GLOBAL L*~ SOLUTIONS OF THE COMPRESSIBLE EULER
EQUATIONS WITH SPHERICAL SYMMETRY

NAOKI TSUGE

ABSTRACT. We study the compressible Euler equations with spherical sym-
metry surrounding a solid ball. For the spherically symmetric flow, the global
existence of L entropy weak solutions has not yet been obtained except a
special case. In this paper, we prove the existence of global solutions in the
more general case. We construct approximate solutions by using a modified
Godunov scheme. The main point is to obtain an L° bound for the approxi-
mate solutions.

1. INTRODUCTION

Let us consider the Euler equations in an exterior domain {z € R?;|Z| > 1} with
spherical initial data:

pt+V-m =0,

e+ V - < (1.1)

M>+vp:0,

where p, m and p are density, momentum and the pressure of gas, respectively.

For the non-vacuum state p > 0, @ = m/p is velocity. For the polytropic gas,

p(p) = p/7, where v € (1,5/3] is the adiabatic exponent for usual gases.
Consider the initial-boundary value problem (1.1) with

(p,110)|i=0 = (po(Z), 7710 (%)) and  7ifjz=1 =0, (1.2)

where mg(z) is a scalar function of ¢ = |Z| > 1 and initial data have the following
geometric structure

(po(Z), o (7))
We look for the solution of the form
(@, 1)(2.0) = (21,0121

We rewrite (1.1) as

(). mot) ). (13)

|Z|
). (1.4)

o

B

pr + Mg = ——m,

m? 2m?2 (15)
met (M 00)) =2 o) =
p z L p
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where p(z,t) and m(z,t) are scalar functions of © = |#| > 1. These equations can
be written as
ut+f(v)$:g(x,v), z2>1,

Vlizo = vo(x), (1.6)
Mg=1 = 07
t t 2 t 2 2m?
where v = (pam)a f(’U) = (mam /p +p(p)), g(ﬂf,’U) = _Ema _57 . More-
over, we define u := m/p. We then consider the initial-boundary value problem

(1.6) with initial data v € L>®(x > 1).

Now let us recollect the known results for this problem. The local existence of
a weak solution was proved in [MT]. In [CG], the global existence with arbitrary
L data was discussed by introducing the shock capturing scheme. However, there
are some defects in the proof (see [T, Section 8]). The author of the present paper
cannot, yet correct them. On the other hand, the global existence theorem with
large L™ data satisfying the following condition:

0 < {po(z)}?/6 < uo(zx) < 400 (1.7)

was obtained in [C1], where § = (7 — 1)/2. However, unfortunately, this condition
(1.7) is restrictive. For example, under the condition (1.7), we cannot consider the
negative initial velocity. Moreover, when ¢ > 0, the density of the solution is always
0 at the boundary (x = 1). Therefore, in this paper, we prove the global existence
of a solution under the condition which is more general than (1.7).

When we prove the global existence, the main difficulty is to obtain L estimates
of approximate solutions. More precisely, apparent source terms g(z,v) in (1.6)
are its cause. To do this, we devise the way of the construction of approximate
solutions. The approximate solutions consist of steady state solutions of an auxiliary
equation and yield our desired estimate. In Section 2, we state wave curves, the
Riemann solutions and the theory of invariant regions. In Section 3, we construct
approximate solutions. However, their construction is technical. Therefore we
postpone the detail of its calculus to Appendix A and B. In Section 4, we derive
their L*° estimates. In Section 5-6, we prove the compactness and convergence for
approximate solutions. In Appendix C, we prove Lemma 6.1, which we shall use in
Section 5.

First we define the Riemann invariants w, z, which play important roles in this
paper, as

Definition 1.1.
0 0
w=alpmur G =T B u b 0= -)2).

Then our main theorem is as follows.

Theorem 1.1. We assume that, for constants Cy and Cy, initial density and mo-
mentum data (po,mo) € L>(z > 1) satisfy

w(ve(2)) < C1, z(vo(x)) > —Coz™ 371, 0 < po(a). (1.8)

Then, there exists C3 depending only on Cy and Cy such that the initial-boundary
value problem (1.6) has a global entropy weak solution (p(z,t),m(x,t)) satisfying

w(v(@,1) < Cs, 2(v(w,) > —Cor™ 57, (2,8) € {w > 1} x Ry.
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Remark 1.1. [The condition of initial data]

(1) If C1 < —C4, (1.8) has no intersection near x = 1. Moreover, notice that
(1.7) implies z(vo(z)) > 0. When Cy < 0, Theorem 1.1 is consequently
contained in [C1]. Therefore, we henceforth assume that C; > —C5 and
Cy > 0.

(2) (1.8)2 is equivalent to ug(x) — (po(x))?/0 > —sz_%. Therefore we can
give the negative initial velocity.

(3) If initial data have compact support, the condition (1.8) means that we can
give arbitrary L*° data.

(4) The second term of (1.8) is restrictive. Because of this restriction, our
main theorem cannot contain the trivial solutions, p = const. and u = 0.
If v =1 (i-e. the isothermal case), (1.8) means that we can give arbitrary
L*> data. In fact, the global existence theorem in [MU2] can contain the
trivial solutions. In this paper, we cannot let v be 1. However, the closer
v is to 1, the weaker the restriction becomes.

The Riemann invariants have the following properties and relations:
Remark 1.2.
(i) |w| > z], w >0, whenu > 0. |w| <|z|, 2 <0, whenu <0.

(ii) u:w;_z, p= <w>1/9.

From the remarks above, the lower bound of z and the upper bound of w yield
the bound of p and wu.

2. PRELIMINARY

In this section, we first review some results of the Riemann solutions for the
homogeneous system of gas dynamics. Consider the homogeneous system

pt +m, =0,

me + <m72 +p(p)>w =0, plp)=p"/7 21)

The characteristic speeds of the system are

A1 3=u—p0=E—c, Ao ::u+p0:E+c,
p p

where ¢ := p? is the sound speed. For the characteristic speeds and the Riemann
invariants, the following relations hold.
Remark 2.1.
z< A1, X <w.
Moreover,

A <0z, whenu <0. Ay > 6w, whenu > 0.

A pair of functions (1,q) : R? — R? is called an entropy-entropy flux pair, if it
satisfies an identity

Vqg=VnVf. (2.2)
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Furthermore, if, for any fixed m/p € (—o0,00), 1 vanishes on the vacuum p = 0,
then 7 is called a weak entropy. For example, the mechanical energy-energy flux
pair

1m? 1m2?  prt
Ne :=-—+ ———=p7, ¢:=m <—— + ) (2.3)
2p Ay-1 2p2 -1

is a strictly convex weak entropy-entropy flux pair.
The jump discontinuity in a weak solutions to (2.1) must satisfy the following
Rankine-Hugoniot conditions

A(v —wo) = f(v) = f(vo),

where ) is the propagation speed of the discontinuity, vo = (po,mo) and v = (p, m)
are the corresponding left and right state respectively. This means that

mo p p(p) — p(po)

m—my = —(p— po) & | L (5 — ),
Po Po P —Po
Nom=—mo _mo | pp(p)=plpo)
P = Po Po Po P — Po

A jump discontinuity is called a shock if it satisfies the entropy condition
A (v) = n(wo)) = (g(v) = q(vo)) > 0

for any convex entropy pair (7, q).

There are two distinct types of rarefaction and shock curves in the isentropic
gases. Given a left state (po,mo) or (po,uo), the possible states (p,m) or (p,u)
that can be connected to (po,mg) or (po,up) on the right by a rarefaction or a
shock curve constitute a 1-rarefaction wave curve R; (vp), a 2-rarefaction wave curve
R>(vp), a 1-shock curve Sy (vg) and a 2-shock curve Sa(vp):

r mo
m —mgy =

Rl(Uo): or
1
u—uo=—=5(p"=p0), p<po,

P, o 0
— - - - ) < )
p (p—po) e(p Po)s P <po

mo P
(M —mo===(p—po) + 5" =p3)s P> po,
Po
RQ(U()): or
1
| u—uo=50" = p0), P>,
' (p) = p(po)
mo p p(p) — p(po
m—mo = —/(p—po) =/ — (p = po),
P P — po
>po >0
Sl(’l}o): g[‘ Po
]_ _
g = —y | RP ZPl0)
. PPo P —Po
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(
mo p p(p) — p(po
m—mo=—/(p—po) + —M(p—po),
Po po P —Po

<
52 (Uo) . gr Po

]_ —
b = | RP ZPl0)
. PPo P —Po

respectively.

FIGURE 1. The rarefaction curves and the shock curves in (z,w)-plane.

d
Along the curve R (vg), we have & =0, and along the curve Ry (vp), we
% |R1(vo)
have dz =0.
WIRs (vo)
Along the curve Si(vp), we have
dw 10 = (v = Dpop” = pg ™ = 23/ (07 = p3) (P — po)rpop”

Az |g, 00y 1P = (v = Dpop” — g+ 2/ (07 = pg)(p — po)1pop”’

and along the curve Sz(vp), we have
dw _ " = (v =Dpop” =3+ 23/ (07 = pg) (P = po)vpop”
Az |s,00) 17 = (v = Dpop” = p3 " =23/ (0" = p3) (0 = po)vpop”
Notice that

~ dz SI(UO)_ p—oo dz $1(v0)
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and

Sa(vo)
Remark 2.2. Assume that there exists C' > 1 such that
1/C < p/po < C.

Then, considering w along Si (vg), we have

1 p(p) — p(po) p’
WS, (vg) = U0 — {| —————(p—po) + —
|51 (v0) = to Py — (p=po) + 5

g -7

= uo + 52+ 0(W)(p0) 7 (p = po)’,

where O(1) depends only on C.
Considering z along S2(vp), we similarly have

0

1 p(p) — p(po) P
Z|52(U0) =ug + \/%0—7000@ —po) — )

0

Ut~ % +0(1)(po) ™= (p — po)?,

where O(1) depends only on C. These representation show that Sy (resp. S») and
R; (resp. R») have a tangency of second order at the point (po, uo)-

2.1. The Riemann solution. Given a right state (pg, o) or (po, uo), the possible
states (p,m) or (p,u) that can be connected to (pg,mo) or (po,up) on the left by
a shock curve constitute 1-inverse shock curve Sy '(vg) and 2-inverse shock curve

Sy (vo):

mo p p(p) — plpo
m—mo =" (p— po) - [ LPOZA) ()
Po Po P = Po
_ <
S (wo) : gr_po
1 _
U —Uy = — —M(P—Po) P < po,
. PPo P — Po
and
.
mo p_p(p) — p(po)
m—my = 22 (p— po) + | LRy ),
Po Po P —Po
_ > >0
Sy (o) : %
1 —
w—ug = | PP ZPl) s,
{ PPo P = Po —_—
respectively.

Next we define a rarefaction shock. Given vg,v on S; *(vg) (i = 1,2), we call the
piecewise constant solution to (2.1) which consists of the left and right states vg,v
a rarefaction shock. Here notice the following: although the inverse shock curve
has the same form as the shock curve, the underline parts in S; ' (vp) is different
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from the corresponding parts in S;(vg). Therefore the rarefaction shock does not
satisfy the entropy condition.
The speed of the rarefaction shock above satisfies

The inverse Lax condition (see [B, Theorem 5.2])
/\i('UO) S )\i S /\Z(’U) = ].,2. (24)

We shall use a rarefaction shock in approximating a rarefaction wave. In addition,
when we consider a rarefaction shock, we call the inverse shock curve connecting
vo and v a rarefaction shock curve in particular.

w 5’2—1

R

) 20, We)

/—1

i
/
/
12
’ (0]

FIGURE 2. The inverse rarefaction curves and the inverse shock
curves in (z,w)-plane.

From the properties of these curves in phase plane (z,w), we can construct a
unique solution for the Riemann problem

_ v_, T < o,
V=0 = { vy, x> o, (2:5)

and the Riemann initial boundary problem
Vlt—o =v4, Mmle=1 =0, x>1,¢t>0, (2.6)

where zp € (—00,00), p+ > 0 and m4 are constants satisfying |my| < Cp.

For the problem (2.1) and (2.5), we can consult [C3, Subsection 3.2]. For the
problem (2.1) and (2.6), we draw a diagram by using the inverse wave curve of the
second family and the vacuum as follows:

(1) If p+ > 0 and uy < 0, there exists v_ with u— = 0 from which vy is
connected by a 2-shock curve.

(2) If uy >0 and z(vy) <0, then there exists v— with u_ = 0 from which v
is connected by a 2-rarefaction curve.



8 NAOKI TSUGE

(3) If uy > 0 and z(vy) > 0, then there exists v, with p. = 0 from which
vy is connected by a 2-rarefaction, and v. and v_ with p_ = u_ = 0 are
connected by the vacuum.

(4) If uy <0 and py =0, then v_ with p_ =wu_ = 0 is connected from v; by
the vacuum.

Then the following theorem holds [C3, Theorem 3.2].

Theorem 2.1. There ezxists a unique piecewise smooth entropy solution (p(zx,t),
m(z,t)) containing the vacuum state (p = 0) on the upper plane t > 0 for each
problem of (2.5) and (2.6) satisfying

(1) For the Riemann problem (2.5),

w(p(xat)am(xat)) < maX(w(p—am—)aw(p-l-:m-i-)):
Z(p(xat)am(xat)) 2 min(z(p_,m_),z(p+,m+)),
w(p(x,t),m(x,t)) - z(p(m,t),m(x,t)) > 0.

(2) For the Riemann initial boundary problem (2.6),

w(p(xat)am(xat)) < maX(w(p-i-:m-i-): _Z(p+7m+))a
z(p(a,t),m(z,t)) > min(z(p+,m+),0),
w(p(x,t),m(x,t)) - z(p(m,t),m(x,t)) > 0.

FIGURE 3. The invariant region in (w, z)-plane.

Such solutions also have the following properties:

Lemma 2.2. For B, > B_, the region >.(B4,B_) = {(p,pu) € R? : w = u +
P10, 2 = u—p’/0, w < By, 2 > B_, w— 2z > 0} is invariant with respect
to both of the Riemann problem (2.5) and the average of the Riemann solutions
in x. More precisely, if the Riemann data lie in > (By,B_), the corresponding
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Riemann solutions (p(x,t), m(z,t)) = (p(z,t), p(z, t)u(z,t)) lie in )y (By,B_), and
their corresponding averages in x also in Y (B4 ,B_), namely

b b
(ﬁ/ﬂ p(x,t)d:c,bia/a m(x,t)d:c) € > (B4+,Bo).

Furthermore, for B_ < 0 < (B4 + B_)/2, the region Y (Bi,B_) is invariant with
respect to both of the Riemann initial-boundary problem (2.6) and the average of
the corresponding Riemann solution in x.

The proof of Lemma 2.2 can be found in [C3, Lemma 3.3].

Lemma 2.3. Assume that the left state v— and the right state vy satisfy the
Rankine-Hugoniot conditions. Then, for an arbitrary weak entropy pair (n,q), the
following holds.

lo(n(vy) = n(v-)) = (g(vy) = q(v))]
< Clo(ne(vg) = ne(0-)) = (g (v4) — g (v-))},

where o is the corresponding propagation speed and the constant C' depends only on
1 and max(|px|+ [mi/pxl).

The proof of Lemma 2.3 can be found in [C3, Lemma 3.5].

2.2. Auxiliary inhomogeneous conservation laws. Next, we consider the fol-
lowing inhomogeneous conservation laws

o (o) b (o).

and the corresponding modified Riemann problem

~ __4 _2
vo = (p_x” 3 ,m_x"7), 1<z<x,
tleco = { P T ) ’ (28)
vy = (P F T, myx™7), T > @0,
and the modified Riemann initial boundary problem of (2.7) with data
U|t:0 = (ﬁ+$7%,ﬁl+$_2), m|T:1 =0, z>1,t>0, (29)
where g > 1, p > 0 and /M4 are constants satisfying || < Cpy.
It is easy to solve this problem. Because, setting p = ﬁa:_v;jrl,m = mz~2 and
3y—1
&= %xﬁ, (2.7) becomes
fe + 1 = 0,
_ m’ . (2.10)
my + 7 +p(P) =0.
13

These solutions satisfy the following lemma.

Lemma 2.4. Let (p(x,t),m(x,t)) = (ﬁ(x,t)xiﬁ,m(:c,t)xd) be a solution of the
Riemann problem (2.8) or the Riemann initial-boundary problem (2.9). Then, for
(p(z,t),m(x,t)), the statements of Lemma 2.2 holds.
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Remark 2.3.
When p >0, p = ﬁw_v;jrl ,m = max~* are equivalent to
w(p,m) = w(p, )z~ "5, 2(p,m) = z(p,m)x 7.
Remark 2.4. If 0 = (p,m7m)
2-shock), for arbitrary z > 1, v = (p,m) = (ﬁx_ﬁ,ﬁmd) is also connected to
vo = (po,mo) = (Pox™ 7+1,1moex~2) by a 1-shock (resp. a 2-shock). These results
from the fact that (2.7) and (2.10) have the same divergence form.

2

is connected to U9 = (po, o) by a 1-shock (resp. a

Finally, we consider the steady-state equations of (2.7):

2
My = ——m,
<m2 N 33( )) 4y (mz o )) (2.11)
— TPpp =~ 7T .\ TPy
p . (y+Dbhz\p
subject to the condition
(1) ames = (payma) satisfying |ma| < Cpa. (2.12)

Then we have a unique solution

p(z) = pa(w/zg) 741, m fv’fflld(l'/xd)_a o (2.13)
w(x) = w(pg, maq)(x/xq)” 77 and z(x) = z(pg, mq)(x/za)” 77 .

The following lemma can be checked easily.

Lemma 2.5. By choosing Az small enough, the steady-state solution of (2.11) in
[xg — Az /2,24 + Az /2], with the condition v|,—., = v4, satisfies

1 wd+%
A / v(z) — vadz
€ T

where bounds O(Azx) and O((Ax)?) depend only on the bound of vy.
In particular, if pg = o(1), the second equation implies

|v(x) = va| = o(Ax),
where o(1) depend only on the bound of vg and o(1) = 0 as Az — 0.

= |v4| O((A2)*),  |v(x) — va| = Jva| O(Az),

3. THE CONSTRUCTION OF APPROXIMATE SOLUTIONS

In this section, we construct approximate solutions. In the strip 0 < ¢t < T
for any fixed T € (0,00), we denote these approximate solutions by v (z,t) =
(p?(z,t), m?(z,t)). Let Az and At be the space and time mesh length respectively.

Let us define the approximate solutions by using the modified Godunov scheme.
Set

(],n) €Z, x Zzo.

Moreover, for any fixed 0 < € < 1, we set M_ = Cy and My > max{C},C>} such
that
MQ—M2—ﬁ(M +e)M_>0 (3.1)
+ Tyt C = '

Then, choose At small enough such that
{(y + 1) My + 126} My At 4+ 12(y — )M (M4 +¢)(At)? <e.  (3.2)
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For M, and €, we take Az and At such that

AA_“: — 6(M, +2). (3.3)

First we define v2(x, —0) by
v3(x, —0) := vo(x).
Then we define E?(v) by
E(v) = L /].AJCJrl v3(z, —0)dz.
! Ax (j—1)Az+1

Next assume that v2(z,t) is defined for t < nAt. Then we define E?%(v) by

. 1 [iAe+l A

E}(v) :== Y /(jl)A:c+1 v (x,nAt — 0)dz.

Moreover, for j > 1, we define v} := (p},m7) as follows.
We choose § such that 1 < 6 < 1/(26). If

1 jAz+1
E}(p) := —/ p2(x,nAt — 0)dx < (Az)°,
Az (j—1)Az+1

we define v} by v} = 0; otherwise, setting

w7 := min {w(E]"(v)), My +¢}
and (34)

2(y—1)

i max {2(E)(0), ~M_{(j — 1/2) A0 + 1757

J
G(w;f — z]”) 176 wi + 2}
’ 2 2 '

2V7) > —M_{(j — 1/2) Az + 1} 55, w(l) < M, +e. (3.5)

we define v by

v = (pf,m}) = ({w}

Remark 3.1. The definition above implies

1/6

3.1. The construction of approximate solutions in the interior cell. By us-
ing v} defined above, we construct the approximate solutions with vA((j—1/2)Az+
1,nAt +0) = v} in the interior cellnAt <t < (n+1)At, (j —1/2)Az+1<z <
(GJ+1/2)Az+1(j =1,2,...).

We first solve a Riemann problem with initial data (v},v7, ;). Call constants
oL (= v}),vm, vr(= v}, ;) the left, middle and right states respectively. Then the
following four cases occur.

Case 1 A 1-rarefaction wave and a 2-shock arise.
Case 2 A 1-shock and a 2-rarefaction wave arise.
Case 3 A 1-rarefaction wave and a 2-rarefaction arise.
Case 4 A 1-shock and a 2-shock arise.
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We then construct approximate solutions v2(z,t) by perturbing the Riemann so-
lutions above. We separately consider the case where vy is away from the vacuum
and near the vacuum.

(A) The case where vy is away from the vacuum

Let « be a constant satisfying 1/2 < a < 1. Then we can choose a positive value
B small enough such that § < o, 1/2+ 8/2 < a < 1-28, f < 2/(y+5) and
(9-37)8/2< a.

We first consider the case where py; > (Az)?, which means vy is away from the
vacuum. In this step, we consider Case 1 in particular. The construction of Case
2—4 are similar to that of Case 1.

Consider the case where a 1-rarefaction wave and a 2-shock arise as a Riemann
solution with initial data (’U;L, U;LH). Assume that vy, vy and vy, vg are connected
by a l-rarefaction and a 2-shock curve respectively.

Step 1.
In order to approximate a 1-rarefaction wave by a piecewise constant rarefaction
fan, we introduce the integer

p :=max {[(z2m — 21)/(Az)*] + 1,2},

where z1, = z(v), 2m = z(vMm) and [«] is the greatest integer not greater than .
Notice that

p=0((4z)™7). (3.6)
Define

*-— *-
2] = 2L, 2

and
zi=2+ (i —1)(Ax)* (i=1,...,p—1).

We next introduce the rays @ = jAz + 1 4+ Ai(2], 2], wL)(t — nAt) separating
finite constant states (2}, w}) (i =1,...,p), where

Au(zis zinwe) = u(zf we) = S(p(zi, we), p(27, we)),

— 2\ V/? *
pi = p(z],wr) = <6(WL72Z)> oup = (e, wr) = %
and
p(p(p) —p(po)) .
—7 lf )
S(pspo) = wp—po) AT (3.7)

VP (po), if p=po.
We call this approximated 1-rarefaction wave a I-rarefaction fan.
Step 2.

In this step, we replace the constant states above with the following quasi-steady
state solutions:
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Definition 3.1. We define a quasi-steady state solution with data vg at x4 as
follows.

the solution v(z) of (2.11)—(2.12),
Vs (@, Ta,vq) = when pg > (Az)? and w(vg) < My;
vq otherwise.

Let or,(z) and og (x) be Vs(z, (j—1/2)Az+1,vr,) and Vs (z, (j+1/2) Az+1,vR)
respectively. Set

01(x) :=o(z) and 2y := (j — 1/2) Az + 1. (3.8)

First we determine a propagation speed oy and vy = (p2,m2) such that 1) the
speed o9, the left and right states v (x2), v2 satisfy the Rankine-Hugoniot conditions
and 2) zo 1= z(v2) = 23, where x5 := jAx + 1 + 02 At/2. Then we fill up by v1(z)
the sector where nAt <t < (n+1)At, (j—1/2)Az+1 <z < jAz+ 1+ 02(t —nAt)
and set U2(z) = Vs(z, z2,02).

Assume that vy, 0 (z) and a propagation speed oy with of_; < oy are defined.
Then we determine og+1 and vgy; = (Prt1,Mr+1) such that 1) the speed op41,
the left and right states U (zr+1), vkr1 satisfy the Rankine-Hugoniot conditions, 2)
Zpt1 = 2(Vkg1) = 2j4, and 3) op < Opq1, Where zppy = jAT + 1+ op 1 At/2.
Then we fill up by 0 () the sector where nAt < t < (n+1)At, jAx+1+40y (t—At) <
T < jAT + 1+ op41(t — nAt) and set Opt1(x) = Vs (@, Ty, Vky1). By induction
we define v;, ;(z) and o; (1 = 1,...,p — 1). Finally we determine a propagation
speed o, and v, = (p,, mp) such that 1) the speed o,, the left and right states
Dp-1(wp),vp satisfy the Rankine Hugoniot conditions and 2) 2, = 2(vp) = z;,
where z, := jAz+ 1+ 0,At/2. We then fill up by v,_1(z) and v, the sector where
nAt <t < (n+1)At,jAz + 14+ 0p_1(t —nAt) <z < jAzx + 1+ 0,(t — nAt) and
the line nAt <t < (n+ 1)At,x = jAzx + 1 + 0,(t — nAt) respectively.

Given vy, and 2\ with zp, < 2y, we denote this piecewise quasi-steady state 1-
rarefaction wave by R{(zm)(vr). Notice that from the construction of R (zp)(vr)
connects v, and v, with z, = 2.

Now we fix O (z) and p_1(z). Let o5 be the propagation speed of the 2-shock
connecting vy and vg. Choosing 0’; near to o,, o near to o, and vy near to vy,
we fill up by a quasi-steady state solution o3;(r) = Vgs(z, jAz + 1,vy;) the gap
between z = jAz + 1+ 0, (t —nAt) and z = jAz + 1 + o7 (t — nAt), such that 1)
op—1 < 0, < 07, 2) the speed oy, the left and right states v, (z}), vy (z;) satisfy
the Rankine-Hugoniot conditions and 3) so do the speed ¢, the left and right states
oy (), vr(27), where z; == jAz + 1+ 0, A/2 and z3 := jAz + 1 + 07 A/2.

We denote this approximate Riemann solution which consists of quasi- steady
state solutions by o (z,t). In Appendix A, we will justify the construction above.

Remark 3.2. 94 (z,t) satisfies the Rankine-Hugoniot conditions at
the middle time of the cell, ty := (n + 1/2) At.

Step 3.
Finally we define the desired v2(z,t) in the cell nAt < t < (n+1)At, (j—1/2)Az+
1<z < (j+1/2)Az+1 (j = 1,2,...) by using 02(x,t) and the fractional step
procedure. As mentioned above, notice that o (x,t) consists of constants and
steady state solutions of (2.11).
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Bo(z) B3(2) 51 (a)
Yoo\ \ ' (n+1)At
we
......................................................................... (n+1/2)At
01 (@) (= 01.(2)) 5 (2)
nAt
(j—1/2)Az+1 jAz +1 (J+1/2)Az+1

FIGURE 4. The approximate solution in the case where a 1-
rarefaction and a 2-shock arise in the cell.

In the region where o4 (z,t) is the steady state solution of (2.11), we define
vA(w,t) by

vA(x,t) = 52 (x,t) + h(z, 52 (2,1))(t — nAt), (3.9

where h(z, 02 (z,t)) ;=" (0, 27(7 D) {r AE Hi* + ] p(PA(fC:t))>-

)y  (+1z
We call (3.9) Type L
Next, in the region where v (z,t) is a constant, if p?(x,t) > (Az)?/2 and
w(v4(z,t)) > My, we define 'UA(ZL“,t)
v2(z,t) == 02 (x,t) + g(z, 72 (x, 1)) (t — nAt). (3.10)
We call (3.10) Type II.
Finally, in the region where o2 (z,t) is a constant, if p2(z,t) < (Az)?/2, we
define v2(x,t) by
vA(x,t) == 52 (x,1). (3.11)
We call (3.11) Type III.

We complete the construction of approximate solutions v (z,t) in the case (A).

(B) The case where the vy is near the vacuum
In this step, we consider the case where vy < (Ax)?, which means that vy is near
the vacuum. In this case, we cannot construct approximate solutions in a similar
fashion to the case (A). Therefore, we must define v (z,t) in the different way.

Case 1 A 1-rarefaction wave and a 2-shock arise.

Case 1.1 p, > (Ax)?

Let v£ ) be a state satistying w(vy, (1 )) w(vr,) and PS) = (Ax)”.
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(i) 2(on) = 2(up”) < (Az)*
Notice that w(vym) = w(vy) = w(vl(})). Then there exists C' > 0 such that pI(}) -
pm < C(Az)®. Since a > 3, we then have py > 3(Ax)? /4. This case is reduced
to the case (A).

772(55)173(,%)
N (n+1)At
,,,,,,,,,,,,,,,,,,,,,,,,,,,, , e L 1y
1 (z)(= L (2)
VR
nAt
(J-1/2)Az+1 jAz +1 (G+1/2)Az +1

FIGURE 5. Case 1.1 (ii): The approximate solution 4 in the cell.

(ii) z(vm) — 2(v)) > (Az)*
Set,

2(y=1)

Lj=—M_{(j +1/2) Az +1} 551 .

Let v£2) be a state connected to vy, on the right by R{ (max{z](}), L;})(v). Con-
necting the left and right states v£2), vr by rarefaction and shock curves, we define
v4(x,t). Then, in the region where 04 (z,t) is Rf(max{zﬁl),Lj})(vL), the defi-
nition of v2(z,t) is similar to (A). In the region where v (z,t) is the Riemann
solution for (0%, vg), we define v (z,t) by v (z,t) := 02 (x,t). Thus, for a Rie-
mann solution near the vacuum, we define an approximate solution as this Riemann
solution itself. We call this type approximate solution Type III like (3.11).

Case 1.2 pp, < (Az)?
(i) 2(v) > L;

In this case, we define v2(z,t) as a Riemann solution (v, vg).
(i) z(vr) < L;j

In this case, recalling z(v,) = z(v}) >

choose (3 such that (j —1/2)Az +1 < 2®) < (j +1/2)Az + 1 and
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where zr, := (j — 1/2)Az + 1. Set

(3)\ ~ 71 O
(3) = pL <$—> , m£3) =my, <x—> . (3.12)

2! = L;. (3.13)

Let A\ (v£3)) be the 1-characteristic speed of v£3) In the region where nAt <t <

(n+1)Atand (j—1/2)Az+1<z < ]Ax+1+/\1(v£ ))(t nAt), we define 92 (z, t)
as a solution of (2.11) such that 92 ((j—1/2)Az+1) = v,. We next solve a Riemann
problem (’U£ ),’UR) Since vg > Lj, a 1-shock does not arise. In the region where
nAt <t < (n+1)Atand jAz+1+X\ (vl(f))(t—nAt) <z < (j+1/2)Az+1, we define
94 (z,t) as this Riemann solution. In the region where 54 (z,t) is the Riemann
solution, we define v2(x,t) by v2(z,t) := v°(x,t); otherwise, the definition of
vA(x,t) is similar to Type L.

Case 2 A 1-shock and a 2-rarefaction wave arise.

Case 2.1 pg > (Az)”?
Let vf({l) be a state satisfying z(v{ )) z(vr) and pR = (Ax)”.

() w(v)) — w(vy) < (Az)
Notice that z(vg)) = z(vg) = z(vm). Then there exists C' > 0 such that p( )—pM <
C(Ax)“. Since a > 3, we then have py > 3(Ax)? /4. This case is reduced to the
case (A).

(ii) w(vg)) — w(vn) > (Az)°
Given vg and w(vl({1 )) with w(vl({1 )) < wg, we first construct a piecewise quasi-steady
state 2-rarefaction wave R?(w(v&1 )))(’UR) in a similar fashion to (A). Let vl(;f ) be
a state connected to vg on the left by R5 (w(vg)))(vR). In this case, connecting
the left and right states vy, vg ) by rarefaction and shock curves, we define 74 (z, t).
Then, in the region where o2 (x,t) is R2(z(v\))(vg), the definition of v4 (z,t) is
similar to (A). In the region where v (z,t) is the Riemann solution for (v, vl(;{)),
we define v2(z,t) by v (z,t) := 02 (x, t).

Case 2.2 pg < (Ax)?
In this case, we define v2(z,t) as a Riemann solution (v, vgr).

Case 3 A 1-rarefaction wave and a 2-rarefaction wave arise.
Throughout this case, if the vacuum arises, set vy such that py = 0 and z(vym) =

z(vRr); otherwise, set vy such that w(vM) = w(vL) and z(vm) = z(vr). Let vl({) be
the state satisfying z(v 1(1)) = z(vr) and pR = (Ax)”.
Case 3.1 w(vg)) —w(vy) < (Az)* and pr > (Az)?
This case is reduced to (A).
Case 3.2 w(vg)) —w(vy) > (Az)® and pr > (Az)?
Let vf(f) be the state connected to vg on the left by R?(w(vg)))(v;{).
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(i) 1 > (A2)? |
Let vl(}) be the state satisfying w(vl(})) = w(vy,) and pil) = (Ax)”. Let vl(f) be the
state connected to vy, on the right by R (max{z(v£1)), L;})(vp). Connecting the

(2) (2
R

left and right states v;™’,v ) by rarefaction and shock curves, we define 74 (z, ). In

the region where 4 (z, ) is the Riemann solution for (v”,v(?)), we define v4(z, t)
by v2(z,t) := 94 (x,t); otherwise, the definition of v2(z,) is similar to (A).

(i) pr, < (Ae)?
(i)-(a) 2(v) > min {2(vf)), L, }

Connecting the left and right states UL,Ulg ) by rarefaction and shock curves, we
define 94 (z,t). In the region where 74 (z,) is the Riemann solution for (v, vl(;f)),
we define v (z,t) by v (x,t) := v2(z,t); otherwise, the definition of v (z,t) is

similar to (A).
(ii)—(b) z(vL) < min {z(vg)),Lj}
We choose z(*) and v£3) such that (j — 1/2)Az +1 <2 < (j +1/2)Az + 1 and

2(y=1)
(3)\ ~ AT
3 x . 2
Z(”IE)) = z(vL) <E> :mln{z(vl(a));Lj};
) L(3)\ T ) 23 2
pr =pL | — , mpl =mp | — ;
T, TL

where 2, = (j—1/2)Az+1. Let Ay (v£3)) be the 1-characteristic speed of v£3). In the
region where nAt <t < (n+1)Atand (j—1/2)Az+1 <z < jAz+1+X)\ (v£3))(t—
nAt), we define 7 (z,t) as a solution of (2.11) such that 72 ((j —1/2)Az+1) = vr.
In the region where nAt <t < (n+ 1)At and jAz +1+ X\ (v£3))(t —nAt) <z <
(j+1/2)Az + 1, we define 92 (x,t) by connecting the left and right states vl(f), vg)
by rarefaction and shock curves. In the region where 94 (z,t) is the Riemann
solution for (v, v(?), we define vA(z,t) by v2(z,t) := 04 (x,t). In the region
where 74 (z,1) is the steady state solution of (2.11), the definition of v2(x,) is the
same as Type L. In the region where 74 (z,t) is R?(w(vg)))(vR), the definition of
vA(z,t) is the same as (A).

Case 3.3 pr < (Az)?

This case is similar to Case 1.1 and Case 1.2.

Case 4 A 1-shock and a 2-shock arise.
In this case, we define v (z,t) as a Riemann solution (v, vR).

We complete the construction of approximate solutions v (z,t) in the case (B).
We postpone the validity of the construction above to Appendix B.

Through the case (B), in the region where 4 (z,t) is a Riemann solution, we can
construct o4 (z,t) such that p2(z,t) < 3(Az)?/2. Then we notice the following.

Remark 3.3. When p2(z,t) = o(1) and 92 (x,t) is a Riemann solution, for any
function ¢ € C§({z > 1} x Ry), we find

/Oo/ooa%t + f(7?) 0o + g(x,72) ¢ dadt = /m/oog(x,TJA)d) dzdt = o(1),
1 0 1 0
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where 0(1) depends only on the uniform bound of 72 and o(1) — 0, as Az — 0.

3.2. The construction of approximate solutions near the boundary. In this
section, we construct approximate solutions near the boundary 1 < z < 1+ Axz/2.
In the region where 1 < o < 1+ Ax/2 and nAt < t < (n+1)At, 92 (x,t) is defined
as follows.

When u} > 0, we define 32 (z, ) as the solution of the Riemann initial-boundary
problem at x = 1:

(2.1), 1<z<1+Az/2, nAt<t<(n+1)At,
'U|t=nAt = 'U{La Meg=1 = 0;

When u? < 0 and p} > (Az)?, we first solve the modified Riemann initial-
boundary problem at z = 1:

(2.7), 1<z<1l+ Az/2, nAt<t< 1)At,

4
— n T R —
Vt=nat = <p1 (—1+Aw/2) ,m 1+Az/2 > ma=1 = 0.

Here, notice that this solution has the form (p(z,t)z _T m(x,t)r"?) and a 2-shock
arise in this case.
In order to make ¥(z,t) = (p(x,t),m(z,t)) self-similar, we set of(z,t) such that

o (z, (n 4+ 1/2)At) = 0(z, (n + 1/2) At)
and extend the above to self-similar function
o' (z,t) = ¢ ((x — 1)/(t — nAt)),

where a certain function ¥ : R — R2.
In this case, we define 74 (z,t) := (ﬁT(aJ,t)m_ﬁ
where 1 <2 <14 Az/2 and nAt <t < (n + 1)At.
When u? < 0 and p? < (Az)?, we define o2 as a solution of the Riemann
initial-boundary problem at = = 1:

,mi(z,t)z=?) in the region

(2.1), 1<z<1l+4 Az/2, nAt<t< (n+1)At,
V|t=nat =07, Me=1 = 0.

We observe that 72 satisfies p2 (z,t) < C(Axz)=15/2,
Then we define v2(x,t) in the strip nAt <t < (n + 1) At as follows.
If u? > 0, we define v (z,t) by

v (2,t) == 02 (x, 1) + gz, 02 (2, 1)) (t — nAL).
If u} < 0and p? > (Az)?, we define v (z,t) by

vA(x,t) = 52 (x,t) + h(z, 52 (2,1))(t — nAt).
If u? <0 and p} < (Az)?, we define v (z,t) by

v3(x,t) == 02 (x, t).
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4. THE L°° ESTIMATE OF THE APPROXIMATE SOLUTIONS

We estimate Riemann invariants of v (z,t) to use the invariant region theory.
When we derive the estimate, the most difficulty is to treat inhomogeneous terms
of (1.5). Let us return (1.5) to investigate the effect of source terms.

First we consider the case where the velocity is negative. Needless to say, the
momentum is also negative. Then the first equation of (1.5) shows that the source
term increases the density as time passes. Similarly, the second equation shows
that the source term decreases the momentum as time passes. Therefore source
terms increase the modulus of the density and the momentum as time passes. It
is difficult to control this increase by source terms. On the other hand, when the
velocity is nonnegative, the modulus of the density and the momentum decreases as
time passes. It is easy to treat this case. In fact, if initial data satisfy the condition
(1.7), the velocity of the corresponding solution is always nonnegative. Then we
can obtain L estimates easily. Therefore, we must overcome difficulties of the
case where the velocity is negative.

Recalling Remark 1.2, we shall derive the lower bound of z(v?) and the upper
bound of w(v?). When the velocity is negative, the modulus of z(v?) is larger
than that of w(v?) and z(v4) is negative. So the really difficult point is the lower
bound of z(v4).

Our aim in this section is to deduce from (3.5) the following lemma:

Lemma 4.1.
w(w?(z, (n +1)At — 0)) < My + € + o(Ax),

_2(xv=1)

z(vA(z,(n+1)At —0)) > —M_x~ ++1 — o(Ax),
where o(Ax) depends only on M_ and M.

(4.1)

Remark 4.1. Observing (3.4) and (4.1), we cut off the errors with the order
o(Az). However these errors are so small that we can obtain H ~!-compactness of
our approximate solutions (see (6.1)).

Throughout this paper, by Landau’s symbols such as O(Az), O((Az)?) and
o(Ax), we denote quantities whose moduli satisfy a uniform bound depending only
on M_ and M, unless we specify them. In addition, for simplicity, we denote
w(v;(z)) and z(7;(x)) by w;(x) and Z;(z).

Now, in the previous section, separating some cases, we have constructed v2 (z, t).
First let us observe the case (A), where vy is away from the vacuum, in terms of
L estimates:

e In Case 1, main difficulty is to obtain (4.1); along R{.
e In Case 2, main difficulty is to obtain (4.1), along R3'.
e In Case 3, (4.1) follows that of Case 1 and Case 2.

e In Case 4, (4.1) is easier than that of the other cases.

On the other hand, we consider (B), where vy is near the vacuum. Recall that
v3(z,t) consists of R{, R$ and a Riemann solution. Since the estimates of R{®
and R3' are similar to those of (A), we must derive (4.1) for the Riemann solution.

e In Case 1, we can deduce from Lemma 2.2 (4.1) easily.
e In Case 2, (4.1); of Case 2.1 (ii) requires special care.
e In Case 3, (4.1) follows that of Case 1 and Case 2.

e In Case 4, we can deduce from Lemma 2.2 (4.1) easily.
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Thus we treat (A) Case 1 and (B) Case 2.1 (ii) in particular. In (A) Case 1, we
derive (4.1); along R¥ and estimate the other quasi-steady state solutions. In (B)
Case 2 (ii), we derive (4.1), along R3' and (4.1), for a Riemann solution. We can
estimate the other cases in a similar fashion to these two cases.

4.1. Estimates of 7 (z,t) in (A) Case 1. In this step, we estimate v (z,t) in
the case (A) of Subsection 3.1. In this case, each component of 72 (x,t) has the
following properties, which will be proved in Appendix A:

eoi<oi(i=1,...,p—2),0,1 <0, <0¥. (4.2)
o pi>(Ax)’/2(i=1,...,p—1). (4.3)

(i=1,...,p—1)ie.

(Zi(ﬂf/l"i)_ i ywiz /@)~ i
(Zi(x), wi(x)) = when w; < My and p; > (Ax)? /2, (4.4)

(zi,w;) otherwise.

o Dip1(Tir1) = wip1 = Bi(wi1) + O((Aw)** 07D

(i=1,...,p—2). (4.5)
o [v3 — vm| = O((Ax)t~"7), (4.6)
o Uy(r) = Vs(z, jAz + 1,03).
e U;(xit1) and U;y1(w;41) are connected by a 1-rarefaction shock curve
(i=1,....,p—2).
o WYy () = Wp1(z3) + O((Az)**T0=18/2), (4.7)
e U,_1(z,) and vy (z;) are connected by a 1-shock or a 1-rarefaction
shock curve.
o U5 (x?) and Ogr(z?) are connected by a 2-shock or a 2-rarefaction shock

curve.

Now we derive (4.1) in the interior cell nAt <t < (n+1)At, (j —1/2)Az+1 <
x < (j+1/2)Az + 1. To do this, we first consider components of 74 (z, ).

Estimate of w;(z) (i=1,...,p—1).
Fori=1,...,p—1, from (4.4), we have

w;(z) < max{w;,0} for z > x;.

Therefore, recalling that w; = w(v}) < My + ¢, from (3.6) and (4.5), we deduce
that

wi(w) < My +e+ O((Az)*~O7DF)
<My +e+ o(Azx) for x > ;. (4.8)

If v;(x) is a constant, in the cell, it follows that

wi(z) < M4 + e+ o(Ax). (4.9)
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If v;(x) is a steady state solution of (2.11), from the definition of a quasi-steady
state solution, we observe that w; < M. Then, in the cell, (2.13) yields

2(v—1)

) (G +1/2)Az+1) 57
o s{Ghmae) | M

(4.10)

Estimate of wy;(z).
If wg < My and p§; > (Ax)?/2, this estimate is similar to (4.10); otherwise,
combining the fact that (9 — 3v)5/2 < a, (4.7) and (4.8), we thus have

wy (z) = Wy (zy) = Wp—1(x,) + 0(Az) < My + ¢+ o(Ax). (4.11)

Estimate of wg(z).
If wp < My and pr > (Ax)?/2, this estimate is similar to (4.10); otherwise,
recalling wg = w(v}, ;) < My +¢, it follows that

wr(z) =wr < My +e. (4.12)

Estimate of z;(z) (i =1,...,p—1).
Recall that 2 = 21, = 2 > —M_{(j — 1/2)Az + 1} 5%, Thus, when i = 1, if
wy < My and p; > (Az)P /2, (4.4) with i = 1 implies

_20-1) _2(y—1)

Zi(z) = z1(z/2y)” 9 F0 > —M_g” 3T (4.13)
otherwise,
2(r) =2 > —~M_{(j — 1/2) Az + 1}~ 57 (4.14)
Next we estimate z;(z) (i =2,...,p — 1). The construction of @;(z) implies

(2) = 2+ (1 — 1)(Ax)®, when w; > My,
TN L+ (= D)(A)* ) (e /2:) "5, when w; < M.

Since a < 1 and 2(vy) = 2} > —M_{(j — 1/2)Az + 1}_2(77;11),

onl; =[(j—-1/2)Az+ 1, (j +1/2)Az + 1], we have

2(v—1)

fia) 2 [~M{G - /200 + 1) 75 4 (A0

_20v=1)
X max {1, sup (z/x;)” 7T }

z€el;

> [-M{G+1/2) A + 1} 5F
x {1+ 0(Az)}
2(y=1)

> —M_{(j+1/2)Az+ 1} ~1 . (4.15)

—O(Az) + (Ax)a]

Estimate of zg(z).
2(y=1)

Set xr = (j +1/2)Az+1. Recall that 2 = 2}, > —M_{(j+1/2)Az+1}" >+ .
Thus, if wg < My and pr > (Az)? /2, we have

_2(v-1) _ 2001

zZr(z) = zr(x/oR)” 77T > —M_x~ ¥ ; (4.16)
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otherwise,

2(v—1)

Fr(@) = 2n > —M_{(j +1/2) Az + 1}~ 57 (4.17)

Estimate of zy(z).
If o3, (%) and Ug(22) are connected by a 2-shock curve, from (4.16) and (4.17), we
have
20 (08) > 2n(e2) > —M_(2) 5. (4.18)
On the other hand, we consider the case where oy, (x?) and og (z?) are connected
by a 2-rarefaction shock curve. First, recall that vy and vy are connected by not a
2-rarefaction shock curve but a 2-shock curve. Since |v5;(z2) — vy;| = O(Az) and
|or(22) — vr| = O(Ax), we then deduce from (4.6) that
031 () — or (22)] = O((Aw)' =0 FVE/2), (4.19)

s s

Therefore, from Remark 2.2 and the fact that 5 < 2/(y + 5), we conclude that

2 (22) = 2r(22) — O((Ae) 1= F AT 8) > _M_(23) 57 — oAx).
If wy; < My and p3; > (Az)P, we obtain
(@) = 25(22) (x/22) " > —M_a” ST — o(Ad); (4.20)
otherwise,
Zu(e) = Z4(22) > ~M_(e3)" 7 — o(Ag)
> M_{(j - 1/2)Az + 1}~ 55 — o(Ax). (4.21)

Estimate of v (z,t).
We derive (4.1) in the interior cell where [(j — 1/2)Az + 1, (j + 1/2)Az + 1] x
[nAt, (n + 1)At).

We first estimate Type I. In this case, the corresponding 74 (z,t) is the steady
state solution of (2.11). Therefore o4 (z,t) satisfies (4.10), (4.13), (4.15), (4.16) and
(4.20).

From (4.13), (4.15), (4.16) and (4.20), we observe that

_2(v=1)

2(02(x,t)) > —M_z~ ~++1 — o Ax).

Therefore, from Remark 1.2, (3.1) and (4.10), we deduce

2(v—1)

_ (J+1/2)Az+1) *1
|2(54 (2, 1))| < {m} +

2(v—1)

_ (J+1/2)Az+1) *1
|w (@2 (2,1))] < {m} +

z€[(j—1/2)Az +1,(j +1/2) Az + 1]. (4.22)
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Estimate 1

A A 2(y -1 @A (¢ 2 4 52 (2 )71
W (o) = 0 e 0) + { L a3 w0 4 (A0
x (t — nAt)
(

1) 4(y-1)
]+1/2)A:c+1} M +{(j+1/2)Ax+1} V¥
yrTa/e)arT PR A e el

IN

{(]—1/2)A$+1 (j—1/2)Az +1

20y — 1 D?
(St Gy
(from Remark 1.2 and (4.22))
< (1+2A2){ My + (y — 1) M2 At} (from the fact that v < 5/3)
= {1+ 12(My + &) AtH{ M + (v — 1) M3 At}
<My +{(y+11)M; + 126} M At

+12(y — 1) M3 (M4 +)(At)?
< M;+e (from (3.2)).

(from (3.3))

Estimate 2

A — (5 (z 2(vy )u o )12 4 SA (1)1
(03,0 = (03, 0) + { T m 8w 0P + o ()

> 2(02(x,t)) > —M_z~ L o(Ax).

We next estimate Type II. Notice that, from the definition of Type II, 74 (

x,t) is
a constant in this case. Therefore the correspondmg 74 (x,t) satisfies (4. ) (4.11),
(4.12), (4.14), (4.15), (4.17) and (4.21). Moreover, since My > M_, 2(54(z,t)) >
—M_ and w(v?(z,t)) > M, we have a“(z,t) > 0.

Estimate 3

w(v?(z,1) = w(©? (1)) — %(p (z,1))"a" (x

1) (t —nAt) + O((Az)?)
S M+ +e+ O(ACU)

Estimate 4
We next estimate z(v?(z, (n + 1)At — 0)). When z (94 (z, (n + 1) At — 0)) > 0,

2(v2 (x, (n + 1) At — 0)) > (02 (x, (n + 1) At — 0))

+ %(ﬁA(:U, (n + 1)At — 0))?a? (x, (n + 1) At — 0) At — O((Az)?)
> —o(Az).
When z(

ey Az, (n + 1) At —

U 0)) < 0, notice that —M_{(j — 1/2)Az + 1}*2(77;11) <
z,t)) < 0. i

Moreover, since o2 (x,t) is a constant in this case, from the
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definition of Type II, we observe that w(v“ (z,t)) > M. We then have
2(v2(z, (n + 1) At — 0)) > z(7°(z, (n + 1) At — 0))

+ %(p_A(a:, (n + 1)At — 0))?@2 (z, (n + 1) At — 0) At — O((Az)?)

> —M_{(j - 1/2) Az + 1)~ 57

+ %(pﬁ (z, (n + 1) At — 0))°a (z, (n + 1) At — 0)At — O((Az)?)

> M_g— 5 +M_72(77+_11)x29+ ol - 1/2) Az +1— 2}
+ %(pA( (n+ 1) At — 0))°@2 (z, (n + 1) At — 0)At — O((Az)?)
> Mz~ o MEM,A@“
v+1 =z
+ ;(pA( (n+ 1) At — 0))°@2 (z, (n + 1) At — 0)At — O((Ax)?)
> Mz~ o MEM,A@“
v+1 =z
7—[{w (z, (n + 1) At — 0)}? — {Z4(z, (n + 1) At — 0)}2]At
— 0((Ax)?)
_zon 2(y—1)1 T 2 2 2
> — T - = — —
>-—M_x” ¥ P xM Az + yp (M — M2)At — O((Ax)*)
_26-n  12(y—1)1
> _M_g A — L o
> M_x + 7+1 :L“M (M++8)At
+ 74—;1(1\41 _ M2)At — O((Az)?)  (from (3.3))
> M_a 2 1 <Mi M2 - 74f1<M+ oM. ) — 0((A))

2(x—1)

> —M_x %1 —o(Az) (from (3.1)).

Finally, we consider Type IIL. Since p; > (Az)?/2 (i =1,...,p—1) and pg; >
(Az)P /2, it suffices to consider only og(x). Then, in view of the definition of Type
III, (4.12) and (4.17) yields (4.1).

Let us review Estimate 1-4. If the data of a quasi-steady state solution are in the
area (I) (see Figure 6), we use Type I. If the data of a quasi-steady state solution
are in the area (II), we use Type II. As long as we use Type I, we can obtain

the lower bound of z of our approximate solutions (see Estimate II). Therefore,
2(y—1)
our approximate solutions cannot go over the line z = —M_z~ ST . The rest

is the estimate of w of our approximate solutions. However, as w(v?) becomes
large, our approximate solutions go into the area where the velocity is positive
(w > z,w > —z in Figure 6). Here recall [C1]. If the velocity is nonnegative, we
can prove the L> estimates easily. Therefore, our estimates are reduced to [C1]
essentially (see Estimate 3-4). In fact, we use the same approximate solutions,
Type II, as those of [C1] in this case. The main point of this paper is to use Type
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FIGURE 6. Type I and Type II in the (z,w)-plane.

I. Under (1.8)2, Type I yields the most difficult estimate (4.1)2, when the velocity
is negative.

4.2. Estimates of v2(z,t) in (B) Case 2.1 (ii). Defining

q:= max {[(wn — w’)/(A2)*] + 1,2},
we set
wi = wr, w) = wl, wi =wp — (i - 1)(A2)* (i=1,...,¢-1).
Then notice that
q=0((Az)~). (4.23)

Set

vy =vg and z; = (j +1/2)Az + 1.
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Then, there exist o; with 0,41 < 04, ; := jAz + 14+ 0;At/2 (i = 2,...,q) and
v; (i =1,...,q) such that 92 (x,t) consists of the following:
e U1 (x) := Vy(z, (j +1/2)Az + 1,v1) in the sector nAt <t < (n + 1)At,
JAT + 1+ 02(t — At) <z < (j+1/2)Az + 1.
o U;(z) :== Vys(z,z:,v;) (1 =2,...,¢ —1) in the sector nAt <t < (n + 1)At,
JAT+ 140,401 (t — At) <x < jAz + 14 0;(t — At).
e A Riemann solution for (vr,,v,(= vg))) in the sector nAt <t < (n + 1)At,
(j-1/2)Az+ 1<z < jAz+1+0,(t — At).
From the construction of (B) Case 2.1 (ii), notice that

Vq :’Uf(f)

Moreover each component of 72 (x,t) has the following properties:
o pi>(Ax)’/2(i=1,...,q). (4.24)
e Given data z; and w; at © = x;, v;(x) (i =1,...,¢ — 1) is constructed

as a quasi-steady state solution i.e.

(zita/m) 557 wilaf) 555
(Zi(x), wi(x)) = when w; < M, and p; > (Az)? /2, (4.25)

(zi,w;) otherwise.
o Zip1(wig1) = 21 = Ziwipn) + O((A2)** =079 (i =1,...,¢ - 2).
(4.26)
e U;(x;y1) and U;y1(2;41) are connected by a 2-rarefaction shock curve
(i=1,...,q—2).

o 2, = 7,1 (x,) + O((Ax)**~0~V8), (4.27)
e U,_1(z,) and v, are connected by a 2-rarefaction shock curve.
o |u, — vf({l)| = O(Ax). (4.28)

The proof of these properties is similar to that of R in Appendix A.
Estimate of z;(z) (i=1,...,¢ — 1) and z,.
Fori=1,...,¢—1, from (4.25), we have

(=1
zZi(x) > min{zi(:c/:vi)7277+11 ,0} for z < x;.

Therefore, recalling that z; = 2r = 2z(v};) > —M_{(j +1/2)Az + 1}72(77;11) , from
(4.23) and (4.26), we deduce that

_200-1)

Zi(z) > —M_ o~ 57— 0((Ax)20-0P)
>—-M_z~ et o(Az) for z < z;. (4.29)

If 9;(z) is a steady state solution of (2.11), in the cell, it follows that

_2(y—1)

Zi(x) > —M_z~ +F1 — o(Ax). (4.30)
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If v;(x) is a constant, in the cell, we have

2(y—1)

Zi(x) > —M_{(j —1/2)Az + 1}~ "+ . (4.31)
Finally, from (4.27) and (4.29), we have
Zg > —M_(xq)72(77+_11) — o(Ax). (4.32)

Estimate of w;(z) (i =1,...,¢— 1) and w,.
Recall that wy = wg = w}, < My +e. Thus, when i = 1, from (4.25) with i =1,
if 71 () is a constant, it follows that

If 71 (z) is a steady state solution of (2.11), from the definition of a quasi-steady
state solution, we observe that wy < My. Then, in the cell, (2.13) yields

2(v=1)

_ (J+1/2)Ax+ 1) *1
< g M. 4.34
wl(w)_{(j—l/Q)Ax+1 + (4.34)
Next we estimate w;(x) (i = 2,...,¢ — 1). The construction of 7;(x) implies

- ):{ w(vg) — (i — 1)(Az)®, when “’;'(an“
‘ {w(vr) — (¢ — 1)(Azx)*}(z/z;)” 7F , when w; < M.

Since a < 1 and w(vg) = w(v]’.‘+1) <Mi+eonl;=[(G-1/2)Az+1,
(j +1/2)Az 4 1], we have

Wi(z) < [My +e — (Az)*] max {1, sup (z/z;) 371 }
z€l;

< [My + ¢ — (A2)*] {1 + O(4a))

< My +e. (4.35)
Finally, from the definition of vl(;f ), we have
wy = w(vl(;f)) = w(vf({l)) <w(vr) < My +e. (4.36)

(2))'

Estimates of a Riemann solution for (v, vy
We denote by v¥(z,t) a Riemann solution for (v, vl(;f )). From our construction, in
the sector nAt <t < (n+1)At and (j —1/2)Az+1 <z < jAzx + 1+ 04(t —nAt),
we observe that v (z,t) = v®(z,1t).
Recalling that we consider Case 2, notice that z(vy,) > z(vr). The definition of
(= v) and v}, (= vr) thus implies

n

Y5

~M_{(+1/D Az +1) T < z(on) € 20, (4.37)
w(vy) < My 4+ ¢ and w(vg) < My +e.
From Lemma 2.2 and (4.36), v%(z, t) satisfies
2(vf(x, 1)) > min{z,, 2(v)}, w@®(z,t) < My +e. (4.38)
We first consider the case where z, < 0. In this case, since pg) = (Az)?, from
(4.28), we obtain p, = O((Az)”). Thus we have

Xa(vg) = 2 + (1+1/8)(py)” < O((A2)"?).
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Ug-1(z)  B5() 2 ()
/ »/ (n+1)At
3 o3
02
Rt : FURNCILEEEEE B B (n+1/2)At
oL U1 (ZB)
(@q, (n +1/2)At)
nAt
(j—1/2)Az +1 iAr+1 (+1/2) Az +1
FIGURE 7. Case 2.1 (ii): The approximate solution o in the cell.
It follows from the inverse Lax condition that
A2(vg) < g < A(Tg—1(24))-
From our construction, we observe that (Z,—1(z,), We—1(xy)) = (24—1,wq—1) +

O(Az) and wy, = wy—1 + O((Az)*). From (4.27) and the two equations above,
we then have |A2(T4-1(2z4)) — A2(vq)| = O((Az)*). We thus conclude that

o, < O((Az)P). (4.39)
From (4.37)-(4.39), observing M_ > 0, we deduce that, for (j —1/2)Az+1 <z <
jAz + 14 0,At,

_ 2001

2(vf(x, (n + 1)At —0)) > —M_(z,)” 5+ —o(Ax)

2(v—1)

=-—M_(zq+ 0,At/2)" 2+1

2(v—1) 2(y—1)
+ M_(zg+ 04At[2)" 37T — M_(x4)” 771
— o(Ax)
2(y—1)
=—M_(xq+ 0,At/2)” 71
2(y - 1) 2=
— WM_($q+TUth/2) v+1 U'th/Q
—o(Az)

2(v—1)

> -M_(jAz + 14+ 0,At) +F1 — o(Az)

_2(v=1)

> —M_xz  +1 —o(Ax), (4.40)

where 0 < 7 < 1.
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On the other hand, if z; > 0, we have
z(vf(z, (n + 1) At — 0)) > min{0, z(vL)}. (4.41)

In view of (4.38), (4.40) and (4.41), we have (4.1) for v2(z,t) (= vf(z,t)) in the
sector nAt <t < (n+1)At and (j —1/2)Az +1 <z < jAz + 1+ 0,(t — nAt).
From the estimate above, we can obtain (4.1) in a similar fashion to the case

(A).

4.3. Estimates near the boundary. Finally we derive (4.1) for v (z,t) defined
Subsection 3.2.

Estimates of 74 (z,1).
First we estimate 74 (z, t).

If u? > 0, from Lemma 2.2, w(?4 (z,t)) < My + ¢ and 2(04(z,t)) > —M_(1 +

Az/2)” i
On the other hand, if u} < 0, since M_ < M, we have
(-1) 1)
w(ol) = —2(u7) + 207 < M_ (Az/2 + 1) 57 < My (Az/2 +1)" 55
(4.42)

Then, if p? > (Az)? and u? < 0, we deduce from Lemma 2.4 and (4.42) that
w(EA (2, 1)) < Mya™ 55 < My and 2(02(2,8)) > —M_z~ 5571 if p} < (Ax)?
2(y—1)
and u} < 0, Lemma 2.2 and (4.42) yields w(94 (z,t)) < My (Az/2+1)" I <
2(y—1

M, and z(02(z,t)) > z(v]') > —M_ (Az/2+ 1)~
Estimates of v*(z,1).

Let us deduce from the estimates above (4.1). For the case where u} > 0, we

observe that @4 (x,t) > 0. Then, in the strip nAt < ¢ < (n + 1) At, we have

0
(03,0 = 130,0) — (70,01 {1 - 2000 - 20 |

> 2(0%(z, 1))

2(y—1)

> M_(1+ Ag/2)” 55

0
w(v? (z,t) = @ (x,t) + {2 (z, 1)} /0 {1 - —’A(x,t)(t - At)}

< w(v?(z,1))
S M+ + €.

The other cases are similar to the case (A).

Remark 4.2. Since M, > M_, from Remark 2.1, Lemma 4.1 and (3.3), the
following Courant-Friedrichs-Lewy condition:

Az

4A := 4max ( sup |/\i(vA)|> <A4(My +e+o(Ax)) <6(My +¢) = )

=12 \1<e, 0<t<T

holds, by choosing Az small enough.
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5. LOCAL ENTROPY ESTIMATES FOR THE APPROXIMATE SOLUTIONS

Our aim in this section is to obtain local entropy estimates for the approximate
solutions.

Lemma 5.1. Consider a shock or a rarefaction shock curve with the left and right
states vo = (po, mo),v = (p,m). Then, along the wave curve,

o (p)(n(v(p)) —n(vo)) — (a(v(p)) — q(vo))]

< C(min(p, po)) "' |p = pol up |5:(s)(v(s) = o)
SE[po,p

I,

for any C? weak entropy-entropy fluz pair (n,q), where C is a constant depending
only on the uniform bound of v and vy.
Proof. Along a shock or a rarefaction shock curve, we have

Mo,y » p(p) —P(Po)(

P = po),
Po po P —Po

m(p) =

o(p) = m(p) —mo _mo | p plp) —p(po)

P — Po Po Po P — Po
Set

We first obtain

Q(p) = 6(p)(n(v(p)) — n(vo)) + o (p)i(v(p)) — d(v(p)).
On the other hand, we observe that

{ &(p)(v(p) —vo) + a(p)i(p) = f(v(p)), (the Rankine-Hugoniot conditions)
q(v(p)) = Vg - 0(p) = Vnf(v(p)).
We then deduce that

Q(p) = a(p){n(v(p)) = n(vo) = Vn(v(p))(v(p) —vo)}

=~6(0) [ gt + 7(0(p) — w))ir.

Therefore, using the property of the Rankine-Hugoniot locus, we obtain

Q= [ " O(s)ds
[ o) = o) = Vao(s) w(6) — o) s

0

/ " s(s)ds / 7t (u(s) — v0)V2n(vo + T(v(s) — v0))(v(s) — vo)dr

PO 0

<C /p d(s)ds/o 7Y (w(s) — vo) V0w (vo + T(v(s) — vo))(v(s) — vo)dT
<C Sup ]If'f(S)IIP - Pol(min(mpo))*les[up ]I(U(S) —vp)l, (5.1)

where 0 < 7 < 1. O
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Now let us estimate entropies of 7 (z,t). Recall that v (x,t) is piecewise quasi-
steady state, with discontinuities occurring finitely many straight lines in the x — ¢
plane. We first define the following:

Definition 5.1. In Case 1.2 (ii) and Case 3.2 (ii)—(b), v (x,t) has discontinuity
along nAt <t < (n+1)At,z = jAzr +1+ X\ (v£3))(t — nAt), which is called an
artificial discontinuity.

Then Jump can be of three type:
‘R : discontinuity connected by a rarefaction shock curve
A : artificial discontinuity
S : discontinuity connected by a shock curve
We prove lemmas for these jump. To do this, we introduce the following symbol:
for a certain function ¥ (z,t) with the discontinuity occurring a straight line (z(t), ),
we define

[Y(x(t), )] == (x(t) +0,8) — ¢ (x(t) = 0,1).

First we consider R.

Lemma 5.2. Consider each rarefaction front x = xgr(t) of R, with the left and
right states 92 (zr(t) — 0,t),02 (xR (t) + 0,t). We set or = dxgr(t)/dt. Then
there exists C, > 0 independent of Ax such that p2(z,t) > C1(Ax)” along each
rarefaction front and

(n+1)At
/ {or(t) [n(@* (zx(1),1)] - [¢(0% (xR (1), )] } dt

At

< Oy {(A:c)1+3°‘ + (ALE)3_B} < o((Az)*t), (5.2)

for any C? weak entropy-entropy fluz pair (n,q), where C is a constant depending
only on the uniform bound of v (x,t).

Proof. We prove this lemma for R in R{. The other cases can be treated similarly.
Now the first part follows from (4.3).

Next, from the construction of R{, it follows that |z} — z7,,| < C(Az)*. From
(4.5), we then have

|[2(02 (2= (tn), ta)] | = O((A2)%),  |[w(@? (zr(ta), ti))] | = O((Az)*),

where ty; := (n + 1/2)At. Therefore, from (4.3), Remark 1.2 and the fact that
a > B, we deduce that

1/2 < |p (@r (tm) + 0,tm) /5% (xw (tn) = 0,tm) | < 3/2,
|[02 (r (ta0), )] | = {2 (wr (1) + 0,030} 777 O((A)®).
On the other hand, recall that
V2| < C/p, (5.3)

where 7 is a C? weak entropy. Therefore, by taking Taylor’s expansion for ¢ at tyr,
Lemma 5.1 and Remark 3.2 yields (5.2). O

Second, let us consider A. In Case 1.2 (ii) and Case 3.2 (ii)—(b), we observe that
pL = O((Az)?), 2 — zp = O(Ax).
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From the construction of o2 (z,t) in this case and (2.11), on nAt < t < (n + 1)At,
we thus obtain

02 (za(t) = 0,8) — o] = O((A2)'*7), o) —w| = O((A2)'+7),  (5.4)

where £ 4(t) = jAz+1+X\ (U£3))(t—nAt). In view of v£3) = 04 (z.4(t)+0,t), we then
have the following lemma for A. We consider the amplitude of the discontinuity
z4(t). Since |Vn| < C and |Vq| < C, we deduce from (5.4) the following lemma.

Lemma 5.3.

(n+1)At 5
/ (M) @2 @a®),8)] = (002 (@at), )] } at

At

= O((Ax)**?)

= o((Ax)*),
where (1, q) is a C? weak entropy-entropy fluz pair.
Finally, we consider S.

Lemma 5.4. Consider a shock front © = zs(t) of S, with the left and right states
72 (zs(t) —0,t),02(2s(t) +0,t). We set os = dxs(t)/dt. Then there is a constant
C depending only on the uniform bound of v°(x,t) such that, along a shock front,

(n+1)At
/ {os(t) (@ (zs(t),0)] — [a(2% (zs(t) +0,2))] } dt

At
> —C(Ax)* 7 > —o((Ax)?), (5.5)

and

(n+1)At
/ os(t) (102 (s (8), )] — [0 (@s(t), )] de

At

(n+1)At
< C/At {os(t) [n.(v2 (25 (t),1)] = [a:(v2 (zs(t) +0,0)] } dt

+ C((Ax)3=P), (5.6)

for any C? weak entropy-entropy pair (n,q) satisfying (1.9) and the mechanical
energy-energy flux (n.,q«) defined by (1.10).

Proof. From the definition of a quasi-steady state solution, in the region where
04 (z, t) is a steady state solution of (2.11), we can assume that p2 (z,t) > (Ax)° /4
by choosing Az small enough. If 72 (z,t) is the steady-state solution, by taking
Taylor’s expansion for ¢ at ¢y, from Lemma 2.3 and (5.3), we complete the proof
of this lemma. d

6. H~! COMPACTNESS ESTIMATES

We prove the H~! compactness for the approximate solutions (p?, m?) of the
initial-boundary problem (1.4) and (1.7).

First let us prove that v (z,t) satisfies
Stability

ot = E]’.L“(v) + o(Azx), (6.1)

J
where o(Az) depends only on the uniform bound of v4(z,t).



THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY 33

To do this, we introduce the following lemma:

Lemma 6.1. We assume that v(z,t) = (p(x,t), m(x,t)) satisfies

2(v=1)

z(v(x,t)) > —M_z~ 1 — o(Ax), w(v(z,t)) < Ms +¢e+ o(Ax),

where o(Az) depends only on My and M-_.

. 1 jAz+1 .
Set E;(v) = Y oty aeit v(z,t)de, je€Zi. Forl<d<1/(20), if
ji— T

5
Ej(p) > (Az)°,
choosing Ax small enough, it follows that
2(ELw) > ~M {(G-1/2) - o(Aa),
w(EY(v)) < My + &+ o(Ac).

We postpone the proof of this lemma to Appendix C.
Since initial data v (x, —0) = vo(x) satisfy the assumption of Lemma 6.1, we
deduce from Lemma 6.1 with t = —0 that

v? = E? + o(Ax).

Next, we applying Lemma 6.1 with ¢t = (n + 1)At — 0. In view of 6 > 1 and the
definition of v, if v2 (x, t) satisfies (4.1), (6.1) holds. Therefore, by induction, (6.1)
holds for any n.

We next introduce a basic lemma of functional analysis (see [C3]).

Lemma 6.2. Let Q C R"™ be a bounded and open set. Then
(compact set of W 9(2)) N (bounded set of W ~+"(Q))
C (compact set of ngcl’Q(Q)),
where q and r are constants, 1 < g <2 < r < oo.
With Lemma 6.2, we have

Theorem 6.3. We assume that (p?®,m?) are the approzimate solutions of the

initial-boundary value problem (1.4) and (1.7). Then the measure sequence

U(UA)t + Q(UA)I

lies in a compact subset of lecl (Q) for any weak entropy pairs (n,q), where Q C Ilp
is any bounded and open set with a C' boundary, where Il = {z € R : z >
1} x [0,T] with any fized T > 0.

Proof. We first define 2 (x, —0) by o4 (z, —0) := v (z, —0) = vo(z).

Step 1. For any function ¢ € C{(Ilr), the entropy dissipation measures can be

written in the form
/ / D)6 + a(v)b)dadt
0<t<T= mAt

(¢) + L(¢) + M (¢ )+ (¢) (6.2)
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where
A0 = | /H (™) = n(@)r + (@) — g@))po ) drdt, (6.3)
) = [ " o, Ty (2, T))dz / " (e, 0)n(@ (2, 0))de, (6.4)
No = [ [ Vi) Y {ee®) - he*)} ol tdudt, (6.5)
Ir 54 is Type I
jAz+1
Lo =3 [ )~ o)At = Li(6) + La(9). (60
jom (7—1)Az+1
jAz+1 B _
L) =3¢ J @) e (6.7)
jAz+1 B B
L) =% L a0 =)0 gy 69
T
S () = / S (0[] - @)l (t), t)dt, (6.9)

v} = 02 (z,nAt £0), ¢7 = ¢(jAz + 1,nAt), the summention in Y (¢) is taken
over all discontinuities in 72 at a fixed time ¢, o is the propagating speed of the
discontinuities.

Let D = ((t),t) denote a discontinuity in o (z,t), [n] and [g] denote the jump
of n(v2(x,t)) and q(v2 (x,t)) across D from left to right, respectively,

1]

n(©2 (z(t) +0,t)) — n(@= (x(t) - 0,1)),
gl =q .

-0,
(@2 (z(t) +0,)) — q(8° (x(t) = 0,1))

Step 2. Since the propagation speeds of the approximate solutions v4(z,t) are
finite, we can assume that

(ﬁAa mA)|JCZK+AT = (07 0)
for sufficiently large K > 0, without loss of generality. This implies
| @0, mA @ 0)de < .

— 00

We substitute (n,q) =
large K > 0, since (p2,m

«»qx) and ¢ = 1 in the equality (6.2). For sufficiently
lo>K+a7 = (0,0), we deduce that

(
4)

oo T
> / (1 (07) — 1 (07))dz + / S o~ lg)dt < C. (6.10)
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From Lemma 2.5, we obtain

jAz+1 1
/( /0 (1—7)-Yo} — U?)Vzn* (0F + 7(0} —0})) (V) — v} )drdz

jn j—1)Az+1

(151? + | ?) (A0)?
< Ap—2 - . 11
<02 AT o) (041

Using Lemma 2.5 and (6.11), we conclude that

> (@) — 0. (@))de

jAz+1 jAz+1
-3 /( (e0") = (e - 3 [ (1u(57) — 7 (07))d

jn J (=D Az+1 jon G- Az+1
jAz+1 jAz+1
=2 / Vi (o) (@ —vF)dr = / V() (5 — o) da
jm Y G-1)Az+1 m G- Azt1
jAz+1 1
+Z/ / (1—7)-tom —U;L)VQT)*(U;L + (o —v;f))
i (i—1)Az+1Jo

x (0" — v} )drdz

jAz+1 1
37 M AR RGN R )
j,n J— x

x (0} —v})drdz + o(1)

5 /(jAw+1 /01(1 —7) L@ — o) VI (0] + (3" — o))

G- Awt
x (02 — v} )drdz + o(1) (from Stability), (6.12)
where o7 = 92 (z,nAt £ 0) and notice that
jAz+1 jAz+1
S wnepen - = v [ @
jn Y G—1)Az+1 i (j—1)Az+1

=" AxVn.(v])(E} (v) — v}).
Jan
Using Lemmas 5.2 and 5.3, for R and A, we have
T
| Yol - e < o) (613)
0 Rr,.A

Here notice that the order of the number of R is (Az)~* in each cell. Similarly,
using Lemma 5.4, for S,

T
| ol = Dt = o). (6.14)
s
Therefore, we have

T
| ot = e = ot (6.15)
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for the convex entropy 7.. We conclude from (6.10) and (6.12)— (6.15) that

| Set-lda<c (6.16)

and

jAz+1 1 .
/( / (1—7)-Ho" - v?)vzn*(v? +7(02 —0})) (0 — v} )drdr < C.

j—1)Az+1 Jo
(6.17)
In particular, since V21, (r,7) > co(r,r) for a constant co > 0, we have
jAz+1
> 5" —v|Pde < C(K). (6.18)
(7— 1)Az+l

J,n

|jAe+1|<K+AT

Step 8. For ) in Theorem 6.3 and any weak entropy pair (1, ¢), we deduce from
(6.16)— (6.17), and Lemma, 5.4 that

M (o) < Cllglle), IN(9)| < Clidllow)

T
>0 < Cléllca [ (e~ it < Cléllc

jAz+1

L (6)] < Z¢" / GRS
jAz+1
Zw / 1) =)

'Z/(WH /1<1_r>|t<v"—v7>v2" |

j—1)Az+1
x (v +7(02 = v}))(02 — vf)|drdw

7))
[
)

X (v} + 70} — v

<9lleo)

(1 =n)l'(@} —v})Vn

1
(0} —v})|drdr + o(1) )

\

< Cllélle {Z/(WH /1_T)|t(az_v;f)

j—1)Az+1

X VQn*(v;L + 702 —0})) (0L —v})|drdz + 0(1)}

< Cldllco)
where the constant C' depends only on the support of ¢. Hence

‘(M +N A LA Z) (‘15)‘ < Clgllc(o)-
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From the arguments of [DC1] and [DC2] or [E2, Theorem 6], we thereby have

M+ N+ L + Z is relatively compact in W 5% (), (6.19)

where 1 < ¢; < 2.
Furthermore, for any ¢ € C§(Q), 1/2 < a < 1, we have

ILo(6)] < Z / oz, nAt) — ¢ (n(@") — ()|

1)Az+l

+ |TI(U+) —n(vj)|)dz
< (Az)Y|9llca(a)

jAz+1 ) %
Z /( o M) =P |+ 0

< 0(Aw>“*%||¢||0a(m

jAz+1
X (Z/( o™ —vy|2da;> + O(VAz)

=

j—1)Az+1

< C(A2)* 2 ldllc ).
Using the Sobolev theorem W1P(Q) — C*(Q) (0 < a < 1 —2/p), it follows that

1 2
|L2(9)| < C(Az)* z||9llwrr(a)y, P> 1o

Since C5°(Q) is dense in W, ?(Q) and (Wol’p(ﬂ))* =W=b2(Q) (g2 = p/(p— 1)),
we have
I Lallw-1a () < C(A2)*"% =0, as Az =0 (6.20)
for 1 < g <2/(1+a).
Finally, for A(¢), we observe that

AN < [ [ (0l +1¥ale)hd + 12Dl — 02 ot < € Aol
< CALll ot
where ¢f = q1/(q1 — 1). The inequality above yields
|Allw =10 (o) < CAz =0, as Az — 0. (6.21)
It follows from (6.19)—(6.21) that
A+ M+N+L+ Z is relatively compact in W~%(Q), (6.22)

where 1 < go := min(g1,¢2) < 2/(1 + ). Since 0 < p < C and |m/p| < C, we
obtain
A+ M+ N+ L+ isbounded in W 7() (r > 2). (6.23)

We derive from (6.22)-(6.23) and Lemma 6.2
A+ M+ N+ L+ Z is relatively compact in H ! (), (6.24)
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which means that
n(v?); + q(v?), is relatively compact in H 1 (Q).

This completes the proof of Theorem 6.3. O

7. CONVERGENCE AND CONSISTENCY
In Section 4 and Section 6, it is proved that the approximate solutions (p2, m?)
of the initial-boundary problem (1.6) satisfy the following conditions:

(1) There is a constant C' > 0 such that

<Aen<c M@ oo 1
0 < p2(z,t) <C, ‘pA(:c,t) <C (7.1)
(2) The measure

n(v?) + g(v?), is compact in H ;2 () (7.2)

for all weak entropy pair (7, q), where  C Iy is any bounded and open
set with a C' boundary.
The compensated compactness framework (see [C2] and [C3]) ensures the strong

compactness of the approximate solutions v2(z,t) in Ll (II7) for 1 <y < 5/3.
We first introduce a lemma of our approximate Riemann solutions.

Lemma 7.1. Let K C R be any bounded set. Replace the steady state solution of
(2.11) in our approzimate Riemann solutions v°(x,t) with the corresponding data
(e.g.vi, i=1,2,...,p—1, vg, vy in Subsection 3.1 Case (A)). Then this modified
approzimate Riemann solutions V2 (x,t) is self-similar and satisfies the following:

nAt
E:/ /ﬁvﬂaw—vAumAr4mwmﬁ:0umx
n (n—l)At K

where O(Azx) depends on K.

The proof of Lemma 7.1 can be found in [MT, Proposition 3].
Using Lemma 7.1, we have

Theorem 7.2. Assume that (p?(x,t),m?(z,t)) are the approzimate solutions of
the initial-boundary value problem (1.6) satisfying the conditions (7.1)—(7.2). Then
there is a convergent subsequence in the approzimate solutions such that

(p2 (z,t), m?" (z,1)) = (p(x,t),m(x,1)), ae. (7.3)

The pair of functions (p(z,t),m(z,t)) is a global entropy solution of the initial-
boundary value problem (1.6) and satisfies

(7.4)

OSMawsc,‘m“ﬁ‘s

p(z,t)

in the region Ilp.
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Proof. Notice that for any convex weak entropy pair (7,¢) and any nonnegative
test function ¢ € C(Il7),

/] 060 +a(v)6, — Tnle)g(o)o)dect
<t<T= mAt
+ [ (ot 0)ds

T
=1(¢) + J(9) +/0 > (ol = la)¢(z(t), ) + E(9), (7.5)

1(¢) = / | oe(n(v?) = n(0%)) + 62 (a(v?) = ¢(32)) = ¢(Vn(v?)g(v?)

— Vn(o2)g(v2))dxdt, (7.6)
jAz+1
@)= [ ) e s
+f [ 0ot s
= T1(6) + (), (7.7)
jAz+1 R
Z / o 1) e / [ O304 6 ),
(7.8)
jAz+1
BO =3 [ ) - n@)e - (7.9)

where

h(v4) whenv? is Type I,
§(@?) =<{ g(#?) wheno? is Type II,
0 whens? is Type III,

v = v3(2,nAt £0), 0} = 2 (z,nAt £0), o7 = ¢(j Az + 1,nAt), the summation
of the third term in (7.5) is taken over all discontinuities in 74 at a fixed ¢, o is the

propagating speed of the discontinuity and E(¢) is the error near the vacuum in
the construction of approximate solutions of Type III, namely

// > Vn(E)g(0?)é(x, t)dxdt.

74 is Type IIT
In view of Remark 3.2, we have

1E(9)] < oIl a1 (2)-

Since v2 — 92 = O(Az), I — 0 as Az — 0 by Lebesgue’s dominated convergence

theorem.
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Taking Taylor’s expansion of (o[n] —[q])¢(x(t),t) for ¢t at (n+1/2)At, we obtain,
for R,

(n+1)At
/ (ol — [a]) $(a(8), )it | < o((Az)**?)

At

and, for S,

(nt1)
/ (o] — [a]) Bz (), Oyt > —o((Ax)?)

At
in a similar fashion to Lemmas 5.2 and 5.4. Then we have

T
| Sl = Dota(o). 0t = —o0)lélca
On the other hand, notice that for (j — 1)Az+ 1<z < jAz+1

1 jAz+1 At jAz+1
v;ﬁ:_/ ‘"daz+—/ g(@")dx.
Az (j—1)Az+1 Az (j—1)Az+1

Then since 7 is convex, from a similar argument of (6.12),

jAz+1
Ji(¢) = Zd)n /(] N (n(o"™) — U(U;L))dx
’ jAz+1
+ Zd);b /('I)A » U]" — n(ﬁi))diﬂ
IIr
jAz+1
>%’; /] 1)Az+1 )(U - v )dx
+/ I V(o) g(0?)d(x, t)dwdt + o(1)
. jAz+1 B
B —At2¢ /(] aeit Vn(v})g(ol )dx

+/ Vn(52)§(54)(z, t)dzdt + o(1)
17
=Ju + Jiz + Jis + o(1),

where
jAz+1 A A
Ji1 = ¢)/ Gg(@7) — Vn(v?)g(v?))dzdt,
1 Z otyat S 1)Az+1 )§(v7) — Vn(vj)g(vj'))
jAz+1
Ji2 = ¢"/ Y (g(vh) — g(o™))dxdt,
12 Z wnae 1)Aw+1 07 )(g(v) — g(o2))

jAz+1
n=3 / o / n(E4)3(5%) = Vn(})3(o2))

-1 Am—i—l

><(¢>( t) — @3 )dwdt.
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From Lemmas 2.5, the order of the difference between 72 and the corresponding
piecewise constant approximate Riemann solutions V2 (z,t) (see Lemma 7.1), which
consists of data of quasi-steady state solutions, is Az. Therefore, noting |V25| <
C/p, |4l <Cp,|Vug| < C,|Vn| < C, from (6.18) and Lemma 7.1,

jAz+1
|11 <CZ¢"/ / 0] —U?|d$dt: O(V Az).
n —1 A.erl
Since |V,g| < C,|Vn| < C, from (6.18), we can obtain
jAz+1
|J12] <Cz¢n/ / |02 — v} |dzdt = O(V Ax)
(n—1)At J (j— 1)Aa:+1
and
|J13| = O(A.’L')

Therefore J; — 0 as Az — 0.
Furthermore, for any ¢ € C&(Q), we have

jAz+1
@IS [T 16 =8 — i)
—1)Az+1
+ (o) = n(v})de
jAz+1 2
< Azf[gllcr(n) Z/ o) —n(?)*de |+ O(1)
-1 Am—i—l
jAz+1 2
< OVAz|éllor ) §;/ o7 —wiPde |+ O(V/Az)
n —1)Az+1

< Cv A$||¢||01(Q) — 0, as Az — 0.
Therefore,

// v e + q(02) b — Vi(v?)g(v?) @) dwdt
0<t<T= mAt

+/inw%>wmxm
o) (Iéllery + Il @) = 0, Az 0. (7.10)

Taking the limit Az — 0 on both sides of (7.10) and using Lebesgue’s dominated
convergence theorem, we verify that the limit function v = (p, m) satisfies

n(v)e + q(v)e + Vn(v)g(v) <0, (7.11)

in the sense of distributions. Choosing 7(v) = +p, +m, we immediately find that
v(z,t) is a weak solution. Using the standard procedure (cf. [S]), we conclude that
the limit function v(x, t) satisfies the entropy condition (1.12) along any shock wave.
This completes the proof of Theorem 7.2. |
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APPENDIX A. THE VALIDITY OF THE CONSTRUCTION OF APPROXIMATE
SOLUTIONS AND THEIR ESTIMATES IN THE CASE (A)

We prove that the construction of approximate solutions and their estimates
in the case (A) are valid. Recall that, in this case, a 1-rarefaction and a 2-shock
arise as Riemann solutions with initial data (v}, o7, ) and the middle state satisfies
pm > (Ax)”.

We shall replace the constants of a 1-rarefaction fan with quasi-steady state
solutions. More precisely, we determine speeds o;, ¢ = 2,...,p and quasi-steady
state solutions ©;(z), i = 2,...,p between l; : x = jAz + 1 + 0;(t — nAt) and
liy1:x=jAz + 14 0,41 (t — nA?).

First, let us determine the speed o2 and the quasi-steady state solution s (x).
Let Fy(02) be 03 — @y + S(p2,p1) at © = x2 := jAz + 1 + 02At/2, where vy is
the possible state that can be connected to ¥1(x2) on the right by a l-rarefaction
shock curve such that ze := z(v2) = 25 and 0;(x) is defined in (3.8). In this step,
we determine o2 and ve in Subsection 3.1 (A) Step 2. To do this, we find oy such
that F»(o2) = 0, by using the following theorem:

Theorem A.1. Let U € R" be an open set. Let & — f(&) be a C* map from U into
R™. Assume that there exist positive numbers e, Ay, M such that the following hold
1) £ < Ao/ (2M); 2) |f(Zo)| < &5 3) Df(y) is invertible; 4) ||Df(Z) — D (o) <
1/(2M) for | — @l < Ao; 5) [[{DF (@)} < M, where |Al| = supjs_, |4z for
n X n matriz A.

Then there exists a unique solution T of

f(@) =0
in |Z — Zy| < Ao such that
|f—.’1_,"0| SQME.

First, from Remark 2.2, along a 1-shock or a 1-rarefaction shock curve, we have
the following lemma:

Lemma A.2. If there exist C1 > 0 and Cy > 1 independent of Ax such that
min{p, po} > C1(Az)? and 1/Cy < p/po < Ca,

w—wy = O((Az)~0=V8)(z — z)*

holds, where (w, z) is connected to (wo, z0) on the right by a I-rarefaction shock or
a 1-shock curve and O(Azx) depends only on Cy and Cs.

Let wvp2 be the possible state that can be connected to @1(x3) on the right
by a l-rarefaction shock curve such that zp» = 23, where 253 = jAxr + 1 +
A1(27, 25, wr,) At/2. We deduce from Lemma A.2 that

wo, = w(vos) = W (z5) + O((Az)**~(—DF),
Since 2a — (y — 1) > 1, we have
Fy (M (21,25, wL)) = O(Ax), Fy(Ai(27,25,wL)) > 1/2.

Applying Theorem A.1 with & = o9 and &y = A1 (27, 23, wL), we have a solution oy
such that

09 = U1 —S(pz,[)l) at © = x» (Al)
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and
|oa — A1 (27, 25, w)| = O(Ax). (A.2)
By using this solution g2, we can determine ve such that 1) z(ve) = 25 and 2) the

speed oy, the left and right states o3 (x2),ve satisfy the Rankine-Hugoniot condi-
tions, where x5 := jAz + 1 + 02 At/2. Moreover, v, satisfies

p2 > (A0)P 2, |pa/pr(w2) = 1] = o(L). (A3)
Then we define a quasi-steady state solution v, by
O2(x) == Vgs(x, 22, 02).

Since v2 and ¥ (w2) are connected by a 1-rarefaction shock curve, from Lemma A.2,
we obtain

W2 (3132) = wsy = W1 (3132) + 0((A$)3a—(w—1)ﬁ)' (A4)
Now, we assume that we can determine the speed oy, v and v (z) (k =2,...,1)
satisfying the following (#):
o 2 = z(vg) = zf, wi = w(vk)- (A.5)
o 0% — M (w1, %y, 50)] = O(Aa). (4.6)
oz, =jAx + 1+ 0, At/2.

e v, and Uk_1 (zg) are connected by a l-rarefaction shock curve.

o () = Vys(@, zp, vp). (A.T)
o Wy, (1) := w(Tk(r)) = wi, = W1 (7x) + O((Az)>*~0O~DF), (A.8)
o pr > (A2)7/2, |pr/Prr (@) — 1] = o(1). (A.9)

In view of (A.8), since p = O((Az)~%) and 2a — (v — 1) > 1, we have

lwi —wy| = |w;(z;) —w| = |wi(x;) — w1 (71)]

< z_: | (rs1) — wr (1) + O((Az)?*~ (D8
k=1

= O(Ax). (A.10)

It follows from (A.10) that

3— .
pi = p(zf,wn) + (p(z,we)) 2 O(Ax) + O((Ax)?) (A.11)
and

wi — u(ef, w) = 2 '2“ T ; % o). (A.12)
Moreover, recalling that a < 1, it follows from (A.6) that o4_; < of. Then,
by induction and the argument for i = 2, we can determine the speed o041,

viy1 and 0;11 () satisfying (#) and complete R2(zy)(vr,). Notice that (A.6) and
(A.10)—(A.12) imply the order of the difference between the 1-rarefaction fan and
RlA (ZM)(’UL) is Az.

Now we fix Ur (z) and 0,1(z). Choosing o, near to o,, o near to os and vy
near to vy, we fill up the gap between r = jAr+1+0,(t—nAt) and z = jAz+1+
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oo(t — nAt), by a quasi-steady state solution Uy () satisfying oy (jAz + 1) = vyy.
First let oy = o7 (vy;) and o = o¢(vy;) be solutions of the equations

o
UP

Il
<

p—1— S, Pp1) at v =1, = jAx + 1+ 0, At/2
and

0. =tr+ S(Py, Pr) at © = 2% = jAx + 1+ 0L At/2

respectively.
Let Fs(o?2, p3y, usy) be
ur + S(py, Pr) at © = x2 == jAz + 1+ ol At/2.
In the coming argument, we shall need the lower bound of pg in the case where

pr is much smaller than py. Therefore, when pr < pm/2, we first derive the
estimate. It follows from Lax condition that

Ao (vnt, UR) = UuR + \/p_ww < uy + Pl = Aa(om).
PR PM — PR

We then have

C > (um — ur + pir) :\/pﬂw
PR PM T PR

_ v _
§ \/p_M () 1 (1= (onf)'} \/ O—W2Ne)y
PR M PR
where C depends only on M_ and M. We consequently obtain pr > (pm)7/C.
We thus have

OF. (02, pius uiy) _ dn(a) At | 0S(y. ) Opu(x) At

do ci=oseu=mnn T gy dpr Oz 2
Upng=UM
L 95k, pr) Oy (@) AL
05y O 2 |Trerimon

Uy =um
= O(Axz).
Similarly, we have
OF (03, prr> un)

I

 0S(p3p,m) 0 ()
o=0s.pm=PM, ap3y ap3y

=O0((pm)™)

° °
Os=0s,Pn1—PM>
o
Uy =UM

and

OF, (02, pir> usy)

= 1).
Ougy o)

o_ o
0. =0s,PM=PM>
o —
Uy =UM

Here we introduce the following theorem:

Theorem A.3. Let U € R™,V € R be open sets. Let (Z,y) — f(Z,y) be a C*
map from U X V into R. Let us consider the equation

y=f(z1,...,%n,y) (A.14)
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near (Z,y) = (Zo,yo). Assume that there exist positive numbers e, Ay, Ao, M such
that the following hold: 1) ¢ < Ay/3 and Ay < A1 /(B3M); 2) |yo — f(Zo,y0)| < €;
3) If ly — yo| < Ay and |T — Zo| < Ay, then |0y f(Z,y)| <L <1/3 and |0zf] < M.

Then there ezists a unique solution y = y(&) of (A.14) for |y — yo| < Ay and
|Z — Zo| < Ay such that

(&) ~ F(@o, w0 < T (MIF ~Fol + o — F@o,w)l). (A15)

Moreover y is C'.

Since

FS(UgapﬁdauK/I) ‘7§:‘757PK/1:PM: —0s = O(A:I")a
uf/I:uM

-

applying Theorem A.3 with & = (p%;, uy), ¥ = s, To = (pm,um) and yo = o5, we
have
oy =0, + 0(Az) + O((pm) " Hpin — pu| + Jugy — uml),
where
os = ur + S(pMm, PR)-
Let F(o,, pig, upy) be
tp—1 — S(prp, Pp—1) at © = x; := jAz + 1+ 0, At /2.
Set
ORw = Up-1 = S(pM; Pp-1)-

We then observe that

< <& < * —
F(Up7pM7uM) O';:O';{w7pK/I:pM7_O—R,W - O(AZU)
uK/I:uM
Moreover we have
<& < <o
6F(%:PM:“M) — 0(Az)
do° Oy =0 R PM=PM, .
p uﬁ/[:uM
Similarly, we have
<o O <
OF (0, PXa> uny) — 0(( )72;3)
T apy, |oe=rhwri=en, T VUM
M uK/IzuM
and
<o < <o
aF(%;PM:“M) — 01
O T (1).
M u=un

Applying Theorem A.3 with & = (p3;,uy;), ¥y = 0, o = (pm,um) and yo = o,
we have

1=3) & o
00 = oty + O(A2) + O(pr) 2" 93 — pral + sy — unal): (A.16)

Now we have obtained two functions of p3; and uyy, o) = o5 (p3y, uyp) and of =
ol (py, uyy). Next let us determine pg; and ugy.
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We first obtain

0c? 0
5k = 5 S pp=1)(1+ O(4n) ,
PM o8 =pa ugr=um PAM=PM Uy =UM
do? 0 oo -
Pym PU=PM, U =UM pM PU=PM, U =UM
0ot o’
p — 0(Az), s — 0(Az).
o Bug,

o — Lo g—
PRI=PM U =UM

On the other hand, the Rankine-Hugoniot conditions on t = (n + 1/2)At are
reduced to Ay = Ay =0, where

Ay i=myy —mp—1 — 0y (Py — Pp—1) at T =T,
Ay :=1mg —my — ol(pr — py) at © = x?.
Then we can find

Ay

- O(A:E), A2

= O0(Az).

Lo Qe Lo o — R —
Py =PM Uy =UM Py =PM Uy =UM

Next we estimate the derivatives of A; and As. We first obtain

O\ 0
o | rtmonns = (P = Pp—1) 525 S (Prns Pp—1) — 0 + 0y
P u%d/[:,x,[ Pt b

OA» 0

5 oti—rn. = (P — PR) 55~ S (P, Pr) + 05 — Ty
3PK4 Z%/,I[:pqx/; M 3PK4 M M

8A1 _ aA2
o - S o A —
PRI=PM> PM PRI=PM>» + O( CU), auﬁ/{

_ S
ud =um ug =um

+ O(Aux),

P=PM>
[eJp—
UL =um

+ O(Ax),

PUI=PM
U =uUM

+ 0(Az).

_ =0
P=PMy M

o
Uy =umM

P=PM>
[eJp—
UL =um

ouy
These yield

oA, OA
Opyy  Ouyy

det =—pulAd+0((A2))H o 0.
0Ny OA, Pt ((Az) )}|PM*PM7"MfUM

Opyy Ouyy PAI=PM,
Uy =uM

where

0
A=—(pr PM)ap S(pa1> Pr) + S(pr, pr1) + S(Prrs Pv)
M

P =PM U =UM
Since

—O — a —O — — —O = =0
A= (py — PR)—aﬁo S(py> pr) + S(pr, prr) + S(Prrs A1)
M

1 1
2 S(pR7 M)

o — o —
Py =PM, Uy =UM

= 5S(n i) + P30 + S, )

o Log—
PRI=PM U =UM

> C(Ax)” T ,
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we thus conclude that

0Ny OA \ T
aps,  ouy
S = 0((An) %)

0Ny OAs

Oy Ouyy PRI=PM,
Upnr=UM

Applying Theorem A.1, we have a solution vy, satisfying
1080 = pal + [y — una| = O((A)! =57, (A17)

Finally we derive (4.7) and 0}, 1 < 0§ < 0¢. Since py > (Az)? and |p, 1—pm| =
O((Ax)®), from (A.17), we have

P = pp-1(L+0(1) = pu(l +0(1),  piy > (Az)?/2.
This shows |p};/pp—1 — 1| = o(1). Observing that p, 1(z;) = pp—1 + O(Azx) and
prulry) = pir + O(Az), (4.7) follows from Remark 2.2 and (A.17). 0,1 < o
follows from the fact that a < 1 — 24, (A.16) and (A.17). Since o, and of are
speeds of the different families, recalling py; > (Ax)?, we can obtain o, <og.

APPENDIX B. THE VALIDITY OF THE CONSTRUCTION OF APPROXIMATE
SOLUTIONS AND THEIR ESTIMATES IN THE CASE (B)

We consider 92 (z,t) in the case (B). In this case, 72 (x,t) consists of a Riemann
solution and a piecewise quasi-steady state rarefaction wave such as Rf(z£1))(vL).
In this section, we estimate v (z,t), in particular, in the region where o2 (z,t)
are Riemann solutions. Here notice that, if o2 (z,t) is a Riemann solution, from
our construction, o4 (z,t) = v*(x,t). On the other hand, we cannot connect a
piecewise quasi-steady state rarefaction wave and a shock wave of the same family.
Therefore we must check the following;:
e in the region where v (z,t) is a Riemann solution, v (z,t) satisfies (4.1)
and p?(z,t) < 3(Ax)?/2.
e when we connect a piecewise quasi-steady state rarefaction R{ (resp. R3')
and a Riemann solution, a 1-shock (resp. a 2-shock) does not arise as the
Riemann solution.

Case 1.1 p; > (Az)”
In this case, we first observe that
pr < (Az)°,  z(vr) > L. (B.1)
(i) 2(om) — 2(01") > (Az)*
We separately consider two cases.
(i))~(a) 2(vf”) > L;
In this case, since max{z](}), L;} = z](}), the right state 'U£2) is connected to the left

state v, by RlA(z]El))(UL). On the other hand, from the argument of the case (A),
we deduce that

lw(v”) —we)| = 0(Az), |p” —pV| = () P0(A)  (B2)
(from (A.10) and (A.11) with i = p)
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and

w(vﬁz)) < My + e+ o(Ax). (B.3)

(n+1)At
777777777777777777777777777777777 (n+1/2)At
nAt
(j—1/2)Az +1 jAz +1 (1 +1/2)Az +1
FiGURE 8. Case 1.1 (ii)—(a): The approximate solution v in

the cell.

Since @ < 1, from (B.2); and the assumption of Case 1.1 (ii), a 1-shock does

not arise for a Riemann problem (UIEZ),UR). We then solve the Riemann problem

(’U£2) ) UR)'

rarefaction

,,,,,,,, shock
quasi-steady state solution

(2(vr), ’IU(UR),)"//

FIGURE 9. Case 1.1 (ii)—(a): The approximate solution 4 in

the case where a l-rarefaction and a 2-shock arise in (z,w)-plane.
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Let o, be the propagation speed of the first 1-rarefaction shock on the right in
RlA(zﬁl))(vL) (see Figure 8). Then, notice that from (2.4) o, < Ay (v£2)). Therefore,
we can connect this Riemann solution and RlA(z]El))(vL).

From Lemma 2.2, (B.1) and (B.2)s, recalling that pil) = (Az)?, this Riemann
solution vft(x,t) satisfies pf(x,t) < 3(Az)? /2,

z(vB(z,t)) > L;, wf(z,t)) < My + e+ o(Az). (B.4)

Therefore, from the construction of 92 (x,t) and (B.4), we have (4.1).

(i)-(b) =(v()) < L;

In this case, since max{zl(}), L;} = L;j, the right state ’U£2> is connected to the left
state vy, by R{(L;)(vr,) and z(v£2)) = L;. Now, the definition of v, = v} implies
z(op) > =M_{(j —1/2)Az + 1}7%. On the other hand, from the definition
of v£1) and the assumption of Case 1.1, we find z(vl(})) > z(vr,). Observing that
Z(U£2)) =L; > z(vl(})), we have |z(v£2)) - z(v£1))| = O(Az). Therefore, since
PS) = (Az)P, from (A.10) with i = p, we thus have (Az)?/2 < p](f) < 3(Ax)P /2.

rarefaction
p=0
,,,,,,,, shock
g z quasi-steady state solution

0]

(z(vr), w(vr))

FiGURE 10. Case 1.1 (ii)—(b): The approximate solution o4 in
(z,w)-plane.

We then solve a Riemann problem (v£2),vR). Since z(vg) > Lj, a 1-shock does
not arise.

We next estimate this Riemann solution. We deduce from the argument of the
case (A) and the definition of ’U£2) that w(vl(f)) < My + e+ o(Azx). From Lemma
2.2, the Riemann solution v (z,t) satisfies pf(z,t) < 3(Ax)?/2,

z(vB(z,t)) > L;j, wf(z,t)) < My + e+ o(Az). (B.5)
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Therefore, from the construction of 92 (x,t) and (B.5), we have (4.1).

Case 1.2 p, < (Az)?
(i) #(o1) > L;
In this case, from (B.1), we have (4.1).
(11) Z(’UL) < Lj
We solve a Riemann problem (v£3) ,URr). Since z(vr) > Lj, a 1-shock does not arise.

On the other hand, from the definition of v£3), we find w(v£3)) < M; +¢. From
(B.1), we then have (4.1).

L; ‘ v P :(Ax)ﬂ
i
G wer?)
i / rarefaction
b p=0

conway S | shock
| ' z quasi-steady state solution

l
g 2 (=(0m) w(vw))

A

FIGURE 11. Case 1.2 (ii): The approximate solution < in (z,w)-plane.

Case 2.1
In this case, notice that pr, < (Az)” and z(vy) > z(vr). The definition of v (=)
and v}, (= vg) thus implies

L; < z(vr) < z(v), w(vr,) < My +¢ and w(vg) < My +e. (B.6)
(ii) w(vg)) —w(vy) > (Az)* and pr > (Az)?

Then, notice that |z(v§)) - z(vg))| = O(Az). Since « < 1, from the assumption
of Case 2.1 (ii), a 2-shock does not arise for a Riemann problem (vL,vI({2 )). The
estimate of this Riemann solution can be found in Section 4.
(if) pr, < (Az)?
In this case, from Lemma 2.2 and (B.6), we conclude that L; < z(v?(w,t)) and
w(v?(z,t)) < My +e.

Case 3.2 w(vg)) —w(vy) > (Az)® and pr > (Az)?
(i) p > (Ax)?
We separately consider two cases.
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), w2 g

rarefaction

shock
quasi-steady state solution

FiGURE 12. Case 2.1 (ii): The approximate solution 72 in the
case where a 1-shock and a 2-rarefaction wave arise in (z, w)-plane.

A

w

,,,,,,,,,,,,,,,, shock

: (z(vr), w(vr))

A

FIGURE 13. Case 3.2 (i)—(a): The approximate solution ¢< in

(z,w)-plane.
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(i)-(a) 2(v) > L
Since |p£1) (2)| = (p (1))1760(Aar) (recall (A. 11) With i = p), |wL1) — w£2)| =
O(Az), |5y — 27| = 0(Ax), o) = pi)] = (i)' ~°0(Aw), pf”) = pfy) and
a < 1, we have
w(vy) —w??) > wy)) —w)) - 0(Ax)
> w(vm) —w(v) + (Az)* — O(Ax)

(from the assumption of Case 3.2)

> (Az)® — O(Az) > (Az)*/2. (B.7)
2wi)) = 2(07) = w(vy)) —wv) —2007)° /6 + 2(p>)° /6

> w(vf) —w(v) - O(Ar)

> w(on) — wlvr) + (Az)™ — O(Ax)

> (Az)® — O(Az) > (Az)*/2. (B.8)

Here, since
|1 — )/p(1)| (pil))_gO(Ax) =o0(1) (from the fact that p( ) = = (Az)P),
notice that

)18 = (o0 10+ {rol + @ =P} (P — oY)

-1
= )0+ {rol + (L=} ()P0 An)
-1

= G0+ {r+ (=2 2} 0an)

= (o,)’/0 + O(42), (B.9)
where 0 < 7 < 1. Similarly notice that
(i)’ 18 = ()" 16+ O(Ax). (B.10)

We solve a Riemann problem (v£2),vg)). From (B.7) and (B.8), a l-rarefaction
wave and a 2-rarefaction wave arise. Then estimate of this Riemann solution can
be checked by using (B.8)- (B.10).

(D)-(b) 2(oV) < L;

In this case, since max{zﬁl), L;} = L;, the right state v£2) is connected to the left
state vy, by R4 (L;)(vy) and Z('U£2)) = L;. We then obtain (Az)?/2 < p(2)
3(Az)P /2, |z£2) - z£1)| = O(Az) and |w£2) £1)| = O(Az) in a similar fashion to

Case 1.1 (ii)—(b). From (B.7), we have
w(vl) —w) > weR)) - wE) - 0(4Az) >0,
2()) = 2(0”) > 2(0))) = 2(0f!)) = O(Ax)
=w() —we) - 0(Az) >0

Therefore, a 1-rarefaction and a 2-rarefaction arise. The estimate of this Riemann
solution can be obtained easily.
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(i) pr. < (Az)?
In this case, from the assumption of Case 3.2, we have

we) —wvy) > wed)) —wlvy) > wEl)) —wlow) — O(Az)

> (Az)* — O(Az) > (Az)*/2. (B.11)
(i)~(a) 2(vr) > min {2(v), L |

We solve a Riemann problem (v, vl(;f)). From (B.11), a 2-shock does not arise. The
estimate of this Riemann solution is similar to Case 2.1.

A

w (2(vr), w(vr))
M. |
(2()), w(o))p
(201, w(og))
rrrrrrrrrrrrrrrr shock
__ rarefaction
quasi-steady state solutio
(z(vr), w(vr)) e (2w, w(vP))
»
o =
p = (Az)’
p=0

FIGURE 14. Case 3.2 (ii)—(b): The approximate solution o4 in
(z,w)-plane.

(ii)=(b) z(vL) < min {z(vl(;f)),Lj}

We solve a Riemann problem (vl(f),vg)). Then, since |w(v£3)) —w(vy)| = O(Ax),
from (B.11), a 2-shock does not arise. The estimate of this Riemann solution is
similar to Case 2.1.

AprrPENDIX C. PROOF OF LEMMA 6.1
Proof. Set

plx,t) == [)(:c,t):cfﬁ, m(z,t) == m(z,t)x™2, oy = (j — 1/2)Az + 1,

. 1 jAz+1 4 . 1 jAz+1 )
E:(p) := —/ plz,t)x” v+ide, E:(m):= —/ m(x,t)z “dx.
! Az J(j-1)Axt1 ! Az J(j-1)awt1
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We then deduce from Lemma 2.2 that
w(E}(p), B4 (m)) < My +e+ o(Ax).

Therefore our goal in this lemma is to prove

_2(v=1)

2(Bl(p), Bi(m) > ~M_zy, "7 — o(Ac),

where

2(Ej(p), E5(m))
= Ej(m)/Ej(p) — {E;(p)}’ /6

J

(C.1)

1 jAz+1 ) 1 jAz+1 . 0+1
— m(z,t)x“dr — —/ plx, t)x +ide 0
. Az /(j—l)Az-H (=:%) Az )1y Awt1 (@) /

1 /jAw+1 4
—_— plx,t)x” "+ide
Ax (j—1)Az+1

and Landau’s symbol o(Az) depends only on M, and M_.

Step 1.
We find
1 [iAett , 26-1)
Ei(p) = —/ plz, )z 2z 571 dx
! Az (j—1)Az+1
2(7;11) 1 jAz+1 )
=z —/ plz,t)x™"dz
M Az (j—1)Az+1
2y —1) 20=n 4 1 [idetl 5 _
+ ——2z, —/ (x — 2n)p(x, ) 2dx
y+1 M Az J(j_1)Act1

R <2<v -1 1) L /( T - e e

y+1 v+1 j—1)Az+1

x {ap + 1 (x)(z — :UM)}Z(J;;) 2z

2y-1y | pIAa+l )
— y+1 " ~ t - d
i L

j—1)Az+1
20=1) st 1 /j““ 5
+ -, —_— (z —zm)p(z, t)de
y+1 M Az J(; 1) Aet1
) 1 jAz+1 s
+o(aa) 4 [ p(a, a7 da
Az (j—1)Az+1

2

(taking Taylor’s expansion of =2 at xpp),

where 0 < 71 (z) < 1.

2

(C.2)
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Substituting the equation above for (C.2), we obtain

2(Ej(p), Ej(m))
1 jAz+1 ) 1 jAz+1 4 o+1
—_— m(z,t)x™“dx — —/ p(x,t)x” "+idx 0
B Az /(j—l)AaH—l (z:1) Az (j—1)Az+1 plt) /

209-1 | IAa+l 5
Ty —/ plx, )z dz
Mo Az Sy aen

| et — 1 pidetl - . +1
— m(z,t)z™“dr — —/ ple, t)x +ide 0
Az /(j—l)AaH—l Az (j—1)Ax+1 /

2(~,+—11) 1 JjAz+1 ) 2
Ty T — plx, t)x “dx
M Az /(jl)Aw+1

2(y-1) —4-1 1 /J'M“ B )
X ———2x," — r—zx x,t)dx + O((Ax)”). C.3
T g [ a0 A2 (C3)
Set
‘_ 2(y—-1) 1
PO D0+ [ A .\
— plx, t)x " +idr
(Aﬂ? /(jl)Aw+1 (1) )

1 jAz+1 ) 1 jAz+1 4 0+1
— m(x,t)r “de — —/ pla, t)x Hide 0
Az /(jl)AwH Az J(j-1)Aut1 /

X i

2(—1;11) 1 jAz+1 )
xy —/ plz,t)x “dx
Az (j—1)Az+1 ’

(C.4)

Then assume that the following holds.

(B ()" < = / B ) s
Az (j—1)Az+1

1 jAz+1 ~ e 0

J

T it a
X T — Tz —am)p(z,t)de
M Az J(i_1)Aet1

1 jAz+1 4
+ o(Az)— / plz,t)r” "+idx. (C.5)
Az (j—1)Az+1
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This estimate shall be proved in step 2-4. Then, substituting (C.5) for (C.3), we
conclude that

jAz+1
e e 0~ (5w 0) e

i—1)Az+1
2(Bj(p), By (m)) > =2 — o(Ax)
Ty —/ plz,t)z2dx
M Az (j—l)Aa:—i—l( )

_200-1)

> -—M_zy " —o(Azx).

Therefore we must prove (C.5). Separating three steps, we derive this estimate.
Step 2.
First, let us consider p in (C.4). We prove that
|ul < C(Az)~",

where C depends only on M, and M_.
It suffices to derive the bound of

B .=

| pidet o | et - .\ 0+1
— m(z,t)z™“dr — —/ plx, t)x +ide 0
Az /(j—l)AaH—l Az (j—1)Ax+1 /

209-1 1 pIAa+l N
xyf —/ plx, )z dx
M Az (j—1)Az+1 ’

The upper bound:

1 jAz+1 )
— m(z,t)z”“dx
Az /(j—l)Az+1 (=9)

2(7-1) sy 1 [IAeFL 4
oy (JAz + 1) A oy oA plx, )z +idx
j—1)Az+1

—26=D 2(v-1)

Sy T (jAT +1) 57 Ej(m)/ES(p)

72(7—1) 2(

T /- 2(y=1)
Say T (jAz+1) 5 w(E(p), Ej(m))

—20-D 2(v-1)

<wzy " (jAz +1) v+t My (from Lemma 2.2).

Here choosing Az small enough such that Az < 2, we have

_2(y-1) 2(y—1) 2(y—1) 2(y—1)
oy T (A +1) T ={( —1/2)Az + 1} 5 T (jAr + 1)
%A:U i 2(y-1)
= 1 _—_— < 2 v+l CG
(+o=romsr) (o

The upper bound follows from the inequalities above.
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The lower bound:
using Jensen’s inequality, we have

1 jAz+1 ) 1 jAz+1 )
/ (e, e — —— / (2, )0 /2 2da
( (

B> Az J(i-1) Aet1 ' AT J(j-1)Aet1
= 26-1) ] jAz+1 (.0 )
N —/ plz,t)x dx
M Az (j—1)Az+1
1 [iaett , 20-1 —20-D (1)
_/ pla, e 25T ay T fa(e, 1) — {p(e, )} [8le” 5T de
> Az (j—1)Az+1

= 1 jAz+1 )
— pla, t)x™ dx
Az /(j—l)AaH—l
_2(x—1)

>-—M_zy "™ —o(Az) (from the assumption of this lemma and (C.6)).

Step 3.
In this step, we derive

Ej(p) < C1, |Ej(m)/Ej(p)| < Co, (C.7)

where C and C3 depend only on M, and M _.
When E]t (m) <0, from Jensen’s inequality, we have

2(Ej(p), Ej(m)) = Ej(m)/E}(p) — {E}(p)}" /9

| pidetl (0.0 | pidetl - \ 041
— m(z,t)x”“dr — —/ plx, t)x +ide 0
Az /('—1)Az+1 Az J o1y Awtr /

J J

/ oz, t)xiﬁdx
(

E j—1)Az+1
1 jAz+l . _ 4 - 0 _2(x=1)
</ e T [l £) — {la,6)} [0l T do
> Az (j—1)Az+1
= 1 jAz+1 4
— plx,t)x” " +idr
Az /(jl)A:chl
> —M_ —o(Az) (from the argument of Step 2). (C.8)

From (C.1), (C.8) and Remark 1.2, we have the bound of w(E}(p), Ef(m)) and
z(EX(p), E5(m)). Therefore, we conclude (C.7).

Step 4.
We next consider the first equation of (C.3):

1 jAz+1 4 0+1
—_— pla, t)x” +ide .
(Aﬂ? /(jl)A;cH
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We first find
. 1 jAz+1 s
E:(p) = —/ plx, )z 1z Hdx
! Az (j—1)Az+1
1 jAz+1 4
=z — plz, t)xH~ 7 dx
M A /(jl)Az+1
L 1 jAz+1 4
o (¢ — an0) e, H)at =7 d
Az (j—1)Ax+1
plp+1) 1 /]'A’”Jr1 2 e
t = (x — am) Pz, t)h ™ 7+
2 Az Jj_1)aen
x {xy + 12 (2)(z — 2Mm)}H2de
=1y — I1 + I,

where 0 < m(z) < 1.
We next estimate I; and I as follows:

1 jAz+1 4 ]A:E +1 [ul
L <C +1 A:c2—/ o(x,t)x 7+1 <7> T
Bl < Ol Dlan? 5 [ a7 (5
1 jAzt+l 4 Az lul
<C +1 Aaz2—/ ~a:,tar_“ﬂﬂ(l%—.i) dx
e+ 1)|(Az)” oty aeit p(z,t) G—DAs+1
1 jAz+1 4
= o(Azx)— / plx,t)x” v+1dr (from Step 2),
Az (j—1)Ax+1

a1 jAz+1
I = R —— — o(x,t)d
1 = Py e /(jl)mﬂ(fv om)p(e, t)de

4 L 1 jAz+1 )
(- —) | (v - 23)* A0, 1)
< v+1 Mo Az (j—1)Az+1

J
x {am + 75(2) (@ — o)} e
(taking Taylor’s expansion of Zh T at M)
= Jl + JQ,

4
- Az)?
(1= 1) | a0
1 /W“ . < jAz +1 >“ s
X — plz,t) | —————— x Hidx
Az J(i_1)Aet1 (z:1) (J-DAz+1
1

jAz+1 s
= o(Az)— p(x,t)x” TFidx.
oan) g [ e

| <C
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Therefore, we have

. 1 jAz+1 4
B =it o | pla, et~ do
! YAz (j—1)Ax+1

7%71 1 jAz+1 B
— pay A_:c/( (x —am)p(z, t)de

j—1)Az+1
1 jAz+1 4
+0(Aar)—/ plx, t)z” "+idx. (C.9)
Az (j—1)Az+1
On the other hand, we find
_% 1 JAz+1 1 jAz+1 A
Ty —/ x—:cMﬁ:c,td:c:OAx—/ plx,t)x +1dx.
e eaede =o@a g [ e
(C.10)
From (C.9) and (C.10), we deduce that
o = (o [ e
E:(p = | zy —/ plz, )" +idx
! Az (j—1)Ax+1
a1 At 041
—pzy T —/ x — z\)p(z, t)de
TS AL
1 jAz+1 4
+0(A:c)—/ pla, t)x +ide
Az J(j_1)Aet1
1 piAet .\ 6+1
= | oy — plx, t)zt ™ +idx
YAz /(j—l)Az-H
1 jAz+1 4
+(0+1) 33371“_/ Pz, t)zh ™+ de
Az (j—1)Ax+1
_%_1 1 jAz+1 0
—Ta T, —/ z —xp)p(x, t)de
w T [ i
R B N Y
X — Ty —/ x —axm)p(x, t)de
M Az J(j_1)Aet1
1 jAz+1 4
+0(Aar)—/ plx, t)z” "+idx. (C.11)
Az (j—1)Az+1
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Since

1 jAz+1 4
_”—/ pla, t)zt ™ v+ dx

x
M A (j—1)Az+1
1 /jAw+1 ~( t) _%d
= — plz,t)x ~ T
Az (j—1)Az+1

1 jAz+1
+ pzy —— / (x — zm)p(z, t){zMm + 75(x) (2 — CUM)}H_liL“H_ﬁd:U
Az J(j—1)Awt1

1 jAz+1 4 1 jAz+1 .
/ plx, t)y +1de + o(V Ax) / pla, t)x” +ide,
( (

Az j—1)Az+1 Az j—1)Ax+1

substituting this equation for the second equation in (C.11) and using (C.10), we
obtain

Az 0+1
(Ej(p)’*' = *”‘CIT/IHi /]A N pla, )z~ 7 de
Az J (1) Aat1

1 jAz+1 4 4
—u@+1 —/ ple, t)x " +ide
( ) (Aﬂ? (j—1)Aw+1 (=4)

J

_2 11 jAz+1
Xz T — / (x — zm)p(z, t)dz
(7—1)Az+1

1 jAz+1 4
+ o(Az)— / pla, t)x” ++1de. (C.12)
(

j—1)Ax+1

Considering (C.12), from Jensen’s inequality, we have

bl /M*‘”+1 L\
Ty — plz, )zt~ +ide
M A (j—1)Az+1

. 0+1
_, 1 pidetl e+l 4 641
zy — plx, )zt & F a+ig™e Fdx
o Az (j—1)Ax+1
1 jAz+1 o1
— x @ Hdx
Az J(j 1) Aet1

1 jAz+1 6+1 o
X —/ xe Pdx
Az (j—1)Ax+1

. ) 0
1 jAz+1 41 1 jAz+1
< —/ (p(z,t)" T e2dx |z, ° ”—/ ey |
Az (j—1)Az+1 Az (j—1)Az+1

(C.13)
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Since

_%H 1 jAz+1 o1
Ty — x o Hdx
A.’L‘ (

j—1)Az+1
_eg1, 1 [IAwHl a4
=N ”—/ z\/ Hdx
Az (j—1)Ax+1
s D N 2 = P
+z su—u—/ o " (@ — oy)de
M Y Az (j—1)Ax+1 M
—ext0+1 (641
v HZ T~ -1
+xy ) H( g M >
1 jAz+1 ot1, o )
X —/ {zm + 16(z)(x — M)} 7 *72(x — M) de
Az (j—1)Ax+1
=1+ o(Ax),
(C.13) yields
u 1 jAz+1 4 0+1
Ty — plz, )zt~ +ide
M Ag /(jl)Aerl
1 jAz+1
<L / (3(w, 1) 22w (1 + o Az)). (C.14)
Az (j—1)Ax+1
From (C.12) and (C.14), we obtain (C.5) and complete the proof of lemma
6.1. g
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