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Abstract. We consider conservation laws with source terms in a bounded

domain with Dirichlet boundary conditions. We first prove the existence of
a strong trace at the boundary in order to provide a simple formulation of

the entropy boundary condition. Equipped with this formulation, we go on

to establish the well-posedness of entropy solutions to the initial-boundary
value problem. The proof utilizes the kinetic formulation and the compensated

compactness method. Finally, we make use of these results to demonstrate the

well-posedness in a class of discontinuous solutions to the initial-boundary
value problem for the Degasperis-Procesi shallow water equation, which is a

third order nonlinear dispersive equation that can be rewritten in the form of

a nonlinear conservation law with a nonlocal source term.
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1. Introduction

In this article we consider scalar conservation laws with source terms on a
bounded open subset Ω ⊂ Rd with C2 boundary:

∂tu+ divxA(u) = S(t, x, u), (t, x) ∈ Q := (0, T )× Ω, (1)
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where T > 0 is a fixed final time and the flux function A ∈ C2 satisfies the genuine
nonlinearity condition

L({ξ | τ + ζ ·A′(ξ) = 0}) = 0, for every (τ, ξ) 6= (0, 0), (2)

where L is the Lebesgue measure.
The source term satisfies the following conditions:

S ∈ L∞(Q× R), S(t, x, ·) ∈ C1(R), |S(t, x, u)− S(t, x, v)| ≤ C|u− v|, (3)

where the last two conditions hold for a.e. (t, x) ∈ Q and C > 0 is a constant.
As usual, we only deal with entropy solutions, namely those that fulfill in the

sense of distributions on Q the inequality

∂tη(u) + divxq(u)− η′(u)S(t, x, u) ≤ 0 (4)

for every convex C2 function η and related entropy flux defined by

q′ = A′η′.

We are interested in the well-posedness in L∞ of the initial-boundary value problem
for (1), in which case we impose the initial data

u(0, ·) = u0 ∈ L∞(Ω) (5)

and the Dirichlet boundary data

u|Γ = ub ∈ L∞(Γ), (6)

where Γ := (0, T )× ∂Ω. Of course, this Dirichlet condition has to be interpreted in
an appropriate sense (see below) and this in turn requires an entropy solution to
possess boundary traces (which herein will be understood in a strong sense).

A BV well-posedness theory for conservation laws with Dirichlet boundary con-
ditions was first established by Bardos, le Roux, and Nédélec [1], and later extended
by Otto [24] to the L∞ setting, for which boundary traces do not exist in general,
a fact that complicates significantly the notion of solution and the proofs. For
genuinely nonlinear fluxes and domains whose boundaries satisfy a mild regularity
assumption, Vasseur [32] showed that L∞ entropy solutions always have traces at
the boundaries. Similar results hold without imposing a genuine nonlinearity con-
dition, cf. Panov [25, 26] and Kwon and Vasseur [16]. Consequently, for genuinely
nonlinear fluxes, the L∞ case can be treated as in [1], i.e., the more complicated
notion of entropy solution used by Otto can be avoided, see Kwon [15].

To define traces on the boundary Γ we use the concept of a “regular deformable
boundary” (see for instance Chen and Frid in [2]). For any domain Ω with C2

boundary, there exists at least one ∂Ω-regular deformation. Given any open subset
K̂ of ∂Ω, we refer to a mapping ψ̂ : [0, 1] × K̂ → Ω̄ as a K̂-regular deformation
provided it is a C1 diffeomorphism and ψ̂(0, ·) ≡ IK̂ with IK̂ denoting the identity
map over K̂. Let us now define the set K := (0, T )× K̂ and the function ψ(t, x) :=
(t, ψ̂(x)). Then, obviously, ψ(t, x) is K-regular deformation with respect to Γ. Let
us denote by n̂s the unit outward normal field of the deformed boundary ψ̂({s} ×
∂Ω). We also write ns = (0, n̂s) and n = (0, n̂). Notice that n̂s converges strongly
to n̂ when s goes to 0.

Our first main result is the following theorem.

Theorem 1.1. Let Ω ⊂ Rd be a regular open set with C2 boundary. Assume that
(3) holds and that the flux function A ∈ C2(R) verifies (2). Consider any function
u ∈ L∞((0, T )× Ω) obeying (1) and (4) in (0, T )× Ω. Then
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• there exists uτ ∈ L∞((0, T )× ∂Ω) such that for every Γ-regular deformation ψ
and every compact set K ⊂⊂ Γ there holds

ess lim
s→0

∫
K

|u(ψ(s, ẑ))− uτ (ẑ)|dσ(ẑ) = 0,

where dσ denotes the volume element of (0, T )× ∂Ω;
• there exists uτ ∈ L∞(Ω) such that for every compact set K ⊂⊂ Ω there holds

ess lim
t→0

∫
K

|u(t, x)− uτ (x)| dx = 0.

In particular, the trace uτ is unique and, for any continuous function F , F (u) also
possesses a trace and

[F (u)]τ = F (uτ ).

The proof of this theorem is found in Section 2. More precisely, in that section
we prove the first part of Theorem 1.1. The second part can be proved using the
same method, so we omit the details.

Having settled the existence of strong boundary traces, we can now turn to
the choice of entropy boundary condition. Instead of working with the original
condition due to Bardos, le Roux, and Nédélec [1], we shall instead employ the
following equivalent boundary condition introduced by Dubois and LeFloch [11],
which is well-defined in L∞ thanks to Theorem 1.1:[

q(uτ )− q(ub)− η′(ub)(A(uτ )−A(ub))
]
· n̂ ≥ 0, (7)

where Bτ means the trace of B on Γ = (0, T ) × ∂Ω and n̂ is the unit outward
normal to ∂Ω with n = (0, n̂).

Our second main result is the well-posedness of entropy solutions to the initial-
boundary value problem (1), (5), and (6), with the boundary condition (6) being
interpreted in the sense of (7).

Theorem 1.2. Let Ω ⊂ Rd be a regular open set with C2 boundary. Assume that
the source term S(t, x, u) obeys (3) and that the flux function A ∈ C2(R) verifies
(2). Let u0 ∈ L∞(Ω). Then there exists an unique entropy solution u ∈ L∞(Q)
verifying (1), (4), (5), and (7).

This theorem is proved in Section 3. As in [15], the uniqueness argument utilizes
the Dubois and LeFloch boundary condition (7) written in a kinetic form, which
plays an essential role in the proof of uniqueness.

In Section 4 we apply Theorems 1.1 and 1.2 to investigate the well-posedness of
the initial-boundary value problem for the so-called Degasperis-Procesi equation

∂tu− ∂3
txxu+ 4u∂xu = 3∂xu∂2

xxu+ u∂3
xxxu, (t, x) ∈ (0, T )× (0, 1), (8)

augmented with the initial condition

u(0, x) = u0(x), x ∈ (0, 1), (9)

and the boundary data
u(t, 0) = g0(t), u(t, 1) = g1(t), t ∈ (0, T ),

∂xu(t, 0) = h0(t), ∂xu(t, 1) = h1(t), t ∈ (0, T ).
(10)

We assume that
u0 ∈ L∞(0, 1), u0(0) = g0(0), u0(1) = g1(0),

g0, g1 ∈ H1(0, T ), h0, h1 ∈ L∞(0, T ).
(11)

Degasperis and Procesi [7] deduced (8) from the following family of third order
dispersive nonlinear equations, indexed over six constants α, γ, c0, c1, c2, c3 ∈ R:

∂tu+ c0∂xu+ γ∂3
xxxu− α2∂3

txxu = ∂x
(
c1u

2 + c2(∂xu)2 + c3u∂
2
xxu
)
.
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Using the method of asymptotic integrability, they found that only three equations
within this family were asymptotically integrable up to the third order: the KdV
equation (α = c2 = c3 = 0), the Camassa-Holm equation (c1 = − 3c3

2α2 , c2 = c3
2 ),

and one new equation (c1 = − 2c3
α2 , c2 = c3), which properly scaled reads

∂tu+ ∂xu+ 6u∂xu+ ∂3
xxxu− α2

(
∂3
txxu+

9
2
∂xu∂

2
xxu+

3
2
u∂3

xxxu

)
= 0. (12)

By rescaling, shifting the dependent variable, and finally applying a Galilean boost,
equation (12) can be transformed into the form (8), see [8, 9] for details.

Degasperis, Holm, and Hone [9] proved the integrability of (8) by constructing
a Lax pair. Moreover, they provided a relation to a negative flow in the Kaup-
Kupershmidt hierarchy by a reciprocal transformation and derived two infinite
sequences of conserved quantities along with a bi-Hamiltonian structure. Further-
more, they showed that the Degasperis-Procesi equation are endowed with weak
(continuous) solutions that are superpositions of multipeakons and described the
integrable finite-dimensional peakon dynamics. An explicit solution was also found
in the perfectly anti-symmetric peakon-antipeakon collision case. Lundmark and
Szmigielski [20], using an inverse scattering approach, computed n-peakon solutions
to (8). Mustafa [22] proved that smooth solutions to (8) have infinite speed of prop-
agation: they lose instantly the property of having compact support. Regarding
the Cauchy problem for the Degasperis-Procesi equation (8), Escher, Liu, and Yin
have studied its well-posedness within certain functional classes in a series of papers
[12, 13, 14, 18, 33, 34, 35, 36].

The approach taken in the papers just listed emphasizes the similarities between
the Degasperis-Procesi equation and the Camassa-Holm equation, and consequently
the main focus has been on (weak) continuous solutions. In a rather different direc-
tion, Coclite and Karlsen [4, 5, 6] and Lundmark [19] initiated a study of discontin-
uous (shock wave) solutions to the Degasperis-Procesi equation (8). In particular,
the existence, uniqueness, and stability of entropy solutions of the Cauchy problem
for (8) is proved in [4, 5, 6].

When it comes to initial-boundary value problems for the Degasperis-Procesi
equation much less is known. The first results in that direction are those of Escher
and Yin [14, 37], which apply to continuous solutions.

To encompass discontinuous solutions we shall herein extend the approach of
[4, 5, 6], relying on Theorems 1.1 and 1.2 above. Following [4] we rewrite (8), (9),
(10) as a hyperbolic-elliptic system with boundary conditions:

∂tu+ u∂xu+ ∂xP = 0, (t, x) ∈ (0, T )× (0, 1),
−∂2

xxP + P = 3
2u

2, (t, x) ∈ (0, T )× (0, 1),
u(0, x) = u0(x), x ∈ (0, 1),
u(t, 0) = g0(t), u(t, 1) = g1(t), t ∈ (0, T ),
∂xP (t, 0) = ψ0(t), ∂xP (t, 1) = ψ1(t), t ∈ (0, T ),

(13)

where
ψ0 = −g′0 − g0h0, ψ1 = −g′1 − g1h1. (14)

Indeed, formally, from (8),

(1− ∂2
xx)(∂tu+ u∂xu+ ∂xP ) = 0, (15)

since, by (14), the trace of ∂tu+ u∂xu+ ∂xP vanishes at x = 0 and x = 1, we can
invert the differential operator 1− ∂2

xx and pass from (15) to (13).
In the case g0 = g1 = 0 we do not need any boundary condition on ∂xu, indeed

from (14) we have ψ0 = ψ1 = 0.
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The boundary conditions related to the P -equation in (13) are of Neumann type.
Let G̃ = G̃(x, y) be the Green’s function of the operator 1 − ∂2

xx with Neumann
boundary ψ0, ψ1 conditions on (0, 1). The function P has a convolution structure

P (t, x) = Pu(t, x) :=
3
2

∫ 1

0

G̃(x, y)u2(t, y) dy, (16)

and (13) can be written as a conservation law with a nonlocal source

∂tu+ ∂x

(
u2

2

)
= −∂xPu = −3

2

∫ 1

0

∂xG̃(x, y)u2(t, y) dy.

Due to the regularizing effect of the elliptic equation in (13) we have that

u ∈ L∞((0, T )× (0, 1)) =⇒ Pu ∈ L∞(0, T ;W 2,∞(0, 1)). (17)

Therefore, if a map u ∈ L∞((0, T )× (0, 1)) satisfies, for every convex map η ∈ C2,

∂tη(u) + ∂xq(u) + η′(u)∂xPu ≤ 0, q(u) =
∫ u

ξη′(ξ) dξ, (18)

in the sense of distributions, then Theorem 1.1 provides the existence of strong
traces uτ0 , u

τ
1 on the boundaries x = 0, 1, respectively.

We say that u ∈ L∞((0, T )×(0, 1)) is an entropy solution of the initial-boundary
value problem (8), (9), (10) if

(i) u is a distributional solution of (13);
(ii) for every convex function η ∈ C2(R) the entropy inequality (18) holds in the

sense of distributions;
(iii) for every convex function η ∈ C2 with corresponding q defined by q′(u) =

uη′(u), the boundary entropy condition

q(uτ0(t))− q(g0(t))− η′(g0(t))
(uτ0(t))2 − (g0(t))2

2

≤ 0 ≤ q(uτ1(t))− q(g1(t))− η′(g1(t))
(uτ1(t))2 − (g1(t))2

2

(19)

holds for a.e. t ∈ (0, T ).
Our main result for the initial-boundary value problem for the Degasperis-Procesi

equation is the following theorem, which is proved in Section 4.

Theorem 1.3. Let u0, γ, g0, g1, h0, h1 satisfy (11). The initial-boundary value
problem (8), (9), (10) possesses an unique entropy solution u ∈ L∞((0, T )× (0, 1)).

2. Proof of Theorem 1.1

2.1. Weak boundary trace. We first reformulate the relevant problems on local
open subsets and construct weak boundary traces of entropy solutions on these
local sets. The reason for working on local subsets is that we are going to use
the blow-up method. We split the boundary into a countable number of subsets.
Indeed, for each x̂ ∈ ∂Ω, there exists rx̂ > 0, a C2 mapping γx̂ : Rd−1 → Rd−1,
and an isometry for the Euclidean norm Rx̂ : Rd → Rd such that, upon rotating,
relabeling, and translating the coordinate axes if necesary,

Rx̂(x̂) = 0,

Rx̂(Ω) ∩ (−rx̂, rx̂)d = {y = (y0, ŷ) ∈ (−rx̂, rx̂)d | y0 > γẑ(ŷ)}.

We have
∂Ω ⊂

⋃
x̂∈∂Ω

R−1
x̂ ((−rx̂, rx̂)d).
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Hence, for each ẑ = (t̂, x̂) ∈ Γ, we obtain an isometry map Λẑ : Rd+1 → Rd+1 given
by Λẑ(t, x) = (y0, t− t̂, ŷ), where (y0, ŷ) = Rx̂(x). Then we have

Γ =
⋃
ẑ∈Γ

(Λẑ)−1((0, rẑ)× (−rẑ, rẑ)d).

Since the above collection of open sets is countable,⋃
ẑ∈Γ

(Λẑ)−1(Γẑ) =
⋃
α∈K

(Λα)−1(Γα),

where K is a countable set and

Γα = Λ−1
α ({w = (w0, ŵ) ∈ (0, T )× (−rα, rα)d | w0 = Λα(ŵ)}),

where w = (w0, ŵ) = (y0, t− t̂, ŷ) and ŵ = (t− t̂, ŷ). In an attempt to simplify the
notation we write α instead of ẑα in the indices. We define

Qα = {w ∈ (0, rα)× (−rα, rα)d | w0 > Λα(ŵ)}.
From now on we will work in Qα and state the equations in terms of the new w
variable. To this end, define uα : Qα → R by uα(w) = u((Λα)−1(w)) and set
Aα(ξ) = Λα(ξ, A(ξ)), qα(ξ) = Λα(η(ξ), q(ξ)). For every fixed α, every deformation
ψ, and every ŵ ∈ (−rα, rα)d, we define

ψ̃(s, ŵ) = (Λα ◦ ψ)(s, (Rα)−1(ŵ)), s = w0.

In terms of the w variable, (1) and (4) read respectively

divwAα(uα) = 0 in Qα (20)

and
divwqα(uα) ≤ 0 in Qα. (21)

We now introduce a kinetic formulation of (20) and (21), cf. [17]. To do so we
set L = ‖u‖L∞(Ω), bring in a new variable ξ ∈ (−L,L), and introduce for every
v ∈ (−L,L) the function

χ(v, ξ) =

{
1{0≤ξ≤v}, if v ≥ 0,
−1{v≤ξ≤0}, if v < 0.

To effectively represent weak limits of nonlinear functions of weakly converging
sequences, we introduce new functions, called microscopic functions, which depend
on ξ and on an additional variable z [28].

Definition 2.1. Let N be an integer and O be an open set of RN . We say that
f ∈ L∞(O × (−L,L)) is a microscopic function if it obeys 0 ≤ sgn(ξ)f(z, ξ) ≤ 1
for almost every (z, ξ). We say that f is a χ-function if there exists a function
u ∈ L∞(O) such that for a.e. z ∈ O there holds f(z, ·) = χ(u(z), ·).

For later use, let us collect the following results (cf. [28]).

Lemma 2.1. Fix an open set O ⊂ RN , and let fk ∈ L∞(O × (−L,L)) be a
sequence of χ-functions L∞weak-?-converging to f ∈ L∞(O× (−L,L)). Introduce the
functions uk(·) =

∫ L
−L fk(·, ξ) dξ and u(·) =

∫ L
−L f(·, ξ) dξ. Then, for almost every

z ∈ O, the function f(z, ·) lies in BV (−L,L). Moreover, the following statements
are equivalent:

• fk converges strongly to f in L1
loc(O × (−L,L)).

• uk converges strongly to u in L1
loc(O).

• f is a χ-function.

Observe that if f is a χ-function then u(z) =
∫ L
−L f(z, ξ) dξ. The following

theorem is due to Lions, Perthame, and Tadmor [17].
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Theorem 2.1. A function u ∈ L∞(Qα), with |u| ≤ L, is a solution of (20) and
(21) if and only if there exists a nonnegative measure m ∈M+(Qα× (−L,L)) such
that the related χ-function f defined by f(u(w), ξ) = χ(u(w), ξ) for almost every
(w, ξ) ∈ (Qα × (−L,L)) verifies

a(ξ) · ∇wf − S(·, ξ)(∂ξf − δ(ξ)) = ∂ξm in D′(Qα × (−L,L)), (22)

where a(ξ) := A′α(ξ).

Denote a by a = (a0, â). To simplify the notation we keep denoting the normal
vectors by ns and n.

In what follows, for every fixed α, we will consider the set Qα, and the χ-function
f associated to uα. For every regular deformation ψ and every ŵ ∈ (−rα, rα)d we
set:

ψ̃(s, ŵ) = ψ(s,Λ−1
α (γα(ŵ), ŵ)),

fψ(s, ŵ, ξ) = f(ψ̃(s, ŵ), ξ).

We will first show that fψ has a weak trace at s = 0, which does not depend on
the deformation ψ, i.e., the way chosen to reach the boundary.

Lemma 2.2. Let f be a solution of (22) in Qα × (−L,L). Then there exists
fτ ∈ L∞((−rα, rα)d × (−L,L)) such that

ess lim
s→0

fψ(s, ·, ·) = fτ in H−1((−rα, rα)d × (−L,L)),

for all Γα-regular deformation ψ. Moreover, fτ is uniquely defined.

Proof. Since ‖fψ(s, ·, ·)‖L∞ ≤ 1, by weak compactness and the Sobolev imbedding

theorem, for every sequence sk k→∞→ 0 there exists a subsequence kp
p→∞→ ∞ and a

function gτψ ∈ L∞((−rα, rα)d × (−L,L)) such that

fψ(skp , ·, ·) p→∞→ gτψ in H−1 ∩ L∞weak-?, (23)

for every regular deformation ψ. Let us show that gτψ is independent of the de-
formation ψ and the sequence sk and its subsequence skp . To do so, let us first
consider the entropy flux

qη(w) =
∫ L

−L
a(ξ)η′(ξ)f(w, ξ) dξ, (24)

associated with the entropy η. Multiplying (22) by η′(ξ) and integrating it with
respect to ξ we find

divyqη = −
∫ L

−L
[η′′(ξ)m1 − η′(ξ)m2](w, dξ) ∈M((−rα, rα)d+1),

where
m1 = Sf +m, m2 = −∂ξSf + δ(ξ)S. (25)

We can now use the following theorem (cf. Chen and Frid in [2]):

Theorem 2.2. Let Ω be an open set with regular boundary ∂Ω and F ∈ [L∞(Ω)]d+1

be such that divyF is a bounded measure. Then there exists F · n ∈ L∞(∂Ω) such
that for every ∂Ω-regular deformation ψ

ess lim
s→0

F (ψ(s, ·)) · ns(·) = F · n in L∞weak-?(∂Ω),

where ns is a unit outward normal field of ψ({s} × ∂Ω).
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This theorem ensures the existence of a function qτη · n ∈ L∞((−rα, rα)d), which
does not depend on ψ, such that

qη(ψ̃(s, ·)) · ns(·)
s→0−→ qτη · n in D′((−rα, rα)d), (26)

for every regular deformation ψ. The function ns converges strongly to n, i.e., the
unit outward normal to Qα. The convergence takes place in L1((−rα, rα)d). So,
using (24) and (23), (26), we obtain∫

(−rα,rα)d

∫ L

−L
ϕ(ŵ)η′(ξ)a(ξ) · n(ŵ)gτψ(ŵ, ξ) dξ dŵ =

∫
(−rα,rα)d

qτη · n(ŵ)ϕ(ŵ) dŵ,

for every test functions ϕ ∈ D((−rα, rα)d). The right-hand side of this equation is
independent of ψ, the sequence sk and its subsequence skp , so gτψ does not depend
on those quantities either thanks to (2). The result is obtained from the uniqueness
of the limit. �

2.2. Strong boundary trace. Let us now show that entropy solutions possess
a strong boundary trace. To do so we will employ the blow-up method [32] and
apply the averaging lemma to conclude that fτ (ŵ, ·) is a χ-function for almost every
(ŵ, ξ) ∈ (−rα, rα)d × (−L,L). To this end, we shall rely on the following lemma,
which is a straightforward consequence of Lemma 2.1.

Lemma 2.3. The function fτ is a χ-function if and only if

ess lim
s→0

fψ(s, ·, ·) = fτ in L1((−rα, rα)d),

for any deformation ψ.

Let fix a specific deformation on Qα, namely

ψ̃0(s, ŵ) = (s+ γα(ŵ), ŵ). (27)

We use the notation

f̃(s, ŵ, ξ) = fψ̃0
(s, ŵ, ξ) = f(ψ̃0(s, ŵ), ξ),

when we work with the deformation (27). Indeed, it is enough to show strong trace
of fψ for the specific deformation thanks to Lemma 2.2. Notice that ψ̃0(s, ŵ) ∈ Qα
if and only if ŵ ∈ (−rα, rα)d and 0 < s < rα. From (22) we find that f̃ is a solution
of

ã0(ŵ, ξ)∂sf̃ + â(ξ)∂ŵf̃ = ∂ξm̃1 + m̃2, (28)

where m̃i(s, ŵ, ξ) = mi(ψ̃0(s, ŵ), ξ) with mi defined in (25), i = 1, 2 and ã0(ŵ, ξ) =
λ(ŵ)a(ξ) · n(ŵ).

Before introducing the notion of rescaled solution, let us state two lemmas
(cf. Vasseur [32]).

Lemma 2.4. There exists a sequence δk which converges to 0 and a set E ⊂
(−rα, rα)d with L((−rα, rα)d \ E) = 0 such that for every ŵ ∈ E and every R > 0

lim
k→∞

1
δdn
m̃i

(
(0, Rδk)× (ŵ + (−Rδk, Rδk)d)× (−L,L)

)
= 0, i = 1, 2.

Lemma 2.5. There exists a subsequence, still denoted by δk, and a subset E ′ of
(−rα, rα)d with E ′ ⊂ E, L((−rα, rα)d \ E ′) = 0, such that for every ŵ ∈ E ′ and
every R > 0 there holds

lim
δk→0

∫ L

−L

∫
(−R,R)d

|fτ (ŵ, ξ)− fτ (ŵ + δkŷ, ξ)| dŷ dξ = 0,

lim
δk→0

∫ L

−L

∫
(−R,R)d

|ã0(ŵ, ξ)− ã0(ŵ + δkŷ, ξ)| dŷ dξ = 0.
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Let us now introduce the localization method [32]. We use the notation

Qδα = (0, rα/δ)× (−rα/δ, rα/δ)d.

The goal is to show that for every ŵ ∈ E ′, fτ (ŵ, ·) is a χ-function. From now on
we fix such a ŵ ∈ E ′. Then we rescale the f̃ function by introducing a new function
f̃δ, which depends on new variables (s, ŷ) ∈ Qδα, defined by

f̃δ(s, ŷ, ξ) = f̃(δs, ŵ + δŷ, ξ).

This function depends obviously on ŵ but since it is fixed throughout this section,
we skip it in the notation. The function f̃δ is still a χ-function and we notice that

f̃δ(0, ŷ, ξ) = fτ (ŵ + δŷ, ξ).

Hence we gain knowledge about fτ (ŵ, ·) by studying the limit of f̃δ when δ → 0.
We define

ã0
δ(ŷ, ξ) = ã0(ŵ + δŷ, ξ).

In view of (28),

ã0
δ(ŷ, ξ)∂sf̃δ + â(ξ)∂ŷ f̃δ = ∂ξm̃

1
δ + m̃2

δ , (29)

where m̃i
δ is the nonnegative measure defined for every real numbers Rj1 < Rj2,

L1 < L2 by

m̃i
δ

(
Π

0≤j≤d
[Rj1, R

j
2]× [L1, L2]

)
=

1
δd
m̃i

(
Π

0≤j≤d
[yj + δRj1, yj + δRj2]× [L1, L2]

)
,

for i = 1, 2.
We now pass to the limit when δ goes to 0 in the rescaled equation. To this

end, we shall need to prove strong convergence via an application of an averaging
lemma taken from Perthame and Souganidis [29].

Theorem 2.3. Let N be an integer, fn bounded in L∞(RN+1) and {h1
n, h

2
n} be

relatively compact in
[
Lp(RN+1)

]2N with 1 < p < +∞ solutions of the transport
equation:

a(ξ) · ∇yfk = ∂ξ(∇y · h1
k) +∇y · h2

k,

where a ∈
[
C2(R)

]N verifies the non-degeneracy condition (2). Let φ ∈ D(R), then
the average uφk(w) =

∫
R φ(ξ)fk(w, ξ) dξ is relatively compact in Lp(RN ).

Lemma 2.6. There exist a sequence δk → 0 and a χ-function f̃∞ ∈ L∞(R+×R×
(−L,L)) such that f̃δn converges strongly to f̃∞ in L1

loc(R+ × R× (−L,L)) and

ã0(ŵ, ξ)∂sf̃∞ + â(ξ) · ∂ŵf̃∞ = 0. (30)

Proof. We consider the sequence δn of Lemma 2.5. By weak compactness, there
exists a function f̃∞ ∈ L∞(R+ × Rd × (−L,L)) such that, up to extraction of a
subsequence, f̃δn converges to f̃∞ in L∞weak-?. Thanks to Lemma 2.4, m̃i

δn
converges

to 0 in the sense of measures. So passing to the limit in (29) gives (30).
First, we localize in (w, ξ). For any R > 0 big enough, we consider Φ1,Φ2

with values in [0, 1] such that Φ1 ∈ D(R+ × Rd), Φ2 ∈ D(R), and Supp(Φ1) ⊂
(1/(2R), 2R) × (−2R, 2R)d, Supp(Φ2) ⊂ (−2L, 2L). Moreover, Φ1(w) = 1 for
w ∈ (1/R,R) × (−R,R)d and Φ2(ξ) = 1 for ξ ∈ (−L,L). Hence for δ < rα/(2R),
we can define on R× Rd × R the function

f̃Rδ = Φ1Φ2f̃δ,
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(where f̃Rδ = 0 if f̃δ is not defined). On (1/R,R) × (−R,R) × (−L,L) we have
f̃Rδ = f̃δ. So, if we denote by aŵ(ξ) = (ã0(ŵ, ξ), â(ξ)) (which depends only on ξ
since ŵ is fixed), from (29) we get

aŵ(ξ) · ∇ŵf̃Rδ = ∂ξ(Φ1Φ2m̃
1
δ)− Φ1Φ′2m̃

1
δ + aŵ(ξ) · ∇ŵΦ1Φ2f̃

R
δ + Φ1Φ2m̃

2
δ

+ ∂s[(ã0(ŵ, ξ)− ã0
δ(ŷ, ξ))f̃

R
δ ]

= ∂ξµ1,δ + µ2,δ + ∂s[(ã0(ŵ, ξ)− ã0
δ(ŷ, ξ))f̃

R
δ ],

where µ1,δk and µ2,δk are measures uniformly bounded with respect to k. In view of
Lemma 2.5 we can see that ã0(ŵ, ξ)− ã0

δ(ŷ, ξ) converges to 0 in L1
loc(Rd× (−L,L)).

So it converges to 0 in Lploc for every 1 ≤ p <∞ since these functions are bounded in
L∞. Since the measures are compactly imbedded in W−1,p for 1 ≤ p < d+2

d+1 , we can
apply Theorem 2.3 with N = d + 1, fk = f̃Rδk , φ(ξ) = Φ2(ξ), and a(ξ) = aŵ(ξ). It
follows that

∫
f̃Rδ Φ2(ξ) dξ is compact in Lp for 1 ≤ p < d+2

d+1 . And so by uniqueness
of the limit,

∫
f̃δn(·, ξ) dξ converges strongly to

∫
f̃∞(·, ξ) dξ in L1

loc(R2). Lemma 2.1
ensures us that f̃δn converges strongly to f̃∞ in L1

loc(Rd+1× (−L,L)) and moreover
that f̃∞ is a χ-function. �

We now turn to the characterization of the limit function f̃∞.

Lemma 2.7 ([32]). For every ŵ ∈ E ′, f̃∞(w, ξ) = fτ (ŵ, ξ) for almost every (w, ξ) ∈
Rd+1 × (−L,L), and the function fτ (ŵ, ·) is a χ-function.

Thus, from Propositions 2.3 and 2.7, we can prove Theorem 1.1.

Proof of Theorem 1.1. For every α and every deformation ψ, we have

ess lim
s→0

∫
(−rα,rα)d

∫ L

−L
|fψ(s, ŵ, ξ)− fτ (ŵ, ξ)|dξdŵ = 0.

We define uτ by

uτ (ẑ) =
∫ L

−L
fτ (ŵ, ξ)dξ, if (γα(ŵ), ŵ) = Λα(ẑ).

For every compact subset K of (0, T ) × ∂Ω, there exists a finite set I0 such that
K ⊂

⋃
α∈I0 and∫

K

|u(ψ(s, ẑ))− uτ (ẑ)|dσ(ẑ) ≤
∑
α∈I0

∫
Γα

|u(ψ(s, ẑ))− uτ (ẑ)|dσ(ẑ),

which converges to 0 as s tends to 0. This concludes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

3.1. Existence proof. In this section we will show the existence of an entropy
solution for the initial-boundary value problem (1), (5), and (6), with the boundary
condition (6) interpreted in the sense of (7).

Let {Sε}ε>0 be a a sequence of smooth functions converging in L1
loc to S with

respect to variables (t, x), for example obtained by mollifying the function S, and
consider smooth solutions to the uniformly parabolic equation

∂tu
ε + divxA(uε) = Sε(t, x, uε) + ε∆xu

ε, (31)

with initial and boundary data

uε(0, ·) = u0 uε|Γ = ub. (32)
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For the sake of simplicity in this proof, we will assume that the data u0, ub are
smooth functions. Then, for each ε > 0, the existence of a unique smooth solution
of the initial-boundary (31), (32) value problem is a standard result.

By the maximum principle,

|uε(t, x)| ≤ ‖u0‖L∞ + ‖S‖L∞ T. (33)

For any convex entropy function η and corresponding entropy flux function q
with q′ = η′A′, multiplying (31) η′(uε) yields

∂tη(uε) + divxq(uε)− η′(uε)Sε(t, x, uε) = ε∆xη(uε)− εη′′(uε)|∇xuε|2. (34)

For any function ϕ ∈ C∞c (Q), it follows from (34) that∫
Q

η(uε)∂tϕ+ q(uε) · ∇xϕdtdx

=
∫
Q

εη′(uε)∇xuε · ∇xϕdtdx+
∫
Q

η′′(uε)ε|∇xuε|2ϕdtdx

−
∫
Q

Sε(t, x, uε)uεϕdtdx.

(35)

LetK be an arbitrary compact subset ofQ and choose in (35) a function ϕ ∈ C∞c (Q)
satisfying

ϕ|K = 1, 0 ≤ ϕ ≤ 1.

It follows that ∫
Q

|Sε(t, x, uε)uεϕ| dtdx ≤ C(T, ϕ, ‖u0‖L∞) ‖S‖L∞ ,

thanks to (33). Consequently,∫
Q

ε |∇xuε|2 dtdx ≤ C (36)

and hence we obtain that ∂tη(uε) + divxq(uε) is compact in H−1
loc (Q). We can now

apply, for example, Tartar’s compensated compactness method [31] to conclude the
existence of subsequence, still labeled uε, converging to a limit u a.e. and in L1

loc

such that the interior entropy inequality holds:∫
Q

η(u)∂tφ+ q(u) · ∇xφ+ η(u)S(t, x, u)φdtdx ≥ 0, ∀φ ∈ C∞c (Q), φ ≥ 0.

It remains to prove that the limit u satisfies the Dubois and Le Floch’s boundary
condition (7).

Lemma 3.1. Let u be the limit function constructed above. Then, for any convex
entropy-entropy flux pair (η, q),[

q(uτ )− q(ub)− η′(ub)(A(uτ )−A(ub))
]
· n̂ ≥ 0

where Bτ is the trace of B on (0, T )× ∂Ω and n̂ is the unit outward normal to ∂Ω.

Proof. We need a family of boundary layer functions {ζδ} ∈ C∞(Ω; [0, 1]) verifying

ζδ|Ωδ = 0, ζδ|∂Ω = 1, and |∇ζ| ≤ c

δd
,

where Ωδ = {x ∈ Ω|diam(x, ∂Ω) > δ} and c is a constant independent of δ.
Multiplying (34) by θ(t)ζδ(x) with θ ∈ C∞c (0, T ), θ ≥ 0, we obtain E1 = E2,

where the terms E1, E2 are defined and analyzed below.
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Integration by parts yields

E1 :=
∫
Q

(
∂tη(uε) + divxq(uε)− η′(uε)Sε(t, x, uε)

)
θ(t)ζδ(x) dtdx

= −
∫
Q

η(uε)θ′(t)ζδ(x) + q(uε) · ∇xζδ(x)θ(t)

+ η′(uε)Sε(t, x, uε)θ(t)ζδ(x) dtdx+
∫

(0,T )×∂Ω

q(ub) · n̂ θ(t) dtdx

ε→0→ −
∫
Q

η(u)θ′(t)ζδ(x) + q(u) · ∇xζδ(x)θ(t) + η′(u)S(t, x, u))θ(t)ζδ(x) dtdx

+
∫

(0,T )×∂Ω

q(ub) · n̂ θ(t) dtdσ.

Observe that∫
Q

q(u) · ∇xζδ(x)θ(t) dtdx δ→0→
∫ T

0

∫
∂Ω

q(uτ ) · n̂ θ(t) dtdσ

and ∫
Q

η′(u)S(t, x, u)θ(t)ζδ(x) dtdx δ→0→ 0,
∫
Q

η(u)θ′(t)ζδ(x) dtdx δ→0→ 0.

As a result,

lim
δ→0

lim
ε→0

E1 =
∫

(0,T )×∂Ω

(q(ub)− q(uτ )) · n̂)θ(t) dtdσ.

Next,

E2 := ε

∫
Q

η′(uε)∆xu
εθ(t)ζδ(x) dtdx

= ε

∫
Q

(
divx(η′(uε)∇xuε)− η′′(uε)|∇xuε|2

)
θ(t)ζδ(x) dtdx

≤ ε
∫

(0,t)×∂Ω

η′(ub)∇xuε · n̂ θ(t) dtdσ − ε
∫
Q

η′(uε)∇xuε · ∇xζδ(x)θ(t) dtdx

=: E2,1 − E2,2.

Clearly, thanks to (36), lim
ε→0
|E2,2| = 0.

To analyze E2,1, we repeat the above argument with η = Id to obtain the
equation

lim
δ→0

lim
ε→0

[
ε

∫
(0,T )×∂Ω

∇xuε · n̂ θ(t) dtdσ

]
=
∫

(0,T )×∂Ω

(A(uτ )−A(ub)) · n̂ θ(t) dtdσ,

and consequently

lim
ε→0

lim
δ→0

E2,1 =
∫

(0,T )×∂Ω

η′(ub)(A(uτ )−A(ub)) · n̂ θ(t) dtdσ;

hence the limit u obeys the inequality∫ T

0

∫
∂Ω

[
q(uτ )− q(ub)− η′(ub)(A(uτ )−A(ub))

]
· n̂ θ(t) dσdt ≥ 0.

By the arbitrariness of θ, the proof is complete. �
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3.2. Uniqueness proof. In this section we prove the uniqueness part of Theorem
1.2, adapting the approach of Perthame [27, 28]. In what follows, we let u, v denote
two entropy solutions of the conservation law (1) with initial data u0, v0 ∈ L∞,
respectively, and boundary data ub, with the boundary condition (6) interpreted in
the sense of (7). We start by rewriting the Dubois and LeFloch boundary condition
(7) in a kinetic form due to Kwon [15].

Lemma 3.2. The following two statements are equivalent:
1. For every convex entropy-entropy flux pair (η, q),[

q(uτ )− q(ub)− η′(ub)(A(uτ )−A(ub))
]
· n̂ ≥ 0 on Γ.

2. There exists µ ∈M+(Γ× (−L,L)) such that

A′(ξ) · n̂(ẑ)
[
fτ (ẑ, ξ)− χ(ξ;ub(ẑ))

]
− δ(ξ=ub(ẑ))(A(uτ )−A(ub)) · n̂ = −∂ξµ(ẑ, ξ),

for every (ẑ, ξ) ∈ Γ× (−L,L).

Associated with the entropy solutions u and v we introduce the corresponding
χ-functions f and g defined by f(t, x, ξ) = χ(ξ;u(t, x)) and g(t, x, ξ) = χ(ξ; v(t, x)),
respectively. In view of Theorem 2.1, there exist m1,m2 ∈M+(Q× (−L,L)) such
that

∂tf +A′(ξ) · ∇xf − S(t, x, ξ)(∂ξf − δ(ξ)) = ∂ξm
1,

∂tg +A′(ξ) · ∇xg − S(t, x, ξ)(∂ξg − δ(ξ)) = ∂ξm
2.

(37)

The goal is to show the following inequality for a.e. t ∈ (0, T ):

d

dt

∫
Ω

∫ L

−L
|f(t, x, ξ)− g(t, x, ξ)|2 dξdx

+
∫
∂Ω

∫ L

−L
A′(ξ) · n̂(x)|fτ (t, x, ξ)− gτ (t, x, ξ)|2 dξdσ

≤ C
∫

Ω

|S(t, x, u(t, x))− S(t, x, v(t, x))| dx,

(38)

where dσ denotes the volume element of ∂Ω and some constants C > 0.
To this end, we need to regularize f and g with respect to the t, x variables. Set

ε = (ε1, ε2) and define φε by

φε(t, x) =
1
ε1
φ1

(
t

ε1

)
1
εd2
φ2

(
x

ε2

)
,

where φ1 ∈ C∞c (R), φ2 ∈ C∞c (Rd) verify φj ≥ 0,
∫
φj = 1 for j = 1, 2, and

supp(φ1) ⊂ (0, 1). We shall employ the following notations:

fε(t, x, ξ) = f(·, ·, ξ) ?
(t,x)

φε(t, x), gε(t, x, ξ) = g(·, ·, ξ) ?
(t,x)

φε(t, x),

m1
ε(t, x, ξ) = m1(·, ·, ξ) ?

(t,x)
φε(t, x), m2

ε(t, x, ξ) = m2(·, ·, ξ) ?
(t,x)

φε(t, x),

where ? means convolution with respect to the indicated variables and the mappings
f, g,m1,m2 are extended to Rd+1 by letting them take the value zero on Rd+1 \Q.

The proof of the following lemma can be found in Perthame [27, 28].

Lemma 3.3. Let m1 and m2 be non-negative measures given in the Theorem 2.1.
Then, the following holds

lim
ε→0

∫ L

−L
m1
ε(·, ·, ξ)δ(ξ=u) ∗ φε +m2

ε(·, ·, ξ)δ(ξ=v) ∗ φεdξ = 0 in D′(Q).
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Let us continue with the proof of (38). Fix a ∂Ω-regular deformation ψ̂, and let
Ωs denote the open subset of Ω whose boundary is ∂Ωs = ψ̂({s}×∂Ω). Taking the
convolution of each of the two kinetic equations in (37) and then subtracting the
resulting equations we obtain an equation that is multiplied by fε − gε. The final
outcome reads∫

Ωs

∫ L

−L
∂t|fε(t, x, ξ)− gε(t, x, ξ)|2 +A′(ξ) · ∇x|fε(t, x, ξ)− gε(t, x, ξ)|2 dξdσs

−
∫

Ωs

∫ L

−L
[S(t, x, ξ)(∂ξ(f − g))] ?

(t,x)
φε(t, x)(fε(t, x, ξ)− gε(t, x, ξ)) dξdσs

= 2
∫

Ωs

∫ L

−L
∂ξ(m1

ε(t, x, ξ)−m2
ε(t, x, ξ))(fε(t, x, ξ)− gε(t, x, ξ)) dξdσs,

(39)

for a.e. s > 0, where dσs denotes the volume element of ∂Ωs.
In view of Lemma 3.3, observe that for a.e. s > 0 we have

lim
ε→0

∫
Ωs

∫ L

−L
∂ξ(m1

ε(·, ·, ξ)−m2
ε(·, ·, ξ))(fε(·, ·, ξ)− gε(·, ·, ξ)) dξdσs

= − lim
ε→0

∫
Ωs

∫ L

−L
(m1

ε(·, ·, ξ)−m2
ε(·, ·, ξ))∂ξ(fε(·, ·, ξ)− gε(·, ·, ξ)) dξdσs

= − lim
ε→0

∫
Ωs

∫ L

−L
m1
ε(·, ·, ξ)δ(ξ=v) ?

(t,x)
φε +m2

ε(·, ·, ξ)δ(ξ=u) ?
(t,x)

φε dξdσs ≤ 0.

Next, observe that

lim sup
ε→0

|
∫

Ωs

∫ L

−L
[S(t, x, ξ)(∂ξ(f − g))] ?

(t,x)
φε(t, x)(fε(t, x, ξ)− gε(t, x, ξ)) dξdx|

≤ 2
∫

Ωs

|S(t, x, u)− S(t, x, v)| dx ≤ 2C
∫

Ωs

|u− v| dx, for a.e. s > 0,

where we have used condition (3) to derive the last inequality. Indeed, using |f | ≤ 1
and |g| ≤ 1, we obtain |fε − gε| ≤ 2 and we can easily check that for a.e. (t, x) ∈
(0, T )× Ω,∫ L

−L
[S(t, x, ξ)(∂ξ(f − g))] ?

(t,x)
φε(t, x)dξ ε→0−→ S(t, x, v)− S(t, x, u),

thanks to ∂ξ(f − g) = δ(ξ = v)− δ(ξ = u).
Let us now apply the divergence theorem in (39) and subsequently take the limits

ε → 0 and s → 0. Applying Theorem 1.1 and the observations above, we obtain
the following inequality for a.e. t ∈ (0, T ):∫

Ω

∫ L

−L
∂t|f(t, x, ξ)− g(t, x, ξ)|2 dξdx

+
∫
∂Ω

∫ L

−L
A′(ξ) · n̂(x) |fτ (t, x, ξ)− gτ (t, x, ξ)|2 dξdσ(x)

≤ 2
∫

Ω

|S(t, x, u)− S(t, x, v)| dx.

(40)

Next, we show that the “boundary” part of (40) is non-negative. According to
Lemma 3.2, there exist two measures µf , µg ∈ M+(Γ× (−L,L)) corresponding to
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f and g, respectively, verifying

A′(ξ) · n̂(ẑ)
[
fτ (ẑ, ξ)− χ(ξ;ub(ẑ))

]
− δ(ξ=ub(ẑ))(A(uτ (ẑ))−A(ub(ẑ))) · n̂

= −∂ξµf (ẑ, ξ),

A′(ξ) · n̂(ẑ)
[
gτ (ẑ, ξ)− χ(ξ;ub(ẑ))

]
− δ(ξ=ub(ẑ))(A(vτ (ẑ))−A(ub(ẑ))) · n̂

= −∂ξµg(ẑ, ξ),

(41)

for (ẑ, ξ) ∈ Γ× (−L,L).
For later use, observe that

A′ · n̂ |fτ − gτ |2

= A′ · n̂ (fτ − χ(ξ;ub)) sgn(ξ − ub)− 2A′ · n̂ (fτ − χ(ξ;ub))(gτ − χ(ξ;ub))

+A′ · n̂ (gτ − χ(ξ;ub)) sgn(ξ − ub)
= A′ · n̂ (fτ − χ(ξ;ub))[sgn(ξ − ub)− gτ + χ(ξ;ub)]

+A′ · n̂ (gτ − χ(ξ;ub))[sgn(ξ − ub)− fτ + χ(ξ;ub)]

=: A′ · n̂ (fτ − χ(ξ;ub))α(ξ) +A′ · n̂ (gτ − χ(ξ;ub))β(ξ),
(42)

where sgn(·) denotes the usual sign function with sgn(0) = 0. Combining (41) and
(42), along with integration by parts, gives∫

∂Ω

∫ L

−L
A′(ξ) · n̂(ẑ) |fτ (ẑ, ξ)− gτ (ẑ, ξ)|2 dξdσ

=
∫
∂Ω

∫ L

−L
A′(ξ) · n̂(ẑ) [fτ (ẑ, ξ)− χ(ξ;ub(ẑ))]α(ξ) dξdσ

+
∫
∂Ω

∫ L

−L
A′(ξ) · n̂(ẑ) [gτ (ẑ, ξ)− χ(ξ;ub(ẑ))]β(ξ) dξdσ

=
∫
∂Ω

(∫ ub

−L
+
∫ L

ub

)[
−∂ξµf (ẑ, ξ)α(ξ)− ∂ξµg(ẑ, ξ)β(ξ)

]
dξdσ

=
∫
∂Ω

∫ ub

−L
µf (ẑ, ξ) νg dξdσ − µf (u−b )α(u−b )

+
∫
∂Ω

∫ L

ub

µf (ẑ, ξ) νg dξdσ + µf (u+
b )α(u+

b )

+
∫
∂Ω

∫ ub

−L
µg(ẑ, ξ) νf dξdσ − µg(u−b )β(u−b )

+
∫
∂Ω

∫ L

ub

µg(ẑ, ξ) νf dξdσ + µg(u+
b )β(u+

b ),

(43)

where νf , νg are non-negative measures defined by the relations ∂ξfτ = δ(ξ)−νf and
∂ξg

τ = δ(ξ)− νg, respectively. Notice that α(u+
b ) ≥ 0, β(u+

b ) ≥ 0, and α(u−b ) ≤ 0,
β(u−b ) ≤ 0. Thus, (43) is non-negative.

Let us now conclude the proof of Theorem 1.2. Since the second and third terms
in (40) are non-negative, Gronwall’s inequality imply that for each fixed s ∈ (0, t)∫

Ω

∫ L

−L
|f(t, x, ξ)−g(t, x, ξ)|2 dξdx ≤ exp(2CT )

∫
Ω

∫ L

−L
|f(s, x, ξ)−g(s, x, ξ)|2 dξdx,

where C is given in (3).
Therefore, in view of Theorem 1.1, we can let s→ 0 to obtain∫

Ω

|u(t, x)− v(t, x)| dx ≤ exp(2CT )
∫

Ω

|u0(x)− v0(x)| dx, for a.e. t ∈ (0, T ).
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This concludes the proof of Theorem 1.2.

4. IBVP for the Degasperis-Procesi equation

The purpose of this section is to prove Theorem 1.3. The main step of the proof
relates to the existence of an entropy solution. Our existence argument is based
passing to the limit in a vanishing viscosity approximation of (13).

Fix a small number ε > 0, and let uε = uε(t, x) be the unique classical solution
of the following mixed problem [3]:

∂tuε + uε∂xuε + ∂xPε = ε∂2
xxuε, (t, x) ∈ (0, T )× (0, 1),

−∂2
xxPε + Pε = 3

2u
2
ε, (t, x) ∈ (0, T )× (0, 1),

uε(0, x) = uε,0(x), x ∈ (0, 1),
uε(t, 0) = gε,0(t), uε(t, 1) = gε,1(t), t ∈ (0, T ),
∂xPε(t, 0) = ψε,0(t), ∂xPε(t, 1) = ψε,1(t), t ∈ (0, T ),

(44)

where uε,0, gε,0, gε,1 are C∞ approximations of u0, g0, g1, respectively, such that

gε,0(0) = uε,0(0), gε,1(0) = uε,0(1),

and
ψε,0 = −g′ε,0 − gε,0hε,0, ψε,1 = −g′ε,1 − gε,1hε,1. (45)

Due to (45) and the first equation in (44), we have that

∂2
xxuε(t, 0) = ∂2

xxuε(t, 1) = 0, t ∈ (0, T ). (46)

For our own convenience let us convert (44) into a problem with homogeneous
boundary conditions. To this end, we introduce the following notations:

ωε(t, x) = xgε,1(t) + (1− x)gε,0(t), vε = uε − ωε,

Ωε(t, x) =
x2

2
ψε,1(t) +

2x− x2

2
ψε,0(t), Vε = Pε − Ωε.

(47)

Thanks to

ωε(t, 0) = gε,0(t), ωε(t, 1) = gε,1(t), t ∈ (0, T ),

∂xΩε(t, 0) = ψε,0(t), ∂xΩε(t, 1) = ψε,1(t), t ∈ (0, T ),

we have that

vε(t, 0) = vε(t, 1) = ∂xVε(t, 0) = ∂xVε(t, 1) = 0, t ∈ (0, T ). (48)

Moreover, due to the definition of ωε and (46)

∂2
xxωε(t, x) = ∂3

xxxΩε(t, x) = ∂2
xxvε(t, 1) = ∂2

xxvε(t, 0) = 0, (49)

for each t ∈ (0, T ) and x ∈ (0, 1).
Finally, in view of (44) and (49), we obtain

∂tvε + ∂tωε + uε∂xuε + ∂xPε = ε∂2
xxvε, (50)

− ∂2
xxVε + Vε =

3
2
u2
ε + ∂2

xxΩε − Ωε. (51)

We are now ready to state and prove our key estimate.

Lemma 4.1. For each t ∈ (0, T ),

‖vε(t, ·)‖2L2(0,1) + 2εe2αε(t)

∫ t

0

e−2αε(s) ‖∂xvε(s, ·)‖2L2(0,1) ds

≤ 4 ‖vε(0, ·)‖2L2(0,1) e
2αε(t) + 8e2αε(t)

∫ t

0

e−2αε(s)βε(s) ds,
(52)
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where

αε(t) = C0

(
t+
∫ t

0

(|gε,0(s)|+ |gε,1(s)|) ds
)
, (53)

βε(t) = C0

(
|g′0,ε(t)|2 + |g′1,ε(t)|2 (54)

+ |h0,ε(t)g0,ε(t)|2 + |h1,ε(t)g1,ε(t)|2

+ |g0,ε(t)|3 + |g1,ε(t)|3
)
,

and C0 > 0 is a positive constant independent on ε.
In particular, the families

{uε}ε>0, {
√
ε∂xuε}ε>0

are bounded in L∞(0, T ;L2(0, 1)) and L2((0, T )× (0, 1)), respectively.

Proof. Following [4] we introduce the quantity θε = θε(t, x) solving the following
elliptic problem: {

−∂2
xxθε + 4θε = vε(t, x), x ∈ (0, 1),

θε(t, 0) = θε(t, 1) = 0, t ∈ (0, T ).
(55)

Our motivation for bringing in (55) comes from the fact that, in the case of homo-
geneous boundary conditions, the quantity∫ 1

0

vε(θε − ∂2
xxθε) dx

is conserved by (8) when ε = 0 (see [7]). Thanks to (55) we have

‖θε(t, ·)‖H2(0,1) ≤ ‖vε(t, ·)‖L2(0,1) ≤ 4 ‖θε(t, ·)‖H2(0,1) ,

‖∂xθε(t, ·)‖H2(0,1) ≤ ‖∂xvε(t, ·)‖L2(0,1) ≤ 4 ‖∂xθε(t, ·)‖H2(0,1) .
(56)

Indeed, squaring both sides of (55)

v2
ε = (∂2

xxθε)
2 − 8θε∂xθε + 16θ2

ε

and integrating over (0, 1)∫ 1

0

v2
εdx =

∫ 1

0

[
(∂2
xxθε)

2 + 8(∂xθε)2 + 16θ2
ε

]
dx+ 8 [θε∂xθε]

1
0

=
∫ 1

0

[
(∂2
xxθε)

2 + 8(∂xθε)2 + 16θ2
ε

]
dx.

Since ∫ 1

0

[
(∂2
xxθε)

2 + (∂xθε)2 + θ2
ε

]
dx ≤

∫ 1

0

[
(∂2
xxθε)

2 + 8(∂xθε)2 + 16θ2
ε

]
dx

≤ 16
∫ 1

0

[
(∂2
xxθε)

2 + (∂xθε)2 + θ2
ε

]
dx,

we have the first line of (56). For the second line in (56), since

∂2
xxθε(t, 0) = ∂2

xxθε(t, 1) = 0 (cf. (48)),

we can argue in the same way.



18 G. M. COCLITE, K. H. KARLSEN, AND Y.-S. KWON

We multiply (50) by θε−∂2
xxθε and then integrate the result over (0, 1), obtaining

∫ 1

0

∂tvε(θε − ∂2
xxθε) dx︸ ︷︷ ︸

A1

+
∫ 1

0

∂tωε(θε − ∂2
xxθε) dx︸ ︷︷ ︸

A2

+
∫ 1

0

uε∂xuε(θε − ∂2
xxθε) dx︸ ︷︷ ︸

A3

+
∫ 1

0

∂xPε(θε − ∂2
xxθε) dx︸ ︷︷ ︸

A4

= ε

∫ 1

0

∂2
xxvε(θε − ∂2

xxθε) dx︸ ︷︷ ︸
A5

.

(57)

Thanks to (48) and (55),

A1 =
∫ 1

0

∂t(4θε − ∂2
xxθε)(θε − ∂2

xxθε) dx

=
∫ 1

0

(
4∂tθεθε − 4∂tθε∂2

xxθε − ∂3
txxθεθε + ∂3

txxθε∂
2
xxθε

)
dx

=
∫ 1

0

(
4∂tθεθε + 5∂2

txθε∂xθε + ∂3
txxθε∂

2
xxθε

)
dx−

[
4∂tθε∂xθε + ∂2

txθεθε
]1
0

=
1
2
d

dt

∫ 1

0

(
4θ2
ε + 5(∂xθε)2 + (∂2

xxθε)
2
)
dx =

1
2
d

dt
‖θε(t, ·)‖2eH2(0,1) ,

(58)

where

‖f‖ eH2(0,1) =
√

4 ‖f‖2L2(0,1) + 5 ‖f ′‖2L2(0,1) + ‖f ′′‖2L2(0,1).

The Hölder inequality, (11), and (47) guarantee that

A2 ≤
∫ 1

0

(∂tωε)2 dx+
1
2

∫ 1

0

θ2
ε dx+

1
2

∫
(∂2
xxθε)

2 dx

≤ 2
(
|g′0,ε(t)|2 + |g′1,ε(t)|2

)
+

1
2
‖θε(t, ·)‖2eH2(0,1) .

(59)

In light of (47), (48), and (51),

A4 =
∫ 1

0

(
∂xVεθε − ∂xVε∂2

xxθε + ∂xΩεθε − ∂xΩε∂2
xxθε

)
dx

=
∫ 1

0

(
∂xVεθε + ∂2

xxVε∂xθε + ∂xΩεθε − ∂xΩε∂2
xxθε

)
dx− [∂xVε∂xθε]

1
0

=
∫ 1

0

(
∂x(Vε − ∂2

xxVε)θε + ∂xΩεθε − ∂xΩε∂2
xxθε

)
dx+

[
∂2
xxVεθε

]1
0

=
∫ 1

0

(
3uε∂xuεθε − ∂xΩε∂2

xxθε
)
dx.
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Therefore

A3 +A4 =
∫ 1

0

(
uε∂xuε(4θε − ∂2

xxθε)− ∂xΩε∂2
xxθε

)
dx

=
∫ 1

0

(
uε∂xuεvε − ∂xΩε∂2

xxθε
)
dx

=
∫ 1

0

(
u2
ε∂xuε − uε∂xuεωε − ∂xΩε∂2

xxθε
)
dx

=
∫ 1

0

(
u2
ε

2
∂xωε − ∂xΩε∂2

xxθε

)
dx+

[
u3
ε

3
− u2

ε

2
ωε

]1

0

≤ |g0,ε(t)|+ |g1,ε(t)|
2

∫ 1

0

u2
ε dx+

1
2

∫ 1

0

(∂2
xxθε)

2 dx

+
1
2

∫ 1

0

(∂xΩε)2 dx+
|g0,ε(t)|3 + |g1,ε(t)|3

6

≤ c1
(
|g0,ε(t)|+ |g1,ε(t)|+ 1

)
‖θε(t, ·)‖2eH2(0,1)

+ c1

(
|ψ0,ε(t)|2 + |ψ1,ε(t)|2 + |g0,ε(t)|3 + |g1,ε(t)|3

)
≤ c1

(
|g0,ε(t)|+ |g1,ε(t)|+ 1

)
‖θε(t, ·)‖2eH2(0,1)

+ c1

(
|g′0,ε(t)|2 + |g′1,ε(t)|2

+ |h0,ε(t)g0,ε(t)|2 + |h1,ε(t)g1,ε(t)|2

+ |g0,ε(t)|3 + |g1,ε(t)|3
)
,

(60)

for some constant c1 > 0 that is independent on ε.
By observing that (48) and (55) furnish

∂2
xxθε(t, 0) = ∂2

xxθε(t, 1) = 0, t ∈ (0, T ),

we achieve

A5 = ε

∫ 1

0

∂2
xx(4θε − ∂2

xxθε)(θε − ∂2
xxθε) dx

= ε

∫ 1

0

(
4∂2
xxθεθε − 4(∂2

xxθε)
2 − ∂4

xxxxθεθε + ∂4
xxxxθε∂

2
xxθε

)
dx

= ε

∫ 1

0

(
−4(∂xθε)2 − 4(∂2

xxθε)
2 + ∂3

xxxθε∂xθε − (∂3
xxxθε)

2
)
dx

+ ε
[
4∂xθεθε − ∂3

xxxθεθε + ∂3
xxxθε∂

2
xxθε

]1
0

= −ε
∫ 1

0

(
4(∂xθε)2 + 5(∂2

xxθε)
2 + (∂3

xxxθε)
2
)
dx+ ε

[
∂2
xxθε∂xθε

]1
0

= −ε ‖∂xθε(t, ·)‖2eH2(0,1) .

(61)
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In view of (58), (59), (60), and (61), it follows from (57) that

d

dt
‖θε(t, ·)‖2eH2(0,1) + 2ε ‖∂xθε(t, ·)‖2eH2(0,1)

≤ c2 (|g0,ε(t)|+ |g1,ε(t)|+ 1) ‖θε(t, ·)‖2eH2(0,1)

+ c2

(
|g′0,ε(t)|2 + |g′1,ε(t)|2

+ |h0,ε(t)g0,ε(t)|2 + |h1,ε(t)g1,ε(t)|2

+ |g0,ε(t)|3 + |g1,ε(t)|3
)
,

(62)

for some constant c2 > 0 that is independent on ε.
Using the notations introduced in (53) and (54), inequality (62) becomes

d

dt
‖θε(t, ·)‖2eH2(0,1) + 2ε ‖∂xθε(t, ·)‖2eH2(0,1) ≤ α

′
ε(t) ‖θε(t, ·)‖

2eH2(0,1) + βε(t),

and hence, thanks to the Gronwall lemma,

‖θε(t, ·)‖2eH2(0,1) + 2εeαε(t)
∫ t

0

e−αε(s) ‖∂xθε(s, ·)‖2eH2(0,1) ds

≤ ‖θε(0, ·)‖2eH2(0,1) e
αε(t) + 2eαε(t)

∫ t

0

e−αε(s)βε(s) ds.
(63)

Clearly, via (56), the desired claim (52) follows from (63).
The boundedness of the families {uε}ε>0, {∂xuε}ε>0 follows from the definition

of the auxiliary variable vε in (47) and assumption (11). �

We continue with some a priori bounds that come directly from the energy
estimate stated in Lemma 4.1.

Lemma 4.2. The families {Vε}ε>0, {Pε}ε>0 are both bounded in

L∞(0, T ;W 2,1(0, 1)) ∩ L∞(0, T ;W 1,∞(0, 1)),

In particular, these families are bounded in L∞((0, T )× (0, 1)).

Proof. To simplify the notation, let us introduce the quantity

fε =
3
2
u2
ε + ∂2

xxΩε − Ωε.

From (48) and (51),

−∂2
xxVε + Vε = fε, ∂xVε(t, 0) = ∂xVε(t, 1) = 0.

Using the function

G(x, y) =

{
ex+e−x

2
ey−1+e1−y

e−e−1 , if 0 ≤ x ≤ y ≤ 1,
ey+e−y

2
ex−1+e1−x

e−e−1 , if 0 ≤ y ≤ x ≤ 1,

which is the Green’s function of the operator 1 − ∂2
xx on (0, 1) with homogenous

Neumann boundary conditions at x = 0, 1, we have the formulas

Vε(t, x) =
∫ 1

0

G(x, y)fε(t, y) dy, ∂xVε(t, x) =
∫ 1

0

∂xG(x, y)fε(t, y) dy. (64)
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Since G ≥ 0 and G, ∂xG ∈ L∞((0, 1)× (0, 1)), we can estimate as follows:

|Vε(t, x)| ≤
∫ 1

0

G(x, y)|fε(t, y)| dy ≤ ‖G‖L∞((0,1)2) ‖f(t, ·)‖L1(0,1) ,

|∂xVε(t, x)| ≤
∫ 1

0

|∂xG(x, y)||fε(t, y)| dy ≤ ‖∂xG‖L∞((0,1)2) ‖f(t, ·)‖L1(0,1) ,∥∥∂2
xxVε(t, ·)

∥∥
L1(0,1)

≤ ‖Vε(t, ·)‖L1(0,1) + ‖fε(t, ·)‖L1(0,1) .

Thanks to Lemma 4.1, we conclude that the desired bounds on {Vε}ε>0 hold.
Finally, the bounds on {Pε}ε>0 follow from the bounds on {Vε}ε>0 and (11). �

Using the previous lemma we can bound uε and vε in L∞ (cf. [6, Lemma 4]).

Lemma 4.3. For every t ∈ (0, T ),

‖uε(t, ·)‖L∞(0,1) ≤ ‖u0‖L∞(0,1) + ‖g0‖L∞(0,T ) + ‖g1‖L∞(0,T ) + CT t,

for some constant CT > 0 depending on T but not on ε.

Proof. Due to (44) and Lemma 4.2,

∂tuε + uε∂xuε − ε∂2
xxuε ≤ sup

ε>0
‖∂xPε‖L∞((0,T )×(0,1)) ≤ CT .

Since the map

f(t) := ‖u0‖L∞(0,1) + ‖g0‖L∞(0,T ) + ‖g1‖L∞(0,T ) + CT t, t ∈ (0, T ),

solves the equation
df

dt
= CT

and
uε(0, x), g0(t), g1(t) ≤ f(t), (t, x) ∈ (0, T )× (0, 1),

the comparison principle for parabolic equations implies that

uε(t, x) ≤ f(t), (t, x) ∈ (0, T )× (0, 1).

This concludes the proof of the lemma. �

As a consequence of Lemmas 4.1 and 4.2, the second equation in (44) yields

Lemma 4.4. The families {Vε}ε>0, {Pε}ε>0 are bounded in L∞(0, T ;W 2,∞(0, 1)).

Let us continue by proving the existence of a distributional solution to (8), (9),
(10) satisfying (18).

Lemma 4.5. There exists a function u ∈ L∞((0, T )×(0, 1)) that is a distributional
solution of (13) and satisfies (18) in the sense of distributions for every convex
entropy η ∈ C2(R).

We construct a solution by passing to the limit in a sequence {uε}ε>0 of viscosity
approximations (44). We use the compensated compactness method [30].

Lemma 4.6. There exists a subsequence {uεk}k∈N of {uε}ε>0 and a limit function
u ∈ L∞((0, T )× (0, 1)) such that

uεk → u a.e. and in Lp((0, T )× (0, 1)), 1 ≤ p <∞. (65)

Proof. Let η : R → R be any convex C2 entropy function, and let q : R → R be
the corresponding entropy flux defined by q′(u) = η′(u)u. By multiplying the first
equation in (44) with η′(uε) and using the chain rule, we get

∂tη(uε) + ∂xq(uε) = ε∂2
xxη(uε)︸ ︷︷ ︸
=:L1

ε

−εη′′(uε) (∂xuε)
2 + η′(uε)∂xPε︸ ︷︷ ︸

=:L2
ε

,
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where L1
ε, L2

ε are distributions. By Lemmas 4.1, 4.2, 4.3, and 4.4,

L1
ε → 0 in H−1((0, T )× (0, 1)),

L2
ε is uniformly bounded in L1((0, T )× (0, 1)).

(66)

Therefore, Murat’s lemma [21] implies that

{∂tη(uε) + ∂xq(uε)}ε>0 lies in a compact subset of H−1
loc ((0, T )× (0, 1)). (67)

The L∞ bound stated in Lemma 4.3, (67), and the Tartar’s compensated compact-
ness method [30] give the existence of a subsequence {uεk}k∈N and a limit function
u ∈ L∞((0, T )× (0, 1)) such that (65) holds. �

Lemma 4.7. We have

Pεk → Pu in Lp(0, T ;W 1,p(0, 1)), 1 ≤ p <∞, (68)

where the sequence {εk}k∈N and the function u are constructed in Lemma 4.6.

Proof. Using the integral representation of Vεk stated in (64), Lemma 4.3, and
arguing as in [4, Theorem 3.2], we get

‖Pεk − Pu‖Lp(0,T ;W 1,p(0,1))

≤ C
(
‖uεk − u‖Lp((0,T )×(0,1)) + ‖ψεk,1 − ψ1‖Lp(0,T ) + ‖ψεk,0 − ψ0‖Lp(0,T )

)
,

for every 1 ≤ p <∞ and some constant C > 0 depending on u0, g0, g1, but not on
ε. Therefore Lemma 4.6 gives (68). �

Proof of Lemma 4.5. Fix a test function φ ∈ C∞c ([0, T )× [0, 1]). Due to (44)∫ T

0

∫ 1

0

(
uε∂tφ+

u2
ε

2
∂xφ− ∂xPεφ+ εuε∂

2
xxφ

)
dx dt

+
∫ 1

0

u0,ε(x)φ(0, x) dx+
∫ T

0

g0,ε(t)φ(t, 0) dt−
∫ T

0

g1,ε(t)φ(t, 1) dt = 0.

Therefore, by the assumptions on u0,ε, g0,ε, g1,ε and Lemmas 4.6, 4.7, we conclude
that the function u constructed in Lemma 4.6 is a distributional solution of (13).

Finally, we have to verify that the distributional solution u satisfies the entropy
inequality stated in (18). Let η ∈ C2(R) be a convex entropy. The convexity of η
and (44) yield

∂tη(uε) + ∂xq(uε) + η′(uε)∂xPε ≤ ε∂2
xxη(uε).

Therefore, (18) follows from Lemmas 4.6 and 4.7. �

We are now ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. Since, thanks to Lemma 4.5, u ∈ L∞((0, T ) × (0, 1)) is a
distributional solution of the problem

∂tu+ u∂xu = −∂xPu, (t, x) ∈ (0, T )× (0, 1),
u(0, x) = u0(x), x ∈ (0, 1),
u(t, 0) = g0(t), u(t, 1) = g1(t), t ∈ (0, T ),

(69)

that satisfies the entropy inequalities (18), Theorem 1.1 tells us that the limit
u admits strong boundary traces uτ0 , uτ1 at (0, T ) × {x = 0}, (0, T ) × {x = 1},
respectively. Since, arguing as in Section 3.1 (indeed our solution is obtained as the
vanishing viscosity limit of (69)), Lemma 3.1 and the boundedness of the source
term ∂xP

u (cf. (17)) imply (19). Therefore, by appealing to Theorem 1.2, the proof
of Theorem 1.3 is concluded. �
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