t hl ,

for some constant c̄ > 0. By the estimate (3.5) the strength of the outgoing 1-wave is σ′
h =

O(1)∆t hl |σp|. Then, by (3.23) the difference between P+
m and P+

l is of order O(1)(σ′
h)2(1−p+

l ),
so we have ∣∣P+

l − P+
m

∣∣ = O(1)(∆t hl)
2(σp)

2(1 − p+
l ) .

Here the terms σp and (1− p+
l ) are bounded. By choosing ‖h‖L∞ and ∆t sufficiently small, the

possible decrease will be much smaller than the increment. Therefore Pinf will not decrease.
This completes the uniform lower bound on P (or equivalently, on p).

3. Concerning the functionals J h, and J p during each interval [tk−1, tk] their sizes may increase,
but only in the amounts that are vanishingly small. Indeed, this can be achieved by a similar
argument as for Ih. We will work out the details for the quantity J p, and omit the details for
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J h which is similar. On the interval [tk−1, tk), consider a 2-characteristic t 7→ x2(t). Then P
remains constant along this curve unless it crosses a 1-shock. If this happens, P will change by
a small amount due to the second order tangency of shock and rarefaction curves. Let σh be
the strength of the 1-shock, and P+ be the value of P after crossing this shock; again by (3.23),
we have

P+ − P = O(1)σ2
h = O(1)‖h‖2

L∞ ,

which shows that the change in P is vanishingly small.
Now, ignore interactions and the crossings of 1-waves, then P remains constant along 2-

characteristic t 7→ x2(t), but V p will decrease. We have

d

dt
V p(t, x2(t)) = κ2V

p

(
−Whẋ2 +

∫ ∞

x2(t)
(Wh(y, t))t dy

)

≤ −κ2V
p

(
Wh(ẋ2 + q + 1) +

∫ ∞

x2(t)
Wh|q|(h + q + 1) dy

)
,

which gives

V pP (tk−, x2(tk−)) − V pP (tk−1, x2(tk−1))

≤ −

∫ tk

tk−1

κ2V
pP

(
Wh(ẋ2 + q + 1) +

∫ ∞

x2(t)
Wh|q|(h + q + 1) dy

)
dt . (5.5)

At tk when the step (3.2) is performed, both V p and P will change. Calling P+ .
= P (tk, x2(tk))

and P
.
= P (tk−, x2(tk−)), we have

P+ ≤ P + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣ · |q|h = P ·

(
1 + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣
|q|h

P

)
≤ P ·

(
1 + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣ · |q|h
)

,

where the last inequality holds because P is bounded away from 0. Therefore we get

V p+P+ ≤ exp

(
κ2

∫ ∞

x2(tk)
W (h + ∆tqh) dy

)
· P ·

(
1 + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h
)

= V pP · exp

(
κ2∆t

∫ ∞

x2(tk)
Wqhdy

)
·

(
1 + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h
)

≤ V pP ·

(
1 + κ2∆t

∫ ∞

x2(tk)
Wqhdy + O(1)∆t2‖h‖2

L∞

)
·

(
1 + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h
)

= V pP

[
1 + κ2∆t

∫ ∞

x2(tk)
Whq dy + O(1)∆t

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h + O(1)∆t2‖h‖2
L∞

]
.

Here for the second last inequality we used ex = 1 + x + O(1)x2 for small x, and in the last
equality we gather all the high order terms in the last term. Adding up this inequality with
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(5.5) and rearranging the terms, we get

V pP (tk, x2(tk)) − V pP (tk−1, x2(tk−1))

≤ −κ2

∫ tk

tk−1

V pP

∫ ∞

x2(t)
Wh

[
|q|(h + q + 1) − q

]
dy dt (5.6)

+κ2∆tV pP (tk)

∫ ∞

x2(tk)
Whq dy − κ2

∫ tk

tk−1

V pP (t)

∫ ∞

x2(t)
Whq dy dt (5.7)

−

∫ tk

tk−1

V pP

[
κ2Wh(ẋ2 + q + 1) −O(1)

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h
]

dt (5.8)

+O(1)

[
∆tV pP

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h(tk) −

∫ tk

tk−1

V pP

∣∣∣∣
∂P

∂h

∣∣∣∣ |q|h(t) dt

]
(5.9)

+O(1)∆t2‖h‖2
L∞ . (5.10)

Here the term (5.6) is negative, and (5.8) is also negative by choosing κ2 sufficiently large.
However all the other terms might be positive, but they are small. In fact, (5.7) is bounded by

κ2O(1)∆t‖h‖L∞ · [ amount of interaction and cancellation during the interval [tk−1, tk) ] ,

and (5.9) is bounded by

O(1)∆t‖h‖L∞ · [ amount of interaction and cancellation during the interval [tk−1, tk) ] .

Finally, since (5.10) is vanishingly small, we conclude that J p is non-increasing up to a vanish-
ingly small error, achieving the uniform bound on P .

4. The order of the constants should be chosen as follows. After the constants M and p0 have
been given, we can choose δ0 > 0 so that ∆S ≤ 0 in section 4.4. Then we choose κ1 large enough
so that (4.42) holds, then κ2 large enough such that (4.45) holds, and then c sufficiently small
in subsection 4.6.3 such that ∆S̃ ≤ 0.

Finally we choose δ = ‖h̄‖L∞ sufficiently small. This will render J h(t) as small as required,
for all times t ≥ 0.

Moreover, at each time tk, the inequalities (4.17)-(4.18) hold, up to error terms of magnitude
(5.3). These are vanishingly small as ∆t → 0.

5. Concerning the total variation, the decrease of the functional S̃ in (4.34) during the intervals
[tk−1, tk] has already been analyzed in the previous section, without taking into consideration
of the interactions. Adding the effect of interactions will only introduce small error terms as in
(5.1)–(5.2), which can be arbitrary small. Therefore, the estimates (4.42) and (4.45) will still be
valid. This completes the proof of Theorem 1.

6 Concluding Remarks

(1). In this paper we proved the global existence of large BV solutions to a 2 × 2 system of
balance laws in one space dimension, arising from a model of granular flow. However, we left
open the question of uniqueness of entropy-weak solutions. This does not immediately follow
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from the known results [15], because one of the characteristic fields is neither genuinely nonlinear,
nor linearly degenerate. Uniqueness and continuous dependence of large BV solutions may be
obtained by putting together the techniques in [4] and [15]. Alternatively, it may be achieved
by further developing the vanishing viscosity approach in [7, 12].

(2). A related interesting problem is the slow erosion limit, when the thickness of the moving
layer is very small. In [26] we observed from numerical simulations that, as long as the moving
layer remains very thin, the evolution of the standing profile depends only on the total amount
of sand being poured from the top, not on the specific rate at which the sand is poured. In
a forthcoming paper [3], this observation is studied in detail. We prove that in the limit as
the thickness of the moving layer h tends to zero, the evolution of the standing profile can be
described by a scalar integro-differential equation for the slope p = ux.

(3). It is also of great interest to study the case where the slope p = ux of the standing layer
changes sign. This appears to be an essential step also toward the study of the two-dimensional
case, since the directional derivative of u generically changes sign along a straight line.

Unfortunately, as p changes sign, the flux function is no longer smooth, but only Lipschitz
continuous. This does not fit in the standard theory of hyperbolic conservation laws. However,
the Riemann problem is still well-defined and can be solved, possibly leading to some results on
the Cauchy problem.

Acknowledgement. The authors are grateful to Prof. Alberto Bressan for suggesting the
problem and for many useful discussions. We also thank the reviewer for carefully reading our
manuscript.
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