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Abstract. 3-D kinematical conservation laws (KCL) are equations of evolution of a propagating

surface Ωt in three space dimensions and were first derived in 1995 by Giles, Prasad and Ravindran
[15] assuming the motion of the surface to be isotropic. We start with a brief introduction to 3-D
KCL and mention some properties relevant to this paper. The 3-D KCL, a system of 6 conservation
laws, is an under-determined system to which we add an energy transport equation for a small
amplitude disturbance to study the propagation of a three dimensional nonlinear wavefront in a
polytropic gas in a uniform state and at rest. We call the enlarged system (3-D KCL and the
energy transport equation) equations of weakly nonlinear ray theory - WNLRT. We highlight some
interesting properties of the eigenvalues of the equations of the WNLRT but main aim of this paper
is to test the numerical efficacy of this system of 7 conservation laws. We take initial shape of the
front to be cylindrically symmetric with a suitable amplitude distribution on it and let it evolve
according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7× 7 system that is highly
nonlinear. Due to a possibility of appearance of δ waves and shocks it is a challenging task to develop
an appropriate numerical method. Here we use the Lax-Friedrichs scheme and Nessyahu-Tadmor
central scheme and have obtained some very interesting shapes of the wavefronts for two cases - in
one case kink lines and another case a point singularity appear in the physical space though the
results remain single-valued in the ray coordinates. Thus we find the 3-D KCL to be suitable to
solve many complex problems for which there seems to be no other method which at present can
give these physically realistic features.

1. Introduction

Propagations of a nonlinear wavefront and a shock front in three dimensional space R
3 are very

complex physical phenomena and both fronts share a common property of possessing curves of
discontinuities across which the normal direction to the fronts and the amplitude distribution on
them suffer discontinuities. These are discontinuities of the first kind, i.e., the limiting values of
the discontinuous functions and their derivatives on a front as we approach a curve of discontinuity
from either side are finite. Such a discontinuity was first analyzed by Whitham in 1957 (see [34]),
who called it shock-shock, meaning shock on a shock front. However, the theory of kinematical
conservation laws (KCL) shows that a discontinuity of this type is geometric in nature and can
arise on any propagating surface Ωt, and hence it has been given a general name kink. In order
to explain the existence of a kink and study its formation and propagation, we need the governing
equations in the form a system of physically realistic conservation laws. In this paper we derive
and analyze such conservation laws in a specially defined ray coordinate system and since they are
derived purely on geometrical consideration and they have been called kinematical conservation
laws (KCL), [28]. When a discontinuous solution of the KCL system in the ray coordinates has a
shock satisfying Rankine - Hugoniot conditions, the image of the shock in R

3 is a kink.
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Before we start any discussion, we assume that all variables, both dependent and independent,
used in this paper are nondimensional.

KCL governing the evolution of a moving curve Ωt in two space dimensions (x1, x2) were first
derived by Morton, Prasad and Ravindran [26] in 1992, and the kink (in this case, a point on Ωt)
phenomenon is well understood (see [28]-Section 3.3). We call this system of KCL as 2-D KCL
which we describe in the next paragraph.

Consider a one parameter family of curves Ωt in (x1, x2)-plane, where the subscript t is the
parameter whose different values correspond to different positions of the moving curve. We assume
that this family of curves has been obtained with the help of a ray velocity χ = (χ1, χ2), which is
a function of x1, x2, t and n, where n is the unit normal to Ωt. We further assume that motion of
this curve Ωt is isotropic so that we take the ray velocity χ in the direction of n and write it as

(1.1) χ = mn,

where the scalar function m depends on x and t but is independent of n. The ray equations

(1.2)
dx

dt
= mn,

dθ

dt
= −

(

−n2
∂

∂x1
+ n1

∂

∂x2

)

m,

where n = (n1, n2) = (cos θ, sin θ), are derived from Charpit’s equations (or Hamilton’s canonical
equations) of an eikonal equation (see Section 2). The normal velocity m of Ωt has been nondimen-
sionlized with respect to a characteristic velocity (say the sound velocity a0 in a uniform ambient
medium in the case Ωt is a wavefront in such a medium). Given a representation of the curve Ω0

at the time t = 0 in the form x = x0(ξ), we determine the unit normal n0(ξ) and then we solve
the system (1.2) with these as initial values (this is a simplified view - the system (1.2) is usually
under-determined as explained in the Section 3). Thus we get a representation of the curve Ωt at
time t in the form x = x(ξ, t). We assume (for development of the theory) that this gives a mapping:
(ξ, t) → (x1, x2) which is one to one. In this way we have introduced a ray coordinate system (ξ, t)
such that t = constant represents the curve Ωt and ξ = constant represents a ray. Then mdt is an
element of distance along a ray, i.e., m is the metric associated with the variable t. Let g be the
metric associated with the variable ξ, then

(1.3)
1

g

∂

∂ξ
= −n2

∂

∂x1
+ n1

∂

∂x2
.

Simple geometrical consideration gives (see [28]-Section 3.3 and also the Section 3 of this paper)

(1.4) dx = (gu)dξ + (mn)dt,

where u is the tangent vector to Ωt, i.e., u = (−n2, n1). Equating (x1)ξt = (x1)tξ and (x2)ξt = (x2)tξ,
we get the 2-D KCL

(1.5) (gn2)t + (mn1)ξ = 0, (gn1)t − (mn2)ξ = 0.

Using these KCL we can derive the Rankine-Hugoniot conditions (i.e., the jump relations) relating
the quantities on the two sides of a shock path in (ξ, t)-plane or a kink path in (x1, x2)-plane. The
system (1.5) is under-determined since it contains only two equations in three variables θ,m and g.
It is possible to close it in many ways. One possible way is to close it by a single conservation law

(1.6) (gG−1(m))t = 0,

where G is a given function of m, see [4] for more details. For a weakly nonlinear wavefront ([28]-
Chapter 6) in a polytropic gas, conservation of energy along a ray tube gives (with a suitable choice
of ξ)

(1.7) G(m) = (m − 1)−2e−2(m−1),
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(see also the equation (3.6) in this article). Prasad and his collaborators have used this closure
relation to solve many interesting problems and obtained many new results [5, 6, 25, 30]. KCL with
(1.6) and (1.7) is a very interesting system. It is hyperbolic for m > 1 and has elliptic nature for
m < 1.

The KCL for a surface evolving in three space dimensions (called 3-D KCL), a system of 6
conservation laws, were first obtained by Giles, Prasad and Ravindran [15]. Later on the analysis
of 3-D KCL is completed by Arun and Prasad [2], which we discuss in the next section.

2. 3-D KCL of Giles, Prasad and Ravindran (1995)

Following the discussion in the last section consider a surface Ω in R
4, Ω: ϕ(x, t) = 0 and let

us assume that Ω is generated by a two parameter family of curves in R
4, such that projection of

these curves on x-space are rays which are orthogonal to the successive position of the surface in
(x)-space, Ωt : ϕ(x, t) = 0, t = constant.

We introduce a ray coordinate system (ξ1, ξ2, t) in x-space such that t = constant represents the
surface Ωt at any time t, and ξ1 and ξ2 are surface coordinates on Ωt, see [20]. The surface Ωt in
x-space is now generated by a one parameter family of curves such that along each of these curves
ξ1 varies and the parameter ξ2 is constant. Similarly Ωt is generated by another one parameter
family of curves along each of these ξ2 varies and ξ1 is constant. Through each point (ξ1, ξ2) of Ωt

there passes a ray orthogonal (in x-space) to the successive positions of Ωt, thus rays form a two
parameter family as mentioned above. Given ξ1, ξ2 and t, we uniquely identify a point P in x-space.
For the development of theory, we assume that the mapping from (ξ1, ξ2, t)-space to (x1, x2, x3)-
space is one to one. On Ωt let u and v be unit tangent vectors of the curves ξ2 = constant and ξ1 =
constant respectively and n be unit normal to Ωt. Then

(2.1) n =
u× v

|u× v|
.

Let an element of length along a curve (ξ2 = constant, t = constant) be g1dξ1 and that along a
curve (ξ1 = constant, t = constant) be g2dξ2. The element of length along a ray (ξ1 = constant,
ξ2 = constant) is mdt, where m is the velocity of the surface Ωt. The displacement dx in x-space
due to increments dξ1, dξ2 and dt is given by (this is an extension of the result (1.4))

(2.2) dx = (g1u)dξ1 + (g2v)dξ2 + (mn)dt.

This gives

(2.3) J :=
∂(x1, x2, x3)

∂(ξ1, ξ2, t)
= g1g2m sin χ, 0 < χ < π,

where χ(ξ1, ξ2, t) is the angle between the u and v, i.e.,

(2.4) cos χ = 〈u,v〉.

As explained after (3.6) in the next section, we shall like to choose sin χ = |u × v| which requires the
restriction 0 < χ < π on χ. For a smooth moving surface Ωt, we equate xξ1t = xtξ1 and xξ2t = xtξ2 ,
and get the 3-D KCL of Giles, Prasad and Ravindran [15],

(g1u)t − (mn)ξ1 = 0,(2.5)

(g2v)t − (mn)ξ2 = 0.(2.6)

We also equate xξ1ξ2 = xξ2ξ1 and derive three more scalar equations contained in

(2.7) (g2v)ξ1 − (g1u)ξ2 = 0.
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Equations (2.5)-(2.7) are necessary and sufficient conditions for the integrability of the equation
(2.2) (see [11], Section 1.9).

From the equations (2.5) and (2.6) we can show that (g2v)ξ1 − (g1u)ξ2 does not depend on t. If
any choice of coordinates ξ1 and ξ2 on Ω0 implies that the condition (2.7) is satisfied at t = 0 then
it follows that (2.7) is automatically satisfied. Thus, the 3-D KCL is a system of six scalar evolution
equations (2.5) and (2.6). However, since |u| = 1, |v| = 1, there are 7 dependent variables in (2.5)
and (2.6): two independent components of each of u and v, the front velocity m of Ωt, g1 and
g2. Thus KCL is an under-determined system and can be closed only with the help of additional
relations or equations, which would follow from the nature of the surface Ωt and the dynamics of
the medium in which it propagates.

We derive a few results from (2.5) and (2.6) without considering the closure equation (or equa-
tions) for m. The system (2.5) and (2.6) consists of equations which are conservation laws, so
its weak solution may contain shocks which are surfaces in (ξ1, ξ2, t)-space. Across these shock
surfaces m, g1, g2 and vectors u,v and n will be discontinuous. Image of a shock surface into
x-space will be another surface, let us call it a kink surface, which will intersect Ωt in a curve,
say kink curve Kt. Across this kink curve or simply the kink, the normal direction n of Ωt will
be discontinuous as shown in Figure 1. As time t evolves, Kt will generate the kink surface. A
shock front (a phrase very commonly used in literature) is a curve in (ξ1, ξ2)-plane and its motion
as t changes generates the shock surface in (ξ1, ξ2, t)-space. We assume that the mapping between
(ξ1, ξ2, t)-space and (x1, x2, x3)-space continues to be one to one even when a kink appears.

Ωt+

Ωt−

Kt

Figure 1. Kink curve Kt (shown with dotted lines) on Ωt = Ωt+ ∪ Ωt−

The distance dx between two points P (x) and Q′(x + dx) on Ωt and Ωt+dt respectively satisfies
the relation (2.2), where (ξ1, ξ2, t) and (ξ1 + dξ1, ξ2 + dξ2, t + dt) are corresponding coordinates in
(ξ1, ξ2, t)-space. If the points P and Q′ are chosen to be points on the kink surface (see [28] for
a two dimensional analog), then the conservation of dx implies that the expression for (dx)+ on
one side of the kink surface must be equal to the expression for (dx)− on the other side. Denoting
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quantities on the two sides of the kink by subscripts + and -, we get

(2.8)
g1+dξ1u+ + g2+dξ2v+ + m+dtn+

= g1−dξ1u− + g2−dξ2v− + m−dtn−.

We take the direction of the line element PQ′ such that its projection on (ξ1, ξ2)-plane is in the di-
rection of the normal to the shock curve in (ξ1, ξ2)-plane, then the differentials are further restricted.
Let the unit normal of this shock curve be (E1, E2) and let K be its velocity of propagation in this

plane, then the differentials in (2.8) satisfy dξ1
dt = E1K and dξ2

dt = E2K, and (2.8) now becomes

(2.9)
(g1+E1u++g2+E2v+)K + m+n+

= (g1−E1u− + g2−E2v−)K + m−n−.

Thus (2.9) is a condition for the conservation of distance (in three independent directions in x-space)
across a kink surface when a point moves along the normal to the shock curve in (ξ1, ξ2)-plane.

Using the usual method for the derivation of jump conditions across a shock, we deduce from the
conservation laws (2.5) and (2.6)

(2.10) K[g1u] + E1[mn] = 0, K[g2v] + E2[mn] = 0,

where a jump [f ] of a quantity f is defined by

(2.11) [f ] = f+ − f−.

Multiplying the first relation in (2.10) by E1 and the second relation by E2, adding and using
E2

1 + E2
2 = 1, we get

(2.12) E1K[g1u] + E2K[g2v] + [mn] = 0,

which is the same as (2.9). Thus we have proved the following theorem, see also [15].

Theorem 2.1. The six jump relations (2.10) imply conservation of distance in x1, x2 and x3 direc-
tions (and hence in any arbitrary direction in x-space) in the sense that the expressions for a vector
displacement (dx)Kt

of a point of the kink line Kt in an infinitesimal time interval dt, when computed
in terms of variables on the two sides of a kink surface, have the same value. This displacement of
the point is assumed to take place on the kink surface and that of its image in (ξ1, ξ2, t)-space takes
place on the shock surface such that the corresponding displacement in (ξ1, ξ2)-plane is in direction
d

dt(ξ1, ξ2) = (E1, E2)K so that the displacement remains on the shock front.

This theorem assures that the 3-D KCL are physically realistic. Consider a point P on a kink
line Kt on Ωt and two straight lines T− and T+ orthogonal to the kink line at P and lying in the
tangent planes at P to Ωt− and Ωt+ on the two sides of Kt. Let N− and N+ be normals to the two
tangent planes at P . Then the four lines T+, N+, N− and T−, being orthogonal to the kink line at
P , are coplanar. A kink phenomenon is basically two dimensional. Locally, the two sides Ωt− and
Ωt+ of Ωt can be regarded to be planes separated by a straight kink line. Hence the evolution of
the kink phenomena can be viewed locally in a plane which intersects the planes Ωt−,Ωt+ and Kt

orthogonally as shown in the Figure 3.3.4 of [28].
We state an important result which will be very useful in proving many properties of the KCL

and in setting up the Cauchy data on Ω0. Let P0(x0) be a given point on Ωt at any time t. Then
there exist two one parameter families of smooth curves on Ωt such that the unit vectors u0 and
v0 along the members of the two families through the chosen point P0 can have any two arbitrary
directions and the metrics g10 and g20 at this point can have any two positive values.
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3. Energy transport equation from a WNLRT for a polytropic gas and the
complete set of equations

In this section we shall derive a closure relation in a conservation form for the 3D-KCL so that
we get a completely determined system of conservation laws. Let the mass density, fluid velocity,
gas pressure and local sound velocity in a polytropic gas [12] be denoted by ̺,q, p and a. Consider
a member Ωt of a one parameter family of curved nonlinear wavefronts in a small amplitude wave
moving with the characteristic velocity q + a and running into the gas in a uniform state and at
rest (̺0 = constant, q = 0 and p0 = constant, [28]-Sections 1.8 and 6.1). Then a perturbation in
the state of the gas on Ωt can be expressed in terms of an amplitude w and is given by

(3.1) ̺ − ̺0 =

(

̺0

a0

)

w, q = nw, p − p0 = ̺0a0w,

where a0 is the sound velocity in the undisturbed medium =
√

γp0/̺0 and w is a quantity of small
order, say O(ǫ). Let us remind, what we stated in the Section 1, that all dependent variables are
dimensional in this (and only in this) paragraph. Note that w here has the dimension of velocity.
The amplitude w is related to the non-dimensional normal velocity m of Ωt by

(3.2) m = 1 +
γ + 1

2

w

a0
.

The operator d
dt = ∂

∂t + m〈n,∇〉 in space-time becomes simply the partial derivative ∂
∂t in the ray

coordinate system (ξ1, ξ2, t). Hence the energy transport equation of the WNLRT ([28]-equation
(6.1.3)) in non-dimensional coordinates becomes

(3.3) mt = (m − 1)Ω = −
1

2
(m − 1)〈∇,n〉,

where the italic symbol Ω is the mean curvature of the wavefront Ωt. Ray tube area A for any
ray system ([34]-pages 244, 280, [28]-relation (2.2.23)) is related to the mean curvature Ω (we write
here in non-dimensional variables) by

(3.4)
1

A

∂A

∂l
= −2Ω ,

∂

∂l
in ray coordinates,

where l is the arc length along a ray. In non-dimensional variables we have dl = mdt. From (3.3)
and (3.4) we get

(3.5)
2mt

m − 1
= −

1

mA
At.

This leads to a conservation law, which we accept to be the required one,

(3.6)
{

(m − 1)2e2(m−1)A
}

t
= 0.

We note that contrary to the result for the energy transport equation in the form
{

(m − 1)2A
}

t = 0

in a linear ray tube, we now have an addition factor e2(m−1) coming from nonlinear stretching of
the rays.

Integration gives (m − 1)2e2(m−1)A = F (ξ1, ξ2), where F is an arbitrary function of ξ1 and ξ2.
The ray tube area A is given by A = g1g2 sin χ, where χ is defined by (2.4). In order that A is
positive, we need to choose 0 < χ < π. Now the energy conservation equation becomes

(3.7)
{

(m − 1)2e2(m−1)g1g2 sinχ
}

t
= 0.

The complete set of conservation laws for the weakly nonlinear ray theory (WNLRT)
for a polytropic gas are: the six equations in (2.5)-(2.6) and the equation (3.7). The equations
(2.7) need to be satisfied at any fixed t, say at t = 0. Once we have a solution of this system in



AN APPLICATION OF 3-D KCL 7

(ξ1, ξ2, t)-space, the results can be mapped into the x-space by the relation (2.2), which implies the
equation (4.2) given below. This would give successive positions of a wavefront Ωt.

4. Some properties of the system of equations of 3-D WNLRT and formulation of
the ray coordinates for a particular surface

Our main aim in this paper is to get some interesting results from numerical solution of the system
of equations of 3-D WNLRT and to show the efficiency of numerical schemes for this complex system.
For this purpose, the results of the last two sections are sufficient. However, in order to get a deeper
understanding of the WNLRT, we need to know some important properties of the system after
considerable amount of calculations and analysis. Hence we simply quote these properties from the
reference [2].

We state the first result in the form of a theorem:

Theorem 4.1. For a given smooth function m of x and t, the ray equations

dx

dt
= mn, |n| = 1,(4.1)

dn

dt
= −Lm := − (∇− n〈n,∇〉) m.(4.2)

are equivalent to the KCL as long as their solutions are smooth.

This is a very interesting result since ray equations follow from the theory of an eikonal equation
(a partial differential equation for ϕ in R

4, where Ω: ϕ(x, t) = 0) whereas KCL is a purely geometric
result.

The system of 7 conservation laws (2.5)-(2.6) and the equation (3.7) are quite complex. After
considerable algebraic calculations, we can derive a system of 7 differential equations in the usual
vector notation for the vector U = (u1, u2, v1, v2,m, g1, g2)

T as

(4.3) AUt + B(1)Uξ1 + B(2)Uξ2 = 0,

where u1, u2 and v1, v2 are the first two components of the unit vectors u and v respectively. The
expressions for the matrices A, B(1) and B(2) are given in [2].

We can use also the above differential form of the KCL to deduce the ray equations. However,
the most important use of (4.3) would be derivation of the eigenvalues and eigenfunctions of the
equations of WNLRT, which we state in the form of another theorem:

Theorem 4.2. The system (4.3) has 7 eigenvalues λ1, λ2(= −λ1), λ3 = λ4 = . . . = λ7 = 0, where
λ1 and λ2 are real for m > 1 and purely imaginary for m < 1. Further, the dimension of the
eigenspace corresponding to the multiple eigenvalue 0 is 4.

Since it has not been possible so far to factorize the characteristic equation for the eigenvalue λ of

the system (4.3), namely det
(

−λA + e1B
(1) + e2B

(2)
)

= 0, this result has been derived indirectly

in [2]. Firstly, due to the result mentioned at the end of the Section 2, we can first choose a fixed
point P0 on Ωt in (x1, x2, x3)-space. At this point, we take the ξ2 = constant and ξ1 = constant
curves to be orthogonal, so that the unit tangent vectors in (u,v)P0

= (u′,v′) are orthogonal. The
corresponding characteristic matrix can now be factorized and we can get the eigenvalues. Two
eigenvalues turn out to be nonzero and distinct, and a zero eigenvalue with multiplicity 5 but the
dimension of the eigenspace corresponding to this multiple eigenvalue is only 4. Now we can make
a linear transformation from the orthogonal vectors (u′,v′) to a general nonorthogonal vectors
(u,v)P0

in the tangent plane to Ωt at P0 and get the eigenvalues for an arbitrary coordinate system
at this point. This procedure leads to the result stated in the above theorem, see [2] for more details.
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The use of the transformation procedure mentioned in the above theorem has another deep result
highlighting the relation between the eigenvalues appearing in a special formulation of a part of the
ray equations, namely (4.2) and the KCL, [2]. We stop this discussion here as it takes us away from
the main aim of this paper.

There is an extensive discussion of the above results in [2], which puts the theory of 3-D KCL
on a strong foundation. In this paper we use 3-D KCL to discuss evolution of a surface Ωt in
three space dimensions and formation and propagation of curves of singularities on Ωt. However,
there is now a special challenge since the Theorem 4.2 shows that the eigenspace of the eigenvalue
0 is not complete so that WNLRT equations are weakly hyperbolic. Theory of weakly hyperbolic
system is an active area of research, [13, 21, 23, 24, 31, 33] since the last 15 years but it is very much
incomplete. Appearance of δ waves and δ shocks in the solution of such systems make the numerical
approximation of weakly hyperbolic system very complex, see [14]. The main aim of this paper is
not to do an intensive computation on the problem of three dimensional nonlinear wavefronts but
to test the numerical efficacy of the 3-D KCL theory using 3-D WNLRT equations.

Now we pass on to the formulation of the ray coordinates on a given surface and show how to
set up the initial value problem for the equations of WNLRT. Let the initial position of a weakly
nonlinear wavefront Ωt be given as

(4.4) Ω0 : x3 = f(x1, x2).

On Ω0 we choose

(4.5) ξ1 = x1, ξ2 = x2,

then

(4.6) Ω0 : x10 = ξ1, x20 = ξ2, x30 = f(ξ1, ξ2)

and

g10 =
√

1 + f2
ξ1

, u0 =
(1, 0, fξ1)
√

1 + f2
ξ1

,(4.7)

g20 =
√

1 + f2
ξ2

, v0 =
(0, 1, fξ2)
√

1 + f2
ξ2

.(4.8)

We can easily check that (2.7) is satisfied on Ω0. The unit normal n0 on Ω0 is

(4.9) n0 = −
(fξ1, fξ2 ,−1)

√

1 + f2
ξ1

+ f2
ξ2

in which the sign is so chosen such that (u,v,n) form a right handed system. Let the distribution
of the front velocity be given by

(4.10) m = m0(ξ1, ξ2).

We have now completed formulation of the initial data for the KCL (2.5) and (2.6), and the energy
transport equation (3.7).

The problem is to find solution of the system (2.5), (2.6) and (3.7) satisfying the initial data
given by (4.7),(4.8) and (4.10). Having solved these equations, we can get Ωt by solving the first
part of the ray equations (4.1) at least numerically for a number of values of ξ1 and ξ2. In the next
section we approximate (2.5), (2.6) and (3.7) using both the first order staggered Lax-Friedrichs
scheme and the second order Nessyahu-Tadmor scheme.
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5. Numerical Approximation

Due to the fact that we have an incomplete set of eigenvectors the system (2.5)-(2.6), (3.7) is
weakly hyperbolic. Thus it is not well-posed in the strong hyperbolic sense and likely to be more
sensitive than regular hyperbolic systems. This is also reflected in difficulties with obtaining a
stable numerical approximation as we will see in Section 6, cf. second test case. The existence of
the solution to weakly hyperbolic systems is an open problem in general. Numerical as well as
theoretical analysis indicates that the solution does not belongs to BV spaces and is only measure
valued. Clearly, due to the fact that we have a multiple eigenvalue λ = 0 typically δ function
appears in the corresponding fields, which are linearly degenerate in our case. In addition they
interact with the genuinely nonlinear field, that typically obtains shock. This yields the product of
δ function with Heaviside distribution, which can be defined using measure theory. In literature one
can find several publications, where such solutions have been studied for certain weakly hyperbolic
systems, see [7, 9, 10, 13, 14, 16, 31, 32, 33] and the references therein; see also [8, 22] for numerical
approximations of certain weakly hyperbolic systems. In our subsequent paper we want to study
theoretically simplified model problems corresponding to the 3D-KCL system. For example, our
goals will be construction of a solution to the Riemann problem or analytical results on existence
of measure-valued solution. The aim of this section is to present a numerical solution of the KCL
(2.5)-(2.6) and (3.7) using simple but robust central schemes. In particular we work with the first
order staggered Lax-Friedrichs scheme [19] and the second order Nessyahu-Tadmor scheme [27].

Note that the KCL (2.5)-(2.6) and the energy transport equation (3.7) of WNLRT for the variable
U = (u1, u2, v1, v2,m, g1, g2)

T can be written as a system of conservation laws

(5.1) (H(U))t + (F1(U))ξ1
+ (F2(U))ξ2

= 0,

where

H(U) =
(

g1u1, g1u2, g1u3, g2v1, g2v2, g2v3, (m − 1)2e2(m−1)g1g2 sinχ
)T

,

F1(U) = (mn1,mn2,mn3, 0, 0, 0, 0)
T ,

F2(U) = (0, 0, 0,mn1,mn2,mn3, 0)
T .

We briefly review the staggered Lax-Friedrichs scheme and the Nessyahu-Tadmor scheme for the
system of conservation laws (5.1), see [1, 17, 18, 19, 27] for more details.

We denote the mesh points by ξ1i = i∆ξ1, ξ2j = j∆ξ2, tn = n∆t, i, j,∈ Z, n ∈ N. Let Un
ij be an

approximation to U(i∆ξ1, j∆ξ2, n∆t). Note that the staggered schemes make use of two types of
grids. At odd time steps we use the original mesh cells,

Ci,j =
[

ξ1i− 1

2

, ξ1i+ 1

2

]

×
[

ξ2j− 1

2

, ξ2j+ 1

2

]

and at even time steps the so-called dual or staggered grid is used

Ci+ 1

2
,j+ 1

2

=
[

ξ1i, ξ1i+1

]

×
[

ξ2j , ξ2j+1

]

,

see Figure 2.
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�1�1i �1i+1�1i+ 12
�2j

�2j+ 12
�2j+1

�2

Ci+1;j

Ci+1;j+1Ci;j+1

Ci;j

Ci+ 12 ;j+ 12

Figure 2. Computational stencil: the original grid is depicted by solid lines and a
dual grid is denoted by dotted lines.

5.1. Lax-Friedrichs Scheme. In the staggered version the Lax-Friedrichs method produces the
cell average at time tn+1 as given by

H(Un+1
i+ 1

2
,j+ 1

2

) =
1

4

{

H(Un
i,j) + H(Un

i+1,j) + H(Un
i,j+1) + H(Un

i+1,j+1)
}

−
λ1

2

{

F1(U
n
i+1,j) − F1(U

n
i,j) + F1(U

n
i+1,j+1) − F1(U

n
i,j+1)

}

−
λ2

2

{

F2(U
n
i,j+1) − F2(U

n
i,j) + F2(U

n
i+1,j+1) − F2(U

n
i+1,j)

}

,(5.2)

where λi = ∆t/∆ξi, i = 1, 2 are the mesh ratios. The cell average H(Un+1
i,j ) at the original mesh is

obtained by interpolating the staggered cell averages

(5.3) H(Un+1
i,j ) =

1

4

{

H(Un+1
i+ 1

2
,j+ 1

2

) + H(Un+1
i− 1

2
,j+ 1

2

) + H(Un+1
i− 1

2
,j− 1

2

) + H(Un+1
i+ 1

2
,j− 1

2

)

}

.

5.2. Nessyahu-Tadmor Scheme. The Nessyahu-Tadmor scheme [1, 17, 18, 27] is a second order
TVD extension of the Lax-Friedrichs scheme. It is a two step predictor-corrector method. In the
predictor step we compute the value of the conserved variable at half time step

(5.4) H(U
n+ 1

2

i,j ) = H(Un
i,j) −

λ1

2
F1(U

n
i,j)

′ −
λ2

2
F2(U

n
i,j)

8,

where (·)′ ≈ ∆ξ1∂ξ1(·) and (·)8 ≈ ∆ξ2∂ξ2(·) are suitable finite difference operators. For example, the
slopes can be approximated using the minmod limiter in the following way

(F1
n
i,j)

′ = MM

{

θ
(

F1
n
i+1,j − F1

n
i,j

)

,
1

2

(

F1
n
i+1,j − F1

n
i−1,j

)

, θ
(

F1
n
i,j − F1

n
i−1,j

)

}

,

(F2
n
i,j)

8 = MM

{

θ
(

F2
n
i,j+1 − F2

n
i,j

)

,
1

2

(

F2
n
i,j+1 − F2

n
i,j−1

)

, θ
(

F2
n
i,j − F2

n
i,j−1

)

}

.
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We have denoted Fk
n
i,j = Fk(U

n
i,j), for k = 1, 2, the parameter θ takes values in [1, 2]. The nonlinear

minmod function is defined by

MM {v1, v2, · · · } =















minp{vp} if vp > 0 ∀p,

maxp{vp} if vp < 0 ∀p,

0 otherwise.

In the corrector step of the Nessyahu-Tadmor scheme the staggered average H(Un+1
i+ 1

2
,j+ 1

2

) at time

tn+1 is updated as follows

H(Un+1
i+ 1

2
,j+ 1

2

) =H(Un
i+ 1

2
,j+ 1

2

)

−
λ1

2

{

F1(U
n+ 1

2

i+1,j) − F1(U
n+ 1

2

i,j ) + F1(U
n+ 1

2

i+1,j+1) − F1(U
n+ 1

2

i,j+1)

}

−
λ2

2

{

F2(U
n+ 1

2

i,j+1) − F2(U
n+ 1

2

i,j ) + F2(U
n+ 1

2

i+1,j+1) − F2(U
n+ 1

2

i+1,j)

}

.(5.5)

Note that we use a piecewise linear reconstruction of the conserved variable H(Un
i,j) on the original

grid

(5.6) H (U(ξ1, ξ2, t
n)) = H(Un

i,j) +
(ξ1 − ξ1i)

∆ξ1
H(Un

i,j)
′ +

(ξ2 − ξ2j)

∆ξ2
H(Un

i,j)
8,

where the slopes are computed as

(Hn
i,j)

′ = MM

{

θ
(

Hn
i+1,j − Hn

i,j

)

,
1

2

(

Hn
i+1,j − Hn

i−1,j

)

, θ
(

Hn
i,j − Hn

i−1,j

)

}

,

(Hn
i,j)

8 = MM

{

θ
(

Hn
i,j+1 − Hn

i,j

)

,
1

2

(

Hn
i,j+1 − Hn

i,j−1

)

, θ
(

Hn
i,j − Hn

i,j−1

)

}

.

Here Hn
i,j is a shortcut for H(Un

i,j). Now the staggered average H(Un
i+ 1

2
,i+ 1

2

) at the time level tn can

be obtained by averaging the linear functions (5.6)

H(Un
i+ 1

2
,j+ 1

2

) =
1

4

{

H(Un
i,j) + H(Un

i+1,j) + H(Un
i+1,j+1) + H(Un

i,j+1)
}

+
1

16

{

H(Un
i,j)

′ − H(Un
i+1,j)

′ − H(Un
i+1,j+1)

′ + H(Un
i,j+1)

′

}

+
1

16

{

H(Un
i,j)

8 + H(Un
i+1,j)

8 − H(Un
i+1,j+1)

8 − H(Un
i,j+1)

8

}

.(5.7)

Finally the cell average H(Un+1
i,j ) is obtained by linear interpolation of the staggered averages

H(Un
i+ 1

2
,j+ 1

2

) and by averaging, [18]

Hn+1
i,j =

1

4

{

Hn+1
i+ 1

2
,j+ 1

2

+ Hn+1
i− 1

2
,j+ 1

2

+ Hn+1
i− 1

2
,j− 1

2

+ Hn+1
i+ 1

2
,j− 1

2

}

+
1

16

{(

Hn+1
i− 1

2
,j− 1

2

)

′

−

(

Hn+1
i+ 1

2
,j− 1

2

)

′

+

(

Hn+1
i− 1

2
,j+ 1

2

)

′

−

(

Hn+1
i+ 1

2
,j+ 1

2

)

′
}

+
1

16

{(

Hn+1
i− 1

2
,j− 1

2

)

8

−

(

Hn+1
i− 1

2
,j+ 1

2

)

8

+

(

Hn+1
i+ 1

2
,j− 1

2

)

8

−

(

Hn+1
i+ 1

2
,j+ 1

2

)

8
}

.(5.8)

Notice that both the Lax-Friedrichs scheme (5.2) and the Nessyahu-Tadmor scheme (5.5) give the
update for H(Un+1

i,j ). In order to get the values of the variables m, g1, g2,u and v we need to employ
an appropriate nonlinear solver. In our numerical experiments a fixed point iteration has been used
in (3.7). After computing the normal vector n from (2.1) we integrate the ray equations (4.1) to
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determine the wavefront at new time tn+1. Here we have used the compound trapezoidal rule for
the numerical integration in time.

6. Numerical experiments

In order to demonstrate applicability of the 3-D KCL for modelling of time evolution of nonlinear
wavefronts we present in this section two illustrating examples. Interesting phenomena such as a
kink line and a point singularity can be noticed in the physical (x1, x2, x3)−space. On the other
hand the resulting functions in the ray coordinates still remain single valued.

In the first test case the initial wavefront Ω0 has the shape of a Gaussian pulse

(6.1) Ω0 : x3 = e−(x2

1
+x2

2
) ≡ f(x1, x2).

On Ω0 the ray coordinates ξ1 and ξ2 can be chosen to be

(6.2) ξ1 = x1, ξ2 = x2.

Using (4.7)-(4.8) the initial values for the metrics g1, g2 and the vectors u and v can be obtained
to be

g10 =
(

1 + f2
ξ1

)1/2
, g20 =

(

1 + f2
ξ2

)1/2
.(6.3)

u0 =
1

g1
(1, 0, fξ1) , v0 =

1

g2
(0, 1, fξ2) .(6.4)

The initial value of m is set to m0 = 1.2. The computational domain is taken to be the square
[−5, 5]× [−5, 5] and time evolution of nonlinear wavefront is calculated up to the final time t = 2.5.
We have used a grid with 200 × 200 cells. In order to keep the method stable the following CFL
stability condition has been used

∆t

h
max(ρ1, ρ2) ≤ CFL,

where h = ∆ξ1 = ∆ξ2 is a mesh step and ρ1, ρ2 are respectively maximum generalized eigenvalues
of the Jacobian matrices B(1) and B(2) with respect to A, cf. (4.3). Here we have taken the CFL
number 0.45. For the generalized limiter defined in the Subsection 5.2 the parameter θ was set to
2.

Figure 3. The nonlinear wavefront Ωt starting initially in the shape of a Gaussian elevation.
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Figure 4. The kink lines A′ and B′ in (x1, x2, x3)-space are images of shocks A and
B in the ray coordinate system.
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Figure 5. Time evolution of m at the cross-section ξ2 = 0 for t = 2.5 obtained by
the Lax-Friedrichs and the Nessyahu-Tadmor methods.

In Figure 3 we show the surface plot of the initial wavefront Ω0 and the wavefront Ωt at time
t = 2.5. The wavefront at t = 2.5 has moved up in the x3-direction and has spread over a larger
area in (x1, x2)-plane and its height has decreased. The two kink circles are clearly seen as sharp
lines, one at the base x3 = 3 and another above it. As already mentioned in the Section 5 the
position of Ωt has been obtained by numerical integration of the ray equations (4.1).

In Figure 4 we plot the graph of m = m(ξ1) in ξ2 = 0 plane and the shape of Ωt with respect to
x1 in the cross-section x2 = 0 at time t = 2.0. From the (m− ξ) graph we find two shocks A and B
(which would become shock circles in (m, ξ1, ξ2)-space). These shocks map onto two kinks A′ and
B′ (or kink circles in (x1, x2, x3)-space). For a detailed discussion on the formation and propagation
of kinks in a two dimensional problem and resolution of a caustic due to nonlinearity the reader is
referred to [5, 25, 28, 30].

Next we present the time evolution of the normal velocity m and metrics g1, g2 with respect to ξ1

(in ξ2 = 0 plane) in Figures 5, 6, 7 and 8. In Figure 5 both results obtained by the Lax-Friedrichs
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Figure 6. Time evolution of m at the cross-section ξ2 = 0.

scheme and by the Nessyahu-Tadmor are plotted. As expected the second order Nessyahu-Tadmor
resolves shocks more sharply. In the following pictures we just present the results obtained by the
second order Nessyahu-Tadmor scheme.

From the plots of m, g1 and g2 we find that when m decreases (increases) the value of g1 increases
(decreases) but the value of g2 always keeps on increasing in ξ2 = 0 plane. However, all these changes

remain consistent with the conservation law (3.7), which states that (m − 1)2e2(m−1)g1g2 sin χ =
const. We have not given the graph of χ. From the results of m and g1 it is clear that the shocks
arise between t = 1 and t = 2.

Now we present the results in physical space (x1, x2, x3)-space. The surface plot has already been
given in Figure 3. However, to get the more detailed view on structures of Ωt we plot sections of
Ωt, m, g1 and g2 with respect to x1 at x2 = 0 plane. The two kinks are clearly visible at t = 2.0
and t = 2.5. The upper part of Ω0 is clearly convex upward and rays diverge leading to a decrease
in the value of m. However, near the base x3 = 0, one principal curvature is positive but other
negative. The kink lines are formed as circles. At t = 2.5 there appears to be a complex geometry
near the upper kink circle as seen in Figures 9 and 11. It is interesting that the 3-D KCL are able
to give such finer details.

Furthermore, it is worth remarking that the KCL reduce the original problem of evolution of Ωt

in four dimensions (x1, x2, x3, t) to that in three dimensions in (ξ1, ξ2, t)-space. This reduces the
computational cost considerably and hence many practical problems can be solved more efficiently.
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Figure 7. Time evolution of the metric g1 at the cross-section ξ2 = 0.

In the second test case an initial wavefront Ω0 is taken to be an axi-symmetric paraboloid
extended by a tangent conoid given in the following way

x3 =

{

(

x2
1 + x2

2

)

, if (x2
1 + x2

2)
1/2 ≤ 1,

2(x2
1 + x2

2)
1/2 − 1, otherwise.

In [25] an analogous 2D-test problem has been considered. However, in 3D-case we have observed
stronger singularity leading to numerical instabilities for large t. In Figure 13 the computational
results obtained by the Lax-Friedrichs scheme up to t = 1.5 are presented. We have used a grid with
100 × 100 cells and had to set the CFL number to 0.15. We have approximated this problem also
by the Nessyahu-Tadmor scheme. Due to less numerical viscosity the second order method gives
comparable results only up to t = 0.4, afterwards it seems to be unstable. We do not give these
results here as we like to investigate thoroughly the reasons of the failure of the Nessyahu-Tadmor
scheme for this problem in future.

We have presented two illustrating numerical experiments showing that the 3-D KCL is a useful
tool to study evolution of moving surfaces. First and second order central schemes have been applied
to study the time evolution of a nonlinear wavefront which has initially both concave and convex
parts. We have obtained some very interesting shapes of the wavefronts for two cases - in one case
a kink line and another case a point singularity appear in the physical space though the results
remain single valued in the ray coordinates, as expected for a system of conservation laws. The
second example presents a new challenge which we shall study and report in subsequent papers. Our
future goal is to investigate the propagation of a curved nonlinear wavefront where the converging
effects and appearance of analogous singularities are dominant. This may lead to the formation of
δ waves similar to δ shocks. In future our emphasis will be to study this situation more closely
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Figure 8. Time evolution of the metric g2 at the cross-section ξ2 = 0.

from theoretical as well as computational point of view and design robust and stable numerical
algorithms.
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Figure 12. Time evolution of the metric g2 at the cross-section x2 = 0.

Figure 13. Time evolution of the nonlinear wavefront having initially the form of
a paraboloid; graphs of solution at t = 0.0 and t = 1.5.


