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Abstract. We give a complete description of nonlinear waves and their
pairwise interactions in isentropic gas dynamics. Our analysis includes
rarefactions, compressions and shock waves. Because the waves are ar-
bitrarily large, we describe the change of states across the wave ex-
actly, without resolving the characteristic patterns. We similarly de-
scribe the states between nonlinear waves in any pairwise interaction.
When the strengths and reflected waves are described correctly, we show
that whenever two (arbitrary) nonlinear waves of the same family inter-
act, their strengths simply add. Also, if a wave crosses a simple wave
(rarefaction or compression) of the opposite family, its strength is un-
changed, and the change in the opposite simple wave is explicitly given
by exact formulae. In addition, we analyze the crossing of two arbi-
trary shocks. We obtain bounds for the outgoing middle state, and use
this to estimate the outgoing wave strengths in terms of the incident
strengths. Our estimates are global in that they apply to waves of ar-
bitrary strength, and they are uniform in the incoming middle state. In
particular, the estimates continue to hold as the middle state approaches
vacuum.

1. Introduction

One of the major open questions in hyperbolic conservation laws is the
global existence in BV of solutions having large L∞ data. There are several
examples which show that global solutions do not exist in general systems,
although all such examples are from nonphysical systems which do not pos-
sess convex entropies [12, 6, 14, 16]. The celebrated Glimm-Lax theory states
that solutions to many 2× 2 systems of conservation laws decay in the total
variation norm, provided the supnorm of the data is small [5]. These sys-
tems include the fundamental system of isentropic gas dynamics, commonly
known as the p-system. The restriction to small supnorm is a serious one,
because Glimm’s theory relies fundamentally on asymptotic expansions of
waves, and the analysis is thus restricted to a small neighborhood [4, 11].

In order to obtain BV existence results for data that includes large waves,
it is necessary to derive estimates of interactions of strong nonlinear waves,
uniform in the base state. In this paper, we treat waves exactly at the level
of states, without resolving the characteristic patterns inside the interaction
region. We then derive estimates on the interactions of these waves which
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are uniform in the base state and applicable to waves of arbitrary strength.
This is a part of the author’s long-term project to obtain long-time BV
estimates for solutions to the p-system for arbitrary BVloc data.

We are interested in the p-system, modeling isentropic flow in one dimen-
sion in a Lagrangian frame of reference. The system is(

v
u

)
t

+
(
−u
p(v)

)
x

= 0, (1.1)

where v is the specific volume of the fluid, u is the fluid velocity, and p the
pressure, which is assumed to be a convex function of the volume v.

We treat the case of a polytropic ideal gas, for which

p(v) = A0 v
−γ , (1.2)

with positive constant A0 and ideal gas constant γ > 1. The Lagrangian
sound speed c(v), given by c2(v) = −p′(v), so that

c(v) =
√
−p′(v) =

√
A0 γ v

−(γ+1)/2, (1.3)

is real and decreasing for v > 0, which means that the system is strictly
hyperbolic and genuinely nonlinear (except at vacuum).

The vacuum state corresponds to v = ∞, and the pressure, density 1/v
and sound speed c vanish there,

p(v) → 0 and c(v) → 0 as v →∞.

For γ > 1, the integral∫ ∞

1
c(v) dv =

∫ ∞

1

√
−p′(v) dv <∞, (1.4)

converges, which is a necessary condition for the possible occurrence of a
vacuum in the solution [2, 11]. This last condition fails for the isothermal
case γ = 1 treated in [9].

First, we make a global nonlinear change of coordinates which is tuned
to our needs. Noting that the equations are linear in velocity u, we always
use that as one variable, but we have some freedom in choosing the ther-
modynamic variable. Instead of the specific volume v, density ρ = 1/v or
pressure p, we use Riemann’s coordinate, which is the the integrated sound
speed

h(v) =
∫ ∞

v
c(v) dv =

2
√
A0 γ

γ − 1
v−(γ−1)/2, (1.5)

and which is clearly a monotone decreasing function of specific volume. The
limits of the integral are chosen so that also h = 0 at vacuum, and make
sense because (1.4) holds.

Using h as the thermodynamic variable, it is easy to see that

v′(h) =
−1
c(h)

and p′(h) = c(h). (1.6)
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It is convenient to make this change of variables explicit, by rewriting the
system (1.1) as (

v(h)
u

)
t

+
(

−u
p(h)

)
x

= 0, (1.7)

where the constitutive relation is determined by prescribing the Lagrangian
sound speed c(h). Using (1.6), we then define the pressure and specific
volume by

p(h) =
∫
c(h) dh and v(h) =

∫
−1
c(h)

dh. (1.8)

In these coordinates, u ± h are Riemann invariants, and so the simple
wave curves become straight lines, and there is a reflection symmetry be-
tween the forward and backward waves. Moreover, for a polytropic gas
(1.2), homogeneity of p(h) and v(h) implies an important scaling property.
Consequently, all (forward and backward) wave curves can be described as
scalings of a single curve, namely

ur − ul = ha g(
hb

ha
) , (1.9)

where the subscripts indicate the right, left, ahead and behind states, re-
spectively. Thus in order to understand the waves and their interactions, we
need to analyze g(z) and related functions of a single variable. This makes
the finding of estimates significantly easier and suggests the possibility of
uniform estimates.

Having described all waves by the single equation (1.9), which in particu-
lar is linear in u, we can easily solve the Riemann problem by eliminating u
and solving one nonlinear equation for a single unknown h∗. The interaction
problem is treated similarly, and for a pairwise Glimm interaction we also
get a single nonlinear equation of one unknown. The “Glimm interaction
problem” is the problem of resolving the states in the interaction of two or
more waves, while avoiding the complex characteristic patterns which de-
velop. This interaction is the basis of difference approximations such as the
Random Choice and Front Tracking methods, in which states are resolved
accurately while their characteristic curves are approximated; Glimm’s con-
vergence argument implies that in the limit of such approximations, the
exact characteristic pattern is attained [4, 11, 1].

We define both scaled and unscaled strengths of a wave; the unscaled
strength turns out to be the usual change of appropriate Riemann coordinate
across the wave. In order to accurately describe the interactions of strong
waves, we extend the class of waves we use to include compression waves.
This is in contrast to the usual practice of approximating compressions by
many small shocks [17, 1]. Our reason for doing so is, since the waves
are strong, rarefactions will continue to expand until they interact, so the
interaction will have finite width. Thus any reflected wave also has finite
width, and so cannot be a shock. That said, it is clear that the compression
could collapse into a shock within a short time, but we treat this as a
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separate interaction. We remark that this more accurately captures the
internal structure of the interaction, while the simpler case of using shocks
instead of compressions underestimates the waves actually in the interaction,
essentially just giving the asymptotic states from the corresponding Riemann
problem.

Although adding compressions leads to a larger class of interactions, the
advantage gained is that several interactions are simplified, and we can get
accurate descriptions of interactions for waves of arbitrary strength. Our
first result here is that except for the crossing of two shocks, wave strengths
combine linearly even for strong nonlinear waves, and the reflected waves
are described exactly.

Theorem 1. Whenever two waves of the same family interact, their un-
scaled strengths add exactly, and the reflected wave of the opposite family
is given exactly and bounded in terms of wave strengths. That is, if waves
of strengths A and B interact, the resulting wave has strength A + B, and
the reflected wave has strength given explicitly in terms of A, B and the
base state h. If the interacting waves are compressive (A, B < 0), then the
reflected wave is a rarefaction, while if a shock meets a rarefaction (A > 0
or B > 0), the reflected wave is a compression.

If any wave crosses a simple wave of the other family, its unscaled strength
doesn’t change, and if a simple wave crosses a shock, its unscaled strength
increases by an amount which is exactly given.

Since a wave crossing simple waves doesn’t undergo any change in wave
strength, and since the entropy condition implies that any wave adjacent to a
vacuum state must be simple, our theorem implies that a shock approaching
vacuum will meet the vacuum with known strength, and thus affect the vac-
uum in an explicitly given way [8, 13]. This enables us to consider solutions
containing vacuums, and indeed, the author has found exact solutions to
the p-system that clearly demonstrate how the vacuum evolves in time [15].

The exact expressions for reflected waves can be used to build a non-
increasing interaction potential which should lead to global BV bounds on
solutions: this is the subject of the author’s ongoing research. Indeed, we
have constructed such a potential for monotonic data, and this will appear
in a forthcoming paper.

The above theorem excludes what is arguably the most interesting case,
namely the interaction of strong shocks of opposite families. Our method
for treating this case is easily described: namely, we approximate the shock
curves by power functions, and use these in the interaction equation to
bound the outgoing middle state. We then obtain bounds on the outgoing
wave strengths. Consider the interaction of two shocks of strengths A and
B sharing the common forward state hs, and resulting in outgoing shocks
A′ and B′.
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Theorem 2. If A ≤ B < 0, then the unscaled wave strength A′ satisfies

K7 |A| ≤ |A′| ≤ K6 |A| ,
while for B′ we have three cases: if |B| ≥ |γ#|hs,

K8 |A|
2

d+1 |B|
d−1
d+1 ≤ |B′| ≤ K9 |A|

2
d+1 |B|

d−1
d+1 ; (1.10)

next, if |B| ≤ |γ#| hs ≤ |A|,

K̂ 8
|A|

2
d+1 |B|

h
2

d+1
s

≤ |B′| ≤ K̂ 9
|A|

2
d+1 |B|

h
2

d+1
s

≤ K9 |A|
2

d+1 |B|
d−1
d+1 ;

and finally, if |B| ≤ |A| ≤ |γ#| hs, then

K̃8 |B| ≤ |B′| ≤ K̃9 |B| .
Similarly, if |B| ≥ |A|, then by symmetry we get the same estimates with
the positions of A and B reversed.

Here γ# and Ki are constants depending only on the gas constant γ. The
(small) constant γ# < 0 is regarded as a threshold for scaled shock strength:
that is, if a wave has scaled strength α ≡ A

hs
≤ γ#, we regard it as fully

nonlinear and express it as a power; on the other hand, if γ# ≤ α < 0 then we
say the shock is weakly nonlinear and use linear estimates. We expect that
Glimm’s quadratic interaction estimates will hold for these weakly nonlinear
waves. We note that our estimates are uniform in the base state hs, and as
this approaches vacuum, the nonlinear estimate (1.10) applies.

The paper is laid out as follows. In Section 2, we recall the hyperbolic
waves that appear in the system and describe the wave curves and their
properties, including an important scaling property which is a consequence
of the ideal gas law (1.2). In Section 3, we recall the solution of the Riemann
problem, which is classical, and introduce the “extended Riemann problem,”
which is designed to handle embedded vacuums of finite width. In Section 4,
we state and solve the pairwise Glimm interaction problem for waves of
arbitrary strength. In Section 5, we give bounds on the reflected waves that
emanate as a result of the nonlinear interaction, in terms of the incident
wave strengths. Finally, in Section 6, we fully analyze the interaction of two
shocks of arbitrary strength, giving bounds for the shock strengths of the
outgoing shocks in terms of the incoming shock strengths.

2. Elementary Waves and Wave Curves

We consider sound speeds of the form

c(h) = B0 h
d, (2.1)

with constant d > 1, so that (1.8) yields

p(h) =
B0 h

d+1

d+ 1
and v(h) =

h1−d

B0 (d− 1)
. (2.2)
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Since d > 1, c(h), p(h) and v(h) are monotone convex functions, and p and
c can be extended up to the vacuum, at which p = c = h = 0. Eliminating h
and writing p = p(v), it is routine to check that (2.1) describes (1.2); indeed,
the gas constant γ is given by

γ =
d+ 1
d− 1

or d =
γ + 1
γ − 1

, (2.3)

and scaling constant

A0 =
(γ − 1)2

4 γ
Cγ−1

0 with C0 =
1

(d− 1) B0
.

Note that γ → 1 as d → ∞ above, which is the isothermal case studied
by Nishida [9]. To recover this case, we set

c(h) = α eh/α, (2.4)

and easily check that this yields p(v) = α2/v.
For smooth solutions the quasilinear form of equations (1.7) is

ht + c(h) ux = 0, ut + c(h) hx = 0, (2.5)

which is clearly a nonlinear wave equation, and from which the Riemann
invariant form of the equations are easily obtained. Moreover, changing the
role of the dependent and independent variables in on regions where

ut hx − ux ht 6= 0,

we get the linear system

tu +
1
c(h)

xh = 0, xu + c(h) th = 0,

which was known to Riemann [10]; this is just the 1-D hodograph trans-
form [2].

It is clear from (2.5) that the system is hyperbolic, and when it is written
as a quasilinear system

ut + A ux = 0,

with u = (h u)t, then the flux matrix A = A(h) has eigenvalues ±c(h) and
eigenvectors

r− =
(

1
−1

)
and r+ =

(
1
1

)
, (2.6)

corresponding to the backward (−c < 0) and forward (c > 0) waves and
wavespeeds, respectively.
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2.1. Simple Waves. The simple wave curves consist of those states that
can be connected to a given fixed state by a one-D rarefaction or compres-
sion, and are calculated as the integrals of the eigenvectors. In other words,
they solve the equation

d

dε

(
h
u

)
= r∓ =

(
1
∓1

)
.

Using h as the parameter, we get

u− u0 = ±(h0 − h), (2.7)

where the + (−) corresponds to backward (resp. forward) waves. For 2× 2
systems, these are also the level curves of the opposite Riemann invariants
u± h [7, 11].

The simple wave is a rarefaction if it is expanding, so that the wavespeed
is increasing across the wave from left to right. Thus a backward rarefaction
with left state (h0 u0)t satisfies

−c(h0) = λ−(v0) ≤ λ−(v) = −c(h),
which, since c increases with h, gives h ≤ h0. Similarly, a forward rarefaction
with left state (h0 u0)t satisfies (2.7) for h ≥ h0.

On the other hand, compressions satisfy the same equation (2.7), but the
wavespeed decreases from left to right across the wave. Thus h ≥ h0 for a
backward compression, and h ≤ h0 for a forward compression.

By labeling the left, right, ahead and behind states of a simple wave, we
thus get the characterization

ur − ul = ha − hb (2.8)

for all simple waves, where the wave is rarefying if c(ha) > c(hb) (and thus
ha > hb) and compressing if c(hb) > c(ha); here a = l and b = r for a
backward wave, and a = r and b = l for a forward wave. We shall say a
simple wave is an elementary wave if h is monotone across the entire wave,
so the wave is either rarefying or compressing. It is clear that a general
simple wave can then be described as a set of adjacent elementary waves.

2.2. Shocks. It is well known that compressions cannot be sustained, and
shocks will form in the solution. These are determined by the Rankine-
Hugoniot and entropy conditions [7, 11]. The Rankine-Hugoniot equations
for (1.7) are

σ [v(h)] = −[u] and

σ [u] = [p(h)] (2.9)

where as usual, [·] denotes the jump and σ is the shock speed. Solving,
we obtain

σ = ∓S(h0, h) and

u− u0 = ∓K(h0, h) sgn(h− h0), (2.10)
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for the backward and forward shocks, respectively, where the absolute shock
speed S(h1, h2) is defined by

S(h1, h2) =

√
p(h2)− p(h1)
v(h1)− v(h2)

> 0 (2.11)

and the function K(h1, h2) is defined by

K(h1, h2) =
√

(p(h2)− p(h1)) (v(h1)− v(h2)). (2.12)

As above, we view the shock curve as being parameterized by h. We use
the Lax condition as our entropy condition, so that for backward shocks
with left state (h0 u0)t, we want

−c(h0) > −S(h0, h) > −c(h), (2.13)

which yields h > h0 since c(h) is increasing. Similarly, the forward shock
curve is the branch of (2.10) with h < h0.

As above, we combine our descriptions of forward and backward shocks
by referring to the left, right, ahead and behind states, respectively. Thus
for both families the shock curve is

ur − ul = −K(ha, hb), (2.14)

the entropy condition holding provided the (absolute) sound speed is bigger
behind the shock, so hb > ha.

2.3. Centered Waves. When solving the Riemann problem, we admit only
centered waves, which are those emanating from a single discontinuity at the
origin. These are shocks, which have no width, and rarefactions, all of whose
characteristics meet at the origin. Using our descriptions (2.8) and (2.14)
above, we combine these to describe the centered wave curves.

Defining the function G : R2 → R by

G(h1, h2) =

h1 − h2, for h1 ≥ h2,

−K(h1, h2), for h1 ≤ h2,
(2.15)

we easily check that both forward and backward wave curves can be de-
scribed by

ur − ul = G(ha, hb), (2.16)
the wave being a rarefaction or shock respectively. Using this concise de-
scription of the waves allows us to understand the Riemann problem and
wave interactions through the functions G and K.

2.4. Wave strength. In studying waves and their interactions, we want
to measure the difference between the shock and rarefaction curves. It is
convenient to work with a new function Θ which directly measures this
difference. The function is defined by the identity

G(h1, h2) = h1 − h2 − 2 Θ(h1, h2), (2.17)
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so that Θ(h1, h2) = 0 for h1 ≥ h2, and

Θ(h1, h2) = (K(h1, h2) + h1 − h2)/2 for h1 ≤ h2. (2.18)

It is clear that that Θ is supported on shocks, and is a measure of the
nonlinearity of the function K(h1, h2). We shall refer to Θ as the shock
error function.

For a simple wave, we have

ur − ul = G(ha, hb) = ha − hb,

which provides a consistent measure of the (signed) strength of the wave.
However, the second equality does not hold for a shock, and it is convenient
to instead define the strength of any wave by

Γ(ha, hb) = ha − hb −Θ(ha, hb). (2.19)

Since Θ is supported on shocks, (2.19) provides a natural definition of
strength for any elementary wave. With this definition, we follow the usual
convention in that rarefactions have positive strength while shocks (and
compressions) have negative strength. Also note that (2.16), (2.17) yield

2 Γ(ha, hb) = (ur − ul) + (ha − hb), (2.20)

that is the (absolute) wave strength is the average of the (absolute) change
in the coordinates u and h across a wave. This is also the change in an
appropriate Riemann invariant across the wave.

It is sometimes convenient to assign a single discrete wavespeed to simple
waves, across which the actual wavespeed c(h) varies continuously. In such
cases, a natural choice is the Hugoniot speed S(h1, h2) given in (2.11) for
these simple waves. We shall call this the average speed of a simple wave.

2.5. Scaling. We now observe that because we have the monomial constitu-
tive law (2.1), the wave curves are scalings of a single curve. We shall usually
use the convention of denoting the scaled version of a function G : R2 → R
by g : R → R, etc. To begin with, for n 6= 0, define

qn(z) =
1− z−n

n
, (2.21)

and from (2.2), we write

p(h2)− p(h1) = B0 h
d+1
2 qd+1(

h2

h1
) = −B0 h

d+1
1 qd+1(

h1

h2
), (2.22)

and

v(h1)− v(h2) =
h1−d

1

B0
qd−1(

h2

h1
) = −h

1−d
2

B0
qd−1(

h1

h2
). (2.23)

It follows that
K(h1, h2) = h1 k(

h2

h1
) = h2 k(

h1

h2
), (2.24)

where k is the function defined by

k(z) = z
d+1
2

√
qd+1(z) qd−1(z). (2.25)
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Similarly, we rewrite (2.15), (2.17) as

G(h1, h2) = h1 g(
h2

h1
) and Θ(h1, h2) = h1 θ(

h2

h1
), (2.26)

where g : R → R and θ : R → R are defined by

g(z) = 1− z − 2 θ(z) =

{
1− z, for z ≤ 1,
−k(z), for z ≥ 1.

(2.27)

It is clear that the wave strength Γ(h1, h2) scales similarly,

Γ(h1, h2) = h1 γ(
h2

h1
), where

γ(z) = 1− z − θ(z) = (1− z + g(z))/2. (2.28)

We shall refer to γ as the scaled wave strength, and θ as the scaled shock
error.

We now describe the centered wave curves (2.16). For definiteness, fix the
ahead state (ha ua)t, and draw the locus of states behind a forward wave.
For the forward 2-waves, we have ur = ua, and we get

ub = ua + ha g(
hb

ha
).

Clearly changing ua simply translates the wave curve vertically, so we can
take ua = 0. We can now see that ub is a similarity scaling of g(z) by ha. It
is clear that the same geometry applies for the wave curves drawn with any
fixed state b, l or r. In particular, the shock curves steepen nearer to the
vacuum h = 0 while preserving the same shape. Graphs of the wave curves
are shown in Figure 1. The first diagram is the locus of backward states that
can be joined to a given ahead state, while the second is the locus of ahead
states with a fixed behind state; as usual, subscripts indicate the direction
of the wave. The third diagram shows the shock error Θ(ha, hb) for a given
forward shock. Note the steeper curve in the third diagram: this is because
ha is smaller there than in the others, and reflects the scaling of the curves.

0 ha h

u

ua

S−

S+

R−

R+

0 hb h

u

ub

R−

R+

S−

S+

ha

ua

hb

ub

h#

Θab

Figure 1. Wave curves
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2.6. Properties of Wave Curves. We now recall the local property that
wave curves are C2, and describe some global properties of the wave curves
which are used in the sequel. We begin by analyzing the scaled functions of
a single variable.

Lemma 1. The scaled functions g(z) and γ(z) are C2, monotone decreasing
and convex down. The scaled shock error θ(z) is supported on the interval
[1,∞), monotone non-decreasing and convex up.

Proof. It is immediate from (2.27) and (2.28) that for z < 1,

g′(z) = γ′(z) = −1 and θ′(z) = 0,

so it suffices to consider z ≥ 1, provided we check the appropriate limits
as z → 1+. We shall work with the function k(z) defined in (2.25); the
Lemma will follow because each function differs from k by linear operations
for z ≥ 1.

For z > 1, write

κ(z) ≡ log k(z) =
d+ 1

2
log z +

1
2

log qd+1(z) +
1
2

log qd−1(z)

so that k(z) = eκ(z),

k′(z) = eκ(z) κ′(z) and

k′′(z) = eκ(z)
(
κ′(z)2 + κ′′(z)

)
. (2.29)

Noting that q′n(z) = 1/zzn for each n 6= 0, we compute

κ′(z) =
1

2 z
(d+ 1 + τd+1 + τd−1) > 0, (2.30)

where we have set

τn(z) =
1

zn qn(z)
=

n

zn − 1
.

This in turn satisfies

τ ′n(z) =
−1
z

(
n τn(z) + τ2

n(z)
)
,

for n > 0 and z > 1. Differentiating (2.30), we thus obtain

κ′′(z) =
−1
2 z2

(
d+ 1 + τd+1 + τd−1

+ (d+ 1) τd+1 + τ2
d+1 + (d− 1) τd−1 + τ2

d−1

)
. (2.31)

Now using (2.30) and (2.31) in (2.29) and manipulating, we get

4 z2

k(z)
k′′(z) = 4 z2

(
κ′(z)2 + κ′′(z)

)
= d2 − (τd+1 − τd−1 + 1)2. (2.32)
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To estimate this, note that we can write 1/τn(z) =
∫ z
1 z̄

n−1 dz̄, and for
z > 1, we have ∫ z

1

z̄d+1

z̄
dz̄ >

∫ z

1

z̄d−1

z̄
dz̄ >

1
z2

∫ z

1

z̄d+1

z̄
dz̄,

which yield the inequalities

τd+1(z) < τd−1(z) < z2 τd+1(z) < zd+1τd+1(z).

Also, since
τn(z) + n = zn τn(z),

we have
d+ τd+1 − τd−1 + 1 = zd+1 τd+1 − τd−1 > 0.

Moreover,

d− τd+1 + τd−1 − 1 = d− 1 + τd−1 − τd+1 > 0,

and substituting these into (2.32), we deduce that k(z) is convex.
Finally, l’Hôpital’s rule implies that k(z) τd±1(z) → 1 as z → 1, and,

setting z = 1 + h and expanding, we see that

τn(z)− τm(z) =
n

(1 + h)n − 1
− m

(1 + h)m − 1

=
1/h

1 + n−1
2 h+ (h2)

− 1/h
1 + m−1

2 h+ (h2)

→ m− n

2
as z → 1.

We thus conclude from (2.29), (2.30), (2.32) that

k′(1) = 1 and k′′(1) = 0.

This yields g′(1) = γ′(1) = −1 and θ′(1) = 0 and g′′(1) = γ′′(1) = θ′′(1) = 0,
as desired. �

We now apply the scaling properties to deduce information on the global
wave curves. We state our results in terms of the shock error Θ, although
they can equally be stated in terms of G or wave strength Γ. These results
are not new: indeed, equation (2.34) appears in [11], albeit in a different
form than stated here.

Corollary 1. The shock error function Θ is C2, convex and monotone non-
increasing in the first variable and non-decreasing in the second. We have

Θ;1(h1, h2) + Θ;2(h1, h2) < 0, (2.33)

and moreover, if h1 ≤ h2 ≤ h3, then also

0 ≤ Θ(h1, h2) + Θ(h2, h3) ≤ Θ(h1, h3). (2.34)

Analogous statements hold for the functions G and Γ.
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Proof. It is clear from the scaling laws (2.24), (2.26), and (2.28) that the
functions are C2 for hi > 0. We thus calculate the partial derivatives of these
functions. Although the functions G, Γ and Θ are defined piecewise, their
continuity on the diagonal h1 = h2 follows by continuity of the corresponding
scaled functions at z = 1. We again work with K(h1, h2), assuming that
h1 < h2. A routine calculation shows that

K;2(h1, h2) = k′(
h2

h1
) and

K;1(h1, h2) = k(
h2

h1
)− h2

h1
k′(

h2

h1
), (2.35)

and

K;22(h1, h2) =
1
h1

k′′(
h2

h1
),

K;12(h1, h2) = − 1
h1

h2

h1
k′′(

h2

h1
), and (2.36)

K;11(h1, h2) =
1
h1

(
h2

h1
)2 k′′(

h2

h1
),

provided h1 > 0. The Hessian of K(h1, h2) is thus

HK =
1
h1

k′′(z)
(

1 −z
−z z2

)
, (2.37)

where z = h2/h1, which is positive semi-definite, so that K(h1, h2) is convex;
(2.18) immediately also implies convexity of Θ(h1, h2).

Since k′(1) = 1, convexity of k yields

K;2(h1, h2) > 1 and Θ;2(h1, h2) > 0

for h2 > h1, so that Θ(h1, h2) is increasing as a function of h2. Moreover,
using (2.35) and the Mean Value Theorem, we have

2 (Θ;1(h1, h2) + Θ;2(h1, h2)) = K;1(h1, h2) +K;2(h1, h2)

= (1− z) k′(z) + k(z)− k(1)

= (1− z) (k′(z)− k′(z̄)) < 0,

for some z̄ between 1 and z ≡ h2/h1. This proves (2.33) and in particular
implies Θ(h1, h2) and K(h1, h2) are decreasing in h1.

Finally, suppose we are given h1 ≤ h2 ≤ h3. Then

K(h1, h2) +K(h2, h3)−K(h1, h3) =
∫ h2

h1

∫ h3

h2

K;12(k̄, h̄) dh̄ dk̄,

and the integrand is negative, by (2.36) and k̄ ≤ h̄. Thus we conclude that
if h1 ≤ h2 ≤ h3, then

0 ≤ K(h1, h2) +K(h2, h3) ≤ K(h1, h3).
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Analogous inequalities hold for G and Θ, namely

0 ≥ G(h1, h2) +G(h2, h3) ≥ G(h1, h3), and

0 ≤ Θ(h1, h2) + Θ(h2, h3) ≤ Θ(h1, h3),

since these differ from K by linear operations. The last of these is (2.34),
and the proof is complete. �

For completeness, we note that in the isothermal case (2.4), several critical
simplifications occur. First, the sound speed c(h) and density 1/v = eh/α

never vanish, so that there is no vacuum state. After simplifying, (2.12) and
(2.11) become

K(h1, h2) = 2 α sinh |h2 − h1

2α
| and

S(h1, h2) = α eh1/2α eh2/2α =
√
c(h1) c(h2).

Thus each of G(ha, hb), Θ(ha, hb) and Γ(ha, hb) depend only on the difference
hb − ha, and all wave curves are simply translates, rather than scalings, of
one fixed curve. This simplified wave curve structure is crucial for Nishida’s
argument [9].

We now have several ways to classify waves as expansive or compressive,
which we summarize here:

Corollary 2. For an elementary centered wave described by

ur − ul = G(ha, hb) or ur − ul = ha − hb,

the wave is a rarefaction if any (and therefore all) of the following equivalent
inequalities hold:

ha > hb; p(ha) > p(hb); c(ha) > c(hb); v(ha) < v(hb);

G(ha, hb) > 0; Γ(ha, hb) > 0; ur > ul.

On the other hand, if any (and thus all) of the inequalities are reversed, then
the wave is either a simple compression or a shock.

3. The Riemann problem

We now combine the above descriptions of forward and backward waves
to solve the Riemann problem with arbitrary left and right states [11]. Thus
we are given two states (hl ul)t and (hr ur)t, and we must identify a middle
state (h∗ u∗)t, which connects to (hl ul)t and (hr ur)t via backward and
forward centered waves, respectively.

According to (2.16), if (hl ul)t is joined to (h∗ u∗)t by a backward centered
wave, then we have

u∗ − ul = G(hl, h∗),
while if (h∗ u∗)t is joined to (hr ur)t by a forward wave, then

ur − u∗ = G(hr, h∗).
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Eliminating u∗, we get the equation

ur − ul = G(hl, h∗) +G(hr, h∗) ≡ f(h∗), (3.1)

and we wish to solve for h∗. From (2.17) and Corollary 1, the function f
defined in (3.1) is differentiable and monotone decreasing,

f ′(h∗) = G;2(hl, h∗) +G;2(hr, h∗) < 0.

Thus (3.1) can be uniquely solved provided ur − ul is in the range of f ,
which is clearly determined by that of G.

Fix h0, and first consider h > h0, corresponding to a shock wave. Using
(2.2), we easily see that

G(h0, h) = −K(h0, h) → −∞ as h→∞,

so the range of G is unbounded from below. On the other hand, for a
centered rarefaction, we have 0 < h < h0 and

G(h0, h) = h0 − h < h0,

so G is bounded from above. Thus the range of f defined in (3.1) is the
interval (−∞, hl+hr), and we get a unique solution to the Riemann problem
provided that the one-sided condition

ur − ul < hl + hr (3.2)

holds. Moreover, by the implicit function theorem, the intermediate state
(h∗ u∗)t has the same continuity of the function f , which is also that of G.
We conclude that (h∗ u∗)t is C2 as a function of left and right states.

3.1. The Vacuum. The failure of the one-sided condition (3.2) does not
mean that a solution cannot be found: rather, it heralds the appearance
of a vacuum [11, 8]. The vacuum occurs when h = 0, or equivalently the
pressure p(h) and sound speed c(h) vanish, or the specific volume v = v(h)
becomes infinite. In the characteristic plane (x, t), our self-similar solution
is constant along characteristics,

±c(h(x, t)) = x/t, and u(x, t) = ua ±G(ha, h(x, t)). (3.3)

Since the vacuum corresponds to sound speed c(h) = 0, it must therefore
lie on the positive t-axis, x = 0. For t > 0, x 6= 0, the solution is finite and
given by (3.3).

We now suppose that (3.2) is violated, and construct a solution containing
the vacuum as follows. First, note that the vacuum cannot be the state
behind a shock: indeed, the entropy condition (2.13) yields

c(hb) > S(ha, hb) > c(ha), so that c(hb) > 0

for forward and backward waves, see [8, 13]. Thus if the Riemann problem
admits a vacuum, the forward and backward centered waves must both be
rarefactions.
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For x < 0, the gas rarefies along a backward wave, and in the wedge
−c(hl) t ≤ x < 0, we have

c(h(x, t)) = −x/t and u(x, t)− ul = hl − h(x, t), (3.4)

and so we get the limits

h(x, t) → 0 and u(x, t) → ul + hl as x→ 0− . (3.5)

Similarly, in the wedge 0 < x ≤ c(hr) t, we have

c(h(x, t)) = x/t and ur − u(x, t) = hr − h(x, t), with

h(x, t) → 0 and u(x, t) → ur − hr as x→ 0 + . (3.6)

We conclude that for any fixed t > 0, h decreases for x < 0 and increases for
x > 0, and that u increases for all x 6= 0. On the t-axis x = 0, the velocity
has a jump with left and right limits given by

u− ≡ u(0−, t) = ul + hl ≤ ur − hr = u(0+, t) ≡ u+,

respectively, and so u(x, t) is monotone increasing and bounded as a function
of x.

Although h is finite and bounded, the specific volume v = v(h) is infinite,
and we refer to this when studying the vacuum. To take into account the
jump in u, we take v to be a Radon measure, while the other variables remain
bounded. This measure is singular only at the vacuum, so its singular part is
supported on the t-axis x = 0. Since in addition v must be locally integrable,
this singular part must have the form

ν = w(t) δ(x).

Since the velocity u is defined (a.e.) above, we can find the weight w(t) by
solving the equation

vt − ux = 0 (3.7)
in the sense of distributions. By construction, the equation is satisfied away
from the t-axis x = 0. On this axis, (3.7) reduces to

dw

dt
= u+ − u−, (3.8)

so that the singular part of v(x, t) is the self-similar measure

ν = (u+ − u−) t δ(x) = (u+ − u−) δ(x/t). (3.9)

Although the specific volume v is unbounded, it is locally integrable in
space. Indeed, for t fixed,∫ −ε t

−c(hl) t
v(x, t) dx = x v(x, t)

∣∣∣−ε t

−c(hl) t
−
∫ v(−ε t,t)

v(hl)
x dv

= −t c v
∣∣∣v(−ε t,t)

v(hl)
+ t

∫ v(−ε t,t)

v(hl)
c dv

≤ t (c(hl) v(hl) + hl),
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for all ε, where we have integrated by parts and used (1.5) and (3.4). A
similar estimate holds for the forward rarefaction, and we get∫ c(hr) t

−c(hl) t
v(x, t) dx = t (c(hl) v(hl) + hl)

+ (u+ − u−) t+ t (c(hr) v(hr) + hr). (3.10)

We have proved the following classical theorem, which we state in terms of
the specific volume v [11].

Theorem 1. Given constant left and right states (vl ul)t and (vr ur)t, re-
spectively, there is a unique self-similar solution (v(x, t), u(x, t))t to the Rie-
mann problem. If condition (3.2) holds,

ur − ul < h(vl) + h(vr),

there is an intermediate state (v∗ u∗)t which is a C2 function of the data. If
(3.2) fails, then for each fixed t > 0, the velocity

u(x, t) ∈ L∞ ∩BV ∩ L1
loc

is a bounded monotone increasing function, while v(x, t) is a Radon measure
whose singular part is the Dirac measure (3.9). Moreover this solution is
Lipschitz continuous in time as a distribution in L1

loc.

3.2. Bound on intermediate states. Because we are studying pairwise
interactions of waves, we wish to consider more possibilities than those of-
fered by the Riemann problem alone. For example, consider the interaction
of a rarefaction with a shock wave of the same family. In a standard differ-
ence approximation such as Glimm’s scheme or the Front Tracking method,
the interaction is regarded as taking place instantaneously at a single point,
and the interaction is resolved by solving a new Riemann problem [4, 1].
Although this is a good approximation for shocks and weak rarefactions,
it is not appropriate for strong elementary waves, which have finite width.
Thus in resolving the interaction, we wish to allow some of the waves to
have nonzero width, as appropriate.

This extension is easily handled by the observation that shocks are the
only waves that have zero width, and thus any wave of finite width is nec-
essarily simple. On the other hand, the states across the simple waves are
described linearly by (2.8). Thus the states in these interactions can be
easily resolved, and we do not resolve the actual wave profiles, which would
require integration of the characteristics themselves.

We describe this situation by supplying an extra datum χ, a zero width
or shock indicator, which is 1 if a wave has zero width, and 0 otherwise.
We allow elementary waves, which can be rarefactive or compressive (but
not both), and we wish to resolve the intermediate state, without resolving
the wave profiles. Recall that the shock error appears only for shocks, that
is when χ = 1. According to (2.8), (2.14), (2.17), any wave can thus be
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described by
ur − ul = ha − hb − 2 χw Θ(ha, hb), (3.11)

where χ is the zero width indicator,

χw =

{
1, w = 0
0, w > 0,

and w is the spatial width of the wave. Clearly the term χw Θ(ha, hb) appears
only when there is a shock, which implies both conditions

w = 0 and ha < hb,

so that if either of these fail, the states across the wave are described linearly.
We describe the solution of the resultant “extended Riemann problem,”

and give an upper bound for the intermediate state. Provided (3.2) holds,
we are looking for an intermediate state (h∗ u∗)t, which satisfies both

u∗ − ul = hl − h∗ − 2 χw− Θ(hl, h∗) and

ur − u∗ = hr − h∗ − 2 χw+ Θ(hr, h∗). (3.12)

Lemma 2. Given extended Riemann data (hl ul)t, (hr ur)t including widths
{w−, w+}, to be resolved into the intermediate state (h∗ u∗)t, we set

h# = (ul − ur + hl + hr)/2. (3.13)

If h# ≤ 0, a vacuum is present in the solution, while otherwise, a unique
solution h∗ exists and is bounded,

0 < h∗ ≤ h#.

Moreover, this inequality is strict if and only if at least one of the outgoing
waves is a shock (and in particular w−w+ = 0).

Proof. Eliminating u∗ from (3.12) and using (3.13) gives

h∗ + χw− Θ(hl, h∗) + χw+ Θ(hr, h∗) = h#. (3.14)

Since Θ(h·, h∗) ≥ 0, we have h∗ ≤ h# whenever there is no vacuum, i.e.
whenever h# > 0. Moreover, (3.14) has the trivial solution h∗ = h# only if
both Θ terms vanish, i.e. if there are no shocks. �

For completeness, we now recall the well-known invariant region [11, 3].
According to (3.12), since Θ(h1, h2) ≥ 0 for all h1, h2, the solution of the
(extended) Riemann problem satisfies both

u∗ + h∗ ≤ ul + hl ≤ max{ul + hl, ur + hr} and

u∗ − h∗ ≥ ur − hr ≥ min{ul − hl, ur − hr}.

Since the general solution consists of waves and their interactions, pieced to-
gether, and these respect the inequalities, given Cauchy data (h0(x) u0(x))t,
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we obtain the bounds

u(x, t) + h(x, t) ≤ sup
x
{u0(x) + h0(x)} and

u(x, t)− h(x, t) ≥ inf
x
{u0(x)− h0(x)} (3.15)

for any reasonable approximation of the solution. Moreover, since these
bounds are independent of the approximation parameter, we conclude that
they hold in the limit, provided of course that we show that the limit exists.
In particular, we get the a priori upper bound

2 h(x, t) ≤ sup
x
{u0(x) + h0(x)} − inf

x
{u0(x)− h0(x)} (3.16)

for the thermodynamic variable h. This is the easy case: we also need to
find wave interaction estimates which are uniform as h→ 0.

4. Pairwise Glimm Interactions

We now analyze pairwise wave interactions. Recall that Glimm inter-
actions resolve the states adjacent to the various waves while ignoring the
actual characteristic patterns. As above, we shall distinguish between com-
pressions and shock waves by use of extra data. Simple waves thus include
both rarefactions and compressions, and we’ll denote waves as S±, C±, R±,
referring to forward and backward shocks, compressions and rarefactions,
respectively. It is clear that interactions are symmetric for forward and
backward waves, and we will isolate the forward waves when considering
a single family; the corresponding statements for backward waves follow
immediately.

Recall from (3.11) that a wave is described by

ur − ul = ha − hb − 2 χ Θ(ha, hb),

and the (signed) strength of the wave is

Γ(ha, hb) = ha − hb − χ Θ(ha, hb), (4.1)

where the zero width indicator χ = 1 if the wave is a shock, and zero
otherwise, and the subscripts refer to the right, left, ahead and behind states,
respectively.

Recall that elementary waves are either rarefactive or compressive, but
not both. Thus, the splitting of a simple wave, or joining of two or more
such waves along characteristics can be considered a trivial interaction (or
more precisely no interaction!) in which wave strengths add or subtract,
and no wave is reflected.

We briefly describe which (pairwise) interactions can take place. First,
a self-interaction occurs when a compression collapses. Next, two waves
of the same family may merge, provided at least one of them is a shock.
Finally, two waves of opposite families may cross. We treat the collapse of
a compression as a merge of two (compressive) simple waves, so there are
essentially only two cases. We do not consider composite interactions, such
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as forward and backward compressions focussing at the same point, because
these can be regarded as superpositions of simpler interactions.

4.1. Merge of forward waves. We first consider the interaction of a pair
of forward waves, given by

um − ul = hm − hl − 2 χml Θ(hm, hl) and

ur − um = hr − hm − 2 χrm Θ(hr, hm), (4.2)

respectively, and depicted in Figures 2 and 3. In order for the waves to
interact, either at least one of the waves is a shock, or both waves are
compressions focussing at a single point; this is a self-interaction. Moreover,
in order for the waves to meet, the wavespeed of the left wave must exceed
that of the right:

S(hm, hl) > S(hr, hm),

the wavespeed being given by (2.11), and we have used the Hugoniot speed
to approximate the average speed of a simple wave. Since S is symmetric
and increases in each variable, we necessarily have the condition hl > hr on
the outside states. We characterize the incoming waves by comparing hm to
these states.

l

m
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∗

l

m

r

∗

l

m

r

∗

Figure 2. Merges of forward waves in (x, t)-space

In solving the extended Riemann problem for (h∗ u∗)t to find the resulting
waves, we recall that the outgoing forward (transmitted) wave cannot be a
simple compression, so χr∗ = 1, while the reflected backward wave has the
spatial width of the interaction, which is the larger of the widths of the two
incident waves. In particular, if one of the forward waves is a rarefaction,
the interaction takes place over a finite time interval, and the reflected wave
cannot be a shock. The outgoing waves are thus given by

u∗ − ul = hl − h∗ − 2 χl∗ Θ(hl, h∗) and

ur − u∗ = hr − h∗ − 2 Θ(hr, h∗), (4.3)

where χl∗ = 0 if one of the incident waves is a rarefaction.
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Figure 3. Merges of forward waves in (h, u)-space

We eliminate u in (4.2), (4.3) to get

h∗ + Θ(hr, h∗) + χl∗ Θ(hl, h∗)

= hl + χml Θ(hm, hl) + χrm Θ(hr, hm), (4.4)

which in turn implies

h∗ − hl + χl∗ Θ(hl, h∗) + Θ(hr, h∗)−Θ(hr, hl)

= χml Θ(hm, hl) + χrm Θ(hr, hm)−Θ(hr, hl).

Now by Corollary 1, the LHS has the sign of h∗ − hl, so the type of the
reflected wave is determined by the sign of the RHS. If hl > hm > hr, so
that both incident waves are compressive, then (2.34) implies that this RHS
is negative, and so hl > h∗ and the reflected backward wave is a rarefaction.
On the other hand, if hm < hr then the right wave is a rarefaction and the
left is necessarily a shock, so χml = 1 and the RHS is

Θ(hm, hl)−Θ(hr, hl) > 0;

similarly, if hm > hl the RHS is Θ(hr, hm)−Θ(hr, hl) > 0. In both of these
latter cases, h∗ > hl and the reflected wave is compressive, but since one
of the incident waves is a rarefaction, it has positive width and χl∗ = 0.
Thus in all cases the term χl∗ Θ(hl, h∗) in (4.4) vanishes. In terms of wave
strength, (4.1) and (4.4) yield

−Γ(hr, h∗) = h∗ − hr + Θ(hr, h∗)

= hl − hr + χml Θ(hm, hl) + χrm Θ(hr, hm) > 0,

since hl > hr. It follows from Corollary 2 that h∗ > hr, and the transmitted
wave is necessarily a shock. Moreover, it follows immediately from (4.1) that

Γ(hr, h∗) = Γ(hm, hl) + Γ(hr, hm),

so that the forward wave strengths add exactly. We summarize the foregoing
in the following theorem.
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Theorem 2. When two forward waves merge (or a compression collapses),
a shock of that family results and a simple backward wave is reflected. More-
over, the wave strengths add linearly,

Γ(hr, h∗) = Γ(hm, hl) + Γ(hr, hm), (4.5)

while the reflected wave has signed strength

Γ(hl, h∗) = Θ(hr, h∗)− χml Θ(hm, hl)− χrm Θ(hr, hm). (4.6)

If both incident waves are compressive, the reflected wave is a rarefaction,
while if one incident wave is a rarefaction, then the reflected wave is a
compression. Analogous statements hold for the merge of backward waves.

Three merges of forward waves are illustrated in Figures 2 and 3, in
characteristic and state space, respectively. The first diagram shows two
shocks merging, while the others are a rarefaction catching up to a shock
and a shock catching up to a rarefaction, respectively.

4.2. Crossing waves. We now consider crossing forward and backward
waves. We refer to the states using the (directional) subscripts w, s, e and
n, so that the incoming forward and backward waves are given by

us − uw = hs − hw − 2 χsw Θ(hs, hw) and

ue − us = hs − he − 2 χse Θ(hs, he),

respectively, as depicted in Figures 4 and 5. Since we have excluded compos-
ite interactions in which one wave may collapse, each wave has a continuous
width through the interaction, and we can write the outgoing waves as

un − uw = hw − hn − 2 χwn Θ(hw, hn) and

ue − un = he − hn − 2 χen Θ(he, hn),

where
χen = χsw and χwn = χse.

Solving for hn, we get

hn + χen Θ(he, hn) + χwn Θ(hw, hn)

= he + hw − hs + χsw Θ(hs, hw) + χse Θ(hs, he), (4.7)

which yields both

Γ(he, hn)− χwn Θ(hw, hn) = Γ(hs, hw)− χse Θ(hs, he) and

Γ(hw, hn)− χen Θ(he, hn) = Γ(hs, he)− χsw Θ(hs, hw). (4.8)

Rewriting this as

Γ(he, hn)− χse (Θ(hw, hn)−Θ(hw, he))

= Γ(hs, hw)− χse (Θ(hs, he)−Θ(hw, he)),

and again using Corollary 1, the LHS has the sign of hn−he, while the RHS
has that of hw − hs. It follows that the outgoing forward wave is the same
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type as the incoming forward wave. Clearly the same conclusion holds for
the backward waves.
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Figure 4. Waves crossing in (x, t)-space

Note that if one wave of the waves is simple, then χ = 0 and (4.8) im-
plies that the other wave has unchanged strength across the interaction.
In particular if both waves are simple, the interaction is linear in terms of
wave strengths, although the underlying characteristics change nonlinearly.
On the other hand, if the forward wave crosses a shock, then its strength
changes as

Γ(he, hn)− Γ(hs, hw) = Θ(hw, hn)−Θ(hs, he). (4.9)

We shall show in Corollary 3 below that this has the same sign as Γ(hs, hw),
which in turn implies that a simple wave’s strength increases after it crosses
a shock.
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Figure 5. Waves crossing in (h, u)-space

Figures 4 and 5 illustrate two interactions in which waves cross: on the
left a forward rarefaction crosses a backward shock, and on the right we see
two shocks crossing. We have proved the following theorem:

Theorem 3. If a wave of one family crosses a simple (rarefaction or com-
pression) wave of the opposite family, its strength is unchanged during and
after the interaction. If it crosses a shock of the other family, it emerges
stronger, and the difference in its wave strength is given exactly by (4.9).
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In particular, no wave may change type by crossing a wave of the opposite
family.

We have seen that a shock crossing an opposite rarefaction undergoes
no change in strength. In particular, if the rarefaction extends up to the
vacuum, h = 0, the shock will still have the same strength as it meets the
vacuum. The shock is absorbed into the vacuum, while changing the edge
velocity of the vacuum. The author addresses this situation in detail in the
upcoming paper [15].

4.3. Crossing Shocks. We have seen that a shock preserves its strength
when crossing a simple wave, but not when it crosses an opposite shock.
We now consider that situation: a forward 2-shock with (hs us)t ahead
and (hw uw)t behind meets a backward 1-shock with state (he ue)t behind,
resulting in two outgoing shocks with the resultant behind state (hn un)t,
as in the second part of Figure 5. Here we give an initial estimate of the
outgoing wave strength. In Section 6, we will give a more precise estimate
of the interaction.

We describe each of the waves using (2.14), and eliminate the velocities
to get the equation

G(hs, hw) +G(hs, he) = G(hw, hn) +G(he, hn),

in which we solve for hn. Since the incident waves are shocks, the remarks
following (4.8) show that the outgoing waves are also shocks, and we have

hn > hw > hs and hn > he > hs. (4.10)

Thus for all four waves, we have G(ha, hb) = −K(ha, hb), and we rewrite
the shock crossing interaction as

K(hs, hw) +K(hs, he) = K(hw, hn) +K(he, hn). (4.11)

Using the scaling law (2.24), this becomes

k(
hw

hs
) + k(

he

hs
) =

hw

hs
k(
hn

hw
) +

he

hs
k(
hn

he
), (4.12)

which gives hn
hs

as a function of two variables hw
hs

and he
hs

.
First, if hw = he, then (4.12) becomes

k(
hw

hs
) =

hw

hs
k(
hn

he
) > k(

hn

he
),

so that hn/he < hw/hs since k(z) is increasing for z > 1. On the other
hand, suppose that

hn =
he hw

hs
,

so that hn
he

= hw
hs

and hn
he

= he
hs

. In this case, (4.12) becomes

(1− he

hs
) k(

hw

hs
) = (

hw

hs
− 1) k(

he

hs
),
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and since the coefficients have opposite sign, this can happen only if hw = hs

or he = hs, so that one of the incident shocks vanishes. Thus by continuity,
we conclude that hn < he hw/hs for all crossing interactions of nonzero
shocks, and in particular

hn

hw
<
he

hs
and

hn

he
<
hw

hs
. (4.13)

Thus after the interaction, the scaled shock strengths decrease,

|γ(hn

hw
)| < |γ(he

hs
)| and |γ(hn

he
)| < |γ(hw

hs
)|, (4.14)

while the usual shock strength increases, but we have the bounds

|Γ(hs, he)| <|Γ(hw, hn)| < hw

hs
|Γ(hs, he)| and

|Γ(hs, hw)| <|Γ(he, hn)| < he

hs
|Γ(hs, hw)|. (4.15)

We shall refine these estimates in Section 6 below.

5. Bounds for Reflections

We have seen that the nonlinear effects of wave interactions can be de-
scribed exactly, and that with the correct choice of wave strength, waves of
the same family add linearly. We also have exact expressions for the reflected
waves, and for the change in strength when a simple wave crosses a shock.
Here we analyze the reflected waves in more detail, and obtain bounds and
monotonicity conditions.

5.1. Wave strength as variable. The main difficulty we encounter in our
treatment of reflected waves is finding bounds for them: these are differences
of the type

Θ(hr, h∗)−Θ(hm, hl)−Θ(hr, hm),

say, from (4.6). It is clear from (2.18), (2.12) and (2.2) that for fixed behind
state hb, the shock error Θ(ha, hb) →∞ as ha → 0, so it is not obvious that
the reflection is uniformly bounded. In order to obtain bounds, we express
the various quantities associated with a wave in terms of the wave strength,
and use that to estimate reflected waves.

Recalling the definition of wave strength (2.19),

Γ(ha, hb) = ha − hb −Θ(ha, hb),

Corollary 1 yields

Γ;1(ha, hb) = 1−Θ;1(ha, hb) ≥ 1 and

Γ;2(ha, hb) = −1−Θ;2(ha, hb) ≤ −1

for all ha, hb. It follows that we can regard ha as fixed and treat hb as
a function of the wave strength Γ, and similarly define ha in terms of Γ



26 ROBIN YOUNG

(and hb). That is, we implicitly define the functions hb = Φ(h,Z) and
ha = Ψ(h,Z) by the identities

Z = Γ(h,Φ(h,Z)) = h− Φ(h,Z)−Θ(h,Φ(h,Z)) (5.1)

and
Z = Γ(Ψ(h,Z), h) = Ψ(h,Z)− h−Θ(Ψ(h,Z), h), (5.2)

respectively.
Note that for fixed wave strength Z, the functions Φ and Ψ are inverse

functions with regard to the state variable:

hb = Φ(ha,Z) iff ha = Ψ(hb,Z). (5.3)

Similarly, if we fix one state, then the other state and wave strength are
inverses:

Γ(ha, hb) = Z iff Φ(ha,Z) = hb iff Ψ(hb,Z) = ha.

We will refer to the functions Φ and Ψ as the behind and ahead state func-
tions, respectively.

Having described the states across a wave in terms of the wave strength,
we now describe the shock error Θ(ha, hb) in the same way: that is, we set

Ω(h,Z) = Θ(h,Φ(h,Z)), (5.4)

where we have fixed the ahead state h = ha. We can similarly write the
shock error by fixing the behind state hb, but we shall not do so explicitly.

Recalling that Θ is supported on shocks, we note that for Z ≥ 0, we have
the linear relations

Φ(h,Z) = Z − h and Ψ(h,Z) = Z + h,

and Ω(h,Z) = 0.
Finally, we observe that we can extend these functions up to the vacuum.

Indeed, the wave adjacent to the vacuum is simple, and a shock crossing a
simple wave has constant strength; thus we can take the limit as h → 0 in
the above functions. There is clearly no difficulty when Z ≥ 0. Now consider
a shock of fixed strength Z < 0 approaching the vacuum by passing through
an adjacent (opposite) rarefaction: we let h be the state ahead of the shock
as it passes through the rarefaction, so Φ(h,Z) is the corresponding state
behind the shock. Since the shock is absorbed into the vacuum, the behind
state has limit

Φ(h,Z) → 0 as h→ 0,
and since Ψ = Φ−1 as functions of h, we have also

Ψ(h,Z) → 0 as h→ 0.

From (5.1), (5.4), Ω can also be written as

Ω(h,Z) = h− Φ(h,Z)−Z, (5.5)

so taking the limit as h→ 0 we get

Ω(0,Z) = −Z, (5.6)
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where Z < 0.

5.2. Effect of scaling. The behind state Φ and shock error Ω scale by the
ahead state h as did our earlier functions: using (2.26) in (5.1) yields

Z
h

=
Γ(h,Φ)
h

= 1− Φ
h
− θ(

Φ
h

),

where Φ = Φ(h,Z). Thus setting ζ = Z/h and defining the scaled behind
state φ(γ) implicitly by the relation

ζ = γ(φ(ζ)) = 1− φ(γ)− θ ◦ φ(γ), (5.7)

we have the expected scaling relation

Φ(h,Z) = h φ(ζ) = h φ(Z/h). (5.8)

Comparing (2.28) and (5.7), it follows that the scaled behind state φ is the
inverse function of the scaled wave strength γ(z), as expected. Referring to
(5.4), the shock error also scales as

Ω(h,Z) = h $(ζ) = h $(Z/h), where $ = θ ◦ φ (5.9)

gives the scaled shock error as a function of scaled wave strength.
We can also derive a scaling law for the ahead state, as follows. Using the

scaling law (5.8) in (5.3), we have ha = Ψ(hb,Z) if and only if
hb

ha
= φ(

Z
ha

), or
Z
ha

= γ(
hb

ha
).

Now setting

η =
Z
hb
, y = ψ(η) =

ha

hb
and z =

1
y
,

this becomes
η

ψ(η)
= γ

( 1
ψ(η)

)
, (5.10)

or alternatively y = ψ(η) = 1/z(η), where z = z(η) is implicitly given by

η z = γ(z). (5.11)

Thus, if ψ is implicitly defined by (5.10), it follows that Ψ has the scaling

Ψ(hb,Z) = hb ψ(
Z
hb

), (5.12)

analogous to (5.8), (5.9). Alternatively, we can express Ψ as an homogeneous
function directly for Z < 0 by writing (2.18), (2.19), (2.24) as

η = (y − 1− k(y))/2,

where η = Z/hb and y = ψ(η) = Ψ/hb < 1; also note k(y) = y k( 1
y ).

Figure 5.2 shows the various scaled functions defined here: the first picture
shows wave strength γ(z) and shock error θ(z) as functions of the (scaled)
behind state; the second shows behind state φ(γ) and shock error $(γ) as
functions of wave strength γ; and the third shows the ahead state ψ(η) as a
function of wave strength, now scaled by the behind state.
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θ(z)

γ(z)

0 1 z

φ(γ)

$(γ)

0 1 γ

ψ(η)

0 η

Figure 6. Scaled opposite states and shock error functions

5.3. Derivatives and Convexity. We now use the scaling rules to cal-
culate the derivatives of the opposite state and shock error, expressed in
terms of wave strength. Recall that the nonlinearities are supported only
on shocks, so the derivatives are trivial for Z ≥ 0.

A routine calculation as in the proof of Corollary 1 gives formulae analo-
gous to (2.35), (2.36): since F (h,Z) = h f(ζ) with ζ = Z/h, we have

F;Z(h,Z) = f ′(ζ) and

F;h(h,Z) = f(ζ)− ζ f ′(ζ), (5.13)

and

F;ZZ(h,Z) =
1
h
f ′′(ζ),

F;hZ(h,Z) = −1
h
ζ f ′′(ζ), and (5.14)

F;hh(h,Z) =
1
h
ζ2 f ′′(ζ),

where F is each of Φ, Ψ and Ω, respectively, with f the corresponding
scaled function. We note here that f ′′(ζ) = 0 for ζ ≥ 0, and all three second
derivatives have the same sign for ζ < 0. In particular, as with (2.37), F
has the convexity of the scalar function f .

It thus suffices to calculate the derivatives of the scaled functions γ(z),
φ(ζ), ψ(η) and $(ζ). We express these derivatives using Corollary 1.

Lemma 3. The functions Φ, Ψ and Ω are convex, C2 functions defined for
h ≥ 0 and for all Z, and whose derivatives satisfy the bounds

−1 ≤Φ;Υ(h,Z) ≤ 0,

0 ≤Ψ;Υ(h,Z) ≤ 1, and (5.15)

−1 ≤Ω;Υ(h,Z) ≤ 0,
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and similarly

1 ≤Φ;h(h,Z),

0 ≤Ψ;h(h,Z) ≤ 1, and (5.16)

Ω;h(h,Z) ≤ 0.

Moreover, for any Z ≥ 0, we have Ω(h,Z) = 0 and

Φ(h,Z) = h−Z and Ψ(h,Z) = h+ Z,

while if Z < 0 and h > 0, all inequalities are strict.

Proof. It is convenient to treat the cases of rarefactions and shocks sepa-
rately. For 0 ≤ z = hb

ha
≤ 1, or equivalently 0 ≤ ζ ≤ 1, corresponding to a

rarefaction, we have

γ(z) = 1− z, φ(ζ) = 1− ζ and ψ(η) = η + 1,

while also ξ(z) = $(ζ) = 0. Thus clearly

γ′(z) = φ′(ζ) = −1 = ψ′(η) and θ′(z) = $′(ζ) = 0,

and all second derivatives vanish. This is expected as states vary linearly
across simple waves.

In the case of shocks, we have the equivalent conditions ζ < 0, z > 1 and
y = 1

z < 1. According to (2.27), (2.28), for z > 1 we have

γ(z) + θ(z) = 1− z and γ(z)− θ(z) = g(z) = −k(z).

Solving, we have

γ(z) =
1− z − k(z)

2
and θ(z) =

1− z + k(z)
2

, (5.17)

and so we immediately have

γ′(z) = −1 + k′(z)
2

and θ′(z) =
k′(z)− 1

2
,

and

γ′′(z) = −k
′′(z)
2

and θ′′(z) =
k′′(z)

2
.

Next, since φ = γ−1, we have

φ′(ζ) =
1

γ′(z)
=

−2
1 + k′(z)

,

where we have set z = φ(ζ), and

φ′′(ζ) =
−γ′′(z)
γ′(z)3

=
−4 k′′(z)

(1 + k′(z))3
.
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Similarly, since $ = θ ◦ φ, we calculate directly that

$′(ζ) = θ′(φ(ζ)) φ′(ζ) = −k
′(z)− 1
k′(z) + 1

, and

$′′(ζ) =
4 k′′(z)

(1 + k′(z))3
= −φ′′(ζ).

Finally, we use (5.11) to calculate the derivatives of ψ. We have

ψ′(η) =
−z′(η)
z2

and z + η z′(η) = γ′(z) z′(η),

which yields

ψ′(η) =
1

γ(z)− z γ′(z)
=

2
1− k(z) + z k′(z)

.

Differentiating again and simplifying, we get

ψ′′(η) =
−z3 γ′′(z)

(γ(z)− z γ′(z))3
=

4 z3 k′′(z)
(1− k(z) + z k′(z))3

,

where z = 1/ψ(η) > 1. The Lemma now follows by substituting these values
into (5.13) and (5.14). �

Corollary 3. A simple wave’s strength increases after it crosses a shock of
the opposite family.

Proof. Without loss of generality, we suppose that the forward wave Γ(hs, hw)
is simple and the backward wave Γ(hs, he) is a shock, where we have used
the labels from Section 4. According to the (4.8) and the discussion thereof,
the outgoing backward wave is also a shock and its strength is unchanged,

Γ(hw, hn) = Γ(hs, he) ≡ A < 0.

The change of the simple wave is given by (4.9), namely

Γ(he, hn)− Γ(hs, hw) = Θ(hw, hn)−Θ(hs, he)

= Ω(hw,A)− Ω(hs,A)

= (hw − hs) Ω;h(k,A) ,

where we have used (5.4) and the Mean Value Theorem. Similarly, we have

hw − hs = Φ(hs,Γ(hs, hw))− Φ(hs, 0) = Φ;Υ(hs,B) Γ(hs, hw),

for some B between 0 and Γ(hs, hw), so that

Γ(he, hn) = Γ(hs, hw) (1 + Ω;h(k,A) Φ;Υ(hs,B))

and the result follows by (5.15), (5.16). �
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6. Crossing shocks

We now study the interaction of crossing shocks of arbitrary strength. The
main issue here is that we need estimates which are uniform in the density
as the vacuum is approached. We consider the configuration shown in the
second part of Figure 5: a forward 2-shock with (hs us)t ahead and (hw uw)t

behind meets a backward 1-shock with state (he ue)t behind, resulting in
two outgoing shocks with the resultant behind state (hn un)t.

6.1. Shock Interaction Estimate. It is convenient to work in scaled vari-
ables which are balanced to reflect the amount of symmetry in the interac-
tion. That is, we define

µ =
√
hw he

hs
, ρ =

√
he

hw
and ν =

hn√
hw he

, (6.1)

so that
hw

hs
=
µ

ρ
,

he

hs
= µρ,

hn

hw
= ν ρ, and

hn

he
=
ν

ρ
. (6.2)

Clearly µ is a measure of the average size of the incoming shocks, while ρ
measures their relative sizes. According to (4.10), we have the constraints

1
µ
< ρ < µ and

1
ν
< ρ < ν.

Moreover, our earlier estimate (4.13) translates to ν < µ, and so we have

1
µ
<

1
ν
< ρ < ν < µ. (6.3)

In these variables, equation (4.12) becomes

1
µ
k(
µ

ρ
) +

1
µ
k(µρ) =

1
ρ
k(ν ρ) + ρ k(

ν

ρ
) (6.4)

where we regard ν = ν(µ, ρ). It is clear that the interaction is symmetric,
that is ν(µ, 1/ρ) = ν(µ, ρ).

Recalling (2.25), (2.21), we define

r(z) =
√
qd+1(z) qd−1(z), (6.5)

so that k(z) = z
d+1
2 r(z). Our equation (6.4) can then be written

µ
d−1
2

[
ρ−

d+1
2 r(

µ

ρ
) + ρ

d+1
2 r(µρ)

]
= ν

d+1
2

[
ρ

d−1
2 r(ν ρ) + ρ−

d−1
2 r(

ν

ρ
)
]
. (6.6)

Before solving equation (6.6), we derive some properties of r(z).
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Lemma 4. The function r(z) is monotone increasing and concave, with
limiting values

r(1) = 0, r′(1) = 1, r′′(1) = −(d+ 1) and

lim
z→∞

r(z) =
1√

d2 − 1
.

Moreover, for all z > 1 we have the bounds

qd(z) < r(z) <
d√

d2 − 1
qd(z) , (6.7)

and the ratio r(z)
qd(z) is monotone increasing.

Proof. Recall from (2.21) that qn is defined by

qn(z) =
1− z−n

n
,

so we can write

n qn(z) = 1− z−n and

qn(z) =
∫ z

1
z̄−n−1 dz̄ =

∫ log z

0
e−nxdx. (6.8)

We regard these as functions of both z and n. It is clear that for each n,
qn(z) is monotone increasing and concave as a function of z. On the other
hand, fixing z and regarding these as functions of n, we see that they are
monotone increasing and decreasing, respectively.

The concavity and monotonicity of r(z) is an immediate consequence of
the following:

Claim 1. Given positive functions f1(x) and f2(x), their geometric average
F (x) =

√
f1(x) f2(x) is concave whenever

f1(x)′′ f2(x) + f1(x) f ′′2 (x) < 0 ;

in particular, if f1 and f2 are concave, so is F . To prove this, we differen-
tiate:

F (x)2 = f1(x) f2(x) ,

2 F F ′ = f ′1 f2 + f1 f
′
2 and

2 F ′2 + 2F F ′′ = f ′′1 f2 + 2 f ′1 f
′
2 + f1 f

′′
2 ,

which after rearranging yields

4 F 3 F ′′ = 2 f1 f2 (f ′′1 f2 + f1 f
′′
2 )− (f ′1 f2 − f1 f

′
2)

2 ,

and the claim follows.

The limiting values of r are now calculated from those of qn(z): by
l’Hôpital’s rule, qn/r → 1 as z → 1+ for any n, and by above,

2 r r′′ ≈ q′′d+1 qd−1 + qd+1 q
′′
d−1 ,
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so r′′ → (q′′d+1 + q′′d−1)/2 = −(d+ 1) as z → 1.
We now compare r(z) to qd(z). To this end, write

qn(z) = z−n/2 z
n/2 − z−n/2

n
,

and make the change of variables

w ≡ log
√
z , so that z

1
2 = ew , (6.9)

and
qn(z) = e−n w 2 sinhnw

n
≡ q̂n (w) . (6.10)

In these variables, we calculate

r

qd
=

√
bd+1(w) bd−1(w)

bd(w)
, (6.11)

where we have set
bn(w) ≡ sinhnw

n
. (6.12)

We use the shorthand

c1 = coshw, s1 = sinhw

cd = cosh dw, sd = sinh dw , (6.13)

and recall the identities

cosh2 x− sinh2 x = 1 and

sinh(x1 ± x2) = sinhx1 coshx2 ± coshx1 sinhx2 .

Using these in (6.11), (6.12), we get

r

qd
=

√
s2d c

2
1 − c2d s

2
1

sd

d√
d2 − 1

=

√
s2d (1 + s21)− (1 + s2d) s

2
1

sd

d√
d2 − 1

=

√
1−

(
s1
sd

)2 d√
d2 − 1

. (6.14)

It now follows by the chain rule that r/qd is monotone increasing in z if and
only if sd/s1 is increasing in w. We calculate(

sd

s1

)′
=
d cd s1 − sd c1

s21

=
d−1
2 (sd c1 + cd s1)− d+1

2 (sd c1 − cd s1)
s21

=
(d− 1) sinh(d+ 1)w − (d+ 1) sinh(d− 1)w

2 s21
≥ 0 , (6.15)
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the last inequality following by convexity of sinhx for x ≥ 0, and the proof
is complete. �

We now return to equation (6.6) which defines ν = ν(µ, ρ).

Theorem 4. There are positive constants K1 and K2 such that the solution
ν = ν(µ, ρ) satisfies the uniform bounds

K1 µ
d−1
d+1 J(ρ)

2
d+1 ≤ ν(µ, ρ) ≤ K2 µ

d−1
d+1 J(ρ)

2
d+1 (6.16)

valid for all µ and ρ with 1/µ < ρ < µ. Here J(ρ) is the function defined by

J(ρ) ≡ ρ
d+1
2 + ρ−

d+1
2

ρ
d−1
2 + ρ−

d−1
2

. (6.17)

Throughout this section, we use the convention that Qj is some quantity
depending on µ and ρ, and Kj is a positive constant depending only on the
parameter d, and hence on the ideal gas constant γ.

Proof. We use the upper and lower bounds of (6.7) on either side of (6.6) to
replace r(·) with qd(·). This yields

µ
d−1
2

[
ρ−

d+1
2 qd(

µ

ρ
) + ρ

d+1
2 qd(µρ)

]
≤ d√

d2 − 1
ν

d+1
2

[
ρ

d−1
2 qd(ν ρ) + ρ−

d−1
2 qd(

ν

ρ
)
]
,

and similarly

d√
d2 − 1

µ
d−1
2

[
ρ−

d+1
2 qd(

µ

ρ
) + ρ

d+1
2 qd(µρ)

]
≥ ν

d+1
2

[
ρ

d−1
2 qd(ν ρ) + ρ−

d−1
2 qd(

ν

ρ
)
]
.

Therefore, if we define

Q1 ≡
ρ−

d+1
2 qd(

µ
ρ ) + ρ

d+1
2 qd(µρ)

ρ
d−1
2 qd(ν ρ) + ρ−

d−1
2 qd(ν

ρ )
, (6.18)

where ν = ν(µ, ρ), then we have

√
d2 − 1
d

µ
d−1
2 Q1 ≤ ν

d+1
2 ≤ d√

d2 − 1
µ

d−1
2 Q1 . (6.19)
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Now using the definition (2.21) of qd(z) in (6.18) and simplifying, we get

Q1 =
ρ−

d+1
2 + ρ

d+1
2 − µ−d

(
ρ

d−1
2 + ρ−

d−1
2

)
ρ

d−1
2 + ρ−

d−1
2 − ν−d

(
ρ−

d+1
2 + ρ

d+1
2

)
=

J(ρ)− µ−d

1− ν−d J(ρ)

= J(ρ)
1− µ−d/J(ρ)
1− ν−d J(ρ)

≡ J(ρ) Q2 , (6.20)

where J(ρ) is given by (6.17).
It remains to find upper and lower bounds for

Q2 =
1− µ−d/J

1− ν−d J
≡ 1− y

1− x
, (6.21)

where J = J(ρ) and we have set

y = µ−d/J and x = ν−d J .

Note that J(1/ρ) = J(ρ), and it is not hard to see that for all ρ > 0, we
have

1 ≤ J ≤ max{ρ, 1/ρ} .
Also, by (6.3), we have ν ≤ µ, so that for all ρ,

µ−d/J ≤ µ−d J ≤ ν−d J, so y ≤ x ≤ 1 ,

which immediately gives the lower bound

Q2 ≥ 1 .

To show that Q2 is bounded above, we must show that if x→ 1− in (6.21),
then also y → 1. To this end, we may regard (6.4) as defining a C2 function
µ = µ(ν, ρ): this follows directly from the Implicit Function Theorem, if we
note that

z k′(z)− k(z) > 0 for all z > 1 ,
by convexity of k. Now, if x→ 1−, then

1 ≥ ν−d+1 ≥ ν−d J = x so ν → 1+,

while also
1/ν ≤ ρ ≤ ν so ρ→ 1 .

Since also µ(1, 1) = 1, by continuity we have

y = µ−d/J → 1 as x→ 1 ,

from which we conclude Q2 is bounded. Indeed, we obtain Q2 → 1 as x→ 1
using l’Hôpital’s rule, as follows. By continuity, we may take ρ = 1, so J = 1
and

Q2 =
1− µ−d

1− ν−d
→ ∂µ

∂ν
(1, 1) = 1 ,
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the last equality being evaluated by implicitly differentiating (6.4).
Substituting the bounds for Q2 into (6.19), (6.20) now yields (6.16), with

constants

K1 =

(√
d2 − 1
d

) 2
d+1

=
(

1− 1
d2

) 1
d+1

and

K2 = (maxQ2)
2

d+1
/
K1 , (6.22)

and the proof is complete. �

We remark that although our upper bound for Q2 can in principle be
arbitrarily large, it is in practice rather small. This can be seen by “boot-
strapping” the lower bound, as follows: after some manipulation, the lower
bound of (6.16) gives

x = ν−d J ≤ K−d
1

(
µ−d/J

) d−1
d+1 = K−d

1 y
d−1
d+1 , (6.23)

and so by bounding y away from 1, we get associated bounds on Q2. We
can regard this as a way of measuring the strength of an interaction: if y is
far from 1, the interaction is nonlinear and this estimate can be used, but
for y near 1 we need to use a linear estimate as in the proof, because since

1− 1
d3

< K1 < 1,

the estimate (6.23) is not strong enough to bound x away from 1. In compu-
tations, for d = 6, corresponding to gamma law γ = 1.4, we have Q2 < 1.1,
and for d = 2, corresponding to γ = 3, we get Q2 < 1.35.

6.2. Properties of Scaled Wave Strength. We wish to use the bound
on ν = ν(µ, ρ) to estimate the outgoing wave strengths. To do so, we bound
the scaled wave strength γ(z) by a power of z, as we did for k(z). Following
(2.21) and (2.25), for z > 1 we write

−2 γ(z) ≡ z
d+1
2 t(z), (6.24)

so that t(z) can also be written

t(z) = −2 γ(z) z−
d+1
2 = −2 γ(z)

r(z)
k(z)

.

Lemma 5. The function t(z) has a unique critical point z∗, is concave
increasing on [1, z∗] and monotone decreasing on [z∗,∞], and has limits

t(1) = 0, t′(1) = 2 and t(∞) =
1√

d2 − 1
.

If we define the point z# by

t(z#) ≡ 1√
d2 − 1

≡ t# , (6.25)
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then we have the bounds

t# ≤ t(z) ≤ t∗ ≡ t(z∗) whenever z ≥ z# , (6.26)

and
t#

z# − 1
(z − 1) ≤ t(z) ≤ 2 (z − 1) for 1 ≤ z ≤ z# . (6.27)

Moreover, t(z) satisfies the bounds

d√
d2 − 1

qd(z) < t(z) < min
{
2,

d2

√
d2 − 1

}
qd(z) , (6.28)

for all z ≥ 1.

z∗

t∗

z#

t#

Figure 7. The function t(z) for d = 6.

Proof. Using (5.17), (2.21), we write

t(z) = −2 γ(z) z−
d+1
2

= (k(z) + z − 1) z−
d+1
2

= r(z) + z−
d−1
2 − z−

d+1
2

= r(z) + z−
d
2

(
z

1
2 − z−

1
2

)
. (6.29)

First, since z−
d−1
2 is the dominant nonlinear term for large z, we set

x ≡ z−
d−1
2 so that z = x−

2
d−1 , (6.30)

with 0 < x ≤ 1, and we write t(z) = t̂ (x), with

t̂ (x) =
1√

d2 − 1

√
(1− x2 γ)(1− x2) + x− xγ , (6.31)

where we have used (6.30) and (6.5) in (6.29), and γ ≡ d+1
d−1 is the gas con-

stant (2.3). Note that t̂ (x) extends continuously to x = 0 and we calculate

t̂ (0) =
1√

d2 − 1
, t̂ (1) = 0 and t̂

′
(0) = 1 .
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Since r′(1) = 1, we have t′(1) = 2, and the chain rule yields

t̂
′
(1) =

−4
d− 1

< 0.

Next, since each of the functions 1− x2 γ , 1− x2 and x− xγ is concave, by
Claim 1, so is t̂ (x). It follows that t̂ has a unique maximum x∗ ∈ (0, 1),
and that t̂

′
(x) > 0 for x < x∗ and t̂

′
(x) < 0 for x > x∗. This implies that

t(z) has a unique critical point z∗, and that t is increasing for z < z∗ and
decreasing for z > z∗. Moreover, we calculate

t′′(z) = t̂
′′
(x)

(dx
dz

)2
+ t̂

′
(x)

d2z

dx2
,

and t(z) is concave whenever this is negative; in particular, t(z) is concave
for x > x∗, corresponding to z < z∗.

Thus far, we know that t(z) increases from 0 at z = 1 to its maximum of
t∗ at z∗, and then decreases to 1√

d2−1
as z →∞. Therefore, if we define z#

and t# by

t(z#) ≡ 1√
d2 − 1

≡ t# ,

which is (6.25), then we have

t# ≤ t(z) ≤ t∗ whenever z ≥ z# .

On the other hand, for z < z#, we obtain linear estimates for t(z), as follows.
Since z# < z∗, we know that t(z) is concave on the interval [1, z#]. Thus
its graph lies below the tangent at z = 1, and above the secant joining the
points (1, 0) and (z#, t#). That is, for any 1 ≤ z ≤ z#, we have

t#
z# − 1

(z − 1) ≤ t(z) ≤ 2 (z − 1) .

In Figure 7, we show the graph of t(z) for d = 6; in this case, it is easy to
compute (z∗, t∗) ≈ (1.54, 0.27) and (z#, t#) ≈ (1.13, 0.17), with associated
scaled wave strength γ# ≈ −0.13.

Finally, to compare t(z) to qd(z), we recall the change of variables (6.9),
namely w = log

√
z, and write (6.29) as

t(z)
qd(z)

=
r

qd
+ e−dw 2 sinhw

qd
,

which by (6.10), (6.11), (6.14) and (6.12) can be written as

t

qd
=

√
bd+1(w) bd−1(w)

bd(w)
+
b1(w)
bd(w)

=

√
1−

(
s1
sd

)2 d√
d2 − 1

+
d s1
sd

,
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where we have again used the shorthand (6.13). Thus, if we set

y ≡ d
s1
sd

=
b1(w)
bd(w)

,

then
z ≥ 1 ⇐⇒ 0 ≤ w ≤ ∞ ⇐⇒ 1 ≥ y ≥ 0 ,

and
t

qd
= f(y) ≡ y +

√
d2 − y2

d2 − 1
, (6.32)

and according to (6.9), (6.15), t/qd decreases when f(y) increases. Thus we
calculate the extreme values of f(y) on the interval [0, 1]. First note that

f(1) = 2 and f(0) =
d√

d2 − 1
,

and we calculate

f ′(y) = 1− 1√
d2 − 1

y√
d2 − y2

,

so that
f ′(y) = 0 if and only if y =

√
d2 − 1 ,

and the maximum of f is

f(
√
d2 − 1) =

d2

√
d2 − 1

.

Since this is increasing in d, and we are restricting to y ∈ [0, 1], we conclude
that

d√
d2 − 1

≤ t

qd
≤ min

{
2,

d2

√
d2 − 1

}
,

this minimum being 2 if d ≥
√

2, which in turn corresponds to gas constant
γ ≤ 3 + 2

√
2. �

In order to get estimates for ρ and µ, we must estimate φ, which according
to (5.7) is the inverse function of the scaled wave strength γ. Thus, regarding
γ < 0 as the variable, we write (6.24) as

2 |γ| = φ(γ)
d+1
2 t(φ) . (6.33)

Recalling that (z#, t#) is given by (6.25), it is convenient to set

γ# ≡ φ−1(z#) , (6.34)

so that
γ# ≤ γ ≤ 0 iff 1 ≤ φ(γ) ≤ z# ,

and, in view of the following Lemma, we shall regard such a γ as a weakly
nonlinear wave.
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Lemma 6. The (invertible) function φ(γ) satisfies the global lower bound

φ(γ) ≥ K3 |γ|
2

d+1 for γ ≤ 0 , (6.35)

while if γ ≤ γ# < 0, then we have the upper bound

φ(γ) ≤ K4 |γ|
2

d+1 . (6.36)

On the other hand, if γ# ≤ γ ≤ 0, then

K̂ 3 |γ| ≤ φ(γ)− 1 ≤ |γ| , (6.37)

where K̂ 3 ≡
z#−1
|γ#| .

Proof. By Lemma 5, for all γ < 0 we have

2 |γ| ≤ φ(γ)
d+1
2 t∗ ,

which implies the global lower bound (6.35), with constant

K3 =
(

2
t∗

) 2
d+1

.

Since φ(0) = 1, an upper bound analogous to (6.35) cannot hold for all
γ < 0, but it will hold for |γ| suitably bounded away from 0. To see this,
suppose that |γ| is large enough that

φ(γ) ≥ z# , so that t(φ(γ)) ≥ t# ,

which by (6.35) is guaranteed if

|γ| ≥
( t#
K3

) d+1
2
.

Then (6.33) becomes

2 |γ| = φ(γ)
d+1
2 t(φ) ≥ φ(γ)

d+1
2 t# ,

and so we have
φ(γ) ≤ K4 |γ|

2
d+1 ,

which is (6.36), with

K4 ≡
(

2
t#

) 2
d+1

.

On the other hand, for
1 ≤ φ(γ) ≤ z# ,

which we think of as a weak or linear wave, then since γ ≈ 0, a linear estimate
is more appropriate. First we note that since φ is the inverse function of γ
which is decreasing and concave, so also is φ, see Figure 5.2. Thus on the
interval [γ#, 0], the graph of φ lies between the tangent of φ at 0 and the
secant determined by the interval. That is,

1 +
z# − 1
γ#

γ ≤ φ(γ) ≤ 1− γ for any γ# ≤ γ ≤ 0 ,

which is (6.37). �
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We note that the particular choice of t# is not crucial in the Lemma, but
was chosen as the largest lower bound of t(z) for large z. In fact, the same
conclusions hold for any γ† satisfying |γ†| ≤ |γ#|, provided we define z† and
t† by

z† = φ(γ†) and t† = t(z†) . (6.38)

Corollary 4. For any γ† with 0 > γ† ≥ γ#, the conclusions of Lemma 6
hold, with γ# replaced by γ† and modified constants

K4 =
(

2
t†

) 2
d+1

and K̂ 3 =
z† − 1
γ†

.

6.3. Effect on Wave Strengths. We now return to the shock interaction
problem, and describe the interaction in terms of scaled and unscaled wave
strengths. We first use Theorem 4 to estimate the outgoing scaled wave
strengths γ(hn/he) = γ(ν/ρ) and γ(hn/hw) = γ(ν ρ).

Lemma 7. We have the estimates

γ(ν ρ) = γ(µρ)
J(ρ)
µ

Q3(µ, ρ) and

γ(ν/ρ) = γ(µ/ρ)
J(ρ)
µ

Q3(µ, 1/ρ) , (6.39)

where Q3 is uniformly bounded,

0 < K5 ≤ Q3(µ, x) ≤ K6. (6.40)

Proof. Referring to Theorem 4, we regard ν = ν(µ, ρ), and define

Q4(µ, ρ) ≡
ν

d+1
2

µ
d−1
2 J(ρ)

.

Then Q4(µ, ρ) = Q4(µ, 1/ρ), and, according to (6.16), Q4 is uniformly
bounded,

K
d+1
2

1 ≤ Q4(µ, ρ) ≤ K
d+1
2

2 . (6.41)

Thus we have, for x = ρ or 1/ρ,

(ν x)
d+1
2 = (µ x)

d+1
2

J

µ
Q4(µ, x) ,

and so, by (6.24),

γ(ν x) = γ(µ x)
J

µ
Q4(µ, x)

t(ν x)
t(µ x)

.

Equations (6.39) follow directly if we define

Q3(µ, x) = Q4(µ, x)
t(µ x)
t(ν x)

, (6.42)
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with x = 1/ρ and ρ, respectively. Using (6.41) and (6.28), it suffices to show
that the ratio

qd(µ x)
qd(ν x)

is uniformly bounded away from 0 for x = ρ or 1/ρ. First, since qd is
increasing, µ ≥ ν again implies

qd(µ x)
qd(ν x)

≥ 1 .

On the other hand, as in the proof of Theorem 4, this ratio is bounded away
from qd(ν x) = 0, that is ν x = 1. But, as we have seen,

µ→ 1 as ν → 1,

and again, by l’Hôpital’s rule, we have

lim
ν→1

qd(µ x)
qd(ν x)

= lim
ν→1

∂µ

∂ν
= 1 .

Thus again by continuity, the fraction qd(µ x)/qd(ν x) is uniformly bounded,
and (6.40) follows from (6.42) and (6.41), with

K5 = K
d+1
2

1 =

√
1− 1

d2
,

by (6.22), and the proof is complete. �

Corollary 5. The unscaled wave strengths satisfy the estimates

Γ(he, hn) = Γ(hs, hw) J(ρ) ρ Q3(µ, 1/ρ) and

Γ(hw, hn) = Γ(hs, he)
J(ρ)
ρ

Q3(µ, ρ). (6.43)

Proof. Recalling the scaling law (2.28) and the relations (6.2), and applying
(6.39), we have

Γ(he, hn) = he γ(
hn

he
) = hs µρ γ(

ν

ρ
)

= hs γ(
µ

ρ
) ρ J(ρ) Q3(µ, 1/ρ)

= Γ(hs, hw) ρ J(ρ) Q3(µ, 1/ρ),

and the second relation follows similarly. �

Finally, in order to fully describe the shock interaction in terms of wave
strengths, we must express the ratio ρ in those terms. Thus, suppose we are
given incident wave strengths A = Γ(hs, he) and B = Γ(hs, hw). From (6.1),
and using (5.3), (5.8), we define the scaled wave strengths

α ≡ A
hs

and β ≡ B
hs
, (6.44)
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so that

ρ =
√
he

hw
=

√
Φ(hs,A)
Φ(hs,B)

=

√
φ(A/hs)
φ(B/hs)

=

√
φ(α)
φ(β)

, (6.45)

and similarly

µ =
√
φ(α) φ(β) . (6.46)

We can now state our main theorem of shock interactions. We consider
the interaction of two shocks with incident strengths A = Γ(hs, he) and
B = Γ(hs, hw) and corresponding scaled strengths

α = γ(
he

hs
) = γ(µρ) and β = γ(

hw

hs
) = γ(

µ

ρ
) (6.47)

as in (6.2), (6.44). We denote the outgoing waves (and their strengths) by

A′ = Γ(hw, hn) , B′ = Γ(he, hn) ,

α′ = γ(
hn

hw
) = γ(ν ρ) and β′ = γ(

hn

he
) = γ(

ν

ρ
) , (6.48)

respectively.

Theorem 5. The outgoing scaled wave strengths satisfy the estimates

K7 |α|
1
η
≤ |α′| ≤ K6 |α|

1
η

and

K7 |β|
1
η
≤ |β′| ≤ K6 |β|

1
η
, (6.49)

where
η = min{φ(α), φ(β)} > 1.

If |A| ≥ |B|, then the unscaled wave strength A′ satisfies

K7 |A| ≤ |A′| ≤ K6 |A| , (6.50)

while for B we have the three cases: if |B| ≥ |γ#|hs,

K8 |A|
2

d+1 |B|
d−1
d+1 ≤ |B′| ≤ K9 |A|

2
d+1 |B|

d−1
d+1 ; (6.51)

next, if |B| ≤ |γ#| hs ≤ |A|,

K̂ 8
|A|

2
d+1 |B|

h
2

d+1
s

≤ |B′| ≤ K̂ 9
|A|

2
d+1 |B|

h
2

d+1
s

≤ K9 |A|
2

d+1 |B|
d−1
d+1 ; (6.52)

and finally, if |B| ≤ |A| ≤ |γ#| hs, then

K̃8 |B| ≤ |B′| ≤ K̃9 |B| . (6.53)

On the other hand, if |B| ≥ |A|, then by symmetry we get the same estimates
with the positions of A and B reversed.
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Note that our estimates are uniform in the middle state hs, and in par-
ticular, by continuity, they hold up to the vacuum. Indeed, for fixed A and
B, as hs decreases the scaled wave strength increases, and (6.51) applies. In
(6.49), we can use Lemma 6 to bound 1/η from above and below in terms
of min{|α|, |β|}.

Proof. According to Lemma 7 and Corollary 5, we need to find estimates
for the quantities

J(ρ)
µ

, J(ρ) ρ and
J(ρ)
ρ

,

in terms of the incident wave strengths A and B and middle state hs. More-
over, we want these estimates to be uniform as hs → 0.

Recall that J(ρ) is defined by (6.17), so that

J(ρ)
ρ

=
1 + ρ−(d+1)

1 + ρ−(d−1)
≡ j(ρ) , (6.54)

so that j(ρ) ≤ 1 for ρ ≥ 1; moreover, since j(ρ) → 1 = j(1) as ρ → ∞, it
follows that for some ρ∗ > 1, we have

j(ρ) ≥ j∗ ≡ j(ρ∗) for all ρ ≥ 1 .

It follows that for ρ ≥ 1,

j∗ ≤
J(ρ)
ρ

≤ 1 and j∗ ρ
2 ≤ J(ρ) ρ ≤ ρ2 , (6.55)

while if ρ ≤ 1, so that 1/ρ ≥ 1,

j∗
ρ2
≤ J(ρ)

ρ
= J

(1
ρ

) 1
ρ
≤ 1
ρ2

and

j∗ ≤ J(ρ) ρ =
J(1/ρ)

1/ρ
≤ 1 .

Similarly, we get the estimates

j∗
ρ

µ
≤ J(ρ)

µ
≤ ρ

µ
if ρ ≥ 1 , and

j∗
µρ

≤ J(ρ)
µ

≤ 1
µρ

if ρ ≤ 1 . (6.56)

Now by (6.46) and (6.45), we express µ and ρ in terms of the wave
strengths as

µρ = φ(α) ,
µ

ρ
= φ(β) ,

ρ =

√
φ(α)
φ(β)

and µ =
√
φ(α) φ(β) . (6.57)

Thus, if |α| ≥ |β|, then ρ ≥ 1 and (6.56) becomes

j∗
φ(β)

≤ J(ρ)
µ

≤ 1
φ(β)

,
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and using this and (6.48) in Lemma 7 yields

K6
α

φ(β)
≤ α′ ≤ j∗K5

α

φ(β)
< 0 , and

K6
β

φ(β)
≤ β′ ≤ j∗K5

β

φ(β)
< 0 .

Similarly, if |β| ≥ |α|, then

K6
α

φ(α)
≤ α′ ≤ j∗K5

α

φ(α)
< 0 , and

K6
β

φ(α)
≤ β′ ≤ j∗K5

β

φ(α)
< 0 .

The inequalities (6.49) follow immediately with K7 ≡ j∗K5.
We now suppose |A| ≥ |B|, so that ρ ≥ 1 and (6.55), (6.57) gives

j∗ ≤
J(ρ)
ρ

≤ 1 and j∗
φ(α)
φ(β)

≤ J(ρ) ρ ≤ φ(α)
φ(β)

,

and Corollary 5 yields

K6 A ≤ A′ ≤ j∗K5 A < 0 , and

K6 B
φ(α)
φ(β)

≤ B′ ≤ j∗K5 B
φ(α)
φ(β)

< 0 .

which immediately yields (6.50) and

j∗K5 |B|
φ(α)
φ(β)

≤ |B′| ≤ K6 |B|
φ(α)
φ(β)

. (6.58)

It remains to estimate the ratio φ(α)
φ(β) from above and below in terms of

the unscaled wave strengths |A| and |B|. Since α = A/hs and β = B/hs, we
refer to Lemma 6, and separately consider the three cases

|γ#| hs ≤ |B| , |B| ≤ |γ#| hs ≤ |A| , and |A| ≤ |γ#| hs .

In the first case, in which both |A| and |B| are large relative to hs, we use
(6.35), (6.36) to get

K3

K4

∣∣∣∣αβ
∣∣∣∣ 2

d+1

≤ φ(α)
φ(β)

≤ K4

K3

∣∣∣∣αβ
∣∣∣∣ 2

d+1

,

but we know α
β = A

B , and using this in (6.58) yields (6.51), with constants

K8 ≡
j∗K5K3

K4
and K9 ≡

K6K4

K3
.

Next, if |β| ≤ |γ#| ≤ |α|, we use (6.37) for β to get

K3 |α|
2

d+1

1 + |β|
≤ φ(α)
φ(β)

≤ K4 |α|
2

d+1

1 + K̂ 3|β|
,
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so that
K3

1 + |γ#|
|A|

2
d+1

h
2

d+1
s

≤ φ(α)
φ(β)

≤ K4
|A|

2
d+1

h
2

d+1
s

.

Using this in (6.58) yields the first part of (6.52), with constants

K̂ 8 ≡
j∗K5K3

1 + |γ#|
and K̂ 9 ≡ K6 K4 .

Now note that

|A|
2

d+1 |B|

h
2

d+1
s

= |A|
2

d+1 |B|
d−1
d+1

(
|B|
hs

) 2
d+1

≤ |A|
2

d+1 |B|
d−1
d+1

∣∣∣γ#

∣∣∣ 2
d+1

,

which completes (6.52) if we set

K9 ≡ K̂ 9

∣∣∣γ#

∣∣∣ 2
d+1

.

In the third case, we use (6.37) for both α and β to get

1 + K̂ 3 |α|
1 + |β|

≤ φ(α)
φ(β)

≤ 1 + |α|
1 + K̂ 3 |β|

,

and since |β| ≤ |α| ≤ |γ#|, this implies

1 + |α|
1 + K̂ 3 |β|

≤ 1 + |γ#| and

1 + K̂ 3 |α|
1 + |β|

≥ 1 + K̂ 3 |α|
1 + |α|

≥
1 + K̂ 3 |γ#|

1 + |γ#|
.

Thus if we set

K̃8 ≡ j∗K5
1 + K̂ 3 |γ#|

1 + |γ#|
and K̃9 ≡ K6 (1 + |γ#|) ,

then (6.53) follows, and the proof is complete. �
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