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Abstract. It has been unknown since the time of Euler whether or
not time-periodic sound wave propagation is physically possible in the
compressible Euler equations, due mainly to the ubiquitous formation of
shock waves. The existence of such waves would confirm the possibility
of dissipation free long distance signaling. Following our work in [27], we
derive exact linearized solutions that exhibit the simplest possible peri-
odic wave structure that can balance compression and rarefaction along
characteristics in the nonlinear Euler problem. These linearized waves
exhibit interesting phase and group velocities analogous to linear disper-
sive waves. Moreover, when the spacial period is incommensurate with
the time period, the sound speed is incommensurate with the period,
and a new periodic wave pattern is observed in which the sound waves
move in a quasi-periodic trajectory though a periodic configuration of
states. This establishes a new way in which nonlinear solutions that ex-
ist arbitrarily close to these linearized solutions can balance compression
and rarefaction along characteristics in a quasi-periodic sense. We then
rigorously establish the spectral properties of the linearized operators
associated with these linearized solutions. In particular we show that
the linearized operators are invertible on the complement of a one di-
mensional kernel containing the periodic solutions only in the case when
the wave speeds are incommensurate with the periods, but these invert-
ible operators have small divisors, analogous to KAM theory. Almost
everywhere algebraic decay rates for the small divisors are proven. In
particular this provides a nice starting framework for the problem of per-
turbing these linearized solutions to exact nonlinear periodic solutions
of the full compressible Euler equations.

1. Introduction

Time periodic solutions of the compressible Euler equations represent dis-
sipation free long distance signaling at the level of sound waves, but it has
been unknown since the time of Euler whether or not there exist time peri-
odic solutions that satisfy the compressible Euler equations exactly. Since
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Riemann demonstrated that shock waves form in solutions, experts have be-
lieved that time-periodic solutions of the compressible Euler equations with
sound wave propagation, were physically impossible due to the belief that
shock waves could not be ruled out in oscillatory solutions: shock waves in-
troduce increase of entropy and dissipation inconsistent with time-periodic
evolution, [11]. This belief was supported in 1970 by the definitive paper of
Glimm and Lax [6], which proved that for the reduced Euler equations cor-
responding to isentropic flow, solutions starting from space-periodic initial
data must form shock waves and decay, by shock wave dissipation, to the
constant state average in each period, at a rate 1/t. Subsequent work kin-
dled the idea that periodic wave propagation is possible when the entropy
fields are non-constant, [18, 19, 20, 22, 28, 24, 31, 33]. Numerical simulations
by Rosales [22, 28] indicated that solutions evolving through non-constant
space-periodic entropy fields do not decay to the constant state average in
each period, but rather appear to evolve into periodic or quasi-periodic evo-
lution. (See [22], and [28] for a further discussion.) Within this context,
the authors in [27] derived a simplest possible periodic wave structure3 con-
sistent with time-periodic sound wave propagation in the 3 × 3 nonlinear
compressible Euler equations, a wave structure that requires at least three
coupled nonlinear equations to support it. This simplest wave pattern was
derived by combinatorial considerations based on a classification of compres-
sive and rarefactive wave interactions at entropy jumps, using the starting
principle that shock free periodic or quasi-periodic solutions of compressible
Euler should balance compression and rarefaction along every characteristic
(sound wave).

In this paper we construct exact linearized solutions of Euler that ex-
hibit the simplest periodic wave structure identified in [27] for the nonlinear
problem. For this we start by constructing a nonlinear eigenvalue problem
whose solutions correspond to nonlinear periodic solutions of the compress-
ible Euler equations having the simplest structure identified in [27]. The
nonlinear operator involved encodes evolution in space starting from time
periodic data posed at an entropy jump. (In Lagrangian coordinates, en-
tropy jumps propagate at zero speed.) Trivial solutions of this eigenvalue
problem correspond to periodic solutions of the compressible Euler equa-
tions consisting of piecewise constant states separated by two entropy jumps.
Linearizing around this solution we obtain a linearized eigenvalue problem
whose solutions we expect will perturb to solutions of the nonlinear problem
because they encode the structure identified in [27]. This linearized oper-
ator is non-symmetric, and consists of the composition of five elementary

3We say that a periodic or quasi-periodic wave structure is possible, at a formal level,
if each characteristic (sound wave), traverses both regions of compression and rarefaction,
and that these are formally in balance. Whether such a possible formal wave structure
actually exists in a true periodic solution of Euler is then a deep mathematical question
as to whether the data can be tuned to bring compression and rarefaction precisely into
balance, so that shock wave formation is prevented.
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linear operators that do not commute: a linear evolution at the first en-
tropy level, followed by an entropy jump, followed by linear evolution at the
second entropy level, followed by the inverse entropy jump, followed by a
half period shift. The combination of shifts and jumps ensures the mixing
of compression and rarefaction along characteristics under nonlinear pertur-
bation, and highly restricts the kernel of the linearized operator. We next
derive a condition relating the magnitude of the entropy jump to the period
that guarantees the existence of a solution to the linear eigenvalue problem
in the Fourier 1-mode. We then obtain our linearized periodic solutions
by deriving closed form expressions for the resulting 1-mode solutions of
the linear eigenvalue problem. To get closed form expressions for solutions,
we introduce a new non-dimensional form of the Euler equations for which
linearized evolution is represented by rotation in the complex plane.

The resulting linearized solutions display, in closed form expression, the
propagation properties of nearby nonlinear sound waves that formally bal-
ance compression and rarefaction along characteristics. In this sense, the
solutions exhibit the simplest possible mechanisms for dissipation free trans-
mission of sound waves in the nonlinear problem. In the simplest case, each
characteristic sound wave traverses eight entropy levels before periodic re-
turn, and the wave crests propagate at a speed different from a shock or
sound speed, c.f. [27]. But the linearized solutions constructed here show
that more complicated ways of balancing compression and rarefaction are
possible due to the fact that it is consistent at the linearized level for solu-
tions to move through periods at speeds that are incommensurate with the
speed of the period. In this case, the solution produces a periodic tiling of
the xt-plane that is periodic in space and time, but sound waves traverse
the periodic tiling in a quasi-periodic fashion. Even so, compression and
rarefaction will be in balance formally in nearby nonlinear solutions because
of the ergodicity of the quasi-periodic motion of the sound wave relative to
the tiling.

The structure of the linearized waves carries over approximately to nearby
nonlinear solutions, but a mathematical proof is needed to demonstrate rig-
orously that solutions of the linear eigenvalue problem carry over exactly
to solutions of the nonlinear eigenvalue problem. Motivated by this per-
turbation problem, in Section 6 we analyze the spectrum of the linearized
operator that expresses the eigenvalue problem corresponding to periodicity.
We prove that our exact periodic solutions correspond to eigenvectors in the
1-mode kernel of the associated linearized operators, and that for almost ev-
ery choice of periods, the linearized operator is invertible on the complement
of the kernel. Interestingly, the linearized solutions can be isolated in the
kernel of the linearized operator only in the case when the sound speeds are
incommensurate with the periods. We end the section with a proof, based
on Liouville numbers, that for special choices of periods, the eigenvalues are
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bounded away from zero by algebraic rates. Numerical results are also pre-
sented, showing that the eigenmodes with small divisors can be very sparse,
for example, nicely bounded away from zero in the first fifty modes.

This analysis of linearized solutions and corresponding linearized opera-
tors casts the perturbation problem for existence of time-periodic solutions
of compressible Euler into a form amenable to a Liapunov-Schmidt decom-
position. That is, to obtain periodic solutions of a nonlinear problem by
perturbation from a known solution of a linearized problem by bifurcation
methods, a major step is to show that the linearized operator is invertible
on the orthogonal complement of the known solution, c.f. [7]. This we ac-
complish in Section 7. Once this is accomplished, the central issue in the
completion of a rigorous proof that periodic solutions exist, (i.e., that lin-
earized solutions perturb to nearby nonlinear solutions), is then the problem
of establishing an implicit function theorem based on the resulting invertible
linearized operator, (the so called auxiliary equation). The proof of such an
implicit function theorem when small divisors are present, is then problem-
atic, (see e.g. [2]). For us, the small divisors are estimated by algebraic decay
rates, and the resulting implicit function theorem is analogous to problems
in KAM theory, [4, 1], but for us, a proof must face the small divisor is-
sue in a quasilinear problem, a setting for which the current mathematical
technology does not directly apply, c.f. [2]. The generation of such a proof
is the topic of the authors’ ongoing research program. (The authors will
address these issues in more detail in a forthcoming paper.) At this stage
the authors believe the analysis provides a framework for future study, and
gives quantitative support for the claim that the mechanism for balancing
compression and rarefaction along characteristics, identified in [27], really
does explain the physical mechanism behind time-periodic sound wave prop-
agation in the compressible Euler equations. The methods here also provide
a starting point for the numerical simulation of time-periodic sound waves.

2. Background

2.1. The Compressible Euler Equations. The compressible Euler equa-
tions describe the time evolution of a perfect fluid in the absence of dissipa-
tive effects. These are

ρt + div[ρu] = 0, (1)

(ρui)t + div[ρuiu] = −∇p, (2)

Et + div[(E + p)u] = 0, (3)

describing the evolution of the density ρ, velocity u ∈ R3 and energy density
E = 1

2ρu
2 + ρε, where ε is the specific internal energy. To close the system,

an equation of state is given which relates the pressure p to ε and ρ. We
consider a polytropic gamma-law gas, described by

ε = cτ τ
−(γ−1) eS/cτ and p =

cτ
γ − 1

τ−γ eS/cτ , (4)
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where τ = 1/ρ is the specific volume, S is the specific entropy, γ > 1 is the
adiabatic gas constant, and cτ the specific heat [23]. For smooth solutions,
the energy equation (3) is equivalent to the adiabatic constraint or entropy
equation

(ρS)t + div(ρSu) = 0, (5)

which states that entropy is transported with the fluid [23].
For sound wave propagation in one direction x′, the equations reduce to

the system of 3× 3 Euler equations

ρt + (ρ u)x′ = 0,

(ρu)t + (ρu2 + p)x′ = 0,

Et + [(E + p)u]x′ = 0.

In a Lagrangian frame of reference, which moves with the fluid, the equations
can be written

τt − ux = 0, (6)

ut + px = 0, (7)

E∗t + (up)x = 0, (8)

where now x represents the material coordinate for the fluid, given by

x =
∫
ρ dx′,

where x′ is the spatial coordinate, and E∗ = E/ρ = 1
2u

2 + ε. In this
Lagrangian frame, the adiabatic constraint (5) takes on the particularly
simple form

St = 0, (9)

which can be used instead of (9) on smooth solutions [23].
Because we are considering solutions which are (piecewise) smooth, it is

enough to consider equations (6), (7) and (9). We recall from our previous
paper [27] the convenient change of variables

m = eS/2cτ and z = Kz τ
− γ−1

2 , (10)

so that (4) becomes

ε = Kε m
2 z2 and p = Kp m

2 z
2γ

γ−1 ,

where K·’s are appropriately given constants. In these variables, for smooth
solutions, our equations (6)-(9) can be written as the quasilinear system

zt +
c

m
ux = 0,

ut +mczx + 2
p

m
mx = 0, (11)

mt = 0,



6 BLAKE TEMPLE AND ROBIN YOUNG

where we have used (9) in place of (8); here c is the Lagrangian sound speed,
defined by

c(τ, S) =
√
−pτ (τ, S),

which becomes
c(m, z) = Kc m z

γ+1
γ−1 . (12)

Recall that a strictly hyperbolic 3 × 3 system has three wave families,
each corresponding to an eigenvalue or wavespeed of the system. In the La-
grangian frame, the wavespeeds of system (11) are ±c and 0. The nonlinear
waves are the forward (+ or 3-wave, speed +c) and backward (− or 1-wave,
speed −c) waves, along which sound waves propagate. The stationary (0 or
2-wave, speed 0) waves are contact or jump discontinuities which propagate
with the fluid and which are linearly degenerate. Our forward and back-
ward waves are simple waves which are either rarefactive or compressive;
we do not treat shocks here as they are incompatible with periodic wave
propagation.

We consider solutions in which the entropy m (or S) is piecewise constant,
varying periodically in space but stationary in time. To resolve the jump
in variables across the entropy jumps, we must apply the Rankine-Hugoniot
relations for (6)–(8), which are

[u] = s [−τ ]
[p] = s [u] (13)

[u p] = s [12u
2 + ε],

where, as usual, s is the speed of propagation of the discontinuity and [·] is
the jump. Since we are concerned only with contact discontinuities, we take
s = 0, and the jump conditions become [u] = [p] = 0, or

uL = uR and mL z
γ−1

γ

L = mR z
γ−1

γ

R . (14)

On regions where the entropy is constant, the 3× 3 system (11) reduces
to the 2× 2 quasilinear system

zt +
c

m
ux = 0,

ut +mczx = 0, (15)

which is just the p-system using z as the thermodynamic coordinate [23].

2.2. Wave Interactions and Character Change. In [27], we described
the mechanism of wave interactions which can prevent shock formation and
consequently support non-decaying periodic solutions. The key observation
is to note that although a simple wave preserves its rarefactive or compres-
sive character (before shock formation) when the entropy is constant, this
character can change as the wave crosses a stationary jump discontinuity.
Physically, if a simple wave crosses a jump, a simple wave of the opposite
family is reflected. If we (nonlinearly) superimpose two such interactions,
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then one of the reflected waves could be larger than the corresponding trans-
mitted wave, resulting in the outgoing wave having different character from
the corresponding incident wave. We then obtained the periodic structure
by carefully combining many such interactions into a consistent wave pat-
tern [27].

To describe the simple waves, we fix the entropy m and write system (15)
in the Riemann invariant form

rt − c rx = 0,

st + c sx = 0, (16)

where the Riemann invariants are

r = u−mz and s = u+mz,

respectively. It is well known that for a 2 × 2 system, the simple waves
are described by the constancy of Riemann invariants [11, 23]. That is, the
backward simple waves are described by s = const, while the forward waves
are given by r = const. Also (16) states that r and s are constant along
backward and forward characteristics, respectively, which are the straight
lines given by

dx

dt
= −c and

dx

dt
= c,

respectively.
We summarize by describing both forward and backward simple waves by

the equation
uR − uL = m(zA − zB),

where the subscripts refer to the states to the right, left, ahead and behind
the wave, respectively; recall that the entropy m is constant in the wave.

The character of a simple wave is rarefactive (R) or compressive (C)
according to whether the sound speed c increases or decreases from ahead
(A) to behind (B) the wave, respectively: that is, if the speed ahead is larger
the wave is rarefactive. Since dc/dz > 0, and z = s−r

2m , we can also find
the character of a wave by checking the time derivative of the appropriate
Riemann invariant: for example, if rt ≤ 0, the backward wave (on which s
is constant) is compressive. We thus have the following characterization of
simple waves: the wave is

Forward R iff st ≤ 0,
Forward C iff st ≥ 0,

Backward R iff rt ≥ 0,
Backward C iff rt ≤ 0.

It is shown in [27] that the R/C character of a simple wave is unchanged
as long as the entropy remains constant; however, at an entropy jump, the
R/C-character can change, as follows. By (14), u is constant across the
jump, but m z changes by the scalar factor qRL ≡ (mR/mL)

1
γ . Thus the
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Riemann invariants and their time derivatives change, and if rt or st changes
sign, the corresponding wave changes character. We have the following
lemma, which is proved in detail in [27]:

Lemma 1. The following inequalities characterize when a nonlinear wave
changes its R/C value at an entropy jump:

R−in → C−out iff qRLmLżL < u̇L < mLżL,

C−in → R−out iff mLżL < u̇L < qRLmLżL,

R+
in → C+

out iff − qRLmLżL < u̇L < −mLżL,

C+
in → R+

out iff −mLżL < u̇L < −qRLmLżL,

where qRL = (mR/mL)
1
γ is the scalar by which the quantity m z jumps.

2.3. Periodic Structure of Solutions. We note that the inequalities of
Lemma 1 are exclusive, which means that at most one wave can change
its character at any time. Our main goal in [27] was to exploit this local
change in a single simple wave to build a global wave pattern in which each
compression wave changes character before it collapses into a shock wave.
By carefully considering the consistency of the wave pattern as built up from
many interactions satisfying the lemma, we constructed the simplest possible
periodic wave pattern in which compression and rarefaction is balanced along
each characteristic. By this we mean that as each forward or backward
characteristic is traced through the solution, it passes through stages of
compression and rarefaction, and on average the amount of compression and
rarefaction are balanced. In this way each compressive characteristic in the
solution changes to rarefaction before it collapses into a shock. Since there
are no shocks, the solution is time-reversible, and rarefactions are essentially
equivalent to compressions.

Our construction of a global periodic wave pattern can be represented as
the formal characteristic xt-space diagram shown in Figure 1. In this dia-
gram, the vertical lines represent stationary jump discontinuities at which
the (piecewise constant) entropy changes: there are two entropy levels cor-
responding to the narrow and wide strips, respectively. We have represented
the forward and backward characteristics as straight lines, with the differ-
ing slopes indicating changing wavespeed, and have shaded one complete
forward wave, consisting of four rarefactive pieces followed by four compres-
sive pieces. The thick lines correspond to “max/min” characteristics, along
which the extremal values of the Riemann invariants propagate, and which
mark the boundaries between regions of rarefaction and compression. Note
that at each entropy jump, part of each wave changes its character.

Figure 1 is a “cartoon” of a periodic solution to the nonlinear Euler equa-
tions, in that it does not correspond to an actual exact solution. We can,
however, make the figure increasingly accurate by considering smaller and
smaller amplitudes for the waves, so that the characteristics become closer
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x

t

Figure 1. A periodic pattern incorporating compression
and rarefaction.

and closer to parallel straight lines as the wavespeed c(m, z) → c0. Indeed, in
the limit of small amplitudes, all characteristics would have constant speeds,
although these would be different at the different entropy levels.

In Figure 2 we show a refined picture of the simplest periodic structure
in the limit of small amplitudes, with one tile of the (x, t)-plane shaded. We
have labeled the states in the (x, t)-plane as follows: numbers and letters
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ċ

č
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ê

ė

ě

5̃
5̂

5̇

5̌

f̃

f̂

ḟ
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ċ

č
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ḟ

f̌

6̃
6̂

6̇

6̌

g̃

ĝ
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č

3̃
3̂

3̇

3̌

d̃

d̂

ḋ
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ẽ

ê
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ḣ

ȟ
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â

ȧ
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ḋ

ď
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ě

5̃
5̂

5̇

5̌

f̃

f̂

ḟ
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Figure 2. The linearized characteristic structure of periodic
solutions in the (x, t)-plane.

represent states having the same Riemann invariant values s and r on a
single entropy level, respectively; these code the relative position of the
Riemann invariant inside the wave. Thus, a and e refer to the minimum
and maximum r values, and b, c and d are always part of the backward
“rarefaction” wave, corresponding to rt ≥ 0. The states on either side of
each entropy jump are also labeled withˇ|˜andˆ| ,̇ respectively.
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ǧ
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Figure 3. Ellipses showing periodicity in the (z, u)-plane.

The labels a–h and 1–8 label only one Riemann invariant rather than
a complete (z, u)-state, but we can approximately reconstruct the (z, u)-
states by considering the relative r and s values of the labeled states. Doing
so, we observe that the locus of states at each jump correspond to a path
around an ellipse, with different orientations at each jump. We thus see that
the periodic structure of Figure 2 is consistent with the ellipses drawn in
Figure 3. The four ellipses drawn there represent the solution as a function
of time at the corresponding entropy jump, and the circular arrows represent
the direction of increase of t and x in the characteristic picture Figure 2.
Rotating anti-clockwise around Figure 3 represents evolution (with respect
to x) from U̇ in the narrow strip to Ǔ , entropy jump to Ũ , evolution in the
wide strip to Û , and entropy jump back to a time-shift of U̇ .

Although we have presented these pictures of the solution as approximate,
we show in this paper that the pictures become exact at the linearized level:
that is, if we linearize the compressible Euler equations around a piecewise
constant stationary solution, then the solutions given in Figures 2 and 3 are
exact periodic solutions to the linearized Euler equations, with piecewise
constant varying entropy, which balance compression and rarefaction.
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3. The Linear and Nonlinear Eigenvalue Problems

In this section we reformulate the problem of existence of a periodic so-
lution of the compressible Euler equations having the structure of Figure
2 as a nonlinear eigenvalue (fixed point) problem. In the next section we
find exact solutions of the corresponding linearized eigenvalue problem. In
subsequent sections we calculate the full spectrum of the linearized problem
and discuss the issue of perturbation of the linearized solution as a way of
obtaining periodic solutions of the nonlinear problem.

The periodic structure in Figure 2 is supported on an entropy field that
oscillates between two different values. Moreover, it is apparent from Figure
2 that the solution, starting at x = 0, returns after a nonlinear evolution in
x at the first entropy level, followed by a jump to the second entropy level,
followed by a nonlinear evolution in x at the second entropy level, followed
by a jump back to the first entropy level, followed by a half period shift in
t. We now formulate this precisely as a fixed point problem.

So consider a smooth solution U(x, t) = (z(x, t), u(x, t)) of the compress-
ible Euler equations evolving through an entropy field that oscillates between
two values S, m and S, m, where S > S, m > m, c.f. (10). Fix the widths
x, x > 0 of the entropy levels and assume m = m for 0 < x < x, and m = m,
for x < x < x + x, and then continue the entropy field periodically in x,
c.f. Figure 4. Let U(x, t) = U(x, t) ≡ (z(x, t), u(x, t)) in 0 < x < x, so that
U(x, t) solves

zt +
c(z)
m

ux = 0,

ut +m c(z)zx = 0; (17)

and let U(x, t) = U(x, t) ≡ (z(x, t), u(x, t)) in x < x < x+x, so that U(x, t)
solves

zt +
c(z)
m

ux = 0,

ut +m c(z)zx = 0. (18)

Thus to demonstrate the existence of a solution of the compressible Euler
equations with periodic sound wave propagation it would suffice to prove
that there exists such a smooth solution defined on 0 < x < x+ x such that
it continues globally to a periodic solution. Assume that U(x, t) is a weak so-
lution so that the Rankine-Hugoniot jump conditions (13) hold at x = x and
x = x+ x. This says that (z(x−, t), u(x+, t),m) and (z(x+, t), u(x+, t),m)
lie on the same contact discontinuity wave curve of the 2-family, c.f. [23].
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The jump conditions yield

u = u,

z = z
(
m
m

) γ−1
γ
,

m z = m z
(
m
m

)−1
γ
,

c = c
(
m
m

) 1
γ
.

(19)

Now, consistent with Figure 2, set U̇(t) = U(0+, t), Ǔ(t) = U(x−, t), Ũ(t) =
U(x+, t) and Û(t) = U(x + x−, t). Based on this, define the nonlinear
evolution operators E , E , and the jump operators J , J −1 by

Ǔ = EU̇ ,

Ũ = J Ǔ , (20)

Û = EŨ ,

and define the extended function U∗ by

U∗ = J −1Û . (21)

Then E and E represent evolution in space by the nonlinear wave operators
(17) and (18) across the respective entropy levels; and J , J −1 are the
jump operators determined by the Rankine-Hugoniot jump conditions (13),
(14). That J −1 is the inverse of J follows from the invariance of the jump
conditions under interchange of UL and UR. It follows from (19) that J is
a linear operator when the equation of state is taken to be polytropic.

To formulate the eigenvalue problem that captures the periodic structure
of Figure 2, restrict the initial data U̇(t) to 2π-periodic functions at x = 0,
and impose the periodicity condition

U̇ = S U∗,

where S denotes the half period shift operator defined by

[SU ](t) = U(t+ π).

From this we conclude that the eigenvalue problem that imposes the peri-
odicity structure of Figure 2 is:4

S · J −1 · E · J · E U̇ = U̇ . (22)

4Note that the half period shift really just imposes a symmetry, as its effect over four
entropy levels could be reproduced by a second application J−1 · E · J · E .
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3.1. Non-dimensionalization. We now recast (22) in a non-dimensional
form by introducing dimensionless variables (w, v) in place of (z, u). To
this end, restrict first to smooth solutions U(x, t) = (z(x, t), u(x, t)) of the
compressible Euler equations defined at constant entropy S ≡ S0, m ≡ m0,
in a region x ≥ x0. Let z0 and u0 be base states from which values of z
and u are measured, respectively, and set c0 = c(m0, z0) equal to the sound
speed at (z0,m0), c.f. (12). Give time and space the same dimension by
defining y through the relation

y − y0 =
x− x0

c0
, (23)

so that equations (15) take on the dimensionless form(
z

z0

)
t

+
c(z)
c0

(
u

m0z0

)
y

= 0,(
u

m0z0

)
t

+
c(z)
c0

(
z

z0

)
y

= 0, (24)

in the region y ≥ y0. Based on (24), define the dimensionless variables

w =
z

z0
, (25)

v =
u− u0

m0z0
, (26)

and let

σ =
c(z0)
c(z)

=
zd0
zd

= w−d ≡ σ(w), (27)

where we have used c(z,m) = Kcmz
d with

d ≡ γ + 1
γ − 1

, (28)

c.f. (12). Thus the nonlinear equations (24) have the non-dimensional form

wy + σ(w)vt = 0,

vy + σ(w)wt = 0, (29)

where y is now the evolution variable.
Across an entropy jump between two constant values m and m with base

states z0 and z0, respectively, the jump conditions are

[u] = mz0v −mz0v = 0,

[p] = m2zd+1 −m2zd+1 = 0. (30)

So assuming the base states z0 and z0 satisfy the jump condition (30) as
well, we find that the jump conditions in dimensionless variables become

w = w,

m
d−1
d+1 v = m

d−1
d+1 v, (31)
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the latter following from (30) using the jump relation for the base states in
the form

z0

z0

=
(
m

m

) −2
d+1

.

In particular, (31) implies that σ(w) is continuous across entropy jumps.
Now consider the nonlinear problem for smooth solutions evolving through

two entropy levels m, m, of widths x, x, with base states z0, z0, extended
periodically in x starting with m in 0 < x < x and m in x < x < x + x.
Define y = y(x) as the unique piecewise linear Lipschitz continuous function
of x such that y(0) = 0, and such that (23) holds at each entropy level.
That is, such that y(0) = 0, dy/dx = 1/c in each m level, and dy/dx = 1/c
in each m level. (We only need that U is a smooth solution on the first two
entropy levels in order to pose the periodicity condition.) The function y(x)
is graphed in Figure 5. Assuming this, the upperbar entropy level 0 < x < x
goes over to 0 < y < θ,

θ =
x

c(z0)
, (32)

the lowerbar entropy level goes over to θ < y < θ + θ,

θ =
x

c(z0)
, (33)

and the nonlinear operators E and E , expressed in dimensionless variables
w, v, reduce simply to evolution in y by system (29), c.f. Figures 4-6.

0 x

t

x x + x

z(x, t)

u(x, t)

z(x, t)

u(x, t)

m

c0

m

c0

˙ ˇ ˜ ̂ ∗

Figure 4. Solutions at two constant entropy levels S, S in
the (x, t)-plane.

Thus let V = (w, v) denote the dimensionless variables, and define the
evolution operator E(θ) as evolution by system (29) through a y-interval of
length θ. That is,

E(θ)V (0, ·) = V (θ, ·), (34)
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0 x

y

x x + x

θ

θ + θ

Figure 5. The mapping x→ y, x→ θ, x→ θ.

0 y

t

θ θ + θ

w(y, t)

v(y, t)

w(y, t)

v(y, t)

σ0 = 1 σ0 = 1

˙ ˇ ˜ ̂ ∗

Figure 6. Solutions at two constant entropy levels S, S in
the (y, t)-plane.

where V (y, t) is the unique solution of the Cauchy problem for system (29)
with Cauchy data V (0, ·). Define also the entropy jump operator J acting
on V pointwise by

J
[
w
v

]
=
(

1 0
0 J

) [
w
v

]
, (35)

where

J =
(
m

m

) d−1
d+1

, (36)

c.f. (31). Finally, define the shift operator S acting on V by

SV (t) = V (t+ π). (37)

Note that E(θ) is nonlinear, but J and S are both linear operators when m
and m are assumed fixed.
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Theorem 2. For fixed positive real numbers θ, θ and J , define the nonlinear
operator N ≡ N (θ, θ, J) by

N ≡ S · J −1 · E(θ) · J · E(θ), (38)

and let V (t) = (w(t), v(t)) denote any smooth solution of

N V (·) = V (·), (39)

that satisfies the average one and zero average conditions

w0 ≡
1
2π

∫ 2π

0
w(t)dt = 1, (40)

and

v0 ≡
1
2π

∫ 2π

0
v(t)dt = 0, (41)

respectively. Then given any base state U0 = (z0, u0) and entropy state m,
there is a periodic solution U(x, t) = (z(x, t), u(x, t)) of (11), determined
uniquely by V (t), with average values

1
2π

∫ 2π

0
z(0, t)dt = z0,

and
1
2π

∫ 2π

0
u(0, t)dt = u0.

Proof. Given the states z0, u0 and m, and the parameters θ, θ and J , define

u0 = u0,

m = m J−
d+1
d−1 , (42)

and

z0 =
(
m

m

) 2
d+1

z0.

Set the values of x and x equal to

x0 = c(z0)θ,

x0 = c(z0)θ.

Now define the nonlinear evolution operator

V (y, ·) = N (y)[V (·)] ≡


E(y)[V (·)], 0 ≤ y < θ,

E(y − θ) J E(θ)[V (·)], 0 < y − θ < θ,

S J −1 E(θ) J E(θ)[V (·)], y = θ + θ.

By this definition, N (y)[V (·)] defines the evolution of initial data V (t)
through interval [0, y), for the dimensionless nonlinear problem consisting
of entropy jumps at y = θ and y = θ. Thus it follows directly from (38)
that V (y, t) extends to a global periodic solution of the non-dimensionalized
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equations having periodic tile 0 < t < 2π, 0 < y < θ + θ, with periodic
motion vector X = (θ + θ, π). Thus defining U(x, t) = (z(x, t), u(x, t)) by

z = wz0,

u = u0 +mz0v, (43)

from our constructions above, U(x, t) is a global periodic solution of (11)
having periodic tile 0 < t < 2π, 0 < x < x+ x, with periodic motion vector
X = (x+ x, π). The averages (40), (41) follow directly from (43).

Note that the periodic motion vector X determines the “group velocities”
of the solution: these are the effective propagation speeds of the max/min
characteristics (which are discontinuous at the entropy jumps), given by

cg = ±x+ x

π
. (44)

That the forward and backward group velocities are the same follows from
the symmetry obtained by imposing a shift of exactly half a period. Because
corresponding characteristics always jump forward in time, cg will be less
than the mean characteristic speed. Thus we have dispersive type behavior,
with different group and phase velocities, in a purely hyperbolic nonlinear
system. To our knowledge, this is the first discovery of such an effect in a
fully nonlinear hyperbolic problem.

In summary, our fundamental nonlinear problem is the dimensionless
eigenvalue problem (39), where the operator N is defined in (38) through
the defining relations (34)-(37). Solutions of (39) correspond to periodic so-
lutions of (11) in a neighborhood of any state U0, m via the transformations
(42)-(43).

4. Periodic Solutions of the Linearized Problem

In this section we introduce the linearized eigenvalue problem associated
with (39), and then characterize the solutions of the corresponding linearized
operator depending on the parameters θ, θ and J . In the next section we an-
alyze the spectrum of the linearized operator, and introduce a non-resonance
condition on the parameters that guarantees that exact solutions of the lin-
earized eigenvalue problem are isolated in the kernel of the linearized oper-
ator. These exact solutions are depicted in Figures 2 and 3.

For the linearized eigenvalue problem, replace the nonlinear evolution
operator E(θ) by the linear operator L(θ) obtained by setting σ(w) ≡ 1 in
equations (29).5 (By (25), (27), in the dimensional problem this represents
taking the sound speed equal to the value of the sound speed at the z-base
state at each entropy level, c.f. (42)-(43).) Thus the linear evolution is

L(y)V (0, ·) ≡ V (y, ·), (45)

5For example, L(θ) is the operator obtained by linearizing E(θ) about the constant
state base state.
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where V (y, t) is the unique solution of the linear system

wy + vt = 0,

vy + wt = 0, (46)

with Cauchy data V (0, t), c.f. (29) and (34). Then the linearized eigenvalue
problem associated with (39) is the problem

MV (·) = V (·), (47)

where M≡M(θ, θ, J) is the linear operator defined by

M≡ S · J −1 · L(θ) · J · L(θ), (48)

where again J and S are the linear jump and shift operators given by (36)
and (37), respectively. We now find elements of the kernel of the linear op-
erator M−I, and in the next section, we give conditions on the parameters
that isolate these solutions in the kernel.

Our method is to extend the operator M to the complex plane, show that
the operator splits orthogonally onto the two complex dimensional subspaces
associated with each Fourier mode, and then analyze the kernel on each of
these subspaces. The complex vector space associated with each Fourier
mode has no real representatives, so the eigenvalue problem is two complex
dimensional, equivalent to a four dimensional real problem. To solve this,
we introduce a representation of each Fourier mode in terms of which the
complex eigenvalue problem reduces to a two dimensional real problem,
which we can solve in closed form. We recover the real solutions by adding
the complex solution in the 1-mode to its complex conjugate, which lives in
the −1-mode.

So fix values of θ, θ and J , and consider the corresponding operator M
determined in (48). Let V0(t) = (w(t), v(t)) be a 2π-periodic function in
the domain of M. For example, V0(t) serves as initial data at y = 0 for
the linear evolution in y associated with L(θ). Using this, let V (y, ·) be the
function obtained at y ∈ (0, θ + θ) in the construction of MV0(t) according
to (48); that is, V (y, ·) = L(y)V0 for 0 < y < θ; V (y, ·) = L(y − θ)JL(θ)V0

for θ < y < θ+θ; and define the following boundary functions, c.f. (20)-(21)
and Figure 2:

V̇ (t) = V (0+, t),
V̌ (t) = V (θ−, t),
Ṽ (t) = V (θ+, t)
V̂ (t) = V (θ + θ−, t)

(49)

and
V ∗(t) = J−1V̂ (t) = V (θ + θ+, t).

Thus the linear eigenvalue equation (47) can be re-expressed as

SV ∗(t) = V̇ (t).

We will let V refer to V (t) or V (y, t) according to the context.
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Note now that M extends naturally to complex valued 2π-periodic func-
tions V (t). Indeed, the linear evolution L(θ) and jump operator J can both
be applied to complex valued functions for every positive real θ. Thus as-
sume that V (t) is complex valued. The complex 2π-periodic functions V (t)
have the Fourier expansion

V (t) =
[
w(t)
v(t)

]
=

+∞∑
n=−∞

Vne
int ∈ Σ, (50)

where we take

Vn =
[

an
−ibn

]
, (51)

with an and bn arbitrary complex numbers, an, bn ∈ C, and

Σ ≡ L2[0, 2π)× L2[0, 2π).

We place the −i factor on bn in (51) for convenience. The expression (50)
gives an expression for w(t) and v(t) in terms of the orthonormal basis{[

1
0

]
eint,

[
0
1

]
eint
}+∞

n=−∞
,

for the 2π-periodic, square integrable complex valued functions
[
w(t)
v(t)

]
defined on 0 ≤ t < 2π. That is, let

Σn ≡ Span
{[

1
0

]
eint,

[
0
1

]
eint
}
,

so that

Σ =
+∞⊕

n=−∞
Σn, (52)

gives an orthogonal decomposition of Σ with respect to the L2-inner product〈[
w1(·)
v1(·)

]
,

[
w2(·)
v2(·)

]〉
=

1
2π

∫ 2π

0
(w1(t), v1(t)) · (w2(t), v2(t))dt.

Note that each Σn is a complex 2-dimensional vector space, and that

V (t) =
∞∑

n=−∞
Vne

int (53)

represents a real function if and only if

V−n = Vn. (54)

We now show that M factors over the decomposition (52).
We first obtain a matrix representation for the linear evolution operator

L(θ) of system (46) that applies to complex valued functions V (t).
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Lemma 3. Let

V (y, t) =
[
w(y, t)
v(y, t)

]
denote the complex valued solution of (46) starting from data V0(t) = V (0, t) =
Vne

int ∈ Σn, where Vn is given in (51). Then

V (y, t) =
1
2

(
1 1
1 −1

)(
e−iny 0

0 einy

)(
1 1
1 −1

)
V (y, 0)

=
(

cos(ny) −i sin(ny)
−i sin(ny) cos(ny)

)
Vne

int ∈ Σn. (55)

Proof. Adding and subtracting (46) gives the equivalent system

(v + w)y + (v + w)t = 0,

(v − w)y − (v − w)t = 0.

Since these are scalar wave equations, it follows that

(v + w)(y, t) = (v0 + w0)(t− y) = e−iny(v0 + w0)(t),

and

(v − w)(y, t) = (v − w)(t+ y) = einy(v0 − w0)(t).

Writing this in matrix form yields (55).

From Lemma 3 it follows that Σn is an invariant subspace for L(θ), and so
L(θ) respects the orthogonal decomposition (52). Moreover, since evolution
by system (46) takes real functions to real functions, it follows that L(θ)
does as well. Moreover, if V (t) = P (t) + iQ(t), where P and Q are the real
and imaginary parts of V , then

L(θ)V (·) = L(θ)P (·) + iLQ(·),

where on P and Q, L(θ) reduces to real evolution. We next show that M
also respects the decomposition (52), and get an expression for M in each
subspace Σn.

To this end, let Tn : C2 → Σn be the representation of Σn defined by

Tn
[
a
b

]
=
[

a
−ib

]
eint, (56)

and write [
w0(t)
v0(t)

]
=

+∞∑
−∞

[
an
−ibn

]
eint =

+∞∑
−∞

Tn
[
an
bn

]
.
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Lemma 4. The following formulas hold:

L(θ)Tn
[
an
bn

]
= TnR(nθ)

[
an
bn

]
, (57)

J Tn
[
an
bn

]
= TnD

[
an
bn

]
, (58)

STn
[
an
bn

]
= (−1)n Tn

[
an
bn

]
, (59)

where R(θ) denotes real counterclockwise rotation through angle θ,

R(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (60)

and D ≡ D(J) denotes the diagonal 2× 2 real matrix

D =
(

1 0
0 J

)
, (61)

with

J =
(
m

m

) d−1
d+1

=
(
m

m

) 1
γ

, (62)

c.f. (35), (28), (27).

Proof. Equation (57) follows directly from (55), and (58), (59) follow directly
from (35), (37) where in (59) we use

S
[

an
−ibn

]
eint =

[
an
−ibn

]
ein(t−π).

Corollary 5. All of the operators in the decomposition (48) of M respect
the decomposition (52).

Proof. To show that a linear operator respects (52), it suffices to show that
Σn is invariant for each n. This follows directly from (57)-(59).

It follows thatM respects (52). This is made explicit in the next theorem,
which also implies that the complex eigenvalue problem (47) reduces to a
2× 2 real eigenvalue problem in each subspace Σn.

Theorem 6.

M

(
+∞∑
−∞

Tn
[
an
bn

])
=

+∞∑
−∞

TnMn

[
an
bn

]
, (63)

where Mn = Mn(θ, θ, J) is the real 2× 2 matrix given by

Mn = (−1)nM(nθ, nθ, J), (64)

with
M(θ, θ, J) ≡M = D(J)−1R(θ)D(J)R(θ), (65)
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where R(θ) and D(J) are the real matrices given in (60), (61) and (62).

Proof. It follows from (57)-(59) that each Σn is an invariant subspace for
L(y), J and S, and hence is also for M, a composition of these operators.
Moreover, applying (57)-(59) we have

M
(
Tn
[
a
b

])
= S · J −1 · L(θ) · J · L(θ) · Tn

[
a
b

]
= S · J −1 · L(θ) · J · TnR(nθ)

[
a
b

]
= S · J −1 · L(θ) · TnDR(nθ)

[
a
b

]
= S · TnD−1R(nθ)DR(nθ)

[
a
b

]
= Tn(−1)nD−1R(nθ)DR(nθ)

[
a
b

]
= TnMn

[
a
b

]
,

where Mn is the real 2× 2 matrix

Mn = (−1)nD−1R(nθ)DR(nθ) = (−1)nM(nθ, nθ, J).

This verifies (63), (64) and (65), and completes the proof of the theorem.
Note that D(J) and R(θ) do not in general commute.

In summary, Theorem 6 implies that M(θ) respects the orthogonal de-
composition (52), takes real functions to real functions, and

M(θ)V (·) = M(θ)P (·) + iMQ(·),

if V = P + iQ for P and Q real.
Consider now the linear eigenvalue problem (47) for a 2π-periodic function

V (t). Let

V =
∑
n∈Z

Vne
int =

∑
n∈Z

Tn
[
an
bn

]
, (66)

denote the expansion of V into Fourier modes, where Vn is given in (51), Tn
in (56).

Theorem 7. The function V (t) solves the linear eigenvalue problem (47) if
and only if

(−1)nM(nθ, nθ, J)
[
an
bn

]
=
[
an
bn

]
(67)

for every n ∈ Z.
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Proof. Let V have the decomposition (66), and assume MV = V . Then∑
n∈Z

Tn
[
an
bn

]
= V = MV

= M

(∑
n∈Z

Tn
[
an
bn

])

=
∑
n∈Z

TnMn

[
an
bn

]
where we have applied Theorem 6. Thus, since the functions ei n t are inde-
pendent, it follows that

Tn
[
an
bn

]
= TnMn

[
an
bn

]
for every n ∈ Z, so also

Mn

[
an
bn

]
=
[
an
bn

]
,

for all n ∈ Z. Since
Mn = (−1)nM(nθ, nθ, J),

this is (67).

4.1. Matrix eigenvalue problems. Theorem 7 reduces the problem of
finding solutions of the complex linear eigenvalue problems (47) to the prob-
lem of finding solutions (a, b) ∈ R2 of the 2× 2 linear eigenvalue problems

Mn

[
a
b

]
=
[
a
b

]
, (68)

where Mn is the real matrix Mn = (−1)nM(nθ, nθ, J). It follows that
complex eigenvectors of Mn can be rescaled to real eigenvectors, and so to
solve (47) it suffices to characterize real solutions (a, b) of (68). Thus for (68),
it suffices to characterize the eigenspaces of ±M in terms of (θ, θ, J). To
this end, let q = (a, b)tr, let ‖q‖ =

√
a2 + b2 denote Euclidean norm, and let

q̇, q̌, q̃, q̂, and q∗ denote the vector states determined by the decomposition
(65) of M , so that

q̇ = q,

q̌ = R(θ)q̇,
q̃ = Dq̌,

q̂ = R(θ)q̃,

q∗ = DMq−1q̂,
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c.f. (49). Let µ̇, µ̌, µ̃, µ̂ and µ∗ denote the angles these vectors make with the
positive x-axis, respectively. Our problem then is to characterize solutions
q of the commutation condition

M(nθ, nθ, J)q ≡ D−1(J)R(nθ)D(J)R(nθ)q = (−1)nq, (69)

in terms of the parameters (θ, θ, J). Since R(θ) is rotation through angle θ
and D(J) just scales the second coordinate b by factor J , (69) places very
tight constraints on the possible angles µ̇, µ̌, µ̃, µ̂ and µ∗ consistent with
(69). The eigenvalues of M are given in the following theorem.

Theorem 8. Assume that (θ, θ) are real and that J > 1, c.f. (62). Then
the eigenvalues of M(θ, θ, J) are given by

λ = β ±
√
β2 − 1, (70)

where

β = cos(θ) cos(θ)− J2 + 1
2J

sin(θ) sin(θ). (71)

Proof. Observe that detM = 1, so the eigenvalues λ of M satisfy

λ2 − 2βλ+ 1 = 0,

where β = 1
2trM . Solutions are given by (70), and writing

M = D−1R(θ)DR(θ)

=
(

cos(θ) − sin(θ)
sin(θ)/J cos(θ)/J

)(
cos(θ) − sin(θ)
J sin(θ) J cos(θ)

)
,

and calculating the trace yields (71).

We now construct solutions of (69) that correspond to solutions in the
eigenspaces Σ−1 and Σ1 that represent solutions of (47) with the periodic
structure of Figures 2 and 3. For n = ±1, the problem (69) becomes,
respectively,

M(θ, θ, J) = D−1(J)R(θ)D(J)R(θ))q = −q, (72)

M(−θ,−θ, J) = D−1(J)R(−θ)D(J)R(−θ))q = −q. (73)

We obtain the real solution below by adding the solution in Σ−1 to the
solution in Σ1, c.f. (54). Our purpose in the next section is to find non-
resonance conditions on (θ, θ, J) that isolate these in the kernel of M.

To accurately model the widths of entropy levels in Figure 2, we impose
the condition θ + θ < π. In particular, according to (44), this imposes a
group velocity (θ + θ)/π, which is slower than the local wavespeed σ0 = 1.
The following theorem identifies the unique solution of (72) in Σ1 and Σ−1.

Theorem 9. Assume that J > 1, θ > 0, θ > 0 and

θ + θ < π. (74)
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Then q is a solution of (72) if and only if

J = cot(θ/2) cot(θ/2) (75)

and q ∈ Span {q}, where

q = (cos(θ/2),− sin(θ/2)). (76)

Furthermore, if q̇ = q, then also

q̌ = (cos(θ/2), sin(θ/2)) (77)

q̃ = (cos(θ/2), J sin(θ/2)) (78)

= α(cos(π/2− θ/2), sin(π/2− θ/2)),

q̂ = (− cos(θ/2), J sin(θ/2)) (79)

= α(− cos(π/2− θ/2), sin(π/2− θ/2)),

q∗ = (− cos(θ/2), sin(θ/2) = −q, (80)

where we have set α = ‖q̃‖. These states are diagrammed in Figure 7.

a

b

q̇

q̌

q̃q̂

q∗

θ/2

θ/2

Figure 7. The states q̇, q̌, q̃, q̂, q∗ for q ∈ Σ1.
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Note that J = cot(θ/2) cot(θ/2) > 1 when θ+ θ < π because the function
cot(θ) is decreasing on 0 < θ < π/2, so

1 = cot(θ/2) tan(θ/2) = cot(θ/2) cot(π/2− θ/2) < cot(θ/2) cot(θ/2).

For the proof of Theorem 9 we use the following lemma:

Lemma 10. Let q = (a, b), J 6= ±1. If ‖q‖ = ‖q′‖ and ‖Dq‖ = ‖Dq′‖, then
q′ = (±a,±b).

This Lemma follows immediately from

a2 + b2 = (a′)2 + (b′)2 and

a2 + J2b2 = (a′)2 + J2(b′)2,

which are in turn direct consequences of (61).
We can now prove the theorem.

Proof of Theorem 9. Assume Mq = −q for q ∈ Span
{
q̇ = (ȧ, ḃ)

}
, where q̇

is a representative of the subspace satisfying ‖q̇‖ = 1, and −π/2 ≤ µ̇ < π/2.
First we prove that q̇ must have a non-positive slope, ḃ/ȧ ≤ 0. Assume

for contradiction that ḃ/ȧ > 0, so that q̇ lies in the first quadrant. Then
q∗ = −q̇ lies in the third quadrant, and q̂ = Dq∗ must also lie in the third
quadrant on a circle of radius α ≡ ‖q̂‖ > 1 because J > 1, c.f. Figure 8.
Now then q̃ = R(−θ)q̂ must lie on the circle of radius α, and q̌ = J−1q̃ lies
on the circle of radius 1. But by Lemma 10, the only such point on the
circle of radius α that lies within an angle of π from q̂, and is mapped by
D to a point on the circle of radius 1, is the point on the circle of radius α
directly above the point q̂, c.f. Figure 8. Now q̌ = J−1q̃ = R(θ) must thus
lie on the intersection of the vertical line through q̌ and the unit circle. The
only way this can happen is if q̃, q̂, q̃ and q̌ all lie on the same vertical line,
passing through the circles ‖q‖ = α and ‖q‖ = 1. c.f. Figure 8.

That is, q̃ is the only point on the circle of radius α within an angle of π
from q̂ that is mapped by D to a point on the circle of radius 1. From these
considerations it follows that

q∗ = (−ȧ,−ḃ)

q̂ = (−ȧ,−Jḃ)

q̃ = (−ȧ, J ḃ)

q̌ = (−ȧ, ḃ).

From q̌ = R(θ)q̇, it follows that µ̇ = π/2 − θ/2 and µ̌ = π/2 + θ/2, and it
follows from q̂ = R(θ)q̃ that µ̃ = π − θ/2, and µ̂ = π + θ/2, c.f. Figure 8.
But it is easily seen from Figure 8 that this configuration of angles implies
that θ + θ > π, a contradiction. Thus we must have −π/2 ≤ µ̇ ≤ 0.

Consider next the case −π/2 < µ̇ < 0. In this case ḃ/ȧ < 0, so that q̇
lies in the fourth quadrant. Then q∗ = −q̇ must lie in the second quadrant,
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a

b

q̇q̌

q̃

q̂

q∗

θ

θ

Figure 8. The states with µ̇ > 0, showing θ + θ > π.

and q̂ = Dq∗ must also lie in the second quadrant on a circle of radius
α = ‖q̂‖ > 1 because J > 1. Then q̃ = R(−θ)q̂ must lie on the circle of
radius α, and q̌ = J−1q̃ then lies on the circle of radius 1. But by Lemma
10, the only such point on the circle of radius α that lies within an angle
of π from q̂ and is mapped by D to a point on the circle of radius 1, is the
point on the circle of radius α directly to the right of, on the same horizontal
line as the point q̂, c.f. Figure 7. Now q̌ = J−1q̃ = R(θ) must thus lie on
the intersection of the vertical line through q̌ and the unit circle. The only
way this can happen is if q̇, q̌, and q̃ all lie on the same vertical line, with
‖q‖ = α and ‖q‖ = 1,c.f. Figure 7. From these considerations it follows that

q∗ = (−ȧ,−ḃ)

q̂ = (−ȧ,−Jḃ)

q̃ = (ȧ,−Jḃ)

q̌ = (ȧ,−ḃ),

with ȧ > 0, ḃ < 0. It now follows from q̌ = R(θ)q̇ that µ̇ = −θ/2 and µ̌ =
θ/2, and it follows from q̂ = R(θ)q̃ that µ̃ = π/2− θ/2, and µ̂ = π/2 + θ/2,
c.f. Figure 7. It is easily seen from Figure 7 that this configuration of
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angles satisfies the condition θ + θ < π, and is the unique solution. This
verifies (77)-(80). Similar arguments show that the limit cases µ̇ = 0, −π/2
correspond to θ = 0, θ = π and θ = 0, θ = π, respectively, both cases that
have been ruled out.

Finally, for (75) we have both

q̃ = (cos(θ/2), J sin(θ/2)) (81)

and
q̃ = α(cos(π/2− θ/2), sin(π/2− θ/2)), (82)

where α = ‖q̃‖, so that

α2 = cos2(θ/2) + J2 sin2(θ/2).

Thus comparing first components of (81) and (82), we get

cos2(θ/2) =
(
cos2(θ/2) + J2 sin2(θ/2)

)
cos2(π/2− θ/2),

and solving for J leads directly to (75).

4.2. Real valued solutions. The solution V1(t) ∈ Σ1 of (47) corresponding
to q is

V1(t) = T1q =
[

cos(θ/2)
i sin(θ/2)

]
eit, (83)

which is never real. To obtain a real solution of (47), we must add the
complex conjugate V1(t) ∈ Σ−1. Now observe that having found V1 as a
solution of (72), we obtain the solution of (73) by changing the signs of θ
and θ, J being invariant under this change of sign. That is,

q−1 =
[

cos(−θ/2)
− sin(−θ/2)

]
=
[

cos(θ/2)
sin(θ/2)

]
,

so that by (56),

V−1(t) = T−1q−1 =
[

cos(θ/2)
−i sin(θ/2)

]
e−it. (84)

Thus, although there are no real solutions in either Σ1 or Σ−1, we see from
(83) and (84) that the respective solutions are complex conjugates,

V−1(t) = V1(t)

so (54) applies and we obtain the two independent real solutions

Va(t) =
[

cos(θ/2) cos(t)
− sin(θ/2) sin(t)

]
=

1
2

[V1(t) + V−1(t)] , (85)

and

Vb(t) =
[

cos(θ/2) sin(t)
sin(θ/2) cos(t)

]
=

1
2i

[V1(t)− V−1(t)] ,

which differ by a quarter-period phase shift, Vb(t) = Va(t+ π
2 ).
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More generally, let Σ∗ denote the set of V (t) ∈ Σ such that V (t) is real.
By (51), (53) and (54), V (t) ∈ Σ∗ if and only if V−n = Vn, and

V−ne
−int + Vne

int =
[
Re {an}
Im {bn}

]
cosnt+

[
Im {an}
Re {bn}

]
sinnt.

Now Σ∗ is the orthogonal direct sum

Σ∗ = ∆⊕∆⊥,

of series even/odd and odd/even in w/v, respectively. That is,

∆ = ⊕+∞
n=0∆n,

and
∆⊥ = ⊕+∞

n=0∆
⊥
n ,

where

∆n =
{
V (t) =

[
an cosnt
bn sinnt

]
: an, bn ∈ R

}
,

and

∆⊥
n =

{
V (t) =

[
cn sinnt
dn cosnt

]
: cn, dn ∈ R

}
.

The following corollary is now a direct consequence of Theorem 9.

Corollary 11. The functions Va(t) ∈ ∆1 and Vb(t) ∈ ∆⊥
1 are, to within a

factor, are the only two real solutions of (47) in ∆1 and ∆⊥
1 , respectively.

We now refer back to Figures 2 and 3, which are now exact descriptions
of the solutions Va(t) of the eigenvalue problem (47) and the corresponding
solutions of the PDE (46). That is, Va(t) as a curve is precisely the U̇ ellipse,
and the other ellipses are the curves corresponding to the linear evolutions
and jumps of Va. Moreover, in the non-dimensional version of Figure 2,
all characteristics would have slope ±1, and so the characteristic diagram
would be exact. We note that Figure 2 has an extra symmetry in that
the max/min-characteristics return. A characteristic diagram in which this
does not happen is given in Figure 9 below.

Since the real solutions Va and Vb differ by a phase shift, and the PDEs
(46) have no explicit t-dependence, these are essentially the same solution.
That is, the PDEs have a phase translation symmetry, and any solution
generates another by a fixed phase shift. We remove the effects of this
phase symmetry by observing that the nonlinear PDEs (29) are invariant
under the mapping

w(y, t) → w(y,−t) and v(y, t) → −v(y,−t),
which also preserves the space ∆ = ⊕∆n.

Lemma 12. If V (t) = (w(t), v(t)) ∈ ∆ is 2π-periodic, sufficiently smooth
and sufficiently small, then both M [V (·)] (t) and N [V (·)] (t) are well defined
smooth functions, and

M [V (·)] ∈ ∆, and N [V (·)] ∈ ∆. (86)
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Proof. By the regularity of smooth solutions for the 2 × 2 systems of con-
servation laws (29), and (46), together with the fact that J and S are
linear operators, it follows that M [V (·)] (t) and N [V (·)] (t) are well defined
functions in Ck or Hs for V (t) sufficiently small in Ck or Hs, respectively,
s, k ≥ 2, (c.f. [17], Theorem 2.2, page 46). Thus to verify (86), it suf-
fices to show that for such V (t) = V (0, t) in the domain of M and N , if
V (y, t) = (w(y, t), v(y, t)) is even in w and odd in v at y = 0, then it is even
in w and odd in v for all 0 ≤ y ≤ θ + θ, where

V (y, t) =


E(y)V (·), 0 < y < θ,

E(y − θ)J E(θ)V (·), θ < y < θ + θ,

SJ −1E(θ)J E(θ)V (·), y = θ + θ.

(87)

But the property even in w odd in v is clearly preserved by operators J ,
J −1 and S, so it suffices to show that even in w odd in v is preserved by the
nonlinear evolution E of system (29). Since solutions of (29) are invariant
under the mapping w(y, t) → w(y,−t) and v(y, t) → −v(y,−t), we can
extend a solution V (y, t) from t ≥ 0 to t ≤ 0 by the reflection

V (y,−t) = (w(t),−v(t)).

By the uniqueness of continuous solutions for smooth initial data, we need
only show that the matched solution is continuous at t = 0 to conclude it is
unique, and hence even in w odd in v by construction. Continuity in w at
t = 0 is guaranteed by w(t) = w(−t). For continuity of v at t = 0, we need
to show that v(y, 0) = 0 for all 0 ≤ y ≤ θ + θ. For this the only real issue
is to show that the nonlinear evolution (29) preserves v(y, 0) = 0. To verify
this, transform (29) to Riemann invariant coordinates r = v−w, s = v+w,
leading to the equivalent system

ry − σrt = 0,
sy + σst = 0.

It follows that r, s are constant along characteristics dt/dy = −σ, dt/dy = σ,
respectively. Tracing the characteristics back from point (w(y, 0), v(y, 0) to
points (w(0,±t), v(0,±t)) and using even in w odd in v at y = 0 gives

v(y, 0) + w(y, 0) = −v(0, t) + w(0, t),

v(y, 0)− w(y, 0) = v(0, t)− w(0, t),

which upon adding leads to v(y, 0) = 0 as claimed.

We now clarify the representation of the linear operator M−I in the real
Hilbert space ∆. To set notation, as the real counterpart of (56), for n ≥ 0
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we define the real representation T ∗n : R2 → ∆n by

T ∗n
[
a
b

]
=

1
2

{
Tn
[
a
b

]
+ T−nH

[
a
b

]}
≡
[
a cos(nt)
b sin(nt)

]
, (88)

where H denotes the matrix

H =
(

1 0
0 −1

)
.

We now have the following real analog of Theorem 6:

Lemma 13. The linear operator M restricted to ∆ has the orthogonal rep-
resentation

M = ⊕∞n=0Mn,

where
Mn : ∆n → ∆n,

is given by

Mn

(
T ∗n
[
an
bn

])
= T ∗n

(
Mn

[
an
bn

])
,

where, as in (63), (64) and (65), Mn is the 2× 2 real matrix

Mn = (−1)nD−1R(nθ)DR(nθ) = (−1)nM(nθ, nθ, J).

Proof. First, note that H commutes with D, and

R(−θ) H = H R(θ)

for all angles θ, which yields the matrix identity

M−n H = H Mn.

Then for n ≥ 0 and any real an, bn, by (88) and Theorem 6, we have

M
(
T ∗n
[
an
bn

])
= M

(
1
2

{
Tn
[
a
b

]
+ T−nH

[
a
b

]})
=

1
2

{
TnMn

[
a
b

]
+ T−nM−nH

[
a
b

]}
=

1
2

{
TnMn

[
a
b

]
+ T−nHMn

[
a
b

]}
= T ∗n

(
Mn

[
a
b

])
,

as required.

We summarize the results in the following theorem:
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Theorem 14. The operator M−I : ∆ → ∆ has the decomposition

M−I = ⊕∞n=0(Mn − I),

where Mn − I : ∆n → ∆n acts by

(Mn − I)(T ∗n pn) = T ∗n [(Mn − I)pn] .

Moreover, if
J > 1, θ > 0, θ > 0 (89)

and
θ + θ < π, (90)

then V (t) is a solution of (M−I)[V ] = 0 if and only if

J = cot(θ/2) cot(θ/2),

c.f. (75), and

V (t) = Va(t) ≡
[

cos(θ/2) cos(t)
− sin(θ/2) sin(t)

]
, (91)

c.f. (85).

From here on out we restrict to the real L2 space ∆ of functions even in
w, odd in v, and to the linearized operator

M−I : ∆ → ∆,

under the assumptions (89), (90). Our purpose in the next two sections is to
analyze the spectrum of M−I with the aim of finding conditions on (θ, θ)
sufficient to isolate the solution Va(t) in the kernel of M−I, the condition
required for a Liapunov-Schmidt decomposition.

5. Wave Structure of the Linearized Solutions

In this section we reconstruct and discuss the linear periodic solution asso-
ciated with Va(t) defined in (91) of Theorem 14. Since (M−I)[Va](·) = 0,
we can use (48) and (43), together with the fact that L is the lineariza-
tion of E about the constant state (1, 0), to obtain the linearized solution
Va(y, t) = (wa(y, t), va(y, t)) in dimensionless state variables (w, v), dimen-
sionless space variable y, and dimensionless periods (θ, θ), c.f. (25), (26),
(45), (87) and Theorem 2:

Va(y, ·) ≡M(y)[Va(·)] ≡


L(y)[Va(·)], 0 ≤ y < θ,

L(y − θ) J L(θ)[Va(·)], 0 < y − θ < θ,

S J −1 L(θ) J L(θ)[Va(·)], y = θ + θ.

The condition (M−I)[Va](·) = 0 implies that Va(y, t) is 2π-periodic in time,
and (θ + θ)-periodic in space, after a π-time translation. Since S2 = I, it
follows that Va(y, t) is exactly (θ+ θ)-periodic, but the rectangle [0, θ+ θ)×
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[0, 2π) is a minimum spacetime-periodic tile with a period translation vector
X = (θ + θ)ey + π et. That is,

Va(y, t) = Va ((y, t) + X) . (92)

To obtain exact formulas for Va(y, t), recall that by (45), the linear evolution
L(y)[V (·)] is given by evolution through ”time” y by the linear system (46),

wy + vt = 0,
vy + wt = 0,

starting with initial data V (·). Now for 0 ≤ y < θ we have, (c.f. Theorem 9
and (88)),

Va(y, t)) =
[
wa(y, t)
va(y, t)

]
= L(y)

[
wa(0, t)
va(0, t)

]
= L(y)T ∗1 [q] = T ∗1 R(y)q,

where by (77)

q =
[

cos (θ/2)
− sin (θ/2)

]
= R(y)R

(
−θ

2

)[
1
0

]
,

so that

R(y)q = R

(
y − θ

2

)[
1
0

]
=
[

cos(y − θ/2)
sin(y − θ2)

]
.

Thus

Va(y, t) =
[

cos (y − θ/2) cos t
sin (y − θ/2) sin t

]
, 0 ≤ y < θ. (93)

Similarly, for θ ≤ y < θ + θ we have, (c.f. (78)),

Va(y, t)) = L(y − θ)T ∗1 [q̃] ,

where by (77)

q̃ = α R

(
−θ
2

)[
0
1

]
,

with

α = ‖q̃‖ =
cos
(
θ/2
)

sin (θ/2)
,

and we have used (75). Thus for θ ≤ y < θ + θ,

Va(y, t) = α T ∗1 R
(
y − θ

)
R

(
−θ
2

)[
0
1

]
= α T ∗1 R

(
y − θ − θ

2

)[
0
1

]
,

which yields

Va(y, t) =
cos
(
θ/2
)

sin (θ/2)

 − sin
(
y − θ − θ

2

)
cos t

sin
(
y − θ − θ

2

)
sin t

 , θ ≤ y < θ + θ. (94)
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Letting
VΘ(y, t) = sin(θ/2)Va(y, t),

we obtain from (93) and (94) a closed form expression for a linearized peri-
odic solution of the compressible Euler equations with spatial periods θ, θ.
We summarize these results in the following theorem:

Theorem 15. For each choice of positive periods 0 < θ+θ < π, the following
closed form expression defines a linearized periodic solution V (y, t) of the
compressible Euler equations in dimensionless variables w, v, y, θ:

VΘ(y, t) =


sin (θ/2)

[
cos (y − θ/2) cos t
sin (y − θ/2) sin t

]
, 0 ≤ y < θ.

cos
(
θ/2
) − sin

(
y − θ − θ

2

)
cos t

sin
(
y − θ − θ

2

)
sin t

 , θ ≤ y < θ + θ.

(95)

Here, the (y, t)-region [0, θ+θ)×[0, 2π) defines one spacetime period, and the
entire solution is obtained by mapping the solution in the period [0, θ+ θ)×
[0, 2π) to the (y, t)-plane via translation (92). In particular, the Rankine-
Hugoniot jump conditions hold at the entropy jumps y = θ and y = θ + θ,
and the resulting solution has the property that nearby nonlinear solutions
formally balance compression and rarefaction along characteristics in the
sense of [25].

Using the transformations (10) and (23)-(33) we obtain the following the-
orem regarding linearized periodic solutions of the dimensional compressible
Euler equations:

Theorem 16. For each base state (τ , v, S) and adiabatic constant γ, for-
mula (95) for VΘ determines a two parameter family of linearized periodic
solutions of the compressible Euler equations determined by Θ = (θ, θ),
0 < θ + θ.

Proof. The states (τ , u, S) uniquely determine corresponding state (z, u,m)
through relations (10). This in turn gives the upper and lower bar constant
states associated with dimensional solutions in the following order: (12)
gives

c = Kc m z
γ+1
γ−1 ,

(12) together with θ gives
x = c θ.

Using (36) and the value θ gives

J = cot
(
θ

2

)
cot
(
θ

2

)
≡
(
m

m

)1/γ

.
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x

t

Figure 9. The dimensionless linearized periodic solution
VΘ(y, t) showing incommensurability

From these values we can get the remaining values of the dimensional so-
lution via the transformations to dimensionless variables (23)-(33). That
is,

z = z

(
m

m

)1−1/γ

,

and

c = Kc m z
γ+1
γ−1 ,

and finally
x = c θ.
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Using these states, we obtain a unique dimensional solution from VΘ in the
region 0 ≤ y ≤ θ by the transformations

z = zw, v =
u− u

mz
, x = cy,

and in the region θ ≤ y ≤ θ + θ by the transformation

z = z w, v =
u− u

m z
, and x = x+ c (y − θ).

After making the above substitutions into the RHS of the formula for VΘ

in (95), we obtain one period of the dimensional periodic linearized solution
UΘ(x, t) defined for (x, t) ∈ [0, x + x) × [0, 2π). For example, by construc-
tion this solution will satisfy the Rankine-Hugoniot relations at the entropy
jumps x = x and x = 0, x+ x, and hence at every entropy jump by period-
icity.

The linearized solution UΘ(x, t) in dimensional variables is depicted in
Figures 2 and 3, in the case θ = θ = π/4. Note that the solution is describes
by an ellipse in t at each fixed x, and note that this is the maximally symmet-
ric case in which the sound speed is commensurate with the period speed,
and each characteristic returns periodically after traversing eight entropy
levels, (that is, two spatial periods). The states labeled in the characteristic
diagram, Fig. 2 in the (x, t)-plane correspond to the labeled states on the
ellipses in state space, Figure 3.

In Figure 9, the characteristics of the dimensionless solution VΘ in (y, t)-
space are depicted for the case θ = π/(1 +

√
5), θ = π/

√
7, a case in which

the sound speed is incommensurate, i.e., irrationally related to, the speed
of the period. In this case the characteristics are quasi-periodic, and the
balancing of rarefaction and compression along characteristics is achieved
by ergodic motion through the period.

6. The Eigenvalues of the Linearized Operators

In this section we state and prove some basic properties of the eigenvalues
of the linearized operator M−I : ∆ → ∆, c.f. (48), (70). These properties
will be used in the next section to obtain conditions on the periods under
which the linearized operator is non-resonant in the sense that the operator
is invertible on the orthogonal complement of the 1-mode solution Va that
we have constructed in the kernel of the operator, c.f. (85). For example,
in the non-resonant case, the operator is amenable to a Liapunov-Schmidt
decomposition in bifurcation theory, [7].

To start, note that by Theorem 8 the eigenvalues of M(nθ, nθ, J) are

λ±n = βn ±
√
β2
n − 1, (96)

where
βn ≡ βn(θ, θ) = β(nθ, nθ),
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and the function β is defined by

β(θ1, θ2) = cos(θ1) cos(θ2)−
J2 + 1

2J
sin(θ1) sin(θ2), (97)

and we can assume 0 < θ1, θ2 < 2π. Thus

βn = cos(nθ) cos(nθ)− J2 + 1
2J

sin(nθ) sin(nθ), (98)

where θ, θ and J ≥ 1 are parameters. In (74) we restricted to 0 ≤ θ+θ ≤ π,
which we now view as fixed, but because, starting with such Θ = (θ, θ),
the 2-D angle nΘ = (nθ, nθ) goes out of this range, we must consider one
full period 0 ≤ θ1, θ2 ≤ 2π of β(θ1, θ2), with J > 1 regarded as fixed. It is
convenient to work directly with βn, rather than λ±n , and we will make use
of the following lemma.

Lemma 17. Let β ∈ R. Then

|β − 1±
√
β2 − 1| ≥

√
|β − 1|√
|β|+ 1

, (99)

and

|β + 1±
√
β2 − 1| ≥

√
|β + 1|√
|β|+ 1

. (100)

Proof. First note that (100) follows from (99) by substituting −β for β. To
verify (99), write

|β − 1±
√
β2 − 1| =

∣∣∣√β − 1±
√
β + 1

∣∣∣√|β − 1|,

where we allow complex values of the square root. It suffices to show that

C±(β) ≡
∣∣∣√β − 1±

√
β + 1

∣∣∣ ≥ 1√
|β|+ 1

holds for all β ∈ R. But if 1 ≤ β <∞, then we can estimate

C±(β) =
∣∣∣√β + 1∓

√
β − 1

∣∣∣ ≥ ∣∣∣√β + 1−
√
β − 1

∣∣∣
=

(
√
β + 1−

√
β − 1) (

√
β + 1 +

√
β − 1)√

β + 1 +
√
β − 1

=
2√

β + 1 +
√
β − 1

≥ 2√
β + 1 +

√
β + 1

≥ 1√
|β|+ 1

,

as claimed. For the case −∞ < β ≤ −1, we have

C±(β) =
∣∣∣√β + 1∓

√
β − 1

∣∣∣ ,
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where
√
β + 1 = i

√
|β| − 1 and

√
β − 1 = i

√
|β|+ 1 are both imaginary. In

this case we can estimate

C±(β) =
∣∣∣√|β| − 1±

√
|β|+ 1

∣∣∣
≥
∣∣∣√|β| − 1−

√
|β|+ 1

∣∣∣
≥ 1√

|β|+ 1
,

where in the last line we have applied the result from the previous case.
Consider finally the case −1 < β < 1. In this case,

√
β + 1 > 0 and√

β − 1 = i
√

1− β, so∣∣∣√β − 1±
√
β + 1

∣∣∣ = ∣∣∣√β + 1± i
√

1− β
∣∣∣

=
∣∣∣√(β + 1) + (1− β)

∣∣∣ = √
2

≥ 1√
|β|+ 1

,

as claimed, thus establishing (99) and the Lemma.

To address the resonance problem in the next section, we now define a
convenient change of angles that consolidates the functions βn ± 1 into a
single function. That is, let

φ =
π − θ + θ

2
,

ψ =
π − θ − θ

2
, (101)

so that (θ, θ) → (φ, ψ) defines a global regular invertible map from R2 → R2

with inverse
θ = φ− ψ, θ = π − ψ − φ.

Note that this change of angles transforms our region of interest,

θ > 0, θ > 0, θ + θ < π,

into the region
0 < ψ < φ < π − ψ.

Define also

Q =
J − 1
J + 1

, (102)

mapping J > 1 into 0 < Q < 1 with inverse

J =
1 +Q

1−Q
. (103)

The purpose of these changes of variables is evident in the following lemma:
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Lemma 18. Under the change of variables (101)–(102), for each n ∈ N,
we have

1− (−1)n βn(θ, θ) =
2

1−Q2
gQ(nφ, nψ),

where
gQ(φ, ψ) ≡ sin2(ψ)−Q2 sin2(φ). (104)

Proof. We make repeated use of trigonometric identities. First set

β(θ1, θ2) = cos(θ1) cos(θ2)−
1
2

(
J +

1
J

)
sin(θ1) sin(θ2),

so that βn = β(nθ, nθ), and use the abbreviations

c1 = cos(θ1/2), s1 = sin(θ1/2), c2 = cos(θ2/2), and s2 = sin(θ2/2).

Then using the double-angle formulas, we calculate

1 + β(θ1, θ2) = 1 + cos θ1 cos θ2 − J2+1
2J sin θ1 sin θ2

= (c12 + s1
2) (c22 + s2

2) + (c12 − s1
2) (c22 − s2

2)

− J2+1
2J (2 s1 c1)(2 s2 c2)

= 2 (c1 c2 − J s1 s2) (c1 c2 − s1 s2/J) .

Thus, writing

c+ = cos
(
θ1
2

+
θ2
2

)
and c− = cos

(
θ1
2
− θ2

2

)
,

so that c1 c2 = (c− + c+)/2 and s1 s2 = (c−− c+)/2, and substituting in, we
get, after rearranging,

1 + β(θ1, θ2) = (J+1)2

2 J

(
c+ − J−1

J+1 c−

) (
c+ + J−1

J+1 c−

)
. (105)

Similarly, writing

s+ = sin
(
θ1
2

+
θ2
2

)
and s− = sin

(
θ1
2
− θ2

2

)
,

we calculate

1− β(θ1, θ2) = 2 (s1 c2 + J c1 s2) (s1 c2 + c1 s2/J)

= (J+1)2

2 J

(
s+ − J−1

J+1 s−

) (
s+ + J−1

J+1 s−

)
. (106)

Now, making the substitution (102), (103) and using (104), (106) becomes

1− β(θ1, θ2) =
2

1−Q2
gQ

(
θ1
2
− θ2

2
,
θ1
2

+
θ2
2

)
, (107)

and, using the identity cos(x) = − sin(x− π/2), (105) becomes

1 + β(θ1, θ2) =
2

1−Q2
gQ

(
θ1
2
− θ2

2
− π

2
,
θ1
2

+
θ2
2
− π

2

)
. (108)
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Finally, recall βn = β(nθ1, nθ2) and we are calculating 1−(−1)n βn. Then
for n even, we can use (107) to get

1− (−1)n βn =
2

1−Q2
gQ

(
nθ1
2
− nθ2

2
,
nθ1
2

+
nθ2
2

)
=

2
1−Q2

gQ

(
nθ1
2
− nθ2

2
− nπ

2
,
nθ1
2

+
nθ2
2
− nπ

2

)
=

2
1−Q2

gQ(nφ, nψ),

where we have used (101) and the fact that gQ is even and periodic with
period π. Similarly, for n odd, (108) gives the same result, and the lemma
is proved.

7. Resonances and Small Divisors

To obtain periodic solutions of a nonlinear problem by perturbation from
a known solution of a linearized problem by bifurcation methods, a major
step is to show that the linearized operator is invertible on the orthogonal
complement of the known solution. For example, this implies that the bifur-
cation problem is amenable to a Liapunov-Schmidt decomposition, c.f. [7].
Assuming (89), (90) of Theorem 14, we look for further conditions on the
period Θ = (θ, θ) such that the operator M− I : ∆ → ∆ is non-resonant
in the sense that it is invertible on the complement of the solution Va ∈ ∆.
That is, in light of (70), (67), we seek parameter values Θ such that

λ±1 = −1, and λ±n 6= (−1)n (109)

for each n ≥ 2, where λ±n are given by (96). The equality here is a solv-
ability condition for the linearized problem, while the inequalities represent
an incommensurability or non-resonance condition imposing restrictions on
allowable values of θ and θ.

From (98), for finite J > 1 we have

|βn| ≤ 1 +
J2 + 1

2J
=

(J + 1)2

2J
, (110)

so that, since βn is bounded, we can bound λ±n − (−1)n away from zero by
bounding βn away from (−1)n. Thus the parameters θ, θ and J , for which
(75) holds, are non-resonant provided that

βn 6= (−1)n for each n ≥ 2,

where βn is given by (98)6.
In light of (101), the nonresonance condition (109) is recast in terms of

the parameters φ, ψ and Q by the requirement that gQ(φ, ψ) = 0, together

6Geometrically, the parameters will be resonant if the angles between states q drawn
in Figures 7 and 8 are rational multiples of θ and θ mod π, respectively. In this case, the
matrix Mn would have an eigenvalue of ±1 and we would not expect the n-th mode to
perturb to a solution of the nonlinear problem.
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with the condition that gQ(nφ, nψ) 6= 0 for all n ≥ 2. In fact, we have the
following lower bound:

Lemma 19. For each n ≥ 2, we have

|λ±n − (−1)n| ≥
√
|gQ(nφ, nψ)|. (111)

Proof. First, we use (103) in (110) to get

|βn|+ 1 ≤ (J + 1)2

2J
+ 1 =

2
1−Q2

+ 1 =
3−Q2

1−Q2
,

and now, referring to (70) and Lemmas 17 and 18, we get

|λ±n − (−1)n| ≥
√
|1− (−1)n βn|√

1 + |βn|

≥
√

2
1−Q2

gQ(nφ, nψ)

√
1−Q2

3−Q2

≥
√
|gQ(nφ, nψ)|,

since 0 < Q < 1 implies 3−Q2 ≤ 2.

In order that the solution be periodic at the linear level, we require that
λ±1 = −1, or equivalently

gQ(φ, ψ) = sin2 ψ −Q2 sin2 φ = 0, (112)

with
0 < ψ < φ < π − ψ and 0 < Q < 1.

Note that this equation, which is equivalent to (75), can be regarded as
fixing one parameter in terms of the other two.

The next lemma and its corollary, Theorem 21, state that the set of
resonant parameters has measure zero:

Lemma 20. Almost every pair (φ, ψ) satisfying 0 < ψ < φ < π − ψ is
nonresonant. That is, if we define Q by (113), then the set

H = { (φ, ψ) : ∃n > 1 s.t. gQ(nφ, nψ) = 0 }
has Lebesgue measure zero.

As a direct corollary we have:

Theorem 21. Let

E ≡
{
Θ = (θ, θ) : θ, θ > 0, 0 < θ + θ < π

}
.

Then there exists a set of full measure E∗ ⊂ E such that, if Θ ∈ E∗, then Θ
is non-resonant in the sense that if J is given in terms of Θ by (75), then
the eigenvalues λ±n − (−1)n of the linearized operator M− I are nonzero for
all n ≥ 2.
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Proof of Lemma 20: To start, eliminate Q from (112) to get

Q ≡ Q(φ, ψ) =
sinψ
sinφ

, (113)

and plug this into gQ to get for n > 1,

gQ(nφ, nψ) = sin2(nψ)−
(

sinψ
sinφ

)2

sin2(nφ)

= sin2 ψ

(
sin2(nψ)
sin2 ψ

− sin2(nφ)
sin2 φ

)
.

Now recall that the Chebyshev polynomials of the second kind are defined
by

Sm(x) =
sin(m+ 1)θ

sin θ
where x = cos θ, (114)

these being polynomials of degreem with (distinct) roots in the unit interval.
Thus defining xφ = cosφ and xψ = cosψ, we have for n > 1,

gQ(nφ, nψ) = sin2 ψ (S2
n−1(xψ)− S2

n−1(xφ)).

We conclude that the pair (φ, ψ) is resonant if and only if

S2
n−1(xψ) = S2

n−1(xφ) for some n > 1. (115)

Now for any fixed φ and m, there are at most 2m values of x such that S2
m(x)

takes on the value S2
m(xφ), i.e. at most 2m angles ψ such that gQ(mφ,mψ)

vanishes. Varying m, there are countably many angles ψ that are resonant
with φ. Thus for fixed φ, there is a countable (and thus measure zero) set
of ψ resonant with it. Now, if H is the resonant set and χ its characteristic
function, then, by Fubini’s theorem,

µ(H) =
∫ π/2

0

∫ π−ψ

ψ
χ dφ dψ

=
∫ π/2

0

∫ φ

0
χ dψ dφ+

∫ π

π/2

∫ π−φ

0
χ dψ dφ

= 0.

This directly implies Lemma 20 and Theorem 21.

We now impose a further symmetry and, under this restriction, obtain
explicit bounds for gQ(nφ, nψ). Since 0 < ψ < φ < π − ψ, we get the
largest range of ψ by taking φ ≡ π/2. According to (101), this corresponds
to taking θ = θ, so the length of the evolutions at the different entropy
levels are the same. The following theorem gives algebraic decay rates for
the small divisors in the symmetric case φ ≡ π/2, θ = θ:

Theorem 22. Assume that

φ = π/2, θ = θ. (116)
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Then for almost every ψ ∈ (0, π/2), there is a positive constant C ′ and
exponent r ≥ 1 such that the eigenvalues satisfy the estimate

|λ±n − (−1)n| ≥ C ′

nr
(117)

for all n ≥ 2. In particular, if ψ/π is the irrational root of a quadratic
equation, we can take r = 1.

Proof. Using assumption (116), (113) implies

Q = sinψ.

To verify (117) we need to bound the function

Gn(ψ) ≡ gQ(nπ2 , nψ) = sin2(nψ)− sin2 ψ sin2(nπ2 ).

Now for n even, say n = 2k, we have

G2k(ψ) = sin2(2kψ), (118)

and for n odd,
G2k+1(ψ) = sin2((2k + 1)ψ)− sin2 ψ.

We can simplify these by trigonometric identities by writing

G2k+1(ψ) = (sin(2kψ) cosψ + cos(2kψ) sinψ)2 − sin2 ψ

= sin2(2kψ) (cos2 ψ − sin2 ψ) + 2 sin(2kψ) cos(2kψ) sinψ cosψ

= sin(2kψ) (sin(2kψ) cos(2ψ) + cos(2kψ) sin(2ψ))

= sin(2kψ) sin(2(k + 1)ψ). (119)

Thus, if we can find some ψ ∈ (0, π/2), exponent r ≥ 1 and positive constant
C > 0 such that

| sin(nψ)| > C

nr
(120)

for each even n > 1, then for n odd we also have

|Gn(ψ)| = | sin(n− 1)ψ sin(n+ 1)ψ| > C2

(n− 1)r(n+ 1)r
>
C2

n2r
.

It follows from (111) that, for such ψ and each n > 1,

|λ±n − (−1)n| ≥
√
|Gn(ψ)| > C

nr
.

Thus it remains only to determine the angles ψ such that the lower bound
(120) holds. To this end, note that for x ∈ [−π/2, π/2], we have

| sinx| ≥ 2|x|
π
,

and thus also, if x−mπ ∈ [−π/2, π/2],

| sinx| = | sin(x−mπ)| ≥ 2|x−mπ|
π

≥ 2 dist(x/π,Z). (121)
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Recall that a Liouville number is a number ξ ∈ R which is close to a rational,
in the sense that for any integer r, we can find a rational p/q such that

|ξ − p

q
| < 1

qr
,

see, e.g. [13]. These form a set of measure zero, and in particular, Liouville’s
Theorem states that if ξ is the irrational root of a rational polynomial of
degree r′, then there is some constant C > 0 such that

|ξ − p

q
| > C

qr′
, (122)

for all rationals p/q. In particular, if ξ is the irrational root of a quadratic
equation, we can take r′ = 2.

Now, if ξ = ψ/π is not a Liouville number, then there are C = C(ψ) > 0,
r′ ≥ 2 such that (122) holds for all rationals p/q, and in particular, taking
q = n, we get

|nψ
π
− p| ≥ C

nr′−1

for all integers p, so that

dist(
nψ

π
,Z) ≥ C

nr′−1
.

Combining this with (121), (120) follows and the proof of Theorem 22 is
complete.

In the symmetric case φ = π
2 or θ = θ, it follows from (118), (119) that

the solution is resonant if and only if ψ/π ∈ Q, or equivalently θ/π ∈ Q. We
relate this observation to the effective wavespeed of solutions in the following
corollary:

Theorem 23. Characteristics return if and only if the group velocity, or
speed of wave crests, is rational. Moreover, in the symmetric case θ = θ,
the linearized solution is resonant if and only if the period is commensurate
with the sound speed, i.e. if the characteristics return.

Proof. In the nondimensional system, the characteristic (phase) velocity and
effective (group) velocity are given by

cp = 1 and cg =
θ + θ

π
, (123)

respectively, (44). Thus, the (continued) forward characteristic through the
point (y0, t0) is the line (y, t0 + y − y0). Since the solution is periodic with
period 2 (θ + θ) in space and 2π in time, this characteristic returns if and
only if

(y, t0 + y − y0) = (y0, t0) + (2 p (θ + θ), 2 q π),
for some integers p and q. This holds iff

y − y0 = 2 p (θ + θ) = 2 q π,
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or, using (123), iff cg ∈ Q. By symmetry, the backward characteristics
satisfy the same conditions. Also note that one characteristic returns if and
only if all characteristics do so.

In the symmetric case θ = θ ≡ θ, if θ is a rational multiple of π, say

θ =
p

q

π

2
so that ψ =

q − p

q

π

2
,

and, according to (118) and (119), we get

G2q(ψ) = G2q+1(ψ) = G2q−1(ψ) = 0,

so that these modes are resonant. It is interesting to note that these reso-
nances always occur in triples of consecutive modes. Indeed, even if q is odd,
it is not the q-th mode that is resonant, but the 2 q-th mode. Conversely, if
θ is irrationally related to π, then Gk(ψ) 6= 0 for all k > 1, and the solution
is nonresonant.

Referring back to Figure 2, we see that the characteristic pattern as drawn
is resonant, because the max/min characteristics return after four space
periods, corresponding to the special parameter values

θ = θ = π/4.

On the other hand, the characteristic diagram shown in Figure 9 is non-
resonant, and we see that characteristics move ergodically around a period,
with no characteristic returning to itself.

Finally, we note that in the non-symmetric case, we have

ψ =
π

2
(1− cg),

and it is quite possible to have cg ∈ Q and still be nonresonant, provided
that φ is an irrational multiple of π. For example, we could take ψ = π/3,
so cg = 1/3. It follows that

sin(nψ)
sinψ

= 0, 1 or − 1

for each n, and by (115), our nonresonance condition becomes

Sn−1(xφ) 6= 0 or ± 1,

or equivalently

sin(nφ) 6= ± sinφ or 0.

Noting that sin(nφ) = Im{ei n φ}, it follows that this nonresonance condition
holds if φ is an irrational multiple of π.
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7.1. A Simulation of Small Divisors in the Non-symmetric Case.
In this subsection we address the small divisor issue in the non-symmetric
case with a numerical simulation. To start, the next lemma characterizes
the zero set of βn(θ, θ)− (−1)n in the general (non-symmetric) case:

Lemma 24. We have

gQ(φ, ψ) = 0 if and only if ψ = ±hQ(φ), (124)

where

hQ(φ) = arcsin(Q sin(φ)). (125)

Proof. This follows directly from (104).

It is clear from (104) that for each for 0 < Q < 1, gQ is smooth, even and
periodic with period π in both φ and ψ, while by (125), hQ is smooth, odd,
2π periodic and

gQ(φ, hQ(φ)) = 0

for all φ. Thus in these coordinates, the parameters φ and Q are nonresonant
provided that, for each n ≥ 2, we have

gQ(nφ, nψ) 6= 0, where ψ = hQ(φ).

Now since gQ has period π in φ and ψ, let Θ = (φ, ψ) ∈ T, where

T = S1 × S1

is two copies of the circle S1 of radius π/2,

S1 =
{
θ : θ ∈

[
−π

2
,
π

2

)
mod π

}
,

and define

g(Θ, Q) = gQ(Θ),

so that

g : T× (0, 1) → [0, 1].

For the numerical simulation, let A0(Q) denote the zero set of g at fixed
Q, so that

A0(Q) =
{

Θ ∈ T : g(Θ, Q) = 0
}
,

so that by (124)

A0(Q) = {Θ = (φ, ψ) : ψ = ±hQ(φ)} .
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We now identify the salient properties of the zero sets A0(Q). Differenti-
ating hQ(φ) = arcsin(Q sinφ) gives

h′Q(φ) =
Q cosφ√

1−Q2 sin2 φ
,

h′′Q(φ) = −Q(1−Q2) sinφ√
1−Q2 sin2 φ

, and (126)

∂

∂Q
hQ(φ) =

sinφ√
1−Q2 sin2 φ

.

Thus the function ψ = hQ(φ) is an odd, increasing function for −π
2 < φ < π

2 ,
and takes the values ψ = ± arcsinQ at φ = ±π

2 ; and for each Q ∈ (0, 1), hQ
takes φ > 0 to ψ > 0 and φ < 0 to ψ < 0, while −hQ takes φ > 0 to ψ < 0
and φ < 0 to ψ > 0, It follows from (126) that hQ(φ) = arcsin(Q sinφ)
continues smoothly to the curve hQ(φ) = − arcsin(Q sinφ) at φ = ±π/2.
We record the salient properties of A0(Q) in the following lemma:

φ

ψ

−π/2

−π/2

π/2

π/2

Figure 10. The set E0 consisting of the curves ψ = ±hQ(φ),
0 < Q < 1
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Lemma 25. The zero set A0(Q) in T consists of the union of two smooth
curves

A0(Q) = (φ, hQ(φ)) ∪ (φ,−hQ(φ)), −π/2 ≤ φ < π/2,

which is symmetric about the origin, and intersects itself only at the unique
point (0, 0). Moreover, the curve A0(Q) is monotone in Q, and monotone
and convex in φ, in each quadrant of T; and the length L(Q) of the curve
A0(Q) satisfies the uniform bound

L(Q) ≤ 2π + 4 arcsinQ ≤ 4π. (127)

Proof. These properties follow directly from (125) and (126). In particular,
for the estimate (127), use

L(Q) ≤ 4
∫ π/2

0

√
1 +

∣∣∣h′Q(φ)
∣∣∣2dφ ≤ 4

∫ π/2

0

(
1 + h′Q(φ)

)
dφ

≤ 2π + 4hQ(π/2) = 2π + 4 arcsinQ ≤ 4π.

The curves ψ = ±hQ(φ) that define the resonance sets A0(Q) are drawn
in Figure 10 for values of Q ranging from 0 < Q < 1. Figure 11 shows this
zero set for the special parameter values Q = 3/4, Θ =

(
π

1+
√

5
, hΘ( π

1+
√

5
)
)
.

It follows directly from Theorem 21 that Θ is almost always non-resonant.
For the purposes of this section, we record this in the following lemma:

Lemma 26. There exists a set of full measure E1 ⊂ T,

µ {E1} = π2/2, (128)

such that, if Θ ∈ E1, then Q(Θ) ∈ (0, 1) is uniquely solvable by (112), and
Θ is non-resonant in the sense that

g(Θ, Q(Θ)) = 0,

g(nΘ, Q(Θ)) 6= 0, n ≥ 2.

Proof. By Lemma 25 that for Q, Q′ ∈ (0, 1), Q 6= Q′,

A0(Q) ∩A0(Q′) = {(0, 0)} .

It therefore follows that for each Θ 6= (0, 0) there corresponds a unique value
Q(Θ) ∈ (0, 1) such that

Θ = (φ,−hQ(φ)) or Θ = (φ, hQ(φ)).

Solving for Q in the expression gQ(φ, ψ) = sin2 ψ −Q2 sin2 φ = 0 gives

Q(Θ) =

√
sin2 ψ

sin2 φ
=
∣∣∣∣sinψsinφ

∣∣∣∣ ,
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for φ 6= 0, where we take the positive square root to get Q > 0. Since Q < 1,
we require 0 < | sinψ| < | sinφ|. Thus the full measure of E1 follows directly
from Theorem 21, and (128) then follows from

µ {E1} = µ {Θ = (φ, ψ) ∈ T : 0 < |ψ| < |φ|} = π2/2.

To get a sense of the order of the small divisors for a typical non-resonant
Θ in the non-symmetric case θ 6= θ, we conclude with a discussion of Fig-
ure 11 which gives a numerical simulation of the first fifty iterates nΘ for
the special non-resonant value Θ =

(
π

1+
√

5
, hΘ( π

1+
√

5
)
)
, Q = 3/4. Non-

resonance implies the iterates avoid the zero eigenvalue set A0(Θ) drawn as
the four symmetric curves through the origin in the figure.
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Figure 11. The first n ≤ 50 iterates nΘ avoiding Aδ(Q),
for Q = 3/4 and Θ =

(
π

1+
√

5
, hQ

(
π

1+
√

5

))
.

The shaded region around A0(Θ) is a neighborhood around A0(Θ) such
that the n-th eigenvalue λn will be bounded by ε ≈ 0.05 from zero when
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the n-th iterate nΘ lies outside the shaded region. For these parameters, we
have

min{|λn| : 1 < n ≤ 50} = |λ4| ≈ 0.5019

Thus, for example, the plot in Figure 11 shows that the eigenvalues satisfy
the bound in the first fifty modes.

8. Conclusion

Our paper addresses the fundamental issue of why space-periodic solu-
tions of the full 3 × 3 nonlinear compressible Euler equations do not decay
by shock wave dissipation to the constant state average in each period. This
is in contrast to the celebrated work of Glimm and Lax for 2×2 systems [6],
in which all space-periodic solutions decay like 1/t. The present work ad-
dresses, quantitatively, issues raised by Rosales, et.al. [22, 28], in numerical
simulations that indicate the existence of some mechanism which allows for
non-decaying solutions, and thus allows for dissipation free transmission of
sound waves.

In our previous paper [27], we described the simplest physical mechanism
by which shock formation and subsequent decay of solutions can be pre-
vented. Simply stated, the presence of a varying entropy field leads to mul-
tiple reflections of simple waves, which can be aligned in a wave pattern in
which compression and rarefaction are balanced along characteristics. This
means that before any compression can form a shock, multiple interaction
effects cause the wave to become rarefactive.

In this paper we derive closed form expressions for linearized solutions that
realize the simplest possible wave pattern, identified in [27], that formally
balances compression and rarefaction along characteristics. The results thus
lend support to the claim that this wave pattern is also physically realized in
nearby exact solutions of the fully nonlinear equations. The claim is further
supported by the demonstration that for almost every period, the linearized
operator, (defined by the eigenvalue problem that expresses periodicity), is
non-resonant in the sense that it is invertible on the complement of a low-
dimensional kernel, with algebraic bounds on eigenvalues in certain special
symmetric cases.

These results establish a framework for a new small divisor problem in
bifurcation theory which, even without a formal mathematical proof, argue
strongly for the existence of nearby time-periodic nonlinear solutions that
have the same wave structure entailed by the linearized solutions. For ex-
ample, the bifurcation problem is of quasilinear type, and so is beyond the
direct application of known results, but similar problems have been resolved
in the semilinear setting with the same estimates on the divisors, and weaker
results on the structure of the kernel, c.f [2]. Moreover, our estimates on
the spectrum of the linearized operator imply the bifurcation problem is
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amenable to a Liapunov-Schmidt decomposition, an important first step in
the resolution of the general problem [7].7

In addition, these linearized time-periodic solutions have reasons to be
interesting in their own right, not the least of which is the discovery of new
phenomena when the sound speed is incommensurate with the period. That
is, the wave crests propagate at the speed of the period (group velocity),
not the sound speed (phase velocity), and these are irrationally related.
The consistency of this possibility at the linearized level comes naturally
out of the analysis, and indicates chaotic motion of sound wave trajectories
relative to the solution periods. This then identifies a new ergodic way in
which nearby nonlinear solutions can find a balance between compression
and rarefaction along characteristics. Interestingly, we then discover that the
operator is non-resonant only in case the wave speed is incommensurate with
the period. Thus, for example, if the resonances are not just anomalies of
the linearized problem, it suggests that this incommensurability is required
for perturbation to nonlinear solutions.

Finally, we make some comments regarding the physical significance of
these solutions. First, the importance of solutions of such special structure
to actual sound wave propagation in nature, and second the issue of the
stability of these waves. Our view is that these new time-periodic structures
are fundamental because they display in the simplest consistent example, the
mechanism by which dissipation free sound wave transmission is possible in
the compressible Euler equations. Thus they anchor a paradigm for a much
more general phenomenon, that of balancing compression and rarefaction
along characteristics. We expect the analysis can be extended tremendously,
(for example to arbitrary numbers of entropy jumps, and possibly the limit
to smooth entropy profiles), and that it might eventually even apply to
random entropy fields, which may be more relevant to actual physical sound
wave propagation.

Regarding the issue of stability, our view is that it is the phenomenon, (of
balancing compression and rarefaction along characteristics), that is stable,
rather than the very restrictive class of solutions considered here. That is,
under a space-periodic perturbation from a periodic solution, the balance
of compression and rarefaction along characteristics will be broken, and
the solution will evolve until a new balance is established. It is almost
certain that before this balance is achieved, some shock waves will form,
causing the entropy profile to evolve in time. It is our contention that the
nonlinear waves and entropy profile will continue to evolve in time, and
evolution will proceed until a new balance of compression and rarefaction
along characteristics is established. We expect this could be realized in some
periodic or quasi-periodic fashion, and that for non-constant entropy profiles,
it will be an extremely rare event that solutions will decay to a constant state

7The authors will development the Liapunov-Schmidt reduction and its implications
to this bifurcation problem in detail in a forthcoming paper [26], and its full resolution is
the topic of our ongoing research.
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average in each period, as happens in the isentropic case. Thus we believe
that the simplest way compression and rarefaction can be balanced along
characteristics is of fundamental interest, independent of the special nature
of solutions, or stability considerations. In fact, the connections between
unstable solutions, period-doubling and chaos in bifurcation theory lead us
to believe that unstable solutions in this setting could well provide a handle
on new and even more interesting chaotic evolution in the compressible
Euler equations. Thus our view is that these new linearized solutions open
the door to interesting new conjectures, and provide intuition and a starting
point for the discovery of new phenomena.
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