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Abstract. Following the authors’ earlier work in [9, 10], we show that
the nonlinear eigenvalue problem introduced in [10] can be recast in the
language of bifurcation theory as a perturbation of a linearized eigen-
value problem. Solutions of this nonlinear eigenvalue problem corre-
spond to time periodic solutions of the compressible Euler equations
that exhibit the simplest possible periodic structure identified in [9]. By
a Liapunov-Schmidt reduction we establish and refine the statement of a
new infinite dimensional KAM type small divisor problem in bifurcation
theory, whose solution will imply the existence of exact time-periodic
solutions of the compressible Euler equations. We then show that solu-
tions exist to within an arbitrarily high Fourier mode cutoff. The results
introduce a new small divisor problem of quasilinear type, and lend fur-
ther strong support for the claim that the time-periodic wave pattern
described at the linearized level in [10], is physically realized in nearby
exact solutions of the fully nonlinear compressible Euler equations.

1. Introduction

In [9] the authors derived a simplest possible periodic wave structure1

consistent with time-periodic sound wave propagation in the 3×3 nonlinear
compressible Euler equations. This wave structure requires at least three
coupled nonlinear equations to support it. The wave pattern was derived
by combinatorial considerations based on a classification of compressive and
rarefactive wave interactions at entropy jumps, using the starting princi-
ple that shock free periodic or quasi-periodic solutions of compressible Eu-
ler should balance compression and rarefaction along every characteristic
(sound wave). This starting work was followed by the authors’ work in
[10] in which we construct exact linearized solutions of Euler that exhibit
the wave structure identified in [9] for the nonlinear problem. For this we

Temple supported in part by NSF Applied Mathematics Grant Number DMS-040-6096.
Young supported in part by NSF Applied Mathematics Grant Number DMS-050-7884.

1We say that a periodic or quasi-periodic wave structure is possible, at a formal level,
if each characteristic (sound wave), traverses both regions of compression and rarefaction,
and that these are formally in balance. Whether such a possible formal wave structure
actually exists in a true periodic solution of Euler is then a deep mathematical question
as to whether the data can be tuned to bring compression and rarefaction precisely into
balance, so that shock wave formation is prevented.
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derived a nonlinear eigenvalue problem of the form

N [V ] = V, (1)

whose solutions correspond to nonlinear periodic solutions of the compress-
ible Euler equations having the simplest structure identified in [9]. The
nonlinear operator N consists of compositions of nonlinear spatial evolu-
tion, entropy jumps and shift operators, starting from time-periodic Cauchy
data posed at x = 0. These are non-commuting operators, constructed to
reproduce the periodic structure identified in [9]. Trivial solutions of (1)
consist of piecewise constant states separated by entropy jumps (contact
discontinuities). Linearizing around such solutions, we obtained a linearized
eigenvalue problem

M[V ] = V, (2)

whose solutions we expect will perturb to solutions of the nonlinear problem
because they encode the structure identified in [9]. The linearized operator
M is non-symmetric, and consists of the composition of five elementary lin-
ear operators that do not commute: a linear spatial evolution at the first
entropy level, followed by an entropy jump, followed by linear spatial evo-
lution at the second entropy level, followed by the inverse entropy jump,
followed by a half period shift. The combination of shifts and jumps en-
sures the mixing of compression and rarefaction along characteristics under
nonlinear perturbation, and highly restricts the kernel of the linearized op-
erator. To construct solutions in [10] we derived a condition, relating the
magnitude of the entropy jump to the two spatial periods, that guarantees
the existence of a solution to the linear eigenvalue problem in the Fourier
1-mode. The periodic linearized solutions of Euler were then obtained by
deriving closed form expressions for the resulting 1-mode solutions of the
linearized system of PDEs.

These linearized solutions display, in closed form expression, the prop-
agation properties of nearby nonlinear sound waves that formally balance
compression and rarefaction along characteristics. In this sense, the so-
lutions exhibit the simplest possible mechanism for dissipation free trans-
mission of sound waves in the nonlinear problem. In [10] we went on to
analyze the spectrum of the linearized operator that expresses the eigen-
value problem corresponding to periodicity. We proved that the linearized
periodic solutions correspond to eigenvectors in the 1-mode kernel of the
associated linearized operators, and that for almost every choice of periods,
the linearized operator is non-resonant in the sense that it is invertible on
the complement of the 1-mode kernel, c.f. [2]. Interestingly, it turns out
that the linearized operator is non-resonant only in the case when the sound
speeds are incommensurate with the periods. In the special case of symmet-
ric periods (when the non-dimensionalized spatial widths of constant enropy
are equal), we showed that the eigenvalues are bounded away from zero by
algebraic rates in the Fourier modes.
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In this paper we show that the nonlinear eigenvalue problem (1) can be re-
cast as a perturbation from the linear eigenvalue problem (2). We then show
that the resulting bifurcation problem is amenable to a Liapunov-Schmidt
reduction, and perform the reduction in the case of arbitrary non-resonant
periods. The Liapunov-Schmidt method involves two applications of the
implicit function theorem, one to solve the auxiliary equation associated the
nonsingular operator defined on the orthogonal complement of the kernel,
and one to solve the bifurcation equation associated with the kernel of (2);
a solution of the second equation hinges on existence for the first, [4]. In
this paper we prove that the Liapunov-Schmidt method is valid, subject to
the existence of solutions to the auxiliary equation. That is, we reduce the
problem of existence of periodic solutions of the compressible Euler equa-
tions to an equation that asks for the existence of nearby zeros of a nonlinear
operator in a neighborhood of the zero of an invertible linearized operator.

The non-singular linearized operator is the restriction of (2) to the com-
plement of the solution kernel, and thus by our results in [10], it entails small
divisors. The resulting implicit function theorem involves an infinite dimen-
sional space and a nonlinear differential operator N of quasilinear type, and
so, as far as we know, is beyond the direct application of known results.
Thus the purpose of this analysis is to recast the nonlinear eigenvalue prob-
lem (1) as a perturbation problem in the language of bifurcation theory,
and then to use a Liapunov-Schmidt decomposition to reduce the resulting
infinite dimensional small divisor problem with a singular kernel, to a KAM
type infinite dimensional implicit function theorem for an invertible linear
operator with small divisors, whose inverse is thus unbounded. In the lan-
guage of bifurcation theory, our main result here is to prove that the (finite
dimensional) implicit function theorem posed by the bifurcation equation is
valid assuming existence of solutions for the (infinite dimensional) implicit
function theorem associated with the auxiliary equation.

The search for a complete proof of existence of solutions of the KAM type
implicit function theorem posed by the auxiliary equation is the topic of the
authors’ ongoing research program. Similar problems have been resolved
in the semilinear setting with the same estimates on the small divisors,
and with weaker results on the structure of the kernel, c.f [2, 1]. The new
feature of our problem is that the quasilinear problem reduces to an ODE in
a Hilbert space, but there is no apparent basis in which the problem becomes
an infinite algebraic system as in [2, 1].

To obtain a definitive partial result that argues strongly for the existence
of solutions with the identified structure in the infinite dimensional case,
we show that the Liapunov-Schmidt reduction that applies in the infinite
dimensional case also applies when we impose a Fourier cutoff of the non-
linear problem up to arbitrarily high Fourier modes, a non-trivial problem
in its own right. In the case of an N -Fourier mode cutoff, N arbitrarly
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large, we prove that the resulting auxiliary equation has a unique solution2,
confirming that the two applications of the implicit function theorem inher-
ent in the Liapunov-Schmidt method are both valid for every N ≥ 2. We
take this as demonstrating that periodic solutions of the compressible Euler
equations exhibiting the wave structure that balances compression and rar-
efaction described in [10] exist up to an arbitrary Fourier cutoff. This then
lends further strong support to the claim that the wave pattern described
in [10] is physically realized in nearby exact solutions of the fully nonlinear
equations.

The paper is laid out as follows: in Section 2, we restate the problem of
existence as an eigenvalue problem, and recall the the linearized solutions
from [10]. In Section 3, we set notation and give the Liapunov-Schmidt
reduction of the perturbation problem. In Section 4 we study the bifurcation
equation, and in Section 5, we solve the auxiliary equation for theN -th mode
Fourier cutoff problem.

2. Background and Previous Results

2.1. The Nonlinear Equations. We are looking for periodic solutions of
the compressible Euler equations, which describe the evolution of a perfect
fluid in the absence of dissipative effects. For one-dimensional flow, this is
the 3× 3 system

ρt + (ρ u)x = 0,

(ρu)t + (ρ u2 + p)x = 0, (3)

Et + [(E + p)u]x = 0,

representing conservation of mass, momentum and energy, respectively. Here
x is the Eulerian spatial coordinate and the state variables are density ρ,
pressure p, velocity u and energy density E = 1

2 ρ u
2 + ρ ε, where ε is the

specific internal energy. To close the system, an equation of state is given
which relates the thermodynamic variables p, ε and ρ. We consider a poly-
tropic gamma-law gas, described by

ε = cτ τ
−(γ−1) eS/cτ and p =

cτ
γ − 1

τ−γ eS/cτ , (4)

where τ = 1/ρ is the specific volume, S is the specific entropy, γ > 1 is
the adiabatic gas constant, and cτ the specific heat [7]. On regions where

2Interestingly, under the Fourier cutoff assumption, we obtain periodic solutions for
non-resonant Θ as well as nearby resonant Θ, because resonant values of Θ lie arbitrarily
close to non-resonant values, and so are captured under perturbation. This then raises the
interesting question as to whether the small divisors are just an anomaly of the lineariza-
tion process that go away at the next order of approximation of the nonlinear problem, or
whether they are essential for perturbation. The authors intend to address this problem
in a future paper.
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the solution is smooth, the energy equation is equivalent to the adiabatic
constraint or entropy equation

(ρS)t + (ρS u)x = 0, (5)

which states that entropy is transported with the fluid [7].
In a Lagrangian frame, co-moving with the fluid, the equations are

τt − ux = 0,

ut + px = 0, (6)

E∗t + (up)x = 0,

where now x is the Lagrangian material coordinate for the fluid, given by
replacing ∫

ρ dx→ x ,

and E∗ = 1
2u

2 + ε(τ, S). In this Lagrangian frame, the adiabatic constraint
(5) takes on the particularly simple form

St = 0, (7)

which can be used in place of the energy equation on smooth regions [7].
We recall from [9, 10] the convenient change of variables

m = eS/2cτ and z = Kz τ
− γ−1

2 , (8)

so that (4) becomes

ε = Kε m
2 z2 and p = Kp m

2 z
2γ

γ−1 , (9)

where K·’s are appropriately given constants. In these variables, on regions
of smooth solution, our equations (6), (7) reduce to the quasilinear system

zt +
c

m
ux = 0,

ut +mczx + 2
p

m
mx = 0, (10)

mt = 0,

where we have used entropy (7) in place of the energy; here c is the La-
grangian sound speed, defined by

c(τ, S) =
√
−pτ (τ, S),

which becomes

c(m, z) = Kc m zd with d ≡ γ + 1
γ − 1

. (11)

We are interested in the particular class of piecewise smooth solutions
with piecewise constant entropy; for this class, the 3×3 system (10) reduces
to the 2× 2 quasilinear system

zt +
c

m
ux = 0,

ut +mczx = 0,
(12)
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which is just the p-system of isentropic gas dynamics, with z as the thermo-
dynamic coordinate [7, 11]. We will thus solve the simpler 2×2 system (12)
in different regions, with different entropy levels corresponding to different
constants m in the constitutive relation (11).

The class of solutions we consider does have discontinuities, so we must
treat these correctly, namely by using the Rankine-Hugoniot jump condi-
tions. We apply these to the fully nonlinear system (6), to get

[u] = s [−τ ]
[p] = s [u] (13)

[u p] = s [12u
2 + ε],

where s is the speed of propagation of the discontinuity and [·] is the jump.
For our special class of solutions, the only discontinuities are stationary
entropy jumps with s = 0, so the jump conditions reduce to [u] = [p] = 0,
or, by (9),

uL = uR and m2
L z

2 γ
γ−1

L = m2
R z

2 γ
γ−1

R . (14)

We are interested in fixed stationary entropy jumps, so that mL and mR are
fixed, and we get a diagonal linear operator (uL, zL) → (uR, zR).

2.2. The Nonlinear Eigenvalue Problem. In our previous papers [9, 10],
we described the physical mechanism by which periodic solutions can be
supported. In short, we impose the structure of a fixed piecewise constant
entropy profile, and superpose on this a periodic structure of nonlinear sim-
ple waves. This periodic structure must be very carefully chosen so that
across entropy jumps, which are stationary contact discontinuities, some
parts of the nonlinear simple waves change type from rarefaction to com-
pression (and vice versa); moreover, this must be done consistently. This
change of character of the waves is the fundamental nonlinear effect that bal-
ances the tendency of nonlinear waves to compress and form shocks, which
are incompatible with periodic evolution.

Because we restrict to the class of solutions which are piecewise smooth
with piecewise constant entropy profiles and no other discontiunities, the
nonlinear evolution for this class is given by the 2× 2 system (12) together
with (14) at the jumps. We now reformulate the problem of existence of a
periodic solution as a nonlinear eigenvalue (fixed point) problem.

In [9, 10], we considered the simplest case which supports periodicity,
namely two entropy levels m > m of fixed width x and x, respectively,
continued periodically. We then solve (12) on top of this entropy structure,
denoting the corresponding states by U = (z, u) and U = (z, u), respectively.
Thus U(x, t) ≡ (z(x, t), u(x, t)) solves

zt +
c(z)
m

ux = 0 ,

ut +m c(z)zx = 0 ,
(15)
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in the interval 0 < x < x, and U(x, t) ≡ (z(x, t), u(x, t)) solves

zt +
c(z)
m

ux = 0 ,

ut +m c(z)zx = 0 ,
(16)

in x < x < x + x, respectively. Such a solution defined on the bounded
region (or tile of the plane)

0 < x < x+ x , 0 ≤ t < 2π ,

generates a space-periodic solution of Euler provided appropriate “boundary
conditions” are met. Since we are interested in solving the full Euler equa-
tions, our matching condition at each entropy jump is exactly (14), and, in
order to appropriately mix the simple waves, the region tiles the (x, t)-plane
with a half-period time shift.

To be more precise, we make the solution 2π-periodic in time t, and we
regard x as the evolution variable in (15), (16). That is, we consider as data
the function

U̇(t) ≡ U(0+, t) = U(0, t) ,

and evolve this data to

Ǔ(t) ≡ U(x−, t) = U(x, t) ,

where U(x, t) satisfies (15) for 0 < x < x. We then jump this by the
Rankine-Hugoniot condition (14), to

Ũ(t) ≡ U(x+, t) = U(x, t) ,

and evolve U(x, t) by (16) to

Û(t) ≡ U(x+ x−, t) = U(x+ x, t) ,

for x < x < x+ x. The solution thus defined generates a periodic tile of the
(x, t)-plane if Û and some time-shift of U̇ are related by the jump condition
(14). For convenience, we impose maximal symmetry by fixing the time-shift
as one-half period, π.

We describe this succinctly as follows: define the nonlinear evolution op-
erators E and E by evolution (in the spatial variable x) using system (15),
(16) of U(t) through x and x, respectively. In this notation,

Ǔ = EU̇ and Û = EŨ .

Next, define the jump operator J which maps UL(t) to UR(t) by the Hugo-
niot conditions (14) with mL = m and mR = m; thus J is just the diagonal
linear operator

J =
(
J1 0
0 1

)
, where J1 ≡

(
m

m

) γ−1
γ

.
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Since (14) is symmetric, the jump operator at the other entropy jump is just
J −1, so we have

Ũ = J Ǔ , and we set U∗ ≡ J −1Û ,

so that U∗ is at the same entropy level as our data U̇ . Finally, we define the
shift operator

S U(t) ≡ U(t− π) = U(t+ π)

where we have used a half-period shift to ensure maximal symmetry. Our
“periodic boundary condition” above then becomes U̇ = SU∗, and combin-
ing these relations, we see that the existence of a periodic solution having
this structure is equivalent to the fixed point (eigenvalue) problem

S · J −1 · E · J · E U̇ = U̇ (17)

having a sufficiently smooth solution. Here the data is the 2π-periodic func-
tion U̇(t), and we regard each operator as a map from the space of smooth
2π-periodic functions to itself.

2.3. Non-dimensionalization. Our calculations are simplified by a non-
dimensionalization which has the effect of removing all explicit references to
the entropy m. Since we will be linearizing the eigenvalue problem (17), it
is natural to identify “base states” z0 and z0, which will satisfy the jump
condition, so we set J1 z0 = z0, u0 = u0. Factoring out these base states,
(12) can be written (

z

z0

)
t

+
c(z)
c0

(
u− u0

m0z0

)
y

= 0 ,(
u− u0

m0z0

)
t

+
c(z)
c0

(
z

z0

)
y

= 0 ,

where we have set c0 = c0(m0, z0) in (11), and we have rescaled the spatial
variable by

dy

dx
=

1
c0
, so that y − y0 =

x− x0

c0
. (18)

We thus define the dimensionless variables

w =
z

z0
and v =

u− u0

m0z0
, (19)

and we make the spatial evolution explicit by writing the system as

wy + σ(w) vt = 0,

vy + σ(w) wt = 0,
(20)

where we have used (11) to define

σ =
c(z0)
c(z)

=
zd
0

zd
= w−d ≡ σ(w) . (21)
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Note that in these dimensionless variables the base state is (w0, v0) = (1, 0),
and σ(w0) = 1. Using (19) in (14), we find that, in dimensionless variables,
the jump conditions become

w = w and m
d−1
d+1 v = m

d−1
d+1 v , (22)

and in particular, w and the speed σ(w) are continuous across the jump.
According to (18), the new widths of the entropy levels will be

θ ≡ x

c(z0)
and θ ≡ x

c(z0)
, (23)

and we note that entropy m does not appear explicitly in (19): that is, there
is only one evolution operator in these variables. Denoting the dimensionless
variables by V = (w, v), we define the evolution operator E(θ) using system
(20) through a y-interval of length θ, so that

E(θ)V (0, ·) = V (θ, ·), (24)

where V (y, t) solves (20) with Cauchy data V (0, ·). Again denoting the jump
operator by J , we have

J =
(

1 0
0 J

)
, where J ≡

(
m

m

) 1
γ

=
(
m

m

) d−1
d+1

; (25)

this ratio J is the only place that entropy features in the dimensionless
problem. The following restatement of the problem is proved in [10]:

Theorem 1. For fixed parameters θ, θ and J , define the nonlinear operator
N ≡ N (θ, θ, J) by

N ≡ S · J −1 · E(θ) · J · E(θ), (26)

and let V (t) = (w(t), v(t)) denote any smooth solution of

N V (·) = V (·), (27)

with averages

w0 ≡
1
2π

∫ 2π

0
w(t)dt = 1, and v0 ≡

1
2π

∫ 2π

0
v(t)dt = 0, (28)

respectively. Then given any base state U0 = (z0, u0) and entropy state m,
there is a periodic solution U(x, t) = (z(x, t), u(x, t) of (10), determined
uniquely by V (t), with corresponding average values

1
2π

∫ 2π

0
z(0, t)dt = z0, and

1
2π

∫ 2π

0
u(0, t)dt = u0. (29)

Note that the second base state (z0,m, u0) is determined by the given
state (z0,m, u0) and jump J , and the widths x and x of the entropy levels
are determined from (θ, θ) by (23).
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2.4. Linearization. Having formulated the nonlinear eigenvalue problem,
we linearize the nonlinear operator around the base state (1, 0). The fully
nonlinear operator N , given by (26), is a composition of nonlinear evolution
E and linear operators; moreover, all operators fix the state (1, 0). It follows
that the linearization of N is obtained by linearizing the evolution operator
around (1, 0). This in turn is easily found: since σ(1) = 1, the linearization
of (20) is simply the system

wy + vt = 0,
vy + wt = 0,

(30)

which is just the linear wave equation.
As in (24), we define the linearized evolution operator L(θ) by

L(θ)V (0, ·) = V (θ, ·),

where now V (y, t) solves (30) with Cauchy data V (0, ·). Also, define the
linear operator M≡M(θ, θ, J) by

M≡ S · J −1 · L(θ) · J · L(θ). (31)

Then M is the linearization of N about the base state (1, 0), and the lin-
earized eigenvalue problem is

MV (·) = V (·) , (32)

where V (·) is a smooth 2π-periodic function.
We remark that although the base state (1, 0) is a trivial solution of the

2× 2 evolution and eigenvalue problems, when regarded as a solution of the
3 × 3 Euler equations, it is not a trivial solution. That is, although there
are no genuinely nonlinear waves propagating, the stationary entropy jumps
are nontrivial waves. Indeed, the nonlinear effects of these jumps are seen
in the (linearized) 2 × 2 eigenvalue problem. In other words, the effects of
the jumps are manifested as non-commuting linear operators in (32). In
particular, even though linearized waves are not rarefactive or compressive,
we can still identify the change of type of simple waves identified in [9] at
the linearized level.

Our eigenvalue problems (27), (32) are invariant under an arbitrary phase
shift t → t + t0; a natural way to remove this invariance is to observe that
the systems (20), (30) are invariant under the mapping

w(y, t) → w(y,−t) and v(y, t) → −v(y,−t),

and thus preserve the properties that w, v be even/odd, respectively. That
is, if the data w(0, t) and v(0, t) are even and odd (2π-periodic) functions of
t, respectively, then so are the solutions w(y, t) and v(y, t) for y > 0; clearly
this property is also preserved by the jumps and shift. We emphasize that
this fact holds for both the linear and nonlinear problems.
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Having restricted w and v to be even/odd 2π-periodic functions of t, we
thus consider the space ∆, defined by

∆ =
{
V (·) =

[
w(·)
v(·)

]
: w, v ∈ L2[0, 2π), w even, v odd

}
. (33)

Then it follows that

L(y) : ∆ → ∆ and E(y) : ∆ → ∆ ,

and thus also
M : ∆ → ∆ and N : ∆ → ∆ ,

and the eigenvalue problem should be posed in the space ∆. Moreover, we
have a natural orthogonal decomposition

∆ =
+∞⊕
n=0

∆n (34)

with respect to the L2-inner product

〈V1, V2〉 =
1
2π

∫ 2π

0
w1(t)w2(t) + v1(t) v2(t) dt , (35)

and where ∆n is the n-th Fourier mode,

∆n =
{
Vn(t) =

[
an cosnt
bn sinnt

]
: an, bn ∈ R

}
. (36)

This orthogonal decomposition is simply the Fourier cosine/sine series ex-
pansion of V (·). It is convenient to define the representation T ∗n : R2 → ∆n

of the n-th mode by

T ∗n
[
a
b

]
≡
[
a cos(nt)
b sin(nt)

]
, (37)

so a general V ∈ ∆ has the Fourier decomposition

V =
∑

T ∗n
[
an

bn

]
, (38)

corresponding to

w(t) =
∑

an cosnt , v(t) =
∑

bn sinnt .

It is well known that the linear wave equation respects modes: in our
notation, this is just the statement that the restriction of L(y) to ∆n maps
∆n back to itself. Indeed, the action of L(y) on ∆n is rotation of the
coefficients through angle ny. Also, it is clear that the operators J and S
preserve the n-th mode, and we have the following theorem from [10]:

Theorem 2. The linear operator M has the orthogonal representation

M = ⊕∞n=0Mn, (39)
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where Mn : ∆n → ∆n is given by

Mn

(
T ∗n
[
an

bn

])
= T ∗n

(
Mn

[
an

bn

])
, (40)

and where Mn is the 2× 2 matrix

Mn = (−1)nD−1R(n θ)DR(n θ) ≡ (−1)nM(nθ, nθ, J) ; (41)

here R(ϑ) is rotation by angle ϑ,

R(ϑ) =
(

cosϑ − sinϑ
sinϑ cosϑ

)
,

and D is the diagonal matrix

D =
(

1 0
0 J

)
. (42)

In (41), the rotations correspond to evolution, the diagonal matrix D
to the jump, and (−1)n to the shift of the n-th mode. Because of this
decomposition, the linearized eigenvalue problem (32) decouples into many
2× 2 eigenvalue problems:

Corollary 3. The function V (t) given by (38) solves the linear eigenvalue
problem (32) if and only if for all n ∈ N,

(−1)n M(nθ, nθ, J)
[
an

bn

]
=
[
an

bn

]
. (43)

2.5. Periodic Solutions to the Linearized Problem. Having reduced
the problem of finding (linearized) periodic solutions to many 2× 2 matrix
eigenvalue problems (43), we now characterize these solutions. Because the
matrix

M(ϑ, ϑ, J) ≡ D−1(J)R(ϑ)D(J)R(ϑ) (44)

is explicitly given, we obtain exact formulae for its eigenvalues:

Theorem 4. For J 6= 1, the eigenvalues of M(ϑ, ϑ, J) are

λ = β ±
√
β2 − 1, (45)

where

β = cos(ϑ) cos(ϑ)− J2 + 1
2J

sin(ϑ) sin(ϑ) . (46)

It follows that in order for (43) to have a nontrivial solution, we must have
λ = β = ±1, which represents a constraint on the parameters (nθ, nθ, J).
Our goal is to find a solution to the linearized problem which perturbs: we
thus ask that (43) have a solution for n = 1 only, the parameters (θ, θ, J)
remaining fixed: this is a nonresonance condition. First, based on the struc-
ture of solutions developed in [9], we restrict the range of parameters:
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Theorem 5. Assume that J > 1, θ > 0, θ > 0 and

θ + θ < π. (47)

Then q solves the eigenvalue problem

M(θ, θ, J) q = −q (48)

if and only if
J = cot(θ/2) cot(θ/2) , (49)

and the solution is

q ∈ Span
{ [

cos(θ/2)
− sin(θ/2)

] }
. (50)

In particular, if (49) holds, then

V∗(t) ≡ T ∗1 q =
[

cos(θ/2) cos t
− sin(θ/2) sin t

]
(51)

is a solution to the full eigenvalue problem (32).

2.6. Resonance and Small Divisors. We now consider the linear opera-
tor

M−I : ∆ → ∆ ,

which also admits an orthogonal decomposition as in (39). A solution of
(32) is an element of the kernel, and in order to perturb this, we’d like the
kernel to be as small as possible. That is, we wish to minimize the number
of solutions of (43). Since we have the constraint (49), we can accomplish
this by choosing the parameters appropriately.

Here we calculate the full spectrum of M− I and describe the nonreso-
nance condition which will ensure that M−I is invertible on higher modes.
By Theorems 2 and 4, the eigenvalues of M−I are ±λ±n − 1, where

λ±n ≡ βn ±
√
β2

n − 1, (52)

with

βn ≡ βn(θ, θ) = β(nθ, nθ) , and

β(ϑ, ϑ) ≡ cos(ϑ) cos(ϑ)− J2 + 1
2J

sin(ϑ) sin(ϑ). (53)

The conditions λn 6= ±1 and βn 6= ±1 are equivalent, and it is easier to work
with βn.

We obtain our nonresonance condition as follows. First, assuming (θ, θ)
satisfies (47), we fix J according to (49): this ensures that the kernel is
nonempty. Now declare the parameters (θ, θ) to be resonant if

βn = (−1)n for some n > 1 . (54)

It follows that at resonance, the kernel has a nontrivial component in the
n-th mode, so we cannot invert the operator in that mode. On the other
hand, if the parameters are nonresonant, then the kernel is invertible on all
higher modes, and we would expect that our solution V (t) may perturb.
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Since there are countably many conditions βn 6= ±1 but we have con-
tinuous parameters θ and θ, we expect that most choices are nonresonant.
In [10], we prove that the resonant set has measure zero:

Theorem 6. Consider the parameter set

E ≡
{

Θ = (θ, θ) : θ, θ > 0, 0 < θ + θ < π
}
. (55)

Then there exists a set of full measure E∗ ⊂ E such that, if Θ ∈ E∗,
then Θ is non-resonant in the sense that when J is given by (49), then the
eigenvalues λ±n − (−1)n of the linearized operator M−I are nonzero for all
n ≥ 2.

Although M− I is invertible on higher modes, it is not bounded: if it
were bounded, we could apply the Implicit Function Theorem directly to
obtain existence of periodic solutions. Instead, we have a problem of small
divisors: the differences βn − (−1)n accumulate at 0 as n → ∞. Under
the further symmetry assumption θ = θ, in [10] we were able to get lower
bounds on the size of the small divisors:

Theorem 7. Under the assumption θ = θ = θ, there is a full measure set
E∗ ⊂ (0, 2π), such that for every θ ∈ E∗, there are positive constant C and
exponent r ≥ 1 such that the eigenvalues satisfy the estimate

|λ±n − (−1)n| ≥ C

nr
for all n ≥ 2 . (56)

In particular, if θ/π is the irrational root of a quadratic algebraic equation,
we can take r = 1.

The assumption θ = θ states that the different entropy levels have the
same width in dimensionless variables3: however, in standard variables the
widths of the different entropy levels are given by (23), and so are different,
although they do scale directly with the base sound speed.

3. Liapunov-Schmidt Reduction

In this section we show that the nonlinear eigenvalue problem (1) can be
recast as a perturbation from the linear eigenvalue problem (2). We then
show that the resulting bifurcation problem is amenable to a Liapunov-
Schmidt reduction [4]. We perform the reduction in the case of arbitrary
non-resonant, non-symmetric periods Θ = (θ, θ), as in Theorem 6. This
reduces the problem of the existence of solutions of (1) to the problem of
proving an implicit function theorem for the so called auxiliary equation, an
equation that asks for the existence of nearby zeros of a nonlinear operator
in a neighborhood of the zero of an invertible linearized operator. The in-
vertible linearized operator is the restriction of (2) to the complement of the

3In [10], the use of one variable yields explicit formulas for βn−1 which can be directly
estimated; we expect a similar result holds for two variables, but this may require a
probabilistic proof. This is an ongoing topic of research by the authors and Roman
Vershynin.
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solution kernel, and has small divisors. The invertibility in the case of gen-
eral non-resonant, non-symmetric Θ is a direct consequence of Theorem 6,
and for symmetric Θ = (θ, θ), algebraic estimates for the small divisors for
almost every θ follow directly from Theorem 7. The implicit function the-
orem posed by the auxiliary equation for (1) is a KAM type small divisor
problem in an infinite dimensional space based on a nonlinear differential
operator of quasilinear type. As far as we know, a complete mathemati-
cal proof of this implicit function theorem is beyond the direct application
of known results, although analogous results have been obtained for sim-
ilar problems of semi-linear type, c.f. [2]. The purpose of this analysis is
to prove that the (finite dimensional) implicit function theorem posed by
the bifurcation equation is valid assuming existence of solutions for the (in-
finite dimensional) implicit function theorem associated with the auxiliary
equation.

In Section 5 we show that the Liapunov-Schmidt reduction that applies in
the infinite dimensional case also applies when (1) is replaced by a Fourier
cutoff of the nonlinear problem up to arbitrarily high Fourier modes. In
the case of an N -Fourier mode cutoff, N arbitrarly large, we prove that
the resulting auxiliary equation has a unique solution, confirming that the
two applications of the implicit function theorem inherent in the Liapunov-
Schmidt method are both valid for every N ≥ 2. This provides strong evi-
dence that periodic solutions of the compressible Euler equations exhibiting
the wave structure that balances compression and rarefaction described at
the linearized level in [10] should exist.

3.1. Coordinates and notation. We now develop the pertubation prob-
lem and establish notation and preliminary lemmas required to obtain the
auxiliary and bifurcation equations associated with the Liapunov-Schmidt
reduction of the infinite dimensional problems (1), (2).

Recall that the operators M and N map 2π-periodic functions of t (at
y = 0) to 2π-periodic functions of t (at y = θ + θ),

M : ∆ → ∆ and N : ∆ → ∆,

where ∆ is the function space of real valued 2π-periodic functions that are
even in w and odd in v. By the Hs estimates for smooth solutions of con-
servation laws [5], it follows that both operators M and N take sufficiently
smooth and sufficiently small functions in Hs∩∆ to Hs∩∆, for any s > 3/2,
so we will not need to be concerned about shock wave formation for ε suffi-
ciently small.

In the Liapunov-Schmidt method, bifurcation to nonlinear solutions is
analyzed in coordinates induced on the solution space by the structure of
the linearized operator [4, 3]. For the full infinite dimensional problem (1)
the solution space is ∆ and the linearized operator isM−I. Also, according
to (34),

∆ = ⊕n≥0 ∆n,
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where ∆n is given by (36), so that ∆n is two dimensional for n ≥ 1, and one
dimensional in the special case n = 0. That is, for V ∈ ∆, we write

V (t) =
∞∑

n=0

Vn(t) =
∞∑

n=0

T ∗n pn,

where pn = (an, bn) ∈ R2, so Vn ∈ ∆n is given by

Vn(t) = T ∗n pn =
[
an cosnt
bn sinnt

]
,

and T ∗n : R2 → ∆n is defined in (37). Referring to (35), we can take the
L2-inner product on ∆ to be given by〈

V, V ′
〉

=
∞∑

n=0

pn · p′n ≡
∞∑

n=0

ana
′
n + bnb

′
n, (57)

for

V =
∞∑

n=0

T ∗n pn ∈ ∆, V ′ =
∞∑

n=0

T ∗n p′n ∈ ∆ .

We now characterize the kernel and range of M1 − I and M− I in ∆,
respectively. Referring to Thm. 5, we set

q =
[

cos
(
θ/2
)

− sin
(
θ/2
) ] , and q⊥ =

[
sin
(
θ/2
)

cos
(
θ/2
) ] , (58)

so that
V∗(t) = T ∗n q .

The first lemma gives a precise characterization of the map M1 − I.

Lemma 8. The 2× 2 matrix M1 − I can be expressed as

M1 − I = τ0 q⊗ q⊥ ≡ τ0 q (q⊥)t, (59)

where the constant τ0 is given by

τ0 ≡ τ0(θ), θ) = sin θ cos θ +
(
J cos2 θ/2− 1

J
sin2 θ/2

)
sin θ, (60)

with J = cot θ/2 cot θ/2 given by (49). Moreover, in the non-symmetric
case, there exists a set of full measure E0 ⊂ E such that

τ0(θ, θ) 6= 0 for all (θ, θ) ∈ E0; (61)

and for the symmetric case we have

τ0(θ, θ) 6= 0 for all θ ∈ (0, π/2). (62)

Proof. Since M1− I has rank one, it is of the form p1⊗p2 for some vectors
pi ∈ R2. Since q is in the kernel, p2 = k2q⊥, and since the range is Span{q},
we have p2 = k1q. Thus (59) holds, and since q and q⊥ are unit vectors,
we have

τ0 = q · (M1 − I)q⊥ = qtM1 q⊥. (63)
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Now by (40), we have

M1 = −D−1R(θ)DR(θ),

and using (58), we calculate

R(θ)q⊥ = R(θ + π/2)q =
[
− sin θ/2
cos θ/2

]
.

It follows that

τ0 =
[
− cos θ/2
sin θ/2

]t ( cos θ −J sin θ
sin θ/J cos θ

) [
− sin θ/2
cos θ/2

]
= cos θ (2 cos θ/2 sin θ/2) + sin θ (J cos2 θ/2− 1

J
sin2 θ/2),

which is (60).
To verify (61), substitute (49) into (60) to write τ0 as a trigonometric

polynomial in (θ, θ), which is zero on a set of measure zero, whose com-
plement in E∗ defines E0. For (62), set θ = θ = θ, and use J = cot2 θ/2
together with the identities cos2 θ/2, sin2 θ/2 = 1

2(1± cos θ), respectively, to
obtain

τ0(θ, θ) = sin θ cos θ +
(1 + cos θ)3 − (1− cos θ)3

2 sin θ
,

which is non-zero when cos θ and sin θ are both positive.

The next lemma characterizes the kernel and range of M−I in ∆.

Lemma 9. Assume that Θ = (θ, θ) ∈ E0, so Θ is non-resonant and τ0 6= 0.
Then the kernel K of M−I in ∆ is the 2-dimensional subspace

K = ∆0 ⊕ Span {T ∗1 q} , (64)

and the range R of M−I is the subspace

R = Span {T ∗1 q} ⊕ {⊕∞n=2∆n} . (65)

In the symmetric case θ = θ = θ, both (64) and (65) hold for all θ ∈ E∗,
where E∗ ⊂ (0, 2π) is the set on which (56) holds.

Proof. By (40), it follows immediately that M0 = I, so that ∆0 ⊂ K, and
by Theorem 5,

V∗(t) = T ∗1 q ∈ K.

By Theorem 6, Mn − I is invertible for each n > 1, so that ⊕∞n=2∆n ⊂ R
and these contribute nothing to the kernel. To complete the proof, it thus
suffices to show that the range of the matrix M1 − I is Span {q}. But by
Lemma 8, this is exactly the condition that τ0 6= 0, which holds because we
have assumed Θ ∈ E0 or θ ∈ E∗.
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It is convenient to introduce refined notation for the kernel as a 1-mode
subspace. Thus let K⊥ denote the orthogonal complement of K in ∆,

K⊥ = K⊥1 ⊕ {⊕∞n=2∆n} ,
where the 1-mode part of the kernel is denoted by

K1 ≡ K ∩∆1 = Span {T ∗1 q} , (66)

and its orthogonal complement in ∆1 is

K⊥1 ≡ K⊥ ∩∆1 = Span
{
T ∗1 q⊥

}
. (67)

Similarly, let R⊥ be the orthogonal complement of R,

R⊥ = ∆0 ⊕K⊥1 , (68)

and also define
P : ∆ → ∆, (69)

to be orthogonal projection onto the range R. The next lemma implies that
the infinite dimensional operator P(M−I), restricted to K⊥, is an invertible
operator, provided Θ is nonresonant:

Lemma 10. If Θ ∈ E0 is nonresonant then the operator

P(M−I) : K⊥ → R
admits the decomposition

P(M−I) = P1(M1 − I)⊕ {⊕∞n=2(Mn − I)} ,

and P(M−I) : K⊥ → R is invertible. In this case the 1-mode projection

P1(M1 − I) : K⊥1 → K1

is multiplication by τ0 6= 0, in the sense that for any X1 ∈ R,

(M1 − I)(X1 T ∗1 q⊥) = τ0 X1 T ∗1 q . (70)

Moreover, for n ≥ 2, the eigenvalues of the n-th mode decomposition are
(−1)nλ±n − 1, where λ±n are given by (52).

In the symmetric case θ = θ = θ ∈ E∗ ⊂ (0, π/2), we have τ0 6= 0, and
there exist constants C = C(θ) > 0 and exponent r such that for n ≥ 2,
these eigenvalues satisfy the lower bound

|(−1)nλ±n − 1| ≥ C(θ)
nr

. (71)

Proof. The decomposition follows directly from Lemmas 9 and 8 above. The
1-mode projection P1(M1 − I) is invertible for τ0 6= 0, and (71) holds for
n = 1 provided C(θ) < |τ0|. The eigenvalues follow directly from (40) and
(52), and the estimate (71) follows from (56) of Theorem 7. Finally, by (71),
each P(M−I) is invertible (i.e. one-to-one and onto) on each of the spaces
in the decomposition, so that the full operator P(M− I) is invertible as
well.
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Our ultimate goal is to prove the existence of solutions of the nonlinear
problem (N − I)[V ] = 0 that bifurcate from solutions of the associated
linearized problem (M− I)[V ] = 0, where the initial data V ∈ ∆ is a 2π-
periodic function of t, with values V (t). To set this up as a perturbation
problem, we will introduce a small parameter −1 << ε << 1 that measures
the strength of nonlinear perturbation from the linearized problem, and
which will act as the nonlinear bifurcation parameter. To provide more
flexibility in the bifurcation argument, we now also introduce additional
small parameters

α = (α, α, αJ), with − 1 � α, α, αJ � 1,

that represent allowable changes in the entropy widths θ and θ and jump J
for the bifurcating solutions. This is analogous to the variation of the period
when treat Hopf bifurcations [4].

We thus define the linear and nonlinear operators

Mα ≡ S · J −1
α · L(θ + α) · Jα · L(θ + α),

Nα ≡ S · J −1
α · E(θ + α) · Jα · E(θ + α),

(72)

as well as the 2× 2 real matrix

Mα = −D−1
α R(θ + α)DαR(θ + α), (73)

used to represent Mα, in analogy with (31). Here Jα is the perturbation of
the jump operator defined in (25) with matrix Dα obtained by replacing J
with J + αJ ,

Dα =
(

1 0
0 J + αJ

)
, D−1

α =
(

1 0
0 1

J+αJ

)
, (74)

so that D0 ≡ D when αJ = 0, see (42).
Now the operators Mα, Nα, as well as the operators L(·), E(·) used to

define them, all operate on initial data V ∈ ∆ in the domain of the given
operator at y = 0, and output the result V (y) of an evolution in ∆ of
functions indexed by y. For such an operator O let its domain be denoted
∆O,

O : ∆O → ∆,

and use the following notation. If the input V ∈ ∆ is given by

V : [0, 2π] → R2, V (t) =
[
w(t)
v(t)

]
∈ R2,

we denote the output as O[V ] ∈ ∆,

O[V ] : [0, 2π] → R2,

the function of t with values O[V ](t). Further, if the function O[V ] is the
result of evolution from y = y0 to y = y1, then we define

O(y)[V ] ≡ O[V ](y) ∈ ∆, for y0 ≤ y ≤ y1, (75)
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as that function in ∆ determined at the value y of the evolution, with values
V (y, t). Here V (y, t) is the solution of the PDE with data V (y0, t), and O[V ]
has values V (y1, t).

Thus, in particular, the full solution of the (perturbed) linear and non-
linear partial differential equations are described by

Mα(y)[V ] ≡


L(y)[V ], 0 ≤ y < θ + α,

L(y − θ − α) Jα L(θ + α)[V ], 0 < y − θ − α < θ + α,

S J −1
α L(θ + α) Jα L(θ + α)[V ], y = θ + α+ θ + α,

and

Nα(y)[V ] ≡


E(y)[V ], 0 ≤ y < θ + α,

E(y − θ − α) Jα E(θ + α)[V ], 0 < y − θ − α < θ + α,

S J −1
α E(θ + α) Jα E(θ + α)[V ], y = θ + α+ θ + α,

respectively, each Mα(y)[V ] and Nα(y)[V ] ∈ ∆ being a function of t. Note
that the functions have well-defined left and right limits at the discontinuity
y = θ + α.

Finally, define the matrix representation Mα(y) of the operator Mα(y)
restricted to the 1-mode by using the same identity as before, namely

Mα(y)[T ∗1 p] ≡ T ∗1 [Mα(y)p],

which leads to the explicit formula

Mα(y) =


R(y), 0 ≤ y < θ + α,

R(y − θ − α) Dα R(θ + α), 0 < y − θ − α < θ + α,

− D−1
α R(θ + α) Dα R(θ + α), y = θ + α+ θ + α,

(76)
and in particular, by (73), Mα(θ + α+ θ + α) ≡Mα.

3.2. Rescaling and reduction. We now introduce the scaling parameter
ε into the nonlinear operator N so that the nonlinear problem (1) reduces
to the linear eigenvalue problem (2) at ε = 0. Without loss of generality, we
linearize the system (20) around the trivial solution consisting of the base
state

w(y, t) = 1, v(y, t) = 0,
and we denote this base state by

1 ≡
(

1
0

)
∈ R2 so that

[
w
v

]
= T ∗0 1 .

For ε 6= 0, define the rescaled nonlinear operator Gε,α : ∆ → ∆ by

Gε,α[V ] =
1
ε
{Nα [1 + εV ]− 1} , (77)

and the corresponding operator Fε,α : ∆ → ∆ by

Fε,α = Gε,α − I,
so that

Fε,α[V ] = Gε,α[V ]− V. (78)
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By Theorem 1, we need only construct solutions of (N − I)[V ] = 0 for
V (t) = (w(t), v(t)) satisfying the average one in w and zero in v conditions
(28), respectively, in order to obtain solutions with arbitrary averages (29)
in the physical variables.

Lemma 11. The nonlinear operator Gε,α has the limits

lim
ε→0

Gε,α ≡ Gα = Mα,

and
lim

ε,α→0
Gε,α ≡ G0 = M,

in the sense that

Gε,α(y)[V ] = Mα(y)[V ] +O(|ε|),
Gε,α(y)[V ] = M(y)[V ] +O(|ε|+ |α|),

for all smooth, 2π-periodic initial data V ∈ ∆, which take on values V (t),
and where convergence is uniform for

(y, t) ∈ [0, θ + α+ θ + α]× [0, 2π].

We thus also have, in the same sense,

lim
ε→0

Fε,α ≡ Fα = Mα − I,

and
lim

ε,α→0
Fε,α ≡ F0 = M−I.

Proof. Since for fixed Θ and α, the operators Jα, J −1
α and S are bounded

and linear, the Lemma follows if we show that

lim
ε→0

1
ε
{E(y) [1 + εV ]− 1} = L(y)[V ],

uniformly in (y, t) for y in a compact interval. As ε → 0, the values of the
initial data

Uε ≡ 1 + ε V

tend to the constant state (w, v) = (1, 0). Thus the local existence theorem
for smooth solutions of the nonlinear problem (20) implies that for ε suffi-
ciently small, the output E(y)[Uε] is a well defined function, 2π-periodic in t,
whose values tend to the constant state (w, v) = (1, 0) as ε → 0, uniformly
for (y, t) ∈ [0, θ+ α+ θ+ α]× [0, 2π], see [5]. This follows directly from the
Hs estimates for smooth solutions of the nonlinear problem (20), provided
∆ ⊂ Hs, [5]. Here, by (25), the jump operators Jα and J −1

α fix w and
scale v by a constant amount, and thus only change the constants in the Hs

estimates.
More precisely, since Nα(y)[Uε] is smooth and tends uniformly to (1, 0),

it follows that the wavespeed σ(wε,α(y, t)) → 1 uniformly as ε → 0, and
hence that the characteristics of the nonlinear evolution (20) differ by at
most order ε from the characteristics of the linear evolution (30) as ε → 0.
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From this it is clear that nonlinear evolution by Nα is linear evolution by
Mα to leading order in ε. Therefore,

Nα(y)[Uε] = Mα(y)[Uε] +O(ε2)

= 1 + εMα(y)[V ] +O(ε2).

The Lemma follows because everything is smooth and convergence is uniform
on compact sets.

Our goal now is to prove the existence of solutions Vε,α ∈ ∆ of the equation

Fε,α[Vε,α] = 0, (79)

with ε 6= 0, and Vε,α nontrivial, that is, Vε,α /∈ ∆0. Such a solution would
clearly satisfy

Nα [1 + ε Vε,α] = 1 + ε Vε,α ,

which by Theorem 1 (with perturbed Θ and J) yields a nontrivial periodic
solution to the Euler equations.

To obtain solutions of (79) by the Liapunov Schmidt method, we need
to apply the implicit function theorem twice to prove that solutions Vε,α of
(79) bifurcate from known solutions V ∈ K of

F0,0V = (M−I)V = 0.

Before establishing the requisite auxiliary and bifurcation equations care-
fully, we first outline again the overall strategy in terms of our present no-
tation. By Lemma 11, for small ε (and α) we have

Fε,α ≈M− I,

which is invertible on K⊥. Assuming we can invert M−I on K⊥, it follows
that because ∆ = K ⊕K⊥, we need to solve dim(K) = 2 more equations to
get a periodic solution.

Our procedure, then, for analyzing the 0- and 1-modes in the kernel K is
as follows: Using the invertibility of M−I on K⊥, a first application of the
implicit function theorem (in infinite dimensions) means that there is some
V = Vε,α such that Fε,α[Vε,α] vanishes on K⊥. That is, we can take the n-
mode of Fε,α[Vε,α] to be zero for all n ≥ 2. This is equivalent to assuming the
existence of a solution of the auxiliary equation, as expressed in Definition 12
below. Assuming a solution of the auxiliary equation, a second application
of the implicit function theorem (in finite dimensions) shows that among
such Vε,α, the 1-mode of Fε,α[Vε,α] vanishes near (ε, α) = 0 ∈ R4. This
occurs along a (3-d) surface ψ(ε, α, α, αJ) = 0, for some smooth function
ψ : R4 → R with ψ(0) = 0. This is accomplished in Theorem 13 by solving
the bifurcation equation, and we prove this for almost every Θ, assuming the
existence of solutions of the auxiliary equation.

It then remains to prove that the zero mode of Fε,α[Vε,α] is zero. Since
we are not using a conservative form of the nonlinear equations, the zero
mode is not in general constant for the nonlinear problem. However, we can
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use the conservation form of the nonlinear equations to derive an integral
that is conserved under nonlinear evolution. We then show that if all of the
modes n ≥ 1 of Fε,α[Vε,α] are zero and the integral is conserved, then the
zero mode is also necessarily zero4.

Putting these together we obtain a proof of Theorem 14, which states
that if Θ = (θ, θ) is nonresonant and an appropriate solution of the auxiliary
equation exists, then a three parameter family Vε,α of solutions bifurcates
from the solution T ∗1 q of the linearized problem. In the final section we
show that the assumed existence of a solution of the auxiliary equation is
valid under the N -Fourier cutoff assumption, and the rest of the argument
goes through essentially unchanged.

To make this more precise, fix a solution to the linearized problem Z ∈ K1,
from which our solution bifurcates. For convenience, we take Z ∈ K to be
given by (51),

Z ≡ T ∗1 q = V∗, (80)
and which has values

Z(t) = V∗(t) =
[

cos(θ/2) cos t
− sin(θ/2) sin t

]
.

There is no loss of generality here as any element Z1 = X1 V∗ can be scaled
back to Z by the substitution ε → X1 ε. Also note that we have set the
component of Z(t) in the zero mode kernel ∆0 of M − I equal to zero,
because the inclusion of (w, v) = (1, 0) in the definition of F already fixes
the zero mode. However, this constant 0-mode will not be preserved under
nonlinear evolution, since we are not working with a conservative form of
the nonlinear equations.

Now let Bδ ⊂ R3 denote the ball of radius δ, and Iδ the interval (−δ, δ).
We can then restate our problem as follows: Find δ1, δ2 > 0 and smooth
functions

W = Wε,α : Iδ1 ×Bδ1 → K⊥ and α = α(ε) : Iδ2 → Bδ1 ⊂ R3 , (81)

with α(0) = 0, W0,0 = 0, such that for ε < δ2, we have

Fε,α(ε)[Z +Wε,α(ε)] = 0 . (82)

The Liapunov-Schmidt method reduces (81), (82) to two sub-problems, lead-
ing to the auxiliary equation for W and the bifurcation equation for α. In
fact, since we have three parameters α = (α, α, αJ) and our kernel is essen-
tially one-dimensional, we need only solve for one of the α components, say
αJ = αJ(ε, α, α), and we get a three-parameter family of solutions.

To define the auxiliary equation, refer to (78), (80) and define the operator
F : Iδ ×Bδ ×K⊥ → ∆ by

F(ε, α,W ) = Fε,α[Z +W ], (83)

4Note that the zero mode will not be zero throughout the y-evolution Fε,α(y)[Vε,α],
and so the zero mode cannot be removed from the analysis at the start.
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which makes sense for (ε, α) ∈ Iδ × Bδ ⊂ R4 in some neighborhood of the
origin. Thus, recalling that P defined in (69) is projection onto R, we define
the auxiliary equation to be

P F(ε, α,W ) = P Fε,α[Z +W ] = 0, (84)

so that
P F : Iδ ×Bδ ×K⊥ → R.

Based on our strategy above, we wish to solve the auxiliary equation (84)
for W = W (ε, α) for some ε 6= 0 using an infinite dimensional version of the
implicit function theorem. By Lemma 10,

P F(0, 0, ·) = P F0,0 : K⊥ → R
is linear and invertible, and so we would like to solve (84) uniquely for W ,
for each (ε, α) in a neighborhood of (0, 0), by the implicit function theorem.
However, this is an infinite dimensional problem with small divisors, so we
cannot apply the implicit function theorem directly. To be precise, and
to isolate the difficulties of obtaining periodic solutions into the form of a
classical implicit function theorem, we make the following definition. In the
next section we show that if Θ is non-resonant, then there exist solutions of
the auxiliary equation in this sense under the N -Fourier cutoff assumption.5

Definition 12. We say that W solves the auxiliary equation in Hs, s ≥ 1,
for Θ = (θ, θ) ∈ E0, if there exists δ > 0 and a smooth map

W ≡W (ε, α) : Iδ ×Bδ → Hs, (85)

such that W (ε, α) ∈ K⊥ ⊂ ∆ satisfies

W (0, 0) = 0,

and
PFε,α[Z +W (ε, α)] ≡ 0, (86)

for all (ε, α) ∈ Iδ ×Bδ.

Now to define the bifurcation equation, suppose that a solution W (ε, α)
satisfying Definition 12 has been found. In this case, we substitute W (ε, α)
into (83) and apply the projection I − P to get the function

Φ ≡ Φ(ε, α) : Iδ ×Bδ → R⊥

given by

Φ(ε, α) ≡ (I − P)F(ε, α,W (ε, α))

= (I − P)Fε,α[Z +W (ε, α)], (87)

5This is the simplest possible way in which solutions of the auxiliary equation might
exist. To prove such an implicit function theorem by Nash-Moser type methods, it may
be difficult to rule out nearby resonances, and simpler to prove a theorem valid only for
set of positive measure of parameters ε, α. This would entail treating the bifurcation and
auxiliary equations together at each induction step, but we expect it would not modify
the validity of the corresponding Liapunov-Schmidt reduction, c.f. [2].
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and this yields the bifurcation equation

Φ(ε, α) = 0 . (88)

We now wish to solve the two equations (88) for a function α = α(ε) by
the finite dimensional implicit function theorem. Since α ∈ R3, we have
extra parameters and we expect many solutions. In fact, the equations
(88) are degenerate and we solve only the 1-mode by the implicit function
theorem; as described above, we use conservation to show that the 0-mode
also vanishes. This is accomplished in the following theorem, whose proof is
the topic of Section 4.

Theorem 13. Assume that Θ = (θ, θ) ∈ E0 and there exists a smooth
solution W satisfying (85)-(86) of Definition 12. Then there exists δ > 0
and a function 6

αJ = αJ(ε, α, α) : Bδ → R, (89)

such that αJ(0, 0, 0) = 0, and, if we set

α ≡ (α, α, αJ(ε, α, α)) ∈ R3, (90)

then
Φ(ε, α) = (I − P)Fε,α[Z +W (ε, α)] ≡ 0

for all (ε, α, α) ∈ Bδ.

Theorem 13 reduces existence of time periodic solutions of the compress-
ible Euler equations to existence of solutions W of the auxiliary equation
satisfying Definition 12, as recorded in the following corollary:

Theorem 14. Assume that Θ = (θ, θ) ∈ E0 and there exists a smooth
solution W satisfying (85)-(86) of Definition 12. Then there are smooth
functions αJ(ε, α, α) and Vε,α,α ∈ ∆,

Vε,α,α : [0, 2π) → R2,

such that
V0,0,0 = Z = T ∗1 q ∈ K, αJ(0, 0, 0) = 0,

and for some positive constant δ > 0,

(Nα − I) [1 + ε Z + εWε,α] = 0,

for all (ε, α, α) ∈ Bδ, where α is given by (90). In other words, the function
1 + ε Z + εWε,α is the Cauchy data (for evolution in space) for periodic
solutions of compressible Euler.

6Here we have chosen to give αJ as a function of α and α : we could just as easily
choose to solve the bifurcation equation for α or α instead, see (112). Our choice of αJ is
convenient as it allows us to preserve the symmetry α = α if desired.
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Proof. By Definition 12, W = W (ε, α) satisfies (84) for all (ε, α), and by
Theorem 13, if α is given by (90), then the bifurcation equation (88) holds.
Adding (84) and(87), it follows that

Vε,α,α ≡ Z +W (ε, α(ε, α, α)) ∈ ∆

satisfies (79), namely

Fε,α(ε,α,α)[Z +W (ε, α(ε, α, α))] = 0.

Using (77), (78), this in turn implies

Nα(ε,α,α)

[
1 + ε Z + εWε,α(ε,α,α)

]
= 1 + ε Z + εWε,α(ε,α,α) ,

this being a three parameter (ε, α, α)-family of periodic solutions to (20)
that bifurcate from the linearized solution Z = T ∗1 q.

Note that for the family of solutions Vε,α,α, the parameters (ε, α, α) can
be freely chosen in the neighborhood Bδ of zero, which implies the existence
of periodic solutions with full symmetry (α = α) and arbitrary asymmetry
(α 6= α), under the assumption that a solution W of the auxiliary equation
exists at a single value of Θ. Moreover, if we choose (α, α) to be O(|ε|),
then Wε,α = O(|ε|), so that εWε,α(ε,α,α) = O(ε2), from which it follows that
the linearized solutions provide the leading term in our nonlinear periodic
solutions, as expected.

It remains to give the proof of Theorem 13, which is the topic of Section 4.
That solutions W satisfying Definition 12 exist in the case of the N -Fourier
cutoff when Θ is non-resonant is demonstrated in Section 5.

4. The Bifurcation Equation

In this section we give the proof of Theorem 13. We assume a fixed
(non-symmetric) value of Θ = (θ, θ) ∈ E0, and assume there exists a cor-
responding smooth solution W satisfying (85)-(86) of Definition 12. That
is, assume W is a smooth (at least H1) solution of the infinite-dimensional
auxiliary equation (84),

W ≡Wε,α ≡W (ε, α), with PF(ε, α,W ) = 0, W0,0 = 0. (91)

We wish to prove that the bifurcation equation (88) can be solved for a
function αJ(ε, α, α) in a neighborhood of (0, 0, 0). That such a solution
always exists is the claim of Theorem 13, and it is the purpose of this section
to prove it.

The bifurcation equation (88) is given by

Φ(ε, α) ≡ (I − P)F(ε, α,W (ε, α)) = 0, (92)

where
Φ : Iδ ×Bδ ⊂ R4 → R⊥,

and according to (68), R⊥ is two-dimensional, consisting of the direct sum

R⊥ = ∆0 ⊕K⊥1 ,
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of the 0-mode
∆0 = Span {T ∗0 1}

and the one-dimensional kernel in the 1-mode

K⊥1 ≡ Span
{
T ∗1 q⊥

}
.

The main difficulty here is that for ε 6= 0 the evolution is nonlinear, so the
values of W (ε, α), which are unknown, influence the values of Φ(ε, α).

To start, let ϕ = (ϕ0, ϕ1), where we define the real valued functions ϕ0

and ϕ1 as the projections of Φ(ε, α) onto the zero-mode ∆0 and 1-mode K⊥1 ,
respectively, using the identity

Φ(ε, α) ≡ ϕ0(ε, α) T ∗0 1 + ϕ1(ε, α) T ∗1 q⊥. (93)

Alternatively, we may rewrite the definitions as

ϕ1(ε, α) =
〈
T ∗1 q⊥,Φ(ε, α)

〉
, (94)

and
ϕ0(ε, α) = 〈T ∗0 1,Φ(ε, α)〉 . (95)

Our strategy for the proof of Theorem 13 is to apply the implicit function
theorem to ϕ1 to prove that the function ϕ1(ε, α) vanishes along a surface
α = α(ε, α, α) in some neighborhood Bδ of zero, (ε, α, α) ∈ Bδ ⊂ R3. We
then use a conserved moment in w, an integral constant of motion for the
nonlinear problem derivable from the conservation form of the equations,
to prove that on the surface α = α(ε, α, α), ϕ0(ε, α) also vanishes. We can
then conclude from (93) that Φ(ε, α) = 0 on the surface α = α(ε, α, α),
(ε, α, α) ∈ Bδ, the result we desire.

More precisely, to obtain α = α(ε, α, α), we apply the implicit function
theorem to ϕ1 in variable αJ , which means that we need to verify the zero
condition

ϕ1(0, 0) = 0,

and the derivative condition
∂ϕ1

∂αJ

∣∣∣∣
(0,0)

6= 0.

Together these imply the existence of δ > 0 and function

αJ = αJ(ε, α, α) : Bδ → R

such that
ϕ1(ε, α(ε, α, α)) = 0,

where we define
α(ε, α, α) ≡ (α, α, αJ(ε, α, α)). (96)

In the final step we use conservation of mass to prove that ϕ0 vanishes when
(96) holds. Thus we have the
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Proof of Theorem 13. The proof hinges on three lemmas which are proved
below. In Lemma 19, we first show that

ϕ0(0, 0) = ϕ1(0, 0) = 0.

Next, in Lemma 20, we show that for any Θ ∈ E0, the derivatives
∂ϕ1

∂α
,

∂ϕ1

∂α
and

∂ϕ1

∂αJ

are all nonzero. It then follows by the implicit function theorem that we
can solve ϕ1 = 0 for αJ (or any parameter): that is, there is a δ > 0 and a
function (89) such that if α is given by (90), then

ϕ1(ε, α) = 0 for all (ε, α, α) ∈ Bδ.

Finally, in Lemma 21 below, we prove that, since Wε,α solves the auxiliary
equation, if ϕ1 = 0 in Bδ, then ϕ0(ε, α) = 0 there as well. We conclude
that Φ(ε, α) = 0 on the surface αJ = αJ(ε, α, α) for (ε, α, α) ∈ Bδ. Thus the
proof is complete once we state and prove Lemmas 19, 20 and 21.

4.1. Expansion of the solution. In order to prove the lemmas, we need
explicit expressions for ϕ0 and ϕ1, at least for ε = 0. To get these we need
to know the leading order behavior of W (ε, α).

Lemma 15. The solution W (ε, α) of the auxiliary equation (86) satisfies

W (ε, α) = cW (α) T ∗1 q⊥ +O(ε), (97)

where cW (α) is given by

cW (α) =
1− q ·Mα q
q ·Mα q⊥

, (98)

satisfies cW (α) = O(α), and Mα is given by (73), namely

Mα = −D−1
α R(θ + α)DαR(θ + α).

Proof. Since W (ε, α) is the unique solution of PFε,α[Z +W ] = 0 in Iδ ×Bδ,
it follows that for ε = 0, W (0, α) solves the linearized problem

PMα[Z +W ] = P[Z +W ], (99)

where P is projection onto R. Since the linearized problem preserves modes
and P is the identity on each ∆n, n ≥ 2, uniqueness of the solution implies
that

W (0, α) ∈ K⊥ ∩∆1 = K⊥1 = Span{T ∗1 q⊥}.
It follows that W (ε, α) is of the form (97), and we get cW (α) by considering
the 1-mode projection of (99): as in Theorem 2, using (72), (73), we have

MαT ∗1 = T ∗1 Mα,

and P projects 1-modes onto Span{q}, so that (99) becomes

q ·Mα

(
q + cW (α)q⊥

)
= q ·

(
q + cW (α)q⊥

)
= 1, (100)
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and solving for cW (α) yields (98). Finally, when α = 0, we have Mα = M1,
so that Mαq = q, while q ·M1q⊥ 6= 0, so that cW (0) = 0 and thus also
cW (α) = O(α).

We will need the derivatives of cW (α) evaluated at α = 0:

Corollary 16. For x = α, α or αJ , we have

∂

∂x
cW (α)

∣∣∣∣
α=0

=
−1
τ0

q · ∂
∂x
Mα

∣∣∣∣
α=0

q, (101)

where τ0 is given by (60).

Proof. This follows immediately by differentiating (100) and using the fact
that cW (0) = 0, together with (63).

In order to get the leading behavior of Φ(ε, α) given in (92), we need
a description of F(ε, α,W (ε, α)), which requires us to evaluate (to leading
order) the nonlinear evolution

Nα [1 + ε(Z +W )] .

Thus let
U0 = 1 + ε Z + εW (ε, α) ≡ Uε,α(0)

be “initial data” which we evolve by the nonlinear operator Nα, giving the
corresponding solution Uε,α, and using the notation (75), we set

Uε,α(y) = Nα(y)[U0] ∈ ∆,

which has values
Uε,α(y, t) ≡ 1 + ε V (y, t),

where V (y, t) is the rescaled solution of the PDE. In coordinates, we write

V (y) =
[
w(y)
v(y)

]
=

∞∑
n=0

T ∗n
[
wn(y)
vn(y)

]
, (102)

so that, if we write

Uε,α(y, t) =
[
wε,α(y, t)
vε,α(y, t)

]
,

then

wε,α(y, t) = 1 + ε

∞∑
n=0

wn(y) cosnt,

vε,α(y, t) = ε

∞∑
n=0

vn(y) sinnt.

(103)

For 0 < y < θ + α and 0 < y − θ − α < θ + α, the functions wε,α(y, t) and
vε,α(y, t) solve the PDEs (20). Now Nα = Mα to leading order in ε, which
implies the following theorem:
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Lemma 17. The leading order evolution for V = Z+W in the modes n ≥ 1
determined by (102) is given in the intervals

y ∈ (0, θ + α) and y ∈ (θ + α, θ + α+ θ + α),

by the equations

w′n + n vn = O(ε),

v′n − nwn = O(ε).
(104)

Proof. Using (103) in the equations (20) and letting u′ denote differentiation
of u with respect to y, we get∑

n≥0

w′n cosnt+
∑
n≥1

n vn cosnt = O(ε),

∑
n≥0

v′n sinnt−
∑
n≥1

nwn sinnt = O(ε).

Separating modes and taking n ≥ 1 directly gives (104).

The next lemma provides a formula for ϕ1(0, α).

Lemma 18. At ε = 0, we have the identity

ϕ1(0, α) = q⊥ · (Mα − I)
[
q + cW (α)q⊥

]
= q⊥ ·Mα q + cW (α) q⊥ · (Mα − I)q⊥, (105)

where cW (α) is given in (98).

Proof. From the definitions (88), (78) and (77), and (102), we have that

Φ(ε, α) = V (θ + α+ θ + α)− V (0), (106)

where
V (0) = Z +W (ε, α) and Z = T ∗1 q.

It follows from (94), using the inner product (57), that

ϕ1(ε, α) = q⊥ ·
{[

w1(θ + α+ θ + α)
v1(θ + α+ θ + α)

]
−
[
w1(0)
v1(0)

]}
. (107)

Now set ε = 0 in (107). Then (104) becomes the linear system

V ′1 = P V1,

where the matrix P is defined by

P ≡
(

0 −1
1 0

)
. (108)

Note that P = R(π/2) satisfies

ex P = R(x), (109)
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so that evolution through an interval of length x is simply rotation by x,
as seen in our earlier analysis of the linear equations. Putting in the jumps
and shift, it follows that

V1(θ + α+ θ + α) = Mα V1(0),

where

V1(y) =
[
w1(y)|ε=0

v1(y)|ε=0

]
≡
[
wα(y)
vα(y)

]
(110)

gives the the solution for ε = 0 for y throughout the interval (0, θ+α+θ+α).
Finally, using (80) and (97), we get

V1(0) = q + cW (α) q⊥,

and substituting into (110) and (107) gives (105).

The next lemma records the vanishing of ϕ1 and ϕ0 at the origin.

Lemma 19. The functions ϕ1 and ϕ0 vanish at the origin,

ϕ1(0, 0) = ϕ0(0, 0) = 0. (111)

Proof. That ϕ0(0, 0) = 0 follows from the fact that the evolution part of the
linearized operator M is in conservation form. On the other hand, by (73)
and (41),

Mα

∣∣
α=0

= −D−1 R(θ) D R(θ) = M1,

and, since cW (0) = 0, (105) yields ϕ1(0, 0) = q⊥ ·M1 q = 0.

4.2. Derivative calculations. To apply the implicit function theorem to
solve ϕ1 = 0, we must show that the derivative with respect to αJ is non-zero
at the origin,

dϕ1

dαJ

∣∣∣∣
ε,α=0

6= 0.

More generally, we calculate the full gradient of ϕ1 with respect to α at the
origin.

Lemma 20. We have the formulas

∂ϕ1

∂α
= 1 ,

∂ϕ1

∂α
=

sin θ
sin θ

, and
∂ϕ1

∂αJ
=

sin θ
J

, (112)

all derivatives being evaluated at the origin (ε, α) = 0 ∈ R4. In particular,
none of these derivatives vanish if Θ ∈ E0.

Proof. Referring to (105), we first note that since cW (α) = O(α) and since

Range(Mα − I)
∣∣
α=0

= Range(M1 − I) = Span{q}, (113)

we have for x = α, α or αJ ,

∂

∂x

{
cW (α) q⊥ · (Mα − I)q⊥

} ∣∣∣∣
α=0

= 0,
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which implies
∂

∂x
ϕ1(0, α)

∣∣
α=0

= q⊥ · ∂Mα

∂x

∣∣∣∣
α=0

q. (114)

We have by (73),

Mα = −D−1
α R(θ + α) Dα R(θ + α),

and also, using (108),

d

dx
R(x) =

d

dx
ex P = P ex P = P R(x) = R(x+ π/2). (115)

It follows from (114) that when α = 0,

∂ϕ1

∂α
= −q⊥ ·D−1 R(θ) D R(θ) P q , (116)

and
∂ϕ1

∂α
= −q⊥ ·D−1 P R(θ) D R(θ) q . (117)

Similarly,

∂ϕ1

∂αJ
= −q⊥ ·

(
0 0
0 −1

J2

)
R(θ) D R(θ) q

− q⊥ ·D−1 R(θ)
(

0 0
0 1

)
R(θ) q. (118)

For (116), by (113), we have for any p ∈ R2,

q⊥ · (M1 − I)p = 0, so that q⊥ ·M1 p = q⊥ · p,

so that
∂ϕ1

∂α
= q⊥ · Pq = q⊥ · q⊥ = 1 .

Next, to evaluate (117), write

D−1 P = D−1 P D D−1

and recall that Mα

∣∣
0
q = M1 q = q, to get

∂ϕ1

∂α
= −q⊥ ·

(
D−1 P D

)
(−M1)q

= q⊥ ·D−1 P D q. (119)

Now

q =
(

cos θ/2
− sin θ/2

)
, q⊥ =

(
sin θ/2
cos θ/2

)
and D =

(
1 0
0 J

)
,
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so continuing from (119) we have

∂ϕ1

∂α
=
(

sin θ/2 1
J cos θ/2

)( 0 −1
1 0

)(
cos θ/2

−J sin θ/2

)
=
(

1
J cos θ/2 − sin θ/2

)( cos θ/2
−J sin θ/2

)
,

=
1
J

cos2 θ/2 + J sin2 θ/2 .

Now using (49) to eliminate J , we get

∂ϕ1

∂α
= cos θ/2 sin θ/2

(
sin θ/2
cos θ/2

+
cos θ/2
sin θ/2

)
=

cos θ/2 sin θ/2
cos θ/2 sin θ/2

=
sin θ
sin θ

,

by the double angle formula.
Finally, we use M1q = q to rewrite (118) as

∂ϕ1

∂αJ
=
−1
J

q⊥ ·
(

0 0
0 1

)
q

− q⊥ ·D−1 R(θ)
(

0 0
0 1

) [
cos θ/2
sin θ/2

]
,

which simplifies to
∂ϕ1

∂αJ
=

1
J

sin θ/2 cos θ/2

+ sin2 θ/2 sin θ − 1
J

sin θ/2 cos θ/2 cos θ .

Now, using the double angle formulas and (49), we calculate

∂ϕ1

∂αJ
=

sin θ
2 cos θ

2

J

(
1− cos θ +

J sin θ
2

cos θ
2

sin θ

)

=
sin θ
2 J

(
1− (cos2 θ

2 − sin2 θ
2) + cos θ

2

sin θ
2

2 sin θ
2 cos θ

2

)
,

which simplifies to give the last relation in (112).

4.3. Evolution of the Moment. In light of Lemmas 19 and 20, we can
apply the implicit function theorem to solve ϕ1 = 0. The proof of Theorem
13 is thus complete once we prove that ϕ0 vanishes when ϕ1 does. Recall
that we are assuming that Wε,α solves the auxiliary equation.

Theorem 21. Assume that a function αJ = αJ(ε, α, α) : Bδ → R is given
for which

ϕ1(ε, α) = 0 for all (ε, α, α) ∈ Bδ, (120)
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Then we also have

ϕ0(ε, α) = 0 for all (ε, α, α) ∈ Bδ. (121)

Proof. Assume that (ε, α, α) ∈ Bδ, set

α ≡ (α, α, αJ(ε, α, α)) ∈ R3,

as in (90), and define
V0 ≡ Z +Wε,α ∈ ∆ .

Then, using (86), (87) and (120), we get

Fε,α[V0] = P Fε,α[V0] + Φ(ε, α)

= ϕ0(ε, α) T ∗0 1 = ϕ0(ε, α) 1 ,

which, by (78) and (77), implies that

Nα [1 + ε V0] = (1 + ε ϕ0(ε, α)) 1 + ε V0 , (122)

and we note that V0 has no component in ∆0. Now define

U̇(t) = (ẇ(t), v̇(t)) ≡ 1 + εV0(t),

and set
U# = (w#(t), v#(t)) ≡ Nα[U̇ ],

so that U# is the (shifted) spatial evolution (with jumps) of U̇ through the
period. Then by (122), we have

Proj∆nU
# = Proj∆nU̇ for all n ≥ 1 ,

and it follows that

w#(t) = ẇ(t) + w0, and v#(t) = v̇(t), (123)

with w0 = ε ϕ0(ε, α), a constant with respect to the nonlinear evolution.
Thus to verify (121), it remains only to show that w0 = 0.

According to (72),

Nα ≡ S · J −1
α · E(θ + α) · Jα · E(θ + α),

and so U# is obtained from U̇ by two nonlinear evolutions E(θ + α) and
E(θ + α), two linear jumps Jα, J −1

α , and a linear half period shift S. By
(25), w is constant across entropy jumps, while the two nonlinear evolutions
correspond to evolution by the nonlinear non-conservative system (20). This
is equivalent, by change of variables, to evolution by the p-system

τt − ux = 0,
ut + px = 0,

on each entropy level, since the entropy S is constant on each evolution.
Since the p-system is in conservation form, we integrate in time to get

d

dx

∫ 2π

0
p(x, t) dt = 0,
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so this integral is constant in x on each entropy level. Note that this is not
the usual conserved integral as we have interchanged the roles of x and t for
the evolution. Now, by (9), (19) we have

p = Kpm
2 (z0w)

2γ
γ−1 ,

so it follows directly using (18) that

d

dy

∫ 2π

0
w(y, t)

2γ
γ−1 dt = 0,

separately on each entropy level. Therefore, since w is preserved by the
jumps and the moment is preserved under a time-shift, this integral is con-
stant throughout the entire evolution. We thus conclude that∫ 2π

0
{ẇ(t)}

2γ
γ−1 dt =

∫ 2π

0

{
w#(t)

} 2γ
γ−1

dt

which by (123) implies∫ 2π

0

[
{w0 + ẇ(t)}

2γ
γ−1 − {ẇ(t)}

2γ
γ−1

]
dt = 0. (124)

Since ẇ(t) > 0, (w, like τ , measures a mass density), it follows that the
integrand in (124) has the sign of the constant w0 for all values of t. But
the integral vanishes, so we must have w0 = 0. This completes the proof of
the lemma, and the proof of Theorem 13 is complete.

5. The N-Fourier Cutoff Problem

In this section we show that the assumption of existence of a solutionW of
the auxiliary equation (84) is valid for non-resonant Θ if we assume a cutoff
of Fourier modes at arbitrarily high modes. In this case the proof of Theorem
14, giving periodic solutions under this assumption, goes through essentially
unchanged. We take this as demonstrating that periodic solutions of the
compressible Euler equations exist to within an arbitrary Fourier cutoff.

Thus let N ≥ 2 be any positive natural number, and define the N -Fourier
cutoff associated with the operators N and M by

NN [V ] ≡ 1 + PNNPN [V ], (125)

and

MN [V ] = 1 + PNMPN [V ] = 1 +MPN [V ], (126)

where PN denotes orthogonal projection onto the space ∆N defined by

∆N ≡ PN∆ = ⊕1≤n≤N ∆n ⊂ ∆, (127)
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and we restrict7

NN , MN : 1 + ∆N → 1 + ∆N .

Since Fourier modes are invariant for the linear operator M, MN is just
the restriction ofM to the space ∆N , as in Theorem 2. The N -Fourier cutoff
assumption reduces the infinite dimensional nonlinear and linear eigenvalue
problems (1) and (2) to the finite dimensional problems

(NN − I)[V ] = 0, (128)

and
(MN − I)[V ] = 0, (129)

where now V ∈ ∆N . In particular, by Theorem 2, the kernel of MN − I is
the projection of the kernel of M−I on ∆N . We record this as a lemma:

Lemma 22. For N ≥ 2, the kernel and range of MN , are given by

KN ≡ PNK and RN ≡ PNR,
respectively.

The goal of this section is to prove the following theorem:

Theorem 23. Let N ≥ 2 and let Θ = (θ, θ) ∈ (0, π)×(0, π) be non-resonant,
and let J be given by (49). Then there exists a three parameter family of
solutions of (128),

V ≡ Vε,α,α ∈ ∆N such that NN V = V ,

that bifurcate from the solution V∗ = T ∗1 q ∈ ∆1 of the linear problem

M[V ] = V, M≡ S · J −1 · L(θ) · J · L(θ).

As above, the parameter ε measures the strength of the nonlinear pertur-
bation from M, and (α, α) is an arbitrary small perturbation of the period
vector Θ, so that V ≡ Vε,α,α provides solutions of the nonlinear problem
(128) for both resonant and non-resonant periods in a neighborhood of a
non-resonant Θ = (θ, θ). Since the 1-mode kernel of M− I is one dimen-
sional, the result gives, for each non-resonant Θ, the existence of a three
parameter family of nonlinear solutions of (NN − I)[V ] = 0, the parameters
being (ε, α, α), say, that bifurcate from the kernel of the linearized operator
M−I.

7Note that, in addition to removing the high modes n > N , we have imposed periodicity
of the 0-mode by projecting out the 0-mode of each operator and then adding back in the
non-dimensionalized 0-mode base state 1 = (1, 0). The motivation for this is that the
proof in Theorem 21 that perodicity of the 0-mode is a consequence of periodicity of the
1-mode, requires the conservation law, and the conservation law only holds approximately
when high modes are neglected. However, because Theorem 21 demonstrates that the
zero mode is periodic when all the Fourier modes are included, the failure of periodicity
of the zero mode when high modes are neglected should be on the order of the neglected
modes. By this we suggest that (125), (126) are appropriate for an approximate finite
dimensional cutoff of the original infinite dimensional problems.
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To prove the theorem, and paralleling the development in the infinite
dimensional case, define

GN
ε,α = PN Gε,αPN and FN

ε,α = PN Fε,αPN ,

so that GN and FN are finite dimensional operators

GN
ε,α, FN

ε,α : ∆N → ∆N ,

where the restriction of ∆N to Fourier modes 1 ≤ n ≤ N is just ∆N ∼ R2N ,
since by (37), the map

T N ≡ ⊕N
n=1T ∗n : R2N → ∆N

is an isomorphism. In analogy with (84), define the auxiliary equation for
the N -Fourier cutoff to be

PFN (ε, α,W ) = PFN
ε,α[Z +W ] = 0, (130)

so that
PFN : Iδ ×Bδ × PNK⊥ → RN .

The N -Fourier cutoff assumption directly implies the following improve-
ments of Lemmas 10 and 11:

Lemma 24. Assume that N ≥ 2 and that Θ is nonresonant. Then the
operator

MN − IN : PNK⊥ → RN

admits the decomposition

MN − IN = P1(M1 − I)⊕
{
⊕N

n=2(Mn − I)
}
,

and MN − IN : PNK⊥ → RN is bounded and invertible. As in the un-
bounded case, the 1-mode projection

P1(M1 − I) : K⊥1 → K1

is multiplication by τ0 6= 0 as in (70), and we have

‖[MN − IN ]−1‖ ≤ C(Θ, N), (131)

where

C(Θ, N) = O

(
τ−1
0 , max

2≤n≤N

{
|(−1)nλ±n − 1|−1

})
.

Lemma 25. We have

GN
ε,α[V ] =

1
ε

{
NN

α [1 + εV ]− 1
}
,

and
FN

ε,α = GN
ε,α − IN , so that FN

ε,α[V ] = GN
ε,α[V ]− V.

The nonlinear operators GN
ε,α and FN

ε,α have the limits

lim
ε→0

FN
ε,α = MN

α − IN lim
ε,α→0

FN
ε,α ≡ GN

0 = MN − IN ,

lim
ε→0

GN
ε,α = MN

α , and lim
ε,α→0

GN
ε,α = MN ,
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where convergence is as matrices. Moreover, if

FN
ε,α[Vε,α] = 0, (132)

with ε 6= 0, then also

NN
α [1 + εVε,α] = 1 + εVε,α .

Proof. Lemma 24 follows directly by restricting the estimates of Lemma 10
to the Fourier modes 1 ≤ n ≤ N . Lemma 25 follows directly from Lemma
11 in light of (125), (126) and (77), (78).

Corollary 26. If Θ = (θ, θ) ∈ (0, π) × (0, π) is non-resonant, then the
auxiliary equation (130) has solutions W in the sense of Definition 12.

Proof. The corollary follows by the implicit function theorem in ∆N ∼ R2N

in light of the estimate (131) of Lemma 24.

We now have the N -Fourier cutoff version of Theorem 13:

Theorem 27. Assume that Θ is nonresonant and let W denote the solution
of the auxiliary equation (130) satisfying Definition 12. Then there exists
δ > 0 and a function

αJ = αJ(ε, α, α) : Bδ → R, with αJ(0, 0, 0) = 0,

such that, if we set α = α(ε, α, α) ≡ (α, α, αJ(ε, α, α)), then

FN
ε,α[Z +W (ε, α)] = 0

for all (ε, α, α) ∈ Bδ.

Proof. The theorem follows by the argument of Section 4 because that ar-
gument depends only the properties of W identified in Definition 12, and on
the structure of the restriction of the operator M−I to the Fourier 1-mode,
where it agrees with its N -Fourier cutoff.

As a direct consequence of Theorem 27 we have the N -Fourier version of
Theorem 28, from which Theorem 23 is evident:

Theorem 28. Assume that Θ is nonresonant and let W denote the solution
(130) given by Corollary 26. Then there are constant δ > 0 and smooth
functions αJ(ε, α, α) and Vε,α,α,

αJ = αJ(ε, α, α) : Bδ → R and V = Vε,α,α :: Bδ → ∆N ,

such that
V0,0,0 = Z ∈ K, and αJ(0, 0, 0) = 0,

and such that, if α is given by (90), then

FN
ε,α[Vε,α,α] = 0, that is

NN
α

[
1 + ε Vε,α,α

]
= 1 + ε Vε,α,α ,
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for all (ε, α, α) ∈ Bδ. Here the data for the nonlinear eigenvalue problem is

Vε,α,α ≡ Z +Wε,α

where Z = T ∗1 q and Wε,α solves (130).

6. Conclusion

In this paper we have used a Liapunov-Schmidt decomposition to reduce
the problem of existence of time-periodic solutions of the compressible Euler
equations to the problem of finding solutions of the auxiliary equation (86)
for ε > 0. The auxiliary equation is a perturbation of a linear operator
that is invertible but whose inverse is unbounded due to the presence of
small divisors. This introduces a new KAM type small divisor problem in
bifurcation theory, for an operator which is a composition of linear jump
operators and quasilinear evolution operators, the evolution being by the
non-dimensionalized p-system. Although proving existence for this implicit
function theorem appears to be beyond current mathematical techniques
due to the quasilinear nature of the problem, analogous results are available
for semilinear problems, and we conjecture that the problem does have a
solution. To support this, we prove that the reduction goes through rig-
orously assuming an arbitrarily large Fourier cutoff. We believe this lends
strong support for the claim that the wave pattern described in the lin-
earized solutions of [8] is physically realized in nearby exact solutions of the
fully nonlinear equations.
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