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Abstract. We consider strong L1
loc(IR

d) precompactness of the sequence of

averaged quantities
∫

IRm hn(x, λ)ρ(λ)dλ, where ρ ∈ C0(IRm), and hn ∈ Lp
loc(IR

d×
IRm), p > 1, are solutions to the transport equations with flux explicitly de-
pending on space:

divx(F (x, λ)hn(x, λ)) =
d∑

i=1

∂xi∂
ki
λ Gi

n(x, λ), x ∈ IRd, λ ∈ IRm,

where F = (F1, ..., Fd), and Fi ∈ Lq
loc(IR

d × IRm), i = 1, ..., d, 1/p + 1/q < 1,

and ki = (ki
1, ..., ki

m) ∈ INm, i = 1, . . . d, stands for multindex. For the

sequences of functions (Gi
n)n∈IN , i = 1, . . . , d, we assume that they strongly

converge to zero as n →∞ in Lq̃
loc(IR

d × IRm) for a q̃ > 1.
In order to obtain the result we adapt H-measures [13, 35] and give positive

(but partial) answer on the question whether it is possible to translate in an
algebraic way the information ”uk is bounded in Lp, Puk is bounded in Lq

for a p, q > 1”, where P is a differential operator. This question was posed in
[13]. The proof mostly involves the theory of multipliers.

1. Introduction

Consider a sequence (hn)n∈IN of solutions to the first order transport equation:

L(∇, λ)hn = divx(a(λ)hn(x, λ)) = ∂λg(x, λ), λ ∈ IRm, x ∈ IRd, (1)

where g is locally bounded Radon measure over IRd × IRm.
It was firstly noticed by Agoshkov [1] that the family of averaged quantities

∫

IRm

ρ(λ)hn(x, λ)dλ, ρ ∈ C1
0 (IRm) (2)

demonstrates better properties then the family of solutions (hn) itself. More pre-
cisely, in general one states that:

Lemma 1. The sequence of averaged quantities (2) is strongly precompact in
L1

loc(IR
d).

Such kind of results are usually called velocity averaging lemmas.
In [27] one of the first and the most popular application of the velocity averaging

is given. More precisely, it was shown that for an entropy admissible solution [25]
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of a homogeneous scalar conservation law, denote it by u(t, x), t ∈ IR+, x ∈ IRd, so
called kinetic function

h(t, x, λ) =





1, for 0 < λ ≤ u(t, x)
−1, for 0 > λ ≥ u(t, x)
0, otherwise

satisfy a transport equation similar to (1). Then, for such transport equation the
authors prove an averaging lemma which enables them to gain regularity results
for the entropy admissible solution u to the corresponding conservation law.

From the beginning of 90s most of the results on velocity averaging were ob-
tained, and most of them were restricted on the first order transport equation
(degL(iξ, ·) = 1). One can find most of the information and references on this
issue in the introduction of [37] where the authors consider second order transport
equation in general form:

L(∇x, λ) = ∂λg(x, λ),

(more precisely degL(iξ, ·) = 2). They discovered that the symbol L(iξ, λ) of such
equation satisfies the ”truncation property” which enabled them to prove apri-
ori estimates which provided a regularity of solutions to various partial differen-
tial equations such as conservation laws, nonlinear degenerate parabolic equations,
nonisotropic degenerate diffusion and other equations admitting kinetic formulation
[27]. Also, we would like to mention that the theory of transport equations can be
applied as well on nonlinear problems which does not admit kinetic formulation but
are ”linearizable” on some other way. For more information check [2, 8, 11].

It is important to notice that in all papers cited in [37] (except P.Gerard’s work
referenced as [13] in this paper), symbols L(iξ, λ) corresponding to transport equa-
tions did not depend on space or time variables. Actually, this means that the equa-
tions describe processes occurring in homogeneous medias. On the other hand, most
of natural phenomena take place in heterogeneous medias (flow in heterogeneous
porous media, sedimentation processes, blood flow, gas flow in variable duct...).

But, it appears that it is much more complicated to work on heterogeneous
transport equations, and that one can not apply techniques from the homogeneous
case. This fact could be explained by the following simple observation. If we apply
Fourier transform on equation (1), at least informally, we can separate solutions
(hn) and known coefficients. Thus, we are able to express the solution via known
coefficients, and, consequently, ”estimate” solutions via known coefficients. Still, it
is far from being easy to formalize this observation (see e.g. [29, 37]).

In the heterogeneous case even such informal idea is not at our disposal. At the
moment only possible approach is through a variant of defect measures [13, 35]. The
defect measure is an object describing loss of compactness of a family of functions.
Originally, the notion of defect measure was systematically studied for sequences
satisfying elliptic estimates by P.L.Lions [26]. Since elliptic estimates automatically
eliminate oscillations, the defect measures used in [26] were not appropriate enough
for studying loss of compactness caused by oscillations, and which typically appear
in the case of e.g. hyperbolic problems.

In order to control oscillations, natural idea was to introduce an object which
distinguish oscillations of different frequencies. The idea is formalized by P. Gerard
[13] and independently L. Tartar [35]. The first one named appropriate defect
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measure as microlocal defect measure and the second one H–measure. In the sequel
we shall stick to Tartar’s notion.

An H–measure is a Hermitian non-negative complex Radon measure on the co-
spherical bundle over a domain in consideration (in general, the base space of the
fibre bundle is a manifold, while the fibre is the unit sphere Sd−1). The following
theorem is the corner stone of H-measures (for more information and other variants
see also [3, 4, 5, 31, 32, 36]):

Theorem 2. [35] If (un) = ((u1
n, . . . , ur

n)), n ∈ N is a sequence in L2(IRd; IRr)
such that un ⇀ 0 in L2(IRd; IRr), then there exists subsequence (un′) ⊂ (un) and
positive definite matrix of complex Radon measure µ = {µij}i,j=1,...,d on IRd×Sd−1

such that for all ϕ1, ϕ2 ∈ C0(IRd) and ψ ∈ C(Sd−1):

lim
n′→∞

∫

IRd

F(ϕ1u
i
n′)(ξ)F(ϕ2u

j
n′)(ξ)ψ(

ξ

|ξ| )dξ = 〈µij , ϕ1ϕ̄2ψ〉

=
∫

IRd×Sd−1
ϕ1(x)ϕ2(x)ψ(ξ)dµij(x, ξ), i, j = 1, . . . , d,

(3)

where F is the Fourier transform.

Definition 3. The complex Radon measure {µij}i,j=1,...r defined in the previous
theorem we call H-measure corresponding to the sequence (un) ∈ L2(IRd; IRr).

As we can see, the H–measure µ also depends on dual variable ξ ∈ IRd which
actually describes frequency of an oscillation.

Although H–measures were in some sense step forward with respect to Lions’s
defect measures, they can only be applied on sequences belonging at least to L2

loc

(which means that only limited concentration effects are allowed). Such confine-
ment forced P.Gerard’s averaging lemma for heterogeneous transport equations [13,
Theorem 2.5] to be proved only for sequences of solutions belonging to L2

loc and
with the righthand side being relatively precompact in H−1

loc . If we compare that
result with e.g. [29, Theorem 2] for homogeneous transport equation, we can see
that Gerard’s result has much stronger assumptions. In this paper, by adapting
the notion of H–measure, we shall prove an averaging lemma for heterogeneous
transport equations under the conditions analogous to the conditions given in [29,
Theorem 2]. Actually, we have succeeded to translate in an algebraic way the in-
formation ”uk is bounded in Lp, Puk is bounded in Lq for a p, q > 1”, where P
is a differential operator of first order with homogeneous symbol. Thus, we gave
partial answer on the question posed in [13].

Another shortcoming of H–measures is the fact that they can be applied only
on transport equations with homogeneous symbol (since dual variable ξ belongs to
the unit sphere), and in special cases of equations with non-homogeneous symbols
[30, 33]. How to overcome this obstacle will be the subject of further investigations.

The paper is organized as follows.
In Section 2 we formulate the main result of the paper (Theorem 4 below), and

introduce basic notions and notations.
In Section 3 we introduce the H–distributions – an extension of H–measures,

which will be the basic tool for proving our main result. As in Theorem 2 above,
we correspond an H–distribution to a sequence of finite dimension.

In Section 4 we give proof of the main result – Theorem 4.
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In Section 5 we prove existence of solution to multidimensional scalar conserva-
tion law with flux discontinuous in the space variable and belonging to the Sobolev
space W 1,p(IR) in the velocity variable. The same result can be found in [14, 31]
but under different assumptions on the flux regularity.

2. The main result, notions and notations

We consider the following first order linear transport equation:

L(∇x, x, λ) = divx(F (x, λ)hn(x, λ)) =
d∑

i=1

∂xj
∂ki

λ Gi
n(x, λ), x ∈ IRd, λ ∈ IRm, (4)

where ki = (ki
1, ..., k

i
d) ∈ Nd and ∂ki

λ = ∂
ki
1

λ1
. . . ∂

ki
d

λd
, and it is assumed that the flux

F satisfies the following non-degeneracy condition [32]:
For almost every x ∈ IRd and every ξ ∈ Sd−1 the mapping:

λ 7→
d∑

k=1

Fk(x, λ)ξk (5)

is not identically equal to zero on any set of positive Lebesgue measure.
The main result of the paper is the following theorem.

Theorem 4. Assume that for the flux vector F = (F1, ..., Fd) appearing in (4) we
have

• Fi ∈ L1+α
loc (IRd × IRm), α > 0, i = 1, .., d.

• F satisfies nondegeneracy condition (5).
Assume that the sequence (hn)n∈N is such that

hn ⇀ 0

weakly in L1+β
loc (IRd × IRm) for a β > 0 such that:

1
1 + α

+
1

1 + β
< 1. (6)

Assume that for every i = 1, . . . , d we have

Gi
n → 0, n →∞

strongly in L1+γ
loc (IRd × IRm), for a γ > 0.

Then for every ρ ∈ C0(IRm), there exists a subsequence (hr) ⊂ (hn) such that
the sequence of averaged quantities∫

IRm

hr(x, λ)ρ(λ)dλ → 0

strongly in L1
loc(IR

d × IRm) as r →∞.

Remark 5. Notice that the conditions

hn ⇀ 0 in L1+β(IRd × IRm),

Gi
n → 0 strongly in L1+γ(IRd × IRm)

are not essential. Namely, it is enough to assume that (hn) is bounded in L1+β
loc (IRd×

IRm), and that Gi
n → Gi strongly in L1+γ

loc (IRd × IRm) for a Gi ∈ L1+γ
loc (IRd × IRm),

i = 1, . . . , d.
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Then, since every bounded set in L1+β
loc (IRd × IRm) is weakly precompact, there

exists a function h ∈ Lp
loc(IR

d × IRm) such that along a subsequence as n →∞
hn ⇀ h.

It is clear that the subsequence (not relabeled) (hn−h) satisfies a transport equation
fulfilling the conditions from Theorem 4. So, we can conclude that∫

IRm

hr(x, λ)ρ(λ)dλ →
∫

IRm

h(x, λ)ρ(λ)dλ,

strongly in L1
loc(IR

d) for a subsequence (hr) ⊂ (hn).

Before we start the proof, we introduce necessary tools and notions.
By

∫
x;loc

we imply
∫

K
dx where K ⊂ IRd is a compact subset of IRd for an

appropriate d ∈ IN .
Usually, it will be clear what is the value of d. Otherwise, we shall precise it.
By B(0, l) we will denote the ball in an appropriate Euklid space centered in

zero with the radius l > 0.
By Lp

0(IR
d) we denote the space of functions belonging to Lp(IRd) being equal to

zero out of some compact V ⊂⊂ IRd. By Lp
loc(IR

d) we denote the space of functions
belonging to Lp(V ), for an arbitrary compact V ⊂⊂ IRd.

By (Lp
0(IR

d))∗ we shall denote the set of bounded linear functionals defined
on Lp

0(IR
d). It is well known that (Lp

0(IR
d))∗ = Lq

loc(IR
d) for the q such that

1/p + 1/q = 1. Still, to be as clear as possible in our considerations we will keep
the notation (Lp

0(IR
d))∗.

By W 1,p(IRd) we denote the space of functions f ∈ Lp(IRd) having the Sobolev
first derivative ∂xj f , j = 1, . . . , d, and such that ∂xj f ∈ Lp(IRd), j = 1, . . . , d.

For a multi-index α = (α1, . . . , αd) ∈ (IN ∪ {0})d we let |α| = α1 + · · · + αd.
Furthermore, for a function u ∈ Ck(Ω), Ω ⊂ IRd, and a multi-index α ∈ (IN ∪ {0})d

we let ∂α
x u = ∂α1

x1
. . . ∂αd

xd
u(x), x ∈ Ω.

For a function u ∈ Cκ(Ω) we denote

‖u‖Cκ(Ω) = max
0≤|α|≤κ

sup
ξ∈Ω

|∂α
ξ u(ξ)|, α ∈ (IN ∪ {0})d

.

By C1(IRd; Cκ(Sd−1)) we denote the space of functions φ(x, ξ), x ∈ IRd, ξ ∈
Sd−1, such that

max
0≤|β|≤1

sup
x∈IRd

(
max

0≤|α|≤κ
sup

ξ∈Sd−1
|∂β

x ∂α
ξ φ(x, ξ)|

)
, α, β ∈ (IN ∪ {0})d

.

By Lp(IRd;Cκ(Sd−1)) we denote the space of functions φ(x, ξ), x ∈ IRd, ξ ∈
Sd−1, such that

‖φ‖Lp(IRd;Cκ(Sd−1)) =
∫

IRd

‖φ(x, ·)‖p
Cκ(Sd−1)

dx < ∞,

and additionally satisfying the following generalized Lebesgue point property:
Fix a positive smooth compactly supported real function ω with total mass one.

For almost every x ∈ IRd we have:

lim
ε→0

∫

IRd

‖φ(x + εz, λ + εν, λ̃ + εν̃, ·)− φ(x, λ, λ̃, ·)‖Cκ(Sd−1)×

× d

Π
i=1

ω(zi)
r

Π
i=1

ω(ηi)
r′

Π
i=1

ω(ν̃i)dzdνdν̃ = 0.

(7)
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We shall also need the following inequality for the means in an integral formu-
lation:

Proposition 6. Let d, r ∈ IN . Assume that u ∈ Lp(IRd+r) for a p ≥ 1. Then we
have: ∫

IRd

‖u(x, ·)‖Lp(IRr)dx ≤ ‖u‖Lp(IRd+r). (8)

By Lp
0(IR

d; Ck(Sd−1)) we denote the subspace of Lp(IRd;Ck(Sd−1)) such that
for every u ∈ Lp

0(IR
d;Ck(Sd−1)) there exists a bounded set V ⊂ IRd such that

u(x, ξ) = 0 if x ∈ V .
By F we denote the Fourier transform on IRd, i.e. for a function u defined on

IRd we put:

û(ξ) := Fu(ξ) :=
∫

IRd

e−2πiξ·xu(x)dx,

while its inverse F̄ is defined as:

u(x) := F̄ û(ξ) :=
∫

IRd

e2πiξ·xû(ξ)dξ.

The main tool that we are going to use is the theory of multipliers [28, 34, 35].
We give a definition of a multiplier operator.

Definition 7. A multiplier operator Aφ with a symbol φ ∈ C(IRd) is defined by
the formula:

F [Aφ[f ]](ξ) = φ(ξ)F [f ](ξ),

where f is an integrable function.

Remark 8. Note that applying Plancharel’s theorem we can rewrite (3) in the form:

lim
n′→∞

∫

IRd

φ1u
i
n′(t, x)Aψ[φ2u

j
n′( ·, · )](t, x)dxdt

=
∫

IRd×Sd−1
φ1(x, t)φ2(x, t)ψ(ξ)dµpq(x, ξ),

(9)

where Aψ is a multiplier operator on IRd with the symbol ψ(ξ), ξ ∈ Sd−1.

The main theorem in the theory of multipliers is famous Hormander-Mikhlin
theorem (see also Marcinkevich theorem [28, 34]):

Theorem 9. [28] Let d ≥ 1 be an integer, and let the function φ ∈ L∞(IRd) has
partial derivatives of order less then or equal to κ, where κ is the least integer
greater then d/2. Given the q-tuple of integers denote α = (α1, . . . , αq), and let
n(α) = α1 + α2 + · · ·+ αq.

Suppose that for some constant k > 0 and for any real number r > 0 we have
∫

r
2≤‖ξ‖≤r

|Dn(α)φ(ξ)|2dξ ≤ k2rn−2n(α), (n(α) ≤ κ). (10)

Then for 1 < p < ∞ and associated multiplier operator Aφ there exists constant kp

such that
‖Aφ(f)‖Lp(IRd) ≤ kp‖f‖Lp(IRd), f ∈ Lp(IRd). (11)
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Remark 10. It is very important to notice that carefully inspecting the proof of the
Hormander-Mikhlin theorem we infer that the constant kp from the Hormander-
Mikhlin theorem has the form

kp = Cpk, (12)
where k is given in the Hormander-Mikhlin theorem, and Cp is a constant indepen-
dent on the symbol φ. For the precise proof see [9].

Combining the former formulation of the Hormander-Mikhlin theorem and Re-
mark 10 it is not difficult to prove the following corollary (see also [34, Sect. 3.2,
Example 2]:

Corollary 11. Assume that the symbol φ ∈ Cκ(IRd), κ ≥ d/2, κ ∈ IN is defined on
the unit sphere i.e. φ = φ( ξ

|ξ| ). Then, the multiplier operator Aφ with the symbol φ

is continuous as a mapping Aφ : Lp(IRd) → Lp(IRd) satisfying:

‖Aφf‖Lp(IRd) ≤ Kp‖φ‖Cκ(Sd−1)‖f‖Lp(IRd), (13)

where Kp is a constant independent on φ, and ‖φ‖Cκ = max
0≤j≤κ

sup
z∈IRd

|φ(j)(z)|.

Proof: As in Theorem 9 for a given q-tuple of integers denote α = (α1, . . . , αq),
and let n(α) = α1 + α2 + · · ·+ αq ≤ κ. Then notice that

∣∣∣Dn(α)φ

(
ξ

|ξ|
) ∣∣∣ ≤ ‖φ‖Cκ(Sd−1)

K

|ξ|n(α)
,

for a constant K independent on φ. From here we have for an arbitrary r > 0:
∫

r
2 <‖ξ‖<r

∣∣∣Dn(α)φ

(
ξ

|ξ|
) ∣∣∣

2

dξ ≤ ‖φ‖2Cκ(Sd−1)
r2n(α)

rd

(
1− 1

2d

)

≤ ‖φ‖2Cκ(Sd−1)r
d−2n(α)

(
1− 1

2d

)

implying that condition (10) is satisfied. From the Hormander-Mikhlin theorem,
more precisely Remark 10, we conclude that Aφ is bounded as mapping from
Lp(IRd) to Lp(IRd) satisfying (13).

2

In the following definition we introduce two very important multipliers. We are
going to use them substantially in the proof Theorem 4.

Definition 12. For every f ∈ Lp(IRd), p > 1, the Riesz potential Iα, 0 < α < d,
is defined by the formula

F [Iα[f ]](ξ) = (2π|ξ|)−αF [f ](ξ).

The zero order multiplier Rj , j = 1, ..., d, with the symbol iξj/|ξ| is called the
Riesz transform.

We provide basic properties of the Riesz transform and Riesz potential.
We have:

(Iα ◦ Iβ)[f ] = Iα+β [f ]

∂xjI1[f ] = I1[∂xj f ] = Rj [f ], j = 1, ..., d,

‖Rj [f ]‖Lp ≤ Cp‖f‖Lp , j = 1, ..., d.

(14)

The Riesz potentials I1 are characterized by the following important lemma:
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Lemma 13. [34] If p > d then the Riesz potential I1 is a compact operator from
Lp(IRd) to C(IRd). If 1 < p ≤ d then the Riesz potential I1 is compact operator
from Lp(IRd) to Lq(IRd) for an arbitrary q ∈ [1, pd(d− p)−1].

3. H-distributions - beyond H-measures

In order to describe loss of compactness for a sequence (un) ∈ Lp(Ω), p > 1, we
shall use a notion similar to H-measures; we call it H-distribution. But, since we
decreased regularity of the sequence (un), our H-distribution will not have so nice
properties as H-measures.

The main theorem of the section is the following one:

Theorem 14. Assume that (un), n ∈ N, is a sequence in L1+β
loc (IRd+r) such that

un ⇀ 0 in L1+β
loc (IRd+r), β > 0. Assume that (vn), n ∈ N, is a sequence bounded

in L∞loc(IR
d+r′).

Then, there exist subsequences (un′) ⊂ (un) and (vn′) ⊂ (vn) such that there
exists a complex valued functional µ such that

µ ∈
(
Lβ∗

0 (IRd+r+r′ ; Ck(Sd−1))
)∗

,

for a β∗ satisfying 1
1+β + 1

β∗ < 1, where
(
Lβ∗

0 (IRd;Ck(Sd−1))
)∗

is the set of

bounded linear functionals over Lβ∗
0 (IRd+r+r′ ;Ck(Sd−1)), such that for every ϕ1 ∈

Lβ∗
0 (IRd+r), ϕ2 ∈ C0(IRd), ρ2 ∈ Lβ∗(IRr′), and ψ ∈ Cκ(Sd−1), κ > d/2:

lim
n′→∞

∫

IRd+r+r′
(ϕ1u

i
n′)(x, λ)Aψ[ρ2(λ̃)ϕ2(·)vj

n′(·, λ̃)](x)dxdλdλ̃

= 〈µ, ϕ1ϕ2ρ2ψ〉.
(15)

where Aψ : Lp(IRd
x) → Lp(IRd

x) is a multiplier operator with the symbol ψ(ξ), ξ ∈
Sd−1.

The functional µ we call H–distribution corresponding to (un) and (vn).

Remark 15. Notice that in the case of our H-distributions we can not formulate
the theorem via the Fourier transform since we cannot estimate F(u) if u ∈ Lp for
p > 2 (Hausdorff-Young inequality [28] holds only for 1 ≤ p ≤ 2).

The proof of the theorem follows the steps from the proof of [35, Theorem 1.1].
Thus, we shall need a variant of Tartar’s first commutation lemma. To formulate
it, we need the following operators:

Let a ∈ Cκ(Sd−1), κ > d/2, and b continuous function with compact support
defined on IRd. We associate to a and b linear continuous operators A and B on
Lp(IRd), p > 1 arbitrary, by the formulae:

F(Au)(ξ) = a(
ξ

|ξ| )F(u)(ξ) a.e. ξ ∈ IRd, (16)

Bu(x) = b(x)u(x) a.e. x ∈ IRd, (17)

where χB(0,l) is characteristic function of the ball B(0, l). These operators are
bounded operators on Lp(IR), p > 1 (see (13)). We have the following lemma:

Lemma 16. (First commutation lemma) C = AB − BA is a compact operator
from L∞0 (IRd) into Lp0

loc(IR
d) for every p0 ≥ 2.
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Proof: First, notice that we can assume b ∈ C1
0 (IRd). Indeed, if we assume

merely b ∈ C0(IRd) then we can uniformly approach the function b by a sequence
(bn) ∈ C1

0 (IRd). The corresponding sequence of commutators Cn = ABn − BnA,
where Bn(u) = bnu, converges in norm toward C. So, if we prove that Cn are
compact for each n the same will hold for C as well.

On the first step notice that according to (13) we have:

‖C‖ ≤ 2const‖a‖Cκ(Sd−1)‖b‖L∞(IRd),

where const is a constant independent on the symbol a and the function b.
Then, fix a real non-negative function ω with compact support and total mass

one. Take the characteristic function χB(0,2) of the ball B(0, 2) ⊂ IRd and denote:

χε
B(0,2) = χB(0,2) ?

1
εd

Πd
i=1 ω(

xi

ε
), ε > 0.

Choose an ε > 0 small enough so that we have χε
B(0,2)(x) = 1 for x ∈ B(0, 1), and

(1− χε
B(0,2)) ≡ 1 out of the ball B(0, 2).

Next, notice that
A = Aaχε

B(0,2)
+Aa(1−χε

B(0,2))
,

whereAaχε
B(0,2)

is the multiplier operator with the symbol aχε
B(0,2), andAa(1−χε

B(0,2))

is the multiplier operator with the symbol a(1− χε
B(0,2)).

Accordingly,

C = AB −BA = Aaχε
B(0,2)

B −BAaχε
B(0,2)

+Aa(1−χε
B(0,2))

B −BAa(1−χε
B(0,2))

= Caχε
B(0,2)

+ Ca(1−χε
B(0,2))

,

where

Caχε
B(0,2)

= Aaχε
B(0,2)

B −BAaχε
B(0,2)

,

Ca(1−χε
B(0,2))

= Aa(1−χε
B(0,2))

B −BAa(1−χε
B(0,2))

.

We shall consider separately the commutators Ca(1−χε
B(0,2))

and Caχε
B(0,2)

.
First, notice that since a(1−χε

B(0,2)) has compact support the multiplierAa(1−χε
B(0,2))

is actually the convolution operator with the kernel ψε(x) = F̄(a(1−χε
B(0,2)))(x) ∈

L2(IRd):
Aa(1−χε

B(0,2))
(u) = ψε ? u, u ∈ Lp(IRd). (18)

Therefore, we can state that

Ca(1−χε
B(0,2))

u(x) =
∫

IRd

(b(x)− b(y)) ψ(x− y)u(y)dy,

is compact operator from (L∞0 (IRd), ‖ · ‖L∞) into Lp0
loc(IR

d), p0 ≥ 2.
(19)

Indeed, take an arbitrary sequence (un) ⊂ L∞0 (IRd) such that un ⇀ 0 weak-?
in L∞(IRd) and suppun ⊂ V̂ ⊂⊂ IRd, for a compact set V̂ . In order to prove
that Ca(1−χε

B(0,2))
is compact, it is enough to prove that Ca(1−χε

B(0,2))
un strongly

converges to zero in Lp0
loc(IR

d).
Since ψε ∈ L2(IRd) we also have ψ ∈ L1

loc(IR
d). Thus, for every fixed x ∈ IRd we

have

Ca(1−χε
B(0,2))

un(x) =
∫

V̂

(b(x)− b(y))ψ(x− y)un(y)dy → 0, n → 0. (20)
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Next, since the sequence (un) has compact support we also have:

|Ca(1−χε
B(0,2))

un(x)| ≤ Ĉ, (21)

for a constant Ĉ depending on the support of the sequence (un) as well as L2 norm
of the kernel ψ.

Combining (20) and (21) with Lebesgue dominated convergence theorem we have
for an arbitrary compact V ⊂⊂ IRd and every p0 > 0:

∫

V

|Ca(1−χε
B(0,2))

un(x)|p0dx → 0, n →∞, (22)

proving (19).
In order to prove that Caχε

B(0,2)
is compact we need more subtle arguments

basically involving techniques from the proof of the Hormander-Mikhlin theorem
from e.g. [28].

So, let Θ be a non-negative function with support in the set {ξ ∈ Rn : 1
2 ≤ ‖ξ‖ ≤

2}, which is infinitely differentiable and is such that Θ(ξ) > 0 when 2−
1
2 ≤ ‖ξ‖ ≤ 2

1
2 .

Also let

θ(ξ) = Θ(ξ)
/ ∞∑

j=−∞
Θ(2−jξ).

Then, θ is non-negative, has support in the set {ξ ∈ Rn : 1
2 ≤ ‖ξ‖ ≤ 2}, is infinitely

differentiable and is such that if ξ 6= 0, then

∞∑

j=−∞
θ(2−jξ) = 1.

Now, let aj(ξ) = a(ξ/|ξ|)(1−χε
B(0,2)(ξ))θ(2

−jξ), j > 0. Then, aj has support in
the set

{ξ ∈ Rn : 2j−1 ≤ ‖ξ‖ ≤ 2j+1}, j > 0,

and

a(ξ/|ξ|)(1− χε
B(0,2)(ξ)) =

∞∑

j=0

aj(ξ).

By āj we denote the inverse Fourier transform of the function aj :

āj(x) = F̄(aj)(x).

Notice that a ∈ Cκ(IRd) satisfies condition (10) (see also Corollary 11). From
here, the Cauchy-Schwartz inequality, Plancharel’s theorem and the well known
properties of the Fourier transform, for every s > 0 we have (see also the proof of
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[28, Theorem 7.5.13] and [9, Theorem 8]):
∫

‖x‖>s

|āj(x)|dx ≤
( ∫

‖x‖≥s

‖x‖−2κdx

)1/2( ∫

‖x‖≥s

‖x‖2κ|āj(x)|2dξ

)1/2

(23)

≤
( ∫

‖x‖≥s

‖x‖−2κdx

)1/2( ∫

IRd

‖x‖2κ|āj(x)|2dx

)1/2

≤
(

2πd−1sd−2κ

2κ− d

)1/2
(

2κ

d∑

i=1

∫

IRd

|xi|2κ|āj(x)|2dx

)1/2

=
(

2πd−1sd−2κ

2κ− d

)1/2
(

2κ

d∑

i=1

∫

IRd

|Dκ
ξi

aj(ξ)|2dξ

)1/2

≤ C1‖a‖Ck(Sd−1)(2
js)(

1
2 d−κ),

for a constant C1 depending on the functions θ and χε
B(0,2).

Next, consider the functional series

Ān(x) =
n∑

j=0

āj(x).

For an arbitrary fixed ε > 0, the series
∑n

j=−n āj(x) is absolutely convergent in
L1(IRd\B(0, ε)). Indeed, we have

‖Ān(x)‖L1(IRd\B(0,ε)) ≤
n∑

j=0

‖āj‖L1(IRd\B(0,ε)) (24)

≤ C1‖a‖Ck(Sd−1)s
( 1
2 d−κ)

n∑

j=0

2j( 1
2 d−κ) ≤ C3 < ∞,

for a constant C3 > 0, since 1
2d− κ ≤ 0.

Thus, for every ε > 0 there exists Āε ∈ L1(IRd\B(0, ε)) such that
∞∑

j=0

āj(x) = Āε(x), x ∈ IRd\B(0, ε). (25)

Similarly, from (23) we have
∫

‖x‖<s

‖x‖ · |Ān(x)|dx → 0, s → 0, (26)

since 1
2d− κ ≥ −1.

Now, take the convolution operator:

An(u) = Ān ? u, u ∈ L∞0 (IRd).

and consider the commutator

Cn = AnB −BAn.

It holds:

Cn(u)(x) =
∫

IRd

Ān(x− y)(b(x)− b(y))u(y)dy.
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Given a fixed ε > 0 rewrite Cn(u) in the following way:

Cn(u)(x) =
∫

IRd

Ān(x− y)(b(x)− b(y))u(y)dy

=
∫

‖x‖>ε

Ān(x− y)(b(x)− b(y))u(y)dy +
∫

‖x‖≤ε

Ān(x− y)(b(x)− b(y))u(y)dy.

From here, using the fact that b ∈ C1
0 (IRd) together with (25) and (26) we conclude

lim sup
n→∞

‖Cn(u)(x)‖L
p0
loc(IR

d) ≤ ‖
∫

‖x‖>ε

Āε(x−y)(b(x)−b(y))u(y)dy‖L
p0
loc(IR

d)+oε(1),

(27)
where

oε(1) =
∫

‖x‖≤ε

Ān(x− y)(b(x)− b(y))u(y)dy

=
∫

‖x‖≤ε

‖x− y‖Ān(x− y)
(b(x)− b(y))
‖x− y‖ u(y)dy →(26) 0, ε → 0.

Furthermore, notice that the operator

u 7→
∫

‖x‖>ε

Āε(x− y)(b(x)− b(y))u(y)dy

is a compact operator from L∞0 (IRd) to Lp0
loc(IR

d) for an arbitrary p0 > 1.
Then, as in the final steps of the proof of [28, Theorem 7.5.13], from the Fatou’s

lemma one can conclude that for any p0 > 1 there exists a subsequence (Cnk
) ⊂

(Cn) such that:

‖Ca(1−χε
B(0,2))

u‖L
p0
loc(IR

d) ≤ lim sup
k→∞

‖Cnk
u‖L

p0
loc(IR

d)

≤ ‖
∫

‖x‖>ε

Aε(x− y)(b(x)− b(y))u(y)dy‖L
p0
loc(IR

d) + oε(1).

This actually means that the commutator Ca(1−χε
B(0,2))

can be bounded by the sum
of a compact operator and a bounded operator whose norm is arbitrarily small.
This implies that Ca(1−χε

B(0,2))
is the compact operator from L∞0 (IRd), ‖ · ‖∞ to

Lp0
loc(IR

d) for an arbitrary p0 > 1.
Thus we see that C can be represented as sum of two compact operators Caχε

B(0,2)

and Ca(1−χε
B(0,2))

, which means that A is compact operator itself.

This concludes the proof. 2

Now, we are able to prove Theorem 14.
Proof of Theorem 14:
Since (vn) ∈ L∞loc(IR

d+r′) it follows that (vn) ∈ Lβ∗

loc(IR
d+r′) for every β∗ ≥ 1.

Therefore, there exists a subsequence (vn′) such that we have

vn′ ⇀ v ∈ L∞loc(IR
d+r′) in Lβ∗

loc(IR
d+r′). (28)
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From here, since un′ ⇀ 0, n′ →∞, in L1+β
loc (IRd+r) and ϕ1Aψ[ϕ2ρ2v] ∈ Lβ∗

0 (IRd+r+r′)
for any ϕ1 ∈ Lβ∗

0 (IRd+r), ϕ2 ∈ C0(IRd), ρ̃ ∈ Lβ∗(IRr′), we have:

lim
n′→∞

∫

IRd+r+r′
ϕ1(x, λ)un′(x, λ)Aψ[ϕ2(·)ρ̃(λ̃)vn′(·, λ̃)](x)dxdλdλ̃ (29)

= lim
n′→∞

∫

IRd+r+r′
ϕ1(x, λ)un′(x, λ)Aψ[ϕ2(·)ρ̃(λ̃)(vn′ − v)(·, λ̃)](x)dxdλλ̃,

where Aψ is the multiplier operator with the symbol ψ(ξ/|ξ|), ψ ∈ Cκ(IRd).
Assume that we have suppϕ2 ⊂ B(0, l) ⊂ IRd+r′ . Then, from (29) and Lemma

16 we have:

lim
n′→∞

∫

IRd+r+r′
ϕ1(x, λ)un′(x, λ)Aψ[ϕ2(·)ρ̃(λ̃)vn′(·, λ̃)](x)dxdλdλ̃ (30)

= lim
n′→∞

∫

IRd+r+r′
ϕ1(x, λ)un′(x, λ)Aψ[ϕ2(·)ρ̃(λ̃)χB(0,l)(·)(vn′ − v)(·, λ̃)](x)dxdλdλ̃

= lim
n′→∞

∫

IRd+r+r′
ϕ1(x, λ)ϕ2(x)ρ̃(λ̃)un′(x, λ)Aψ[χB(0,l)(·)(vn′ − v)(·, λ̃)](x)dxdλdλ̃

= lim
n→∞

∫

IRd+r+r′
ϕ1(x, λ)ϕ2(x)ρ̃(λ̃)un′(x, λ)Aψ[χB(0,l)(·)vn′(·, λ̃)](x)dx,

where we implicitly used the Lebesgue dominated convergence theorem.
From here, denoting ϕ(x, λ) = ϕ1(x, λ)ϕ2(x), and Corollary 11 we see that the

functional

µn,l(ϕ, ρ̃, ψ)= lim
n′→∞

∫

IRd+r+r′
ϕ(x, λ)ρ̃(λ̃)un′(x, λ)Aψ[(χB(0,l)vn′)(·, λ̃)](x)dxdλdλ̃

(31)
is linear with respect to ϕ ∈ Lβ∗

0 (IRd+r), ρ̃ ∈ Lβ∗(IRr′) and ψ ∈ Cκ(Sd−1), and
bounded with ‖ϕ‖Lβ∗ (IRd+r′ )‖ρ̃‖Lβ∗ (IRr)‖ψ‖Cκ(Sd−1). Indeed, using the Holder in-
equality, inequality between means (8), and Corollary 11:

∣∣∣
∫

IRd+r+r′
ϕ(x, λ)ρ̃(λ̃)un′(x, λ)Aψ[(χB(0,l)vn′)(·, λ̃)](x)dxdλdλ̃

∣∣∣
≤ C‖ψ‖Cκ(Sd−1)‖ϕ‖Lβ∗ (IRd)‖un′‖L1+β(suppϕ)‖vn′‖Lθ(B(0,l))

≤ C̃‖ψ‖Cκ(Sd−1)‖ϕ‖Lβ∗ (IRd+r)‖ρ̃‖Lβ∗ (IRr′ ),

where 1
1+β + 1

β∗ + 1
θ = 1, and C and Ĉ are appropriate constants.

Using the weak precompactness property of the space(
Lβ∗

0 (IRd+r)× Lβ∗
0 (IRr′)× Cκ(Sd−1)

)∗
(Banach-Alaoglu theorem) we conclude that

there exists a µl ∈
(
Lβ∗

0 (IRd+r)× Lβ∗
0 (IRr′)× Cκ(Sd−1)

)∗
such that along subse-

quences (not relabeled) (un′) ⊂ (un) and (vn′) ⊂ (vn) we have for ϕ1 ∈ Lβ∗
0 (IRd+r),

ρ̃ ∈ Lβ∗
0 (IRr′), and ϕ2 ∈ C0(IRd), suppϕ2ρ̃ ⊂ B(0, l) (compare (31) when ϕ = ϕ1ϕ2

with (30)):

lim
n′→∞

∫

IRd+r+r′
(ϕ1un′)(x, λ)A[ϕ2(·)ρ̃(λ̃)vn′(·, λ̃)](x)dxdλdλ̃ = 〈µl, ϕ1ϕ2ρ̃ψ〉.

Choosing l ∈ IN (or some other countable set) we can assume that the same sub-
sequences (un′) and (vn′) define the distributions µl for any l ∈ IN .
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Standard arguments involving e.g. Cantor diagonalization procedure show that
there exists µ so that for every ψ ∈ Cκ(Sd−1), ρ̃ ∈ Lβ∗

0 (IRr′), and ϕ ∈ Lβ∗
0 (IRd+r)

such that for every p ∈ IRr we have suppϕ ⊂ B(0, l):

〈µ, ϕρ̃ψ〉 = 〈µl, ϕρ̃ψ〉, l ∈ N.

Clearly, the latter µ satisfies (15).
Now, using the Schwartz kernel theorem we can conclude that µ is a distribution

in variables (x, λ, λ̃) ∈ IRd+r+r′ and ξ ∈ Sd−1. Still, we assert that the functional
µ is much more than that, and we need to explicitly extend the functional µ ∈(
Lβ∗

0 (IRd+r+r′)× Cκ(Sd−1)
)∗

on a functional µ ∈
(
Lβ∗

0 (IRd+r+r′ ;Cκ(Sd−1))
)∗

.

First, fix once and for all the partition of the space IRd+r on disjoint cubes Kn
i ,

i ∈ ZZ, with the edge length 1
2n(r+d) , n ∈ IN . Assume that the partition Kn+1

i ,
i ∈ ZZ, is obtained by partitioning the cubes Kn

i , i ∈ IN , on 1
2r+d equal cubes. In

the completely same manner we fix a partitioning of IRr′ on disjoint cubes K̃n
i ,

i ∈ ZZ, with the edge length 1
2r′d .

By χn
i we denote the characteristic function of the cube Kn

i , and by χ̃n
j we denote

the characteristic function of the cube K̃n
j .

Then, take an arbitrary φ ∈ Lβ∗
0 (IRd+r+r′ ;Cκ(Sd−1))∩C1(IRd+r+r′ ;Cκ(Sd−1)),

φ = φ(x, λ, λ̃, ξ), (x, λ, λ̃) ∈ IRd+r+r′ , ξ ∈ Sd−1. Furthermore, assume that for
every n ∈ IN , every ξ ∈ Sd−1, and some N(n) ∈ IN :

suppφ(·, ·, ·, ξ) ⊂ V ⊂
⋃N(n)

i,j=−N(n)
Kn

i × K̃n
j . (32)

Denote by Φ1 ∈ C1
0 (IRd) the function such that Φ1(x) ≡ 1, x ∈ projxV , where

projxV is projection of the set V on the x-subspace IRd × {0} ⊂ IRd+r+r′ .
Denote by Φ2 ∈ C1

0 (IRr) the function such that Φ2(λ) = 1, λ ∈ projλV is
projection of the set V on the λ-subspace IRr × {0} ⊂ IRd+r+r′ .

Denote by Φ3 ∈ C1
0 (IRr′) the function such that Φ3(λ̃) = 1, λ̃ ∈ projλ̃V is

projection of the set V on the λ̃-subspace IRr′ × {0} ⊂ IRd+r+r′ .
Denote by

φn(x, λ, λ̃, ξ) =
N∑

i,j=−N

φ(xn
i , λn

i , λ̃n
j , ξ)χn

i (x, λ)χ̃n
j (λ̃),

where (xn
i , λn

i ) ∈ Kn
i is center of the cube λ̃n

j ∈ K̃n
i , and N = N(n) ∈ IN is such

that (32) is satisfied.
Now, we define:

〈µ, φ(x, λ, λ̃, ξ)〉 := lim
N→∞

N∑

i,j=−N

〈µ,Φ2
1(x)Φ2(λ)χn

i (x, λ)Φ3(λ̃)χ̃n
j (λ̃)φ(xn

i , λn
i , λ̃n

j , ξ)〉.

(33)
To prove that (33) is well defined extension, we need to prove that the sequence

(
N∑

i,j=−N

〈µ, Φ2
1(x)Φ2(λ)χn

i (x, λ)Φ3(λ̃)χ̃n
j (λ̃)φ(xn

i , λn
i , λ̃n

j , ξ)〉)n∈IN is convergent.
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We shall use the definition of the functional µ ∈
(
Lβ∗

0 (IRd+r+r′)× Cκ(Sd−1)
)∗

,
and the Cauchy criterion. Accordingly, assume that n ≥ m, and consider:

∣∣∣
N∑

i,j=−N

〈µ, Φ2
1(x)Φ2(λ)χn

i (x, λ)Φ3(λ̃)χ̃n
j (λ̃)φ(xn

i , λn
i , λ̃n

j , ξ)〉 (34)

−
M∑

i,j=−M

〈µ, Φ2
1(x)Φ2(λ)χm

i (x, λ)Φ3(λ̃)χ̃m
j (λ̃)φ(xm

i , λm
i , λ̃m

j , ξ)〉
∣∣∣

=
∣∣∣

N∑

i,j=−N

〈µ, Φ2
1(x)Φ2(λ)χn

i (x, λ)Φ3(λ̃)χ̃n
j (λ̃)

(
φ(xn

i , λn
i , λ̃n

j , ξ)− φ(xm
i(n), λ

m
i(n), λ̃

m
j(n), ξ)

)
〉
∣∣∣,

where M = M(m) and N = N(n) are such that (32) is satisfied. The point
(xm

i(n), λ
m
i(n)) is such that (xm

i(n), λ
m
i(n)) = (xm

i , λm
i ) as long as Kn

i ⊂ Km
i , and the

point λ̃m
j(n) is such that λ̃m

j(n) = λ̃m
j as long as K̃n

j ⊂ K̃m
j .

Let 1
1+β + 1

β̃
= 1 for β̃ > 1.

By (34) and definition of the functional µ we have

∣∣∣
N∑

i,j=−N

〈µ, Φ2
1(x)Φ2(λ)χn

i (x, λ)Φ3(λ̃)χ̃n
j (λ̃)φ(xn

i , λn
i , λ̃n

j , ξ)〉

−
M∑

i,j=−M

〈µ, Φ2
1(x)Φ2(λ)χm

i (x, λ)Φ3(λ̃)χ̃m
j (λ̃)φ(xm

i , λm
i , λ̃m

j , ξ)〉
∣∣∣

=
∣∣∣

N∑

i,j=−N

lim
k→∞

∫

IRd+r+r′
Φ1(x)Φ2(λ)(ukχn

i )(x, λ)×

×A(
φ(xn

i ,λn
i ,λ̃n

j , ξ
|ξ| )−φ(xm

i(n),λ
m
i(n),λ̃

m
j(n),

ξ
|ξ| )

)[Φ1(·)Φ2(λ̃)χ̃m
j (λ̃)vk(·, λ̃)](x)dxdλdλ̃

∣∣∣

≤ lim
k→∞

N∑

i,j=−N

‖Φ1Φ2u
i
kχn

i ‖L1+β(IRd+r)‖Φ1Φ3vkχ̃n
j (λ̃)‖Lβ̃(IRd+r′ )×

× ‖φ(xn
i , λn

i , λ̃m
j , ξ)− φ(xm

i(n), λ
m
i(n), λ̃

m
j(n), ξ)‖Ck(Sd−1)

≤ lim
k→∞

‖Φ1Φ2uk‖L1+β(IRd+r)‖Φ1Φ3vk‖Lβ̃(IRd+r′ )×

×
N∑

i,j=−N

‖(xn
i , λn

i , λ̃n
j )− (xm

i(n), λ
m
i(n), λ̃

m
j(n))‖

d∑
α=1

‖∂xαφ(x, λ, λ̃, ξ)‖C0(IRd;Cκ(Sd−1))

= C

d∑
α=1

‖∂xαφ(x, ξ)‖C0(IRd;Cκ(Sd−1))

2M
,
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since ‖(xn
i , λn

i , λ̃n
j ) − (xm

i(n), λ
m
i(n), λ̃

m
i(n))‖ ≤ 1

2M (according to the definition of the
cubes Kn

i and K̃n
j ). Above we have

N∑

i,j=−N

‖Φ1Φ2u
i
kχn

i ‖L1+β(IRd+r)‖Φ1Φ3vkχ̃n
j (λ̃)‖Lβ̃(IRd+r′ )

= ‖Φ1Φ2uk‖L1+β(IRd+r)‖Φ1Φ3vk‖Lβ̃(IRd+r′ ) ≤ Ĉ,

for a constant Ĉ.

Thus, we see that (
N∑

i=−N

〈µ, Φ2
1(x)Φ2(λ)χn

i (x, λ)Φ3(λ̃)χ̃n
j (λ̃)φ(xn

i , λn
i , λ̃n

j , ξ)〉) is

Cauchy sequence implying that extension (33) is well defined on the space(
C1(IRd; Cκ(Sd−1)), ‖ · ‖

Lβ∗
0 (IRd;Cκ(Sd−1))

)
.

In order to prove that the functional µ, can be extended on Lβ∗
0 (IRd+r+r′ ; Cκ(Sd−1)),

it is enough to prove that
(
C1(IRd+r+r′ ;Cκ(Sd−1)), ‖ · ‖

Lβ∗
0 (IRd+r+r′ ;Cκ(Sd−1))

)
is

dense in Lβ∗
0 (IRd+r+r′ ; Cκ(Sd−1)).

Take an arbitrary φ ∈ Lβ∗
0 (IRd+r+r′ ; Cκ(Sd−1)) and consider the family of con-

volutions

φε(x, λ, λ̃, ξ) =
∫

IRd+r+r′
φ(y, η, η̃, ξ)

1
εd+r+r′ Πd

i=1 ω(
xi − yi

ε
)×

×Πr
i=1 ω(

λi − ηi

ε
) Πr′

i=1 ω(
λ̃i − η̃i

ε
)dydηdη̃,

where ω is real non-negative smooth function with total mass one.
We shall prove that along a subsequence we have:

lim
ε→0

‖φε(x, λ, λ̃, ξ)− φ(x, λ, λ̃, ξ)‖
Lβ∗

0 (IRd+r+r′ ;Cκ(Sd−1))
= 0. (35)

We have:

‖φε(x, λ, λ̃, ξ)− φ(x, λ, λ̃, ξ)‖β∗

Lβ∗
0 (IRd;Cκ(Sd−1))

(36)

=
∫

IRd+r+r′
‖φε(x, λ, λ̃, ξ)− φ(x, λ, λ̃, ξ)‖β∗

Cκ(Sd−1)
dxdλdλ̃

≤
∫

IRd+r+r′

∫

IRd+r+r′
‖φ((x, λ, λ̃) + ε(z, ν, ν̃), ξ)− φ(x, λ, λ̃, ξ)‖β∗

Cκ(Sd−1)
×

×Πd
i=1 ω(zi) Πr

i=1 ω(ηi)Πr′
i=1 ω(η̃i)dzdνdν̃dxdλdλ̃

where on the last step we used standard change of variables zi = xi−yi

ε , ν = λi−ηi

ε ,

ν̃ = λ̃i−η̃i

ε , and the well known inequality ‖ ∫
f(x, y)dy‖ ≤ ∫ ‖f(x, y)‖dy.

Next, using generalized Lebesgue point property (7) we have for almost every
(x, λ, λ̃) ∈ IRd+r+r′

lim
ε→0

∫

IRd+r+r′
‖φ((x, λ, λ̃) + ε(z, ν, ν̃), ξ)− φ(x, λ, λ̃, ξ)‖β∗

Cκ(Sd−1)
×

×Πd
i=1 ω(zi)Πr

i=1 ω(ηi)Πr′
i=1 ω(η̃i)dzdνdν̃ = 0.

From here, applying the Lebesgue dominated convergence theorem on (36) we
conclude that (35) holds.

This concludes the proof.
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2

Simple corollary of Theorem 14 is the following proposition:

Proposition 17. The H-distribution µ ∈
(
Lβ∗

0 (IRd+r+r′ ;Cκ(Sd−1))
)∗

defined in

Theorem 14 is a family µ(x, λ, λ̃, ξ) ∈ (Cκ(Sd−1))∗, (x, λ, λ̃) ∈ IRd+r+r′ , of complex
functionals defined on Cκ(Sd−1) such that for all φ ∈ Lβ∗

0 (IRd+r+r′ ; Cκ(Sd−1)) the
mapping

IRd+r+r′ 3 (x, λ, λ̃) 7→ 〈µ(x, λ, λ̃, ξ), φ〉

belongs to Lβ∗
0 (IRd+r+r′).

The latter proposition actually means that we can write (15) as:

lim
n′→∞

∫

IRd+r+r′
(ϕ1u

i
n′)(x, λ)A[ρ2(λ̃)ϕ2(·)vj

n′(·, λ̃)](x)dxdλdλ̃ (37)

=
∫

IRd+r+r′
ϕ1(x, λ)ϕ2(x)ρ2(λ̃)〈µ(x, λ, λ̃, ·), ψ〉dxdλdλ̃.

4. The proof of Theorem 4

We shall need the operator Tl : IR → IR, l ∈ IN , reminding on the truncation
operator (see e.g. [7, 12]) which is often used for controlling concentration effects:

Tl(v) =

{
0, |v| > l

v, |v| ≤ l.
(38)

In order to use the results from the previous section we take, for a fixed l and
fixed ρ ∈ C

|k|
0 (IRm), where |k| is given in Theorem 4:

un(x, λ) = hn(x, λ), and

vn(x) = Tl(
∫

IRm

ρ(q)hn(x, q)dq).

Thus, with the notation from the previous section, we have r = m and r′ = 0.
The proof starts with the choice of special test function. For a fixed p ∈ IRd and

l ∈ IN we take (compare with [33, (35)]):

ϕ(x, λ) = ζ1(x)ζ2(λ)(I1 ◦ Aψ)[ζ3(·)Tl(
∫

IRm

ρ(p)hn(·, p)dp)](x), (39)

where ζ1 ∈ C1
0 (IRd), ζ2 ∈ C

|k|
0 (IRm) for the multindex k given in (4), and ζ3 ∈

C1
0 (IRd), and Aψ is multiplier with a symbol ψ ∈ Cκ(Sd−1). Since hn ⇀ 0

in L1+β(IRd × IRm) we can assume that Tl(
∫

IRm ρ(p)hn(·, p)dp) ⇀ 0 weakly-? in
L∞(IRd) as well. Otherwise, we can take L∞ weak-? limit hl of Tl(

∫
IRm ρ(p)hn(·, p)dp

and put Tl(
∫

IRm ρ(p)hn(·, p)dp)− hl in the place of Tl(
∫

IRm ρ(p)hn(·, p)dp) in (39).
Then, substitute the function ϕ in (4). We get after integrating over IRm and

using (14):
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∫

IRd+m

d∑

i=1

Fi(x, λ)hn(x, λ)
(
∂xi

ζ1ζ2(I1 ◦ Aψ)[ζ3(·)Tl(
∫

IRm

ρ(p)hn(·, p)dp)]

+ ζ1ζ2(Ri ◦ Aψ)[ζ3(·)Tl(
∫

IRm

ρ(p)hn(·, p)dp)]
)
dxdλ

=
d∑

i=1

∫

IRd

Gi
n(x, λ)

(
∂xi

ζ1∂
k
λζ2(I1 ◦ Aψ)[ζ3(·)Tl(

∫

IRm

ρ(p)hn(·, p)dp)]

+ ζ1∂
k
λζ2(Ri ◦ Aψ)[ζ3(·)Tl(

∫

IRm

ρ(p)hn(·, p)dp)]
)
dxdλ.

(40)

To proceed, note that from Lemma 13 it follows that the multiplier Aψ ◦ I1 is
compact operator from Lp(IRd) to C(IRd) for any p > d. Therefore, it transforms
weakly convergent sequence (Tl(

∫
IRm ρ(p)hn(·, p)dp)) into the strongly convergent

one.
Thus, every term containing as a subintegral expression Aψ ◦ I1 multiplied by

a function/sequence which is bounded in Lq for any q > 1 will converge to zero.
Similarly, from (14) it follows that every term containing as a subintegral expression
∂xiAψ ◦I1 = Aψ ◦Ri multiplied by a sequence which is strongly convergent to zero
in Lq for any q > 1 will converge to zero as well.

So, combining the Holder inequality, Hormander-Mikhlin theorem, and Theorem
14 (more precisely (37)), we get after letting r → ∞ in (40) along a subsequence
(hr) ⊂ (hn) such that:

d∑

i=1

∫

IRd+m

〈Fi(λ, x)ξiζ1(x)ζ2(λ)ζ3(x)ψ(ξ), µl(x, λ, ξ)〉dxdλ = 0 (41)

Clearly, since l belongs to the countable set IN , we can assume that the same
subsequence (hr) for every l ∈ IN defines the distribution µl(x, q, ξ) from (41).

According to Theorem 14 instead of (41) we can write:
∫

IRd+m

〈
d∑

i=1

Fi(x, λ)ξiζ4(x, λ, ξ), µl(x, λ, ξ)〉dxdλ = 0, (42)

for an arbitrary ζ4 ∈ Lβ∗
0 (IRd+m; Cκ(Sd−1))).

Now, we take in (42):

ζ4(x, λ, ξ) =

(
d∑

i=1

Fi(x, λ)ξi

)
ζ(x, λ, ξ)

(
d∑

i=1

Fi(x, λ)ξi

)2

+ ε

,

where ζ ∈ Lβ∗
0 (IRd+m;Cκ(Sd−1)) is arbitrary. We obtain

∫

IRd+m

〈

(
d∑

i=1

Fi(x, λ)ξi

)2

ζ(x, λ, ξ)

(
d∑

i=1

Fi(x, λ)ξi

)2

+ ε

, µl(x, λ, ξ)〉dλdx = 0,
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Rewrite the latter expression in the form:

∫

IRd+m

〈

(
d∑

i=1

Fi(x, λ)ξi

)2

ζ(x, λ, ξ)

(
d∑

i=1

Fi(x, λ)ξi

)2

+ ε

, µl(x, λ, ξ)〉dxdλ = 0. (43)

From condition (5) we know that for every (x, ξ) ∈ D × Sd−1, where D ⊂ IRd is of

full Lebesgue measure with respect to IRd, the set {λ ∈ IRm :
d∑

k=1

Fk(x, λ)ξk = 0}
has zero Lebesgue measure. Therefore, for almost every λ ∈ IRm we have:

lim
ε→0

∫

IRd

〈

(
d∑

i=1

Fi(x, λ)ξi

)2

ζ(x, λ, ξ)

(
d∑

i=1

Fi(x, λ)ξi

)2

+ ε

, µl(x, λ, ξ)〉dx

=
∫

IRd

〈ζ(x, λ, ξ), µl(x, λ, ξ)〉dx.

Then, using the Lebesgue dominated convergence theorem we obtain from (43)
after letting ε → 0:

∫

IRd+m

〈ζ(x, λ, ξ), µl(x, λ, ξ)〉dxdλ = 0.

Due to arbitrariness of ζ we conclude that

µl(x, λ, ξ) ≡ 0.

From here, applying (15) with ψ ≡ 1, ϕ1(x, λ) = ϕ2(x)ρ(λ) for ϕ2 ∈ C0(IRd),
ρ ∈ C0(IRm) we get (recall that λ̃ does not exists in (15) since r′ = 0):

0 =
∫

IRd+m

〈ρ(λ)ϕ2(x), µl(x, λ, ξ)〉dxdλ

= lim
r→∞

∫

IRd+m

ρ(λ)ϕ2(x)hr(x, λ)Tl(
∫

IRm

ρ(p)hr(x, p)dp)dxdλ

= lim
r→∞

∫

IRd

ϕ2(x)[Tl(
∫

IRm

ρ(p)hr(x, p)dp)]2dx

From here, it immediately follows that for every fixed l ∈ IN :

lim
r→0

‖Tl(
∫

IRm

ρ(λ)hr(x, λ)dλ)‖L1
loc(IR

d) = 0.

Using the fact that (hn) is bounded in Lp
loc for the p > 1 given in Theorem 4, it

is not difficult to prove that (see also [12])

lim
r→0

‖
∫

IRm

ρ(λ)hr(x, λ)dλ‖L1
loc(IR

d) = 0.

Indeed, denote by χ|hr|>l characteristic function of the set {(x, λ) : |hr(x, λ)| > l}
and by χ|hr|≤l characteristic function of the set {(x, λ) : |hr(x, λ)| ≤ l}. Then,
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consider∫

x,loc

|
∫

IRm

ρ(λ)hr(x, λ)dλ|dx (44)

=
∫

x,loc

|
∫

IRm

ρ(λ)
(
χ|hr|≤λl(x, λ) + χ|hr|>l(x, λ)

)
hr(x, λ)dλ|dx

=
∫

x,loc

|
∫

IRm

ρ(λ)Tl(hr)(x, λ)dλ|dx +
∫

x,loc

|
∫

IRm

ρ(λ)χ|hr|>l(x, λ)hr(x, λ)dλ|dx

≤
∫

x,loc

|
∫

IRm

ρ(λ)Tl(hr)(x, λ)dλ|dx + ‖χ|hr|>l‖Lκ
loc(IR

d×IRm)‖hr‖Lp
loc(IR

d×IRm)

=
∫

x,loc

|
∫

IRm

ρ(λ)Tl(hr)(x, λ)dλ|dx + o(1), l →∞,

uniformly in r since hr ∈ Lp
loc, p > 1 implies:

‖χ|hr|>l‖Lκ
loc(IR

d×IRm) = ‖χ|hr|>l‖κ
L1

loc(IR
d×IRm) → 0 as l →∞

uniformly in r. Thus, letting r →∞ in (44) we get:

lim
r→∞

∫

x,loc

|
∫

IRm

ρ(λ)hr(x, λ)dλ|dx = o(1), l →∞.

Finally, letting l →∞ here, we conclude the theorem.

5. Scalar conservation law with discontinuous flux

In this section we shall show how to apply the previous results in order to prove
existence of solution to a Cauchy problem for multidimensional scalar conservation
law with discontinuous flux:

∂tu + divf(t, x, u) = 0, (t, x) ∈ IR+ × IRd

u|t=0 = u0(x) ∈ L∞(IRd).
(45)

We assume that the flux f = f(t, x, u) is a Caratheodory vector on IR+ × IRd × IR
such that f(t, x, ·) ∈ W 1,p(IR; IRd), p > 1, for fixed (t, x). Furthermore, we suppose
that

for some a, b ∈ IR, a < b, we have

0 = f(·, ·, a) = f(·, ·, b) and a < u0(x) < b.
(46)

Also, we suppose that

max
a≤u≤b

|f(·, ·, u)| ∈ Lq(IR+ × IRd), q > 1,

divxf(·, ·, p) = γp ∈Mloc(IR+ × IRd),
(47)

where Mloc(IR+ × IRd) is a set of locally bounded measures.
Finally, we need to assume that the flux f = (f1, . . . , fd) satisfies the nondegen-

eracy condition analogous to (5):
We assume that for almost every (t, x) ∈ IR+ × IRd and every ξ ∈ Sd ⊂ IRd+1

the mapping

IR 3 λ 7→
d∑

i=1

ξi∂λfi(t, x, λ) (48)

is not identically equal to zero on any set A ⊂ IR of positive Lebesgue measure.
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Since the beginning of the 80s, problems such as (45) have been the subject
of intensive investigations. The reason for such interest is in applicability of the
problem – it models many natural phenomena many of which are in connection with
the oil industry. Therefore, it is not surprising that most of the efforts in the field
was made by a Norwegian group of mathematicians [16, 17, 18, 19, 20, 21, 22, 23, 24]
(rather incomplete list). Still, almost all of the mentioned papers dealt with one
dimensional variant of the problem.

On the other hand, the question of existence of solution for multidimensional
scalar conservation with Caratheodory flux that we are considering here was open
for a relatively long time.

The question was settled for the first time in [31] for the case when max
a≤u≤b

|f(·, ·, u)| ∈
Lq(IR+× IRd), for a q > 2. Thus, we shall improve the result from [31] since we de-
mand less regularity on the flux (see (47)). Still, notice that using the method from
[31] one can prove existence of solution to Cauchy problem (45) merely assuming
that the flux f = f(t, x, λ) is continuous in λ (see [14] for more general situation –
diffusion-dispersion limits for scalar conservation law with discontinuous flux).

As usual, initially we take a C1 approximation fε of the flux f satisfying

lim
ε→0

max
λ∈[a,b]

‖∂λfε(t, x, λ)− ∂λf(t, x, λ)‖ = 0 in Lq
loc(IR

+ × IRd). (49)

For instance, we can choose fε(t, x, λ) = f(·, ·, λ) ? 1
εd+1 ω( t

ε )Πd
i=1 ω(xi

ε ), where ω is
a smooth positive compactly supported real function with total mass one (see e.g.
[31, (56)]).

Then, we consider usual approximation of problem (45):

∂tuε + divfε(t, x, uε) = 0, (t, x) ∈ IR+ × IRd,

u|t=0 = u0(x) ∈ L∞(IRd).
(50)

Problem (50) has unique entropy admissible solution uε for every fixed ε > 0. It
is also well known that, due to (46), the family of solutions (uε), ε > 0, remains
uniformly bounded, i.e. a ≤ uε ≤ b, ε > 0.

In order to prove that a solution to Cauchy problem (45) exists it is enough to
prove that the family of solutions (uε) is strongly precompact in L1

loc(IR
+ × IRd).

Notice that if we put uε(t, x) ≡ 0, t < 0, we can assume that the family (uε) is
defined on entire IRd+1.

To prove this, we shall reduce the equation from (50) to a transport equation
having form (4). Such approach for this kind of problem is initially proposed in [6].
Actually, what we are essentially do is rewriting Cauchy problem (45) in the kinetic
formulation. For more information and strict consideration of heterogeneous scalar
conservation law (with smooth flux) in the kinetic framework one should check [10].

So, for a fixed λ ∈ IR take Kružkov semi entropies

η+(u) = |u− λ|+ = max{0, u− λ}, η−(u) = |u− λ|− = max{0,−u + λ},

and apply them in the definition of an entropy solution (see [25]) of (50) . We have
for every fixed λ in distributional sense, respectively:
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∂t|uε − λ|+ + divxsgn+(uε − λ)(fε(t, x, uε)− fε(t, x, λ)) (51)

≤ −sgn+(uε − λ)divxfε(t, x, λ) ≤ |divxfε(t, x, λ)|,
∂t|uε − λ|− + divxsgn−(uε − λ)(fε(t, x, uε)− fε(t, x, λ)) (52)

≤ −sgn−(uε − λ)divxfε(t, x, λ) ≤ |divxfε(t, x, λ)|,
where sgn+(λ) = H(λ) and sgn−(λ) = −H(−λ) for the Heaviside function H.
Using the Schwartz lemma for non-negative distributions we can rewrite (51) and
(52) as follows:

∂t|uε − λ|+ + divxsgn+(uε − λ)(fε(t, x, uε)− fε(t, x, λ)) (53)

= |divxfε(t, x, λ)|+ µε
+(t, x, λ),

∂t|uε − λ|− + divxsgn−(uε − λ)(fε(t, x, uε)− fε(t, x, λ)) (54)

= |divxfε(t, x, λ)|+ µε
−(t, x, λ),

where the distributions µε
± are locally bounded negative Radon measures over IR+×

IRd × IR. Next, we apply partial derivative in λ on (53) and (54) to obtain:

− ∂tsgn+(uε − λ)− divxsgn+(uε − λ)∂λfε(t, x, λ)

= ∂λ

(|divxfε(t, x, λ)|+ µε
+(t, x, λ)

)
,

− ∂tsgn−(uε − λ)− divxsgn−(uε − λ)∂λfε(t, x, λ)

= ∂λ(|divxfε(t, x, λ)|+ µε
−(t, x, λ)),

Adding the latter two equalities we get:
− ∂thε(t, x, λ)− divx(∂λfε(t, x, λ)hε(t, x, λ))

= ∂λ

(
2|divxfε(t, x, λ)|+ µε

+(t, x, λ) + µε
−(t, x, λ)

)
,

(55)

where

hε(t, x, λ) = sgn+(uε − λ) + sgn−(uε − λ) =





1, 0 ≤ λ ≤ uε(t, x),
−1, uε(t, x) ≤ λ ≤ 0,

0, else.

Then, we rewrite (55) as:

−∂thε(t, x, λ)− divx(∂λf(t, x, λ)hε(t, x, λ)) (56)

=divx[(∂λfε(t, x, λ)− ∂λf(t, x, λ))hε(t, x, λ)]

+∂λ

(
2|divxfε(t, x, λ)|+ µε

+(t, x, λ) + µε
−(t, x, λ)

)
.

From (47) and (49), it is clear that equation (56) and appropriate family of solutions
(hε) satisfy the transport equation from Theorem 4. Using nondegeneracy condition
(48) and having in mind Remark 5, from Theorem 4 we conclude that the family
of averaged quantities

(
∫

λ

hε(t, x, λ)ρ(λ)dλ), ρ ∈ C0(IR),

is strongly precompact in L1
loc(IR

+ × IRd). Now, standard arguments show that
(uε) is strongly precompact in L1

loc(IR
+ × IRd) (see e.g. [15]).

It is clear that an aggregation point u ∈ L1
loc(IR

+ × IRd) of the family (uε)
represents a weak solution to (45).



FIRST ORDER HETEROGENEOUS TRANSPORT EQUATION 23

This concludes the paper.
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