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Abstract. We formally derive the simplest possible periodic wave struc-
ture consistent with time-periodic sound wave propagation in the 3× 3
nonlinear compressible Euler equations. The construction is based on
identifying the simplest periodic pattern with the property that com-
pression is counter-balanced by rarefaction along every characteristic.
Our derivation leads to an explicit description of shock-free waves that
propagate through an oscillating entropy field without breaking or dis-
sipating, indicating a new mechanism for dissipation free transmission
of sound waves in a nonlinear problem. The waves propagate at a new
speed, (different from a shock or sound speed), and sound waves move
through periods at speeds that can be commensurate or incommensurate
with the period. The period determines the speed of the wave crests, (a
sort of observable group velocity), but the sound waves move at a faster
speed, the usual speed of sound, and this is like a phase velocity. It has
been unknown since the time of Euler whether or not time-periodic so-
lutions of the compressible Euler equations, which propagate like sound
waves, are physically possible, due mainly to the ubiquitous formation
of shock waves. A complete mathematical proof that waves with the
structure derived here actually solve the Euler equations exactly, would
resolve this long standing open problem.

1. Introduction

Since Euler derived the equations in 1752, it has been an open problem
whether or not time periodic solutions of the compressible Euler equations
exist, and what the nature of their structure is if they do exist. Euler’s
derivation established the theory of music and sound when he linearized
the equations and obtained the same wave equation in the pressure that
his colleague D’Alembert had obtained several years earlier to describe the
vibrations of a string. Yet to this day it is still unknown whether or not the
fully nonlinear equations support time-periodic solutions analogous to the
sinusoidal oscillations of the linear theory [3]. After Riemann demonstrated
in 1858 that shock waves can form in smooth solutions of the equations,
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most experts have believed that time periodic solutions of the compressible
Euler equations, (that propagate like sound waves), were not mathematically
possible due to the formation of shock waves, [25].1 The basic intuition
is that, when a periodic wave is nonlinear, each period will decompose into
a rarefactive region, (characteristics spreading out in forward time), and
a compressive region, (characteristics impinging in forward time), and in
the compressive part the “back will catch up to the front”, causing it to
break, (something like a wave breaking on the beach), forming a shock-
wave; then the wave amplitude will decay to zero by shock-wave dissipation.
Entropy strictly decreases in time like a Liapunov function when shock-
waves are present, so the presence of shock-waves is inconsistent with time
periodic evolution. This intuition was partially validated in the definitive
work of Glimm and Lax [9], which established that when temperature or
entropy is assumed constant, solutions of the resulting 2×2 system, starting
from periodic initial data, must form shock waves and decay, by shock wave
dissipation, at rate 1/t.

The idea that time periodic solutions were possible for sound wave prop-
agation through an oscillatory entropy field was kindled by work of Majda,
Rosales and Schonbeck [20, 21, 22], and Pego [23], who found periodic so-
lutions in asymptotic models of the compressible Euler equations.2 Our
work here was motivated by our own earlier work [33, 29, 28] on existence of
solutions and [34, 35, 37] on model problems, and by the numerical work of
Rosales, Shefter and Vaynblat [26, 31], who produced detailed numerical sim-
ulations of the Euler equations and asymptotic models starting from space-
periodic initial data. These studies indicate that periodic solutions of the
3×3 compressible Euler equations do not decay like the 2×2 p-system, and
presented observations about the possibility of periodic, or quasi-periodic
attractor solutions.

In this paper we (formally) derive the simplest wave pattern consistent
with the condition that compression and rarefaction are in balance along
every characteristic. To start we prove that nonlinear simple waves can
change from Compressive (C) to Rarefactive (R), and back again, upon
interaction with an entropy jump. We then formally classify “consistent”
configurations of R’s and C’s with the idea of locating the simplest periodic
pattern for which compression and rarefaction are in balance. From this we
produce the simplest (formal) nontrivial wave configuration that balances
compression and rarefaction along every characteristic. In this simplest
pattern, the solution oscillates in space between two different entropy levels,
and each backward and forward characteristic passes through four different

1There are trivial time periodic solutions that represent entropy variations which, in
the absence of dissipative effects, are passively transported. There is no nonlinear sound
wave propagation in these solutions. When we speak of time periodic solutions, we always
mean with nonlinear wave propagation.

2See [14, 13, 17, 18] for blowup results insufficient to rule out periodic solutions, and
[11, 12] for an example of a periodic solution in a quasilinear system.
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compressions and four different rarefactions, crossing eight entropy levels,
before it periodically returns to its initial state.3

The authors believe that the connection between long time existence of
dissipation free sound wave transmission, and the combinatorial problem of
balancing compression and rarefaction along all characteristics is new, and
will lead to interesting wave structures more complicated than the simplest
structure derived here. Moreover, we conjecture that a solution of compress-
ible Euler, starting from space-periodic initial data, will in general decay in
time to a time periodic, or perhaps quasi-periodic solution, that balances
compression and rarefaction along characteristics, and will not in general
decay to the constant state average in each period as in [9]. In a subsequent
paper [30], the authors will recast the nonlinear existence problem as a per-
turbation problem from exact linearized solutions that exhibit the global
periodic structure described here.

In Section 2 we introduce the compressible Euler equations, review the
Lagrangian formulation of the equations, and introduce new variables z and
m useful for the subsequent analysis. In Section 3 we define Compression
(C) and Rarefaction (R) along a characteristic in a general solution, and
show that the R/C character does not change when the entropy is constant.
In Section 4 we analyze the interaction of simple waves with a single entropy
discontinuity, and show that there are exactly twelve different possible R/C
patterns that characterize such interactions, and in eight of these cases one
of the nonlinear waves changes its R/C character across the interaction.
Our analysis shows that the R/C pattern of an interaction is uniquely de-
termined by the signs of the t-derivatives of the Riemann invariants of the
nonlinear waves on either side of the entropy discontinuity. Of the 16 possi-
ble labellings of forward and backward waves in and out of an interaction
by labels of R and C, we show that precisely four of these cannot be realized
in an actual solution: these are the cases in which both back and forward
waves change their R/C character at one such interaction, which cannot
happen. The result is that one family of nonlinear waves can change from
compressive to rarefactive, or vice versa, upon interaction with an entropy
discontinuity, only in the presence of a wave of the opposite family that
transmits its R/C character through the discontinuity. Explicit inequalities
on the derivatives of the Riemann invariants on either side of the entropy
discontinuity are derived that determine the R/C character of all the waves
in and out of the interaction. The results are recorded in Figures 4 and
5, distinguished by whether the entropy increases or decreases across the
entropy jump.

In Section 5 we use the results of Section 4 to construct the simplest global
periodic pattern of R/C-wave interactions consistent with the tables of R/C
interactions at the entropy levels, and consistent with the condition that R’s

3The discontinuities at the entropy jumps are time-reversible contact discontinuities
which, unlike shock waves, are allowable in time-periodic solutions because they entail no
dissipation, or gain of entropy, c.f. [27].
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and C’s are balanced along every backward and forward characteristic. We
then show that this pattern is consistent with a nontrivial global periodic
structure of states. We conclude with Figures 7 and 9, which provide a de-
tailed picture, or “cartoon”, of a solution consistent with this global periodic
structure. Concluding comments are made in Section 6.

2. The Compressible Euler Equations

The compressible Euler equations describe the time evolution of the den-
sity ρ, velocity u = (u1, u2, u3) and energy density E of a perfect fluid under
the assumption of zero dissipation and heat conduction,

ρt + div[ρu] = 0, (1)

(ρui)t + div[ρuiu] = −∇p, (2)

Et + div[(E + p)u] = 0, . (3)

where E = 1
2ρu2 + ρe is the sum of the kinetic energy 1

2ρu2, and specific
internal energy e, and p is the pressure. An equation of state relating p, ρ
and e is required to close the system, and we assume the equation of state
for a polytropic, or gamma law gas,

e = cτT =
cτ

τγ−1
exp

{
S

cτ

}
, (4)

p = −∂e

∂τ
(S, τ). (5)

Here τ = 1/ρ is the specific volume, S is the specific entropy determined by
the second law of thermodynamics

de = TdS − pdτ, (6)

and γ denotes the adiabatic gas constant, equal to the ratio cp/cτ of specific
heats, [4, 27]. The system of compressible Euler equations with the poly-
tropic equation of state is fundamental to mathematics and physics, and
can be derived from first principles. The gamma law relations (4) and (5)
follow directly from the equipartition of energy principle and the second law
of thermodynamics for a molecular gas, leading to

γ = 1 + 2/3r, (7)

where r is the number of atoms in a molecule [16]. Equations (1)-(3) with
(4), (5) are the starting point for the nonlinear theory of sound waves, and
can be regarded as the essential extension of Newton’s laws to a continuous
medium.

For shock-free solutions, using (6), the energy equation (3) can be replaced
by the adiabatic constraint

(ρS)t + div(ρSu) = 0, (8)

which expresses that specific entropy is constant along particle paths [27].
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For sound wave propagation in one direction, the equations reduce to the
3× 3 system

ρt + (ρu)ξ = 0, (9)

(ρu)t + (ρu2 + p)ξ = 0, (10)

Et + ((E + p)u)ξ = 0; (11)

and letting x denote the material coordinate,

x =
∫

ρ dξ, (12)

we obtain the equivalent Lagrangian equations

τt − ux = 0, (13)

ut + px = 0, (14)

Et + (up)x = 0. (15)

In the Lagrangian frame the adiabatic constraint (8) reduces to

St = 0, (16)

which on smooth solutions can be taken in place of (15), c.f. [4, 27]. Hence-
forth, we base our analysis on the Lagrangian equations.

The Lagrangian system (13)-(15) has three characteristic families, and
we refer to the waves in these families as 1-, 2- and 3-waves, ordered by
wave speed. The 1- and 3- families are genuinely nonlinear, and we alterna-
tively refer to waves in these families as backward (or “−”) and forward (or
“+”) waves, respectively. The Lagrangian spatial coordinate x moves with
the fluid, so in Lagrangian coordinates backward waves always propagate at
negative speed, and forward waves with positive speed. The 2-wave family
consists of the linear family of contact discontinuities which we refer to as
entropy waves, (or 0-waves). These entropy waves are passively transported
with the fluid, and so are stationary in the Lagrangian framework. In gen-
eral, the nonlinear waves can compress into shock waves in forward time,
but because shock waves are incompatible with periodic propagation, we
restrict our attention only to smooth simple waves, c.f. [27, 13, 15].

The thermodynamic relation (6) implies

eS =
∂

∂S
e(τ, S) = T, (17)

eτ =
∂

∂τ
e(τ, S) = −p, (18)

and our assumption (4) yields a general polytropic equation of state of form

p = Kτ−γeS/cτ , (19)

with

γ =
R

cτ
+ 1. (20)
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Here R and cτ are defined via the ideal gas relations,

pτ = RT, (21)

e = cτT, (22)

and K is a constant determined by the choice of zero state of S [4, 16, 27].
The (Lagrangian) sound speed is then given by

c =
√
−pτ =

√
Kγτ−

γ+1
2 eS/2cτ . (23)

We now introduce the variables m and z in favor of S and τ , where

m = eS/2cτ , (24)

and

z =
∫ ∞

τ

c

m
dτ =

2
√

Kγ

γ − 1
τ−

γ−1
2 , (25)

where we have used (23) and (24). It now follows that

τ = Kτz
− 2

γ−1 , (26)

p = Kpm
2z

2γ
γ−1 , (27)

c = c(z,m) ≡ Kcmz
γ+1
γ−1 , (28)

where Kτ , Kp and Kc are constants given by

Kτ =
(

2
√

Kγ

γ − 1

) 2
γ−1

, (29)

Kp = KK−γ
τ , (30)

Kc =
√

KγK
− γ+1

2
τ . (31)

Note that (24) and (25), together with the chain rule, imply that

dτ

dz
= −m

c
, (32)

∂p

∂z
(z,m) = mc, (33)

∂p

∂m
(z,m) =

2p

m
. (34)

For C1 solutions, the Lagrangian equations (13)-(16) transform into the
quasilinear system

zt +
c

m
ux = 0, (35)

ut + mczx + 2
p

m
mx = 0, (36)

mt = 0, (37)

where we have taken (16) in place of (37), valid for smooth solutions.
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When either entropy or temperature are assumed constant, the entropy
waves are frozen out, and the Lagrangian form of the Euler equations (9)-
(11) reduces to the 2 × 2 p-system (13), (14), with S = const., p = p(ρ),
c.f. [27]. In Section 3 below we assume S = const. and show that for the
resulting p-system the nonlinear waves cannot change their R/C-character
under any sort of wave interaction. (This is the basis for the 1/t decay rate
obtained in [9].)

3. Rarefactive and Compressive Simple Waves

It is well known that entropy does not change across back and forward
simple waves [27], so in order to study rarefactive and compressive simple
waves, in this section we assume that S, and hence m, are constant. In this
case, system (35)-(37) reduces to

zt +
c

m
ux = 0, (38)

ut + mczx = 0. (39)

Let U denote the vector of states

U ≡ (z, u).

The Riemann invariants associated with system (38)-(39) are

r = u−mz, (40)

s = u + mz, (41)

which satisfy

rt − crx = 0, (42)

st + csx = 0. (43)

Since the transformation τ → z encapsulates the nonlinearity of the Rie-
mann invariants, using (40), (41) we can identify the (z, u) and (r, s)-planes.
In (z, u)-space the r-axis is upward with slope −m and the s-axis is upward
with slope m, as drawn in Figure 1.

z

u
r s

Figure 1. Riemann invariant coordinates.
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From (42), along backward simple waves the characteristics satisfy
dx

dt
= −c, (44)

and r = const. along the characteristic, while s is constant along an opposite
characteristic that passes through the wave. Thus, if subscripts L, R refer
to states on the left and right of a backward simple wave, respectively, then

SR = SL,

uR − uL = m(zL − zR). (45)

Similarly, along forward simple waves the forward characteristics satisfy
dx

dt
= c, (46)

the Riemann invariant s = const. along the characteristic, r is constant
along an opposite characteristic that passes through the wave, and across a
forward simple wave we have,

SR = SL,

uR − uL = m(zR − zL). (47)

Letting A and B denote the states ahead of and behind the wave, respec-
tively, (so A = L for a backward wave, A = R for a forward wave), both
(45) and (47) reduce to the single condition

SR = SL,

uR − uL = m(zA − zB), (48)

valid for all simple waves.
A simple wave is rarefactive (R) or compressive (C) according to whether

the sound speed c decreases or increases from ahead (A) to behind (B) the
wave, respectively. Since dc/dz > 0, it follows that in all cases a simple wave
is rarefactive or compressive according to

Rarefactive iff zA ≥ zB,

Compressive iff zB ≥ zA. (49)

Note that we allow zA = zB in both Compressive and Rarefactive waves,
so that constant states can be treated as both rarefactive and compressive.
The following proposition now states that the R/C character of a simple
wave cannot be altered by interaction of waves at a constant entropy level:

Proposition 1. When simple waves interact at a constant entropy level,
the R/C character of back/forward nonlinear waves is preserved across the
interaction.

To see this, note that it follows from (38), (39) that when waves interact,
characteristics bend but states change linearly in the (z, u)-plane, or equiv-
alently in the (r, s)-plane of Riemann invariants. This is made precise in the
following North/South/East/West (NSEW) lemma, c.f. [38, 36].
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Lemma 2. Consider two simple waves, separated by constant states at time
t = 0, that begin interacting at time t = t1 > 0, interact for time t1 < t < t2,
and then separate from the interaction at time t = t2. Let UW and UE denote
the left most and right most constant states, and let US and UN denote the
intermediate constant states before and after interaction. Then the following
relations hold:

uE − uN = m(zE − zN ), (50)

uN − uW = m(zW − zN ), (51)

uE − uS = m(zS − zE), (52)

uS − uW = m(zS − zW ). (53)

Proof. The interaction is depicted in Figure 3, but without the entropy
jump. The lemma follows directly from our expression (48) for all simple
waves.

By eliminating u from (50)-(53), we see that the change in z across the
backward and forward waves is the same before and after interaction, (e.g.
zE−zN = zS−zW , etc.). In particular, Lemma 2 implies that the z-strength
and the R/C character of simple waves is not changed across an interaction,
and the Proposition follows at once.

More generally, the local R/C character of a general smooth solution can
be determined from the partial derivatives rt and st, as follows. Since r is
constant along backward characteristics, rt gives the change in r across the
backward wave as time increases (measured along the opposite characteristic
on which s = const.). Since

∂c

∂z
> 0 and z =

s− r

2m
, (54)

the sign of rt determines whether c increases or decreases across the back-
ward wave, and thus determines whether the backward wave is compressive
or rarefactive. If rt ≥ 0, then c decreases from ahead to behind across the
backward wave, so the wave is rarefactive, and if rt ≤ 0 the backward wave
is compressive. Similarly, if st ≥ 0, the forward wave is compressive, while
if st ≤ 0, it is rarefactive. This then motivates the following definition:

Definition 3. The local R/C character of a general smooth interacting
solution is defined (pointwise) by:

Forward R iff st ≤ 0, (55)

Forward C iff st ≥ 0, (56)

Backward R iff rt ≥ 0, (57)

Backward C iff rt ≤ 0. (58)

Again, the definition allows both R and C to apply to constant states.
Figure 2 depicts these regions in the (ż, u̇) tangent plane. The following
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theorem makes precise the statement that rarefaction and compression is
preserved for smooth solutions when the entropy is constant.

Theorem 4. For smooth solutions of the compressible Euler equations at a
constant entropy level, the local R/C character does not change along back
and forward characteristics.

Proof. Consider a characteristic in a smooth solution at a constant entropy
level. Assume without loss of generality that it is a forward characteristic.
Draw a characteristic diamond in an ε-neighborhood of the given charac-
teristic, and apply NSEW Lemma to see that the mapping of values of s
along the transverse back characteristic at the start of the original charac-
teristic, to values of s along the back characteristic at the end, is 1− 1 and
onto in some ε neighborhood. Thus the monotonicity of s along the back
characteristic transverse to the original characteristic is preserved along the
original characteristic. Since characteristics always have non-zero speed, it
follows directly that this monotonicity is preserved in the t direction as well,
thereby proving the theorem.

ż

u̇
ṙ ṡ

C−, C+

C−, R+

R−, C+

R−, R+

Figure 2. R/C character as determined by derivatives of
the Riemann coordinates.

4. The R/C structure of wave interactions at an entropy
discontinuity

We now use (55)-(58) together with the Rankine-Hugoniot jump condi-
tions to determine necessary and sufficient conditions for a nonlinear wave
to change its R/C value at an entropy jump. So consider the interaction
of smooth simple waves at a zero speed discontinuity in the entropy that
separates constant entropy states SL and SR. The Rankine-Hugoniot jump



PERIODIC SOLUTIONS OF THE EULER EQUATIONS 11

conditions4 for discontinuous solutions of (13)-(15) are

σ[v] = −[u],

σ[u] = [p], (59)

σ[E] = [up],

where σ is the speed of the discontinuity, and as usual, square brackets
around a quantity denote the jump, [f ] = fR − fL. For zero speed entropy
waves σ = 0, (59) is equivalent to [u] = 0 = [p]. Thus, using (27) we rewrite
the entropy jump as

uL = uR, (60)

zR = zL

(
mL

mR

) γ−1
γ

, (61)

and so, by (28), also

mRzR = mLzL

(
mL

mR

)−1
γ

, (62)

cR = cL

(
mL

mR

) 1
γ

. (63)

Now consider the interaction of two smooth simple waves at an entropy
discontinuity separated by constant entropy values SL and SR. Assume that
the nonlinear waves are separated before time t1 > 0 and after time t2 > t1.
Let UW and UE denote the left (West) most and right (East) most con-
stant states, and let USL, USR and UNL, UNR denote the intermediate states
between the waves on the left and right side of the discontinuity, at times
t ≤ t1 (South) and t ≥ t2 (North); that is, before and after interaction,
respectively, as depicted in Figure 3. Now let UL(t) and UR(t) denote the
values of U = (z, u) on the left and right sides of the entropy jump, respec-
tively. Then the interaction occurs for t1 ≤ t ≤ t2, and at the discontinuity
we have UL(t1) = USL, UL(t2) = UNL and UR(t1) = USR, UR(t2) = UNR.

By (55)-(58), the backward wave will change its R/C value at the entropy
jump iff the sign of ṙ = u̇ −mż changes across the jump, and the forward
wave will change R/C character at the entropy jump iff the sign of ṡ = u̇+mż
changes sign across the jump. But by (60), (62), we have

uR(t) = uL(t), (64)

mRzR(t) = mLzL(t)qR
L , (65)

where

qR
L =

(
mR

mL

) 1
γ

. (66)

4For weak solutions the Rankine-Hugoniot jump conditions for (13)-(15) are equivalent
to the Rankine-Hugoniot jump conditions for the original Euler equations, c.f. [27, 32]
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t

x

UW UE

USL USR

UNL UNR

R R
CR

Figure 3. Two waves crossing at an entropy jump: when
the forward wave changes from R to C, the backward wave
cannot.

Thus, for example, a backward wave changes from C to R across the entropy
jump iff ṙL = u̇L − mLżL < 0 and ṙR = u̇R − mRżR > 0, which in light
of (64), (65) is equivalent to qR

LmLżL < u̇L < mLżL. That is, we can
determine the R/C changes across the entropy jump from inequalities on
the time derivative of the solution at the left hand side of the entropy jump
alone. Doing this in all cases yields the following theorem. For notation
let, for example, R+

in → C+
out mean that the + (forward) wave changes from

rarefactive (R) to compressive (C) in forward time across the entropy jump;
and for example, C−in → R−out, means that the − (backward) wave changes
from compressive to rarefactive in forward time across the entropy jump,
c.f. Figure 3. We then have the following theorem:

Theorem 5. A nonlinear wave changes its R/C value at an entropy jump
when one of the following inequalities hold:

R−in → C−out iff qR
LmLżL < u̇L < mLżL, (67)

C−in → R−out iff mLżL < u̇L < qR
LmLżL, (68)

R+
in → C+

out iff − qR
LmLżL < u̇L < −mLżL, (69)

C+
in → R+

out iff −mLżL < u̇L < −qR
LmLżL. (70)

Now note that dividing the inequalities in (67)-(70) through by ż, we
obtain bounds on the derivative du

dz = u̇L
żL

on the left hand side of the entropy
jump that determine exactly when a wave changes its R/C character. Of
course, the inequalities change depending on whether ż < 0 or ż > 0.

More generally, consider the lines through the origin of slope ±mL and
±qR

LmL in the (żL, u̇L)-plane. These determine the boundaries between eight
angular wedges, in each of which the R/C character of the interactions is
constant. That is, the R/C character of incoming and outgoing waves on
both sides of the jump are determined in each of these wedges. There are two
cases, depending on whether qR

L given by (66) is smaller or larger than unity,
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which is just whether mL < mR or mL > mR. In other words, the eight
angular regions in the (ż, u̇)-plane, determine the signs of the derivatives of
the Riemann invariants ṙ and ṡ uniquely on both sides of the entropy jump.
The signs of ṙ and ṡ in each region are determined by inequalities similar
to (67)-(70) that follow from the relations between (u, z) and (r, s) together
with the jump relations (64), (65). These regions, together with the R/C
character of the interactions in each region, are diagrammed for the cases
mL < mR and mR < mL in Figures 4 and 5, respectively.

W

X

Y

Z
ż

u̇

C C
CC

C C
CR

C R
CR

C R
RR

R R
RR

R R
RC

R C
RC

R C
CC

1 2

34

mL−mL

qR
L mL−qR

L mL

Figure 4. Tangent space showing the possible R/C wave
structures when mL < mR.

Each separate region in Figures 4 and 5 is labeled by a box containing
four values among R and C that label the R/C value of the wave in the
corresponding position in Figure 3. For example, the upper right hand value
of R/C corresponds to the outgoing forward wave, and the lower right hand
value in each box corresponds to the incoming backward wave, etc. We will
refer to the interaction types in Figures 4 and 5 by the circled numbers and
letters that appear in each region of the diagrams. Interactions in which
there is an R/C change along one of the diagonals are labeled with numbers
(numbers 1−4 appear in Figure 4, clockwise; numbers 5−8 appear in Figure
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W

X

Y

Z
ż

u̇

C C
CC

C R
CC

C R
CR

R R
CR

R R
RR

R C
RR

R C
RC

C C
RC

5 6

78 qR
L mL−qR

L mL

mL−mL

Figure 5. Tangent space showing the possible R/C wave
structures when mL > mR.

5, counterclockwise), while the interactions in which there is no R/C change
along a diagonal are labeled with letters W,X, Y, Z.

Note that only twelve of the sixteen possible assignments of R/C to the
four entries of the box actually appear in some region. The ones that do not
appear are exactly the cases in which both the forward and backward waves
change their R/C values simultaneously at the interaction. From this we
conclude that this type of interaction is not possible; i.e., a wave can change
its R/C value only if a wave from the opposite nonlinear family transmits
its R/C value through the interaction at the same time. This reflects the
fact that the inequalities (67)-(70) are mutually exclusive: that is, at most
one of them can hold.

5. The Simplest Periodic Structure

Using Figures 4 and 5, and after some work, we find the simplest periodic
array of R’s and C’s consistent with the condition that there is an equal
number of R’s and C’s along every (characteristic) diagonal, and such that
at the center of every box of R’s and C’s we obtain a consistent label for
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a box associated with some interaction diagrammed in Figure 4 or 5. This
simplest formal pattern is diagrammed in Figure 6, and is based on two al-
ternating entropy levels. To interpret Figure 6, note that the darker vertical
lines represent the entropy jumps in the (x, t)-plane, and at this stage the
backward and forward “characteristics” are formally represented as moving
at constant speed ±1 through the centers of the circles.
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Figure 6. The simplest R/C pattern consistent with Fig-
ures 4 and 5, in which R and C are in balance along every +
and − characteristic.

Two alternations of entropy, yielding four separate entropy levels, are de-
picted in Figure 6. The number in the circle at the center of each R/C box
in Figure 6, agrees with the number that labels the corresponding interac-
tion in Figure 4 or 5. Consistent with our results of Section 4, the boxes of
Figure 4 or 5 in which R or C change along a diagonal, labeled with num-
bers, appear only at the entropy jumps. For the wave interaction boxes at
constant entropy, away from the entropy jumps, (labeled by letters), both
R and C are transmitted along back/forward characteristics through the
diagonals of the box. Figure 6 depicts one tile of a periodic configuration,
and this tile repeats with a one-half period shift in space for every time
period. To generate the tiling, slide the bottom left corner of the tile, (la-
beled by the shaded circled number 1), up and to the right until it is aligned
with the corresponding shaded circled number 1 in the middle of the top
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of the tile. It is not difficult to see that this motion generates a periodic
structure. The “characteristics” in Figure 6, regarded as the diagonal lines
that pass through the centers of circled labels, are labeled with R’s and C’s
according to whether a real characteristic would be rarefactive or compres-
sive at the circled interaction, and the superscript ± is appended to identify
back/forward directions, respectively. Note that each ± “characteristic” di-
agonal traces four R’s and four C’s, each at a constant entropy level, before
returning to its starting value. (By this count we identify R’s and C’s on
opposite sides of lettered interactions at constant entropy.) Note that the
half period shift contributes to mixing of R’s and C’s along characteristic
diagonals.

We now argue that the R/C pattern in Figure 6 is consistent with a global
periodic structure of states and characteristics in the (x, t)-plane, such that
the actual compression and rarefaction of the characteristics in the (x, t)-
plane is consistent with the R/C pattern of Figure 6. One can see how to
accomplish this once one notices that the ordering of the wave interaction
types in time along the left and right sides of each entropy jump in Figure
6, is consistent with derivatives going around an (approximately) elliptical
shaped curve that cycles once around every time period. The direction of
rotation in (z, u)-space is reversed on opposite sides of each entropy level, but
the rotation direction is the same on the left and right sides of each entropy
jump. Such elliptical shaped curves would have maximum and minimum
values of r and s once in each period, and in an actual solution, these would
mark the boundaries between the rarefactive and compressive regions of
the solution. Putting this together, we are led to the “cartoon” of a time
periodic solution depicted in Figures 7 and 8. The depiction of several tiles
set within the global periodic structure is given in Figure 9.

Figure 7 gives a detailed picture of a proposed periodic solution that
produces the R/C pattern of Figure 6. The letters and numbers in Figure 7
give the (x, t) positions of the approximate corresponding states labeled in
Figure 8, these states becoming exact as the solution at each entropy level
tends to a constant state. Figure 9 depicts the periodic tiling of the (x, t)-
plane obtained by extending Figure 7 periodically5. Figures 7-9 strongly
indicate the consistency of the periodic pattern displayed, but of course
the actual existence of a periodic solution like this that solves the Euler
equations exactly, remains to be proven.

In Figure 7, the vertical lines mark the entropy jumps, and the solutions
on the left and right of one entropy jump are labeled Ũ | U̇ , and labeled Ǔ | Ũ
on the other, respectively. The solution alternates between two different
entropy values m < m. The wider entropy level depicted in Figure 7 corre-
sponds to the smaller value m, where, consistent with (63), we have depicted

5In fact, we originally constructed Figures 7-8 from the pattern of Figure 6 alone.
However, in our forthcoming paper [30], we derive exact formulas for solutions of the
linearized problem that generates Figures 7 and 8 exactly, and show that the nonlinear
problem can be recast as a perturbation from these.
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ǎ

1̃
1̂

1̇

1̌

b̃

b̂

ḃ
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ḃ

b̌

2̃
2̂

2̇

2̌

c̃

ĉ
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ė

ě
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ĝ

ġ
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ė

ě
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ĥ

ḣ
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Figure 7. The characteristic structure of our time-periodic
solutions in the (x, t)-plane.

characteristics with faster speeds. The diagonal lines rising to the left and
right through the entropy levels mark the back and forward characteristics,
respectively. The thicker characteristics mark the maximum and minimum
values of r and s at each entropy level, these values propagating along back
and forward characteristics, respectively. We call these the max/min char-
acteristics. In an actual solution, the back characteristics would be rarefying
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ť

ṫ
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Figure 8. Ellipses showing periodicity in the (z, u)-plane.

where rt > 0 and compressing where rt < 0, while the forward character-
istics would be compressing where st < 0 and rarefying where st > 0, but
our cartoon in Figure 7 depicts a linearized version of a solution in which
characteristics are drawn with the constant speed on each entropy level, c.f.
(55)-(58). Note that it is the disconnections between max/min character-
istics at the entropy jumps that produces the regions where characteristics
change from R to C, or vice versa. The solution is consistent with elliptical
shaped curves in (z, u)-space defining values of the solution on each side of
the entropy jumps, depicted in Figure 8. The tangents of slope ±m and ±m
in Figure 8 label the max/min values of r = const. and s = const. at each
entropy level. Note that Figure 8 shows the (z, u)-plane, while Figures 4
and 5 show the (tangent) (ż, u̇)-plane. Thus, e.g., the arc 1̌–2̌ in the bottom
left ellipse corresponds to region 6 in Figure 5, with mL = m > m = mR.
Again, we show in [30] that Figure 8 is exact for the linearized problem in
which wave speeds are assumed constant on each entropy level, which is the
limit of small perturbations of a piecewise constant solution.

The letters and numbers in Figure 8 label the (z, u)-state values at the
corresponding locations along the vertical entropy jumps labeled in Figure
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x

t

Figure 9. A single tile set within the global periodic struc-
ture of the (x, t)-plane.

7. Note that the numbers increase consecutively in forward time along the
forward characteristics in Figure 7, and the letters increase consecutively in
forward time along the backward characteristics. The minimum, maximum
value of r occurs along the backward min, max characteristic labeled by
letters a and e, respectively; and the minimum, maximum value of s oc-
curs along the forward min, max characteristic labeled by numbers 1 and
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5, respectively. Letters and numbers are adorned with ˇ | ˜ and ˆ | ˙ at the
left and right sides of the m | m and m | m entropy jumps, respectively.
The max/min letters and numbers determine state values across the en-
tropy jumps via the jump conditions (64), (65). The remaining lettered
and numbered states in Figures 7, 8 are determined by characteristic con-
nections across entropy levels, (r and s are constant along backward and
forward characteristics, respectively), and the jump relations across the en-
tropy jumps. That all states lie exactly on the elliptical curves of Figure 8
assumes that Figure 7 really is a consistent solution. As we have noted, we
show in [30] that Figure 8 is correct in the limit of constant wave speeds at
each entropy level, but in an actual solution the states in Figure 8 would
lie on curves that are perturbations of true ellipses. Note that we imposed
the labeling condition that letters and numbers would increase by one at
entropy jumps along characteristics moving forward in time. Thus one can
trace the evolution of the states along a characteristic by following the con-
secutive numbers/letters around the elliptical curves of Figure 9. One can
also verify that the corresponding labels moving vertically along one side
of an entropy jump traverse the elliptical curves of Figure 8 in clockwise
or counterclockwise order. This is then a consequence of the pattern, and
strongly indicates the consistency of the pattern with an actual solution.
Moreover, the fact that the elliptical curves are traversed in opposite di-
rections in the (z, u)-plane on opposite sides of the same entropy level is
consistent with the assumption that back and forward max/min character-
istics cross exactly once in each level, so the evolution creates an inversion
of the curve at each level. In [30] we will see that this corresponds to a quar-
ter period evolution of an exact periodic elliptical solution of the linearized
problem.

Note that in Figure 7 the speed of the wave crests is determined by the
speed of the max/min characteristics, which is interpreted as the speed of
the period. This is slower than the speed of the characteristics (the sound
speed), due to the fact that corresponding characteristics are disconnected
at each entropy jump, and always jump up in forward time. Thus the speed
of the period, which is the effective speed of these waves, is subsonic. We
have thus identified two distinct wavespeeds in our solution: the speed of the
period, which is like a group velocity, and the characteristic speed, which
is like a phase velocity. To our knowledge, this is the first time such a
phenomenon has been identified in a purely quasilinear hyperbolic system.
The corresponding supersonic waves having the structure of our solutions
appear to be ruled out by the asymmetries in Figures 3,4 with respect to
mR < mL and mR > mL.

Note also that in Figure 7 we have depicted the traces of the max/min
characteristics joining every four entropy levels. This is a simplifying as-
sumption that need not hold in a general periodic solution having the R/C
structure of Figure 6. The effect of this merging of max/min characteris-
tics every four entropy levels is to partition the solution into four regions of
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rarefaction and four regions of compression in each period of each entropy
level. By propagating these regions forward in time along characteristics,
we see that each such region cycles upward through four consecutive regions
of rarefaction and four consecutive regions of compression before returning
to its original position in the tile. This makes for a clear image of how the
solution in Figure 7 is propagating.
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ǧ

7̃

7̂

7̇

7̌

h̃

ĥ
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ḟ

f̌

6̃

6̂

6̇

6̌

g̃

ĝ
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ḟ

f̌

6̃

6̂

6̇

6̌

g̃

ĝ
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ǧ

7̃

7̂

7̇

7̌

h̃

ĥ
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ȟ

8̃

8̂

8̇

8̌

ã
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ȟ

8̃

8̂

8̇

8̌

ã

â

ȧ ǎ
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ḋ

ď
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ê
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ê
ė
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ḟ

f̌

6̃

6̂

6̇

6̌

g̃

ĝ
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Figure 10. A periodic pattern incorporating compression
and rarefaction.
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x

t

Figure 11. The global nonlinear periodic structure in the
(x, t)-plane.

The “solution” diagrammed in Figures 7, 8 is a cartoon only because the
wave speeds are not propagating at the exact speed of an exact state as-
signed to the solution, and the actual values in the solution will depend on
the time periodic elliptical shaped curve along an entropy level that can serve
as an initial condition for the subsequent evolution in space by (35)-(37).
In Figure 7, the characteristic speeds are drawn as constant in each entropy
level. We show in [30] that this is exact for the linearized problem. But
in a nonlinear problem, the back characteristic speeds would be compres-
sive/rarefactive between the max/min and min/max back characteristics,
respectively, and forward characteristics would be compressive/rarefactive
between max/min and min/max characteristics, respectively. To further
demonstrate the consistency of this periodic pattern, in Figures 10 and 11
we have drawn a periodic pattern respecting the overall structure of Figures
7 and 8, but such that it correctly reflects the compression and rarefaction
of characteristics in each entropy level.

Figures 10 and 11 are only cartoons because wave speeds are not propa-
gating at the exact speed of the state assigned to the solution. However, the
fact that such a cartoon can be drawn as exactly periodic for a consistent
choice of wave speeds that correctly reflect compression and rarefaction, the
fact that rarefaction and compression is balanced along every characteristic
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in the diagram6, and the fact that there are so many degrees of freedom
in the drawing that can be changed while preserving this periodic struc-
ture, convinces us that true time periodic solutions of (35)-(37) exhibiting
this structure, actually exist. A complete mathematical proof of this is the
subject of the authors’ ongoing research.

6. Conclusion

It is the conjecture of the authors that a large class of solutions of the
compressible Euler equation starting from space periodic initial data, will
ultimately decay in time to a solution that balances compression and rarefac-
tion along characteristics, like the solutions constructed here. We conceive
of the mechanism that drives this as follows: if the initial data is not per-
fectly tuned to a given initial entropy profile, then in general shock-waves
will form, thereby introducing new entropy states. The entropy field will
then evolve in time as the shock-waves interact and dissipate entropy, and
the solution will decay until it finds a balance between compression and rar-
efaction along characteristics, analogous to what we found here. We expect
that there is a rich, and yet to be found, mathematical structure that de-
scribes, in patterns of R’s and C’s, all of the ways that a nonlinear periodic
solution can balance compression and rarefaction along characteristics, the
solutions presented here being the simplest. If correct, this raises a host of
fascinating questions, the first one being how to give a rigorous mathemati-
cal proof that solutions with this global nonlinear structure do indeed solve
the Euler equations exactly.

In [30] we reduce the mathematical existence problem to the problem of
perturbing a solution that is isolated in a one-dimensional kernel of a lin-
earized operator, and as such should be amenable to a Liapunov-Schmidt
reduction [10]. The difficulty, however, is that such an analysis must be
based on an implicit function theorem that addresses the existence of res-
onances7 [7, 1]. The resulting perturbation problem must thus address
the existence of small divisors in a quasi-linear problem, which to our un-
derstanding, is beyond the present limits of mathematical technology, (c.f.
[24, 5, 2, 39] for applications to semi-linear problems).

If these periodic structures are realized in exact solutions of the compress-
ible Euler equations, one can ask, are they in some sense stable? Will nearby
space periodic data decay to nearby time periodic solutions? Are there pe-
riodic solutions that are stable within the class of smooth solutions? Do
there exist quasi-periodic solutions, and would these be attractors for other
solutions with more general data? Are there counterexamples? Is the the-
ory of approximate characteristics developed to prove decay to shock-waves,

6Also, these diagrams represent small perturbations of a linearized solution that ex-
hibits the structure exactly [30].

7These arise in the spectrum of the linearized operator for reasons analogous to the
inability to bound irrational maps of the circle away from rational numbers, [30].
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N-waves and solutions of the Riemann problem in compactly supported solu-
tions, sufficient to prove decay to periodic solutions? Is there a Glimm type
potential interaction term that measures the degree to which compression
and rarefaction is not balanced at a given time, (something like the potential
in the method of re-orderings, [33, 29]), that could estimate the evolution
of a small perturbation from periodic data [8, 6, 19, 27]? Estimating how
such a potential evolves might control the potential for future shock-wave
production. One advantage here is that the total entropy is non-increasing,
so there is a priori control over the evolving entropy profile.

It is our view that the work here provides a paradigm for how, when
entropy variations are present, nonlinear sound waves can get into configu-
rations of balancing compression and rarefaction, and thereby prevent the
1/t attenuation rate of shock-wave dissipation from taking hold. This im-
plies that signals can propagate much further than the theory has suggested
so far, since the dissipation terms of the Navier-Stokes equations, neglected
in the Euler system, operate on a longer time scale. According to folklore
in the subject of conservation laws, the then unexplained attenuation in
sonar signals during World War II was later explained by the 1/t decay rate
due to shock-wave dissipation proved in [9]. This analysis neglected entropy
variations. Could it be that when temperature and entropy variations are
present, sound waves can travel much further without dissipation by finding
a configuration that balances compression and rarefaction like the waves we
construct here? For example, in turbulent air, sound seems to carry further,
and it is well known that whales can communicate over very long distances.
Could this kind of long distance signaling be taking advantage of the phe-
nomenon described here? In principle, this is a testable hypothesis, as, for
example, there is a difference in speed between the periodic shock-free waves
constructed here and the classical sound and shock speeds.
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